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Abstract Great successes of deep neural networks have been witnessed in various real applications. Many

algorithmic and implementation techniques have been developed; however, theoretical understanding of many

aspects of deep neural networks is far from clear. A particular interesting issue is the usefulness of dropout,

which was motivated from the intuition of preventing complex co-adaptation of feature detectors. In this paper,

we study the Rademacher complexity of different types of dropouts, and our theoretical results disclose that for

shallow neural networks (with one or none hidden layer) dropout is able to reduce the Rademacher complexity

in polynomial, whereas for deep neural networks it can amazingly lead to an exponential reduction.
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1 Introduction

Deep neural networks [1] has become a hot wave during the past few years, and great successes have been
achieved in various real applications, such as object recognition [2–4], speech recognition [5–7], video
analysis [8, 9], etc. Many effective algorithmic and implementation techniques [10] have been developed;
however, theoretical understanding of many aspects of deep neural networks is far from clear.

It is well known that deep neural networks are complicated models with rich representations. For really
deep networks, there may be millions or even billions of parameters, and thus, there are high risks of
overfitting even with large-scale training data. Indeed, controlling the overfitting risk is a long-standing
topic in the research of neural networks, and various techniques have been developed, such as weight
elimination [11], early stopping [12], Bayesian control [13], etc.

Dropout is among the key ingredients of the success of deep neural networks. The main idea is to
randomly omit some units, either hidden ones or input ones corresponding to different input features;
this is executed with certain probability in the forward propagation of training phase, and the weights
related to the remaining units are updated in back propagation. This technique is evidently related
to overfitting control, though it was proposed with the intuition of preventing complex co-adaptations
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by encouraging independent contributions from different features during training phase [14]. Extensive
empirical studies [14–16] verified that dropout is able to improve the performance and reduce ovefitting
risk. However, theoretical understanding of dropout is far from clear.

In this paper, we study the influence on Rademacher complexity by three types of dropouts, i.e.,
dropout of units [14], dropout of weights [16] and dropout of both. Our theoretical results disclose that
for shallow neural networks with none or one hidden layer, dropout is able to reduce the Rademacher
complexity in polynomial, whereas for deep neural networks it is able to reach an exponential reduction
of Rademacher complexity.

Related Work

There are several designs of dropout, such as the fast dropout [17] and adaptive dropout [18], whereas
the most fundamental dropouts are the dropout of units (hidden units, or input units corresponding to
input features) [14,19] and the dropout of weights [16].

The average and regularizing properties of dropout have been studied in [20]. Wager et al. [21] showed
that dropout is first-order regular equivalent to an L2 regularizer applied after scaling the features by an
estimate of the inverse diagonal Fisher information matrix. The generalization bound of dropout has been
analyzed in [16, 22]. McAllester [22] presented PAC-Bayesian bounds, whereas Wan et al. [16] derived
Rademacher generalization bounds. Both their results show that the reduction of complexity brought by
dropout is O(ρ), where ρ is the probability of keeping an element in dropout.

In contrast to previous studies [16, 22], we present better generalization bounds and disclose that
dropout is able to reduce the Rademacher complexity exponentially, i.e., O(ρk+1) or O(ρ(k+1)/2) for
different types of dropouts, where k is the number of hidden layers within neural networks.

Extensive work [23, 24, and reference therein] studied the complexity of neural network based on VC-
dimension, covering number, fat-shatter dimension, etc., and it was usually shown that these complexities
are polynomial in the total number of units and weights. Note that the polynomial complexities are still
very high for deep neural networks that may have million or even billions of parameters. Moreover, it is
worth noting that these complexities measure the function space in the worst case, and cannot distinguish
situations with/without dropouts. In contrast, we show that Radermacher complexity is proper to study
the influence of dropouts, and we prove that the complexities of neural network can be bounded by the
L1 or L2-norm of weights, irrelevant to the number of units and weights.

This paper is organized as follows: Section 2 introduces some preliminaries. Section 3 presents general
Rademacher generalization bounds for dropout. Section 4 analyzes the usefulness of different types of
dropouts on shallow as well as deep neural networks. Section 5 concludes.

2 Preliminaries

Let X ⊂ Rd and Y be the input and output space, respectively, where Y ⊂ R for regression and
Y = {+1,−1} for binary classification. Throughout this paper, we restrict our attention on regression
and binary classification, and it is easy to make similar analysis for multi-class tasks. Let D be an
unknown (underlying) distribution over X × Y.

Let W be the weight space for neural network, and denote f(w,x) the general output of a neural
network with respect to input x ∈ X and weight w ∈ W. Here f depends on the structure of neural net-
work. During training neural network, dropout randomly omits hidden units, input units corresponding
to input features, and connected weights with certain probability; therefore, it is necessary to introduce
another space

R = {r = (r1, r2, . . . , rs) : ri ∈ {0, 1}}

where s depends on different neural networks and different types of dropouts, and ri = 0 implies dropping
out some hidden unit, input unit and weight. Here each ri is drawn independently and identically from a
Bernoulli distribution with parameter ρ, denoted by Bern(ρ). Further, we denote f(w,x, r) the dropout
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output of a neural network, and write

FW = {f(w,x, r) : w ∈ W},

as the function space for dropout. Here we just present a general output f(w,x, r) for dropout, and
detailed expressions will be given for specific neural network in Section 4.

An objective function (or loss function) ℓ is introduced to measure the performance of output of neural
network. For example, least square loss and cross entropy are used for regression and binary classification,
respectively. We define the expected risk for dropout as

R(w) = Er,(x,y)[ℓ(f(w,x, r), y)].

The goal is to find a w∗ ∈ W so as to minimize the expected risk, i.e., w∗ ∈ arg minw∈W R(w). Notice
that the distribution D is unknown, but it is demonstrated by a training sample

Sn = {(x1, y1), (x2, y2), . . . , (xn, yn)}

which are drawn i.i.d. from distribution D. Given sample Sn and RSn = {r1, r2, . . . , rn}, we define the
empirical risk for dropout as

R̂(w, Sn, RSn) =
1
n

n∑
i=1

ℓ(f(w,xi, ri), yi).

In this paper, we try to study on generalization bounds for dropouts, i.e., the gap between R(w) and
R̂(w, Sn, RSn). Rademacher complexity has always been an efficient measure for function space [25,29].
For function space H, the classical Rademacher complexity is defined by

R̂n(H) = E
[

sup
h∈H

1
n

n∑
i=1

ϵih(xi)
]

(1)

where ϵ1, . . . , ϵn are independent random variables uniformly chosen from {+1,−1}, and they are referred
as Rademacher variables. Rademacher complexity has been used to develop data-dependent generaliza-
tion bounds in diverse learning tasks [30–32].

For notational simplicity, we denote [n] = {1, 2, . . . , n} for integer n > 0. The inner product between
w = (w1, . . . , wd) and x = (x1, . . . , xd) is given by ⟨w,x⟩ =

∑d
i=1 wixi, and write ∥w∥ = ∥w∥2 =√

⟨w,w⟩ and ∥w∥1 =
∑d

i=1 |wi|. Further, the entrywise product (also called Schur product or Hadamard
product) is defined as w ⊙ x = (w1x1, . . . , wdxd).

3 General Rademacher Generalization Bounds

In conventional studies, the generalization performance is mostly affected by training sample [33], and the
standard Rademacher complexity is defined on training sample only (as shown in Eq. 1). For dropout,
however, the generalization performance is not only relevant to training sample, but also dropout ran-
domization; thus, we generalize the Rademacher complexity as follows:
Definition 1. For spaces Z and R, let H : Z × R → R be a real-valued function space. For Sn =
{z1, . . . , zn} and RSn = {r1, . . . , rn}, the empirical Rademacher complexity of H is defined to be

R̂n(H, Sn, RSn) = Eϵ

[
sup
h∈H

( 1
n

n∑
i=1

ϵih(zi, ri)
)]

where ϵ = (ϵ1, . . . , ϵn) are Rademacher variables. Further, we define the Rademacher complexity of H as

Rn(H) = ESn,RSn [R̂n(H, Sn, RSn)].

Based on this definition, it is easy to get a useful lemma as follows:
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Lemma 1. For function space H, define absconv(H) = {
∑

αihi : hi ∈ H and
∑

|αi| = 1}. Then, we
have

R̂n(H, Sn, RSn) = R̂n(absconv(H), Sn, RSn).

Given a set W, we denote composite function space for dropout as

ℓ ◦ FW := {((x, y), r) → ℓ(f(w,x, r), y),w ∈ W}.

Based on the generalized Rademacher complexity, we present the general Rademacher generalization
bounds for dropout as follows:
Theorem 1. Let Sn = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a sample chosen i.i.d. according to distribu-
tion D, and let RSn = {r1, r2, . . . , rn} be random variable sample for dropout. If the loss function ℓ is
bounded by B > 0, for every δ > 0 and w ∈ W, the following holds with probability at least 1 − δ,

R(w) 6 R̂(w, Sn, RSn) + 2Rn(ℓ ◦ FW) + B
√

ln(2/δ)/n, (2)

R(w) 6 R̂(w, Sn, RSn) + 2R̂n(ℓ ◦ FW , Sn, RSn) + 3B
√

ln(2/δ)/n. (3)

Proof. The proof is motivated from the techniques in [25]. For every w ∈ W, it is easy to observe

R(w) 6 R̂(w, Sn, RSn) + sup
w

[R(w) − R̂(w, Sn, RSn)],

and we further denote

Φ(Sn, RSn) = sup
w

[R(w) − R̂(w, Sn, RSn)] = sup
w

[
R(w) − 1

n

n∑
i=1

ℓ(f(w,xi, ri), yi)
]
.

Let S
i,(x′

i,y
′
i)

n = {(x1, y1), . . . , (x′
i, y

′
i), . . . , (xn, yn)} be the sample whose i-th example (xi, yi) in Sn is

replaced by (x′
i, y

′
i), and RS

i,r′i
n = {r1, . . . , r′i, . . . , rn} be the random variable vector with i-th variable ri

replaced by r′i. For bounded loss |ℓ| < B, we have

|Φ(Sn, RSn) − Φ(Sn, RS
i,r′i
n )| 6 B/m and |Φ(Sn, RSn) − Φ(Si,(x′

i,y
′
i)

n , RSn)| 6 B/m.

Based on McDiarmid’s inequality [26], it holds that with probability at least 1 − δ,

Φ(Sn, RSn) 6 ESn,RSn [Φ(Sn, RSn)] + B
√

ln(2/δ)/n.

Define a ghost sample S̃n = {(x̃1, ỹ1), . . . , (x̃n, ỹn)} and a ghost random variable vector R̃Sn = {r̃1, . . . , r̃1}.
By using the fact

Φ(Sn, RSn) = sup
w

[E
S̃n,R̃Sn

[R̂(w, S̃n, R̃Sn) − R̂(w, Sn, RSn)]],

we have

ESn,RSn
[Φ(Sn, RSn)] 6 E

[
sup
w

[
R̂(w, S̃n, R̃Sn) − R̂(w, Sn, RSn)

]]
= E

[
sup
w

[∑n
i=1 ℓ(f(w, x̃i, r̃i), ỹi) − ℓ(f(w,xi, ri), yi)

n

]]
6 2E

[
sup
w

1
n

n∑
i=1

ϵiℓ(f(w,xi, ri), yi)

]
= 2Rn(ℓ ◦ FW)

which completes the proofs of Eq. 2. Again, we apply McDiarmid’s inequality to R̂n(W, Sn, RSn), and
we have

Rn(ℓ ◦ FW) 6 R̂n(ℓ ◦ FW , Sn, RSn) + B
√

ln(2/δ)/n

which completes the proof of Eq. 3.
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The main benefit of dropout lies in the sharp reduction on Rademacher complexities of Rn(FW) as
will been shown in Section 4; on the other hand, extensive experiments show that dropout decreases
the empirical risk R̂(w, Sn, RSn) [14–16] because dropout intuitively prevents complex co-adaptations
by encouraging independent contributions from different features during training phase [14]. This paper
tries to present theoretical analysis on the the former, and leave the latter to future work.

To efficiently estimate Rn(ℓ ◦ FW), we introduce a concentration as follows:

Lemma 2. [27] Let H be a bounded real-valued function space from some space Z and z1, . . . , zn ∈ Z.
Let ϕ : R → R be Lipschitz with constant L and ϕ(0) = 0. Then, we have

Eϵ sup
h∈H

1
n

∑
i∈[n]

ϵiϕ(h(zi)) 6 LEϵ sup
h∈H

1
n

∑
i∈[n]

ϵih(zi).

Based on this lemma, we have

Lemma 3. If ℓ(·, ·) is Lipschitz with the first argument and constant L, we have

Rn(ℓ ◦ FW) 6 LRn(FW).

Proof. We first write ℓ′(·, ·) = ℓ(·, ·) − ℓ(0, ·), and it is easy to get Rn(ℓ ◦ FW) = Rn(ℓ′ ◦ FW). This
lemma holds by applying Lemma 2 to ℓ′.

For classification, we always use the entropy loss as the loss function in neural network as follows:

ℓ(f(w,x, r), y) = y ln(y/ϕ(f(w,x, r))) + (1 − y) ln((1 − y)/(1 − ϕ(f(w,x, r)))),

where ϕ(t) = 1/(1 + e−t). It is easy to find that ∂ℓ(f(w,x, r), y)/∂f(w,x, r) ∈ [−1, 1], and thus ℓ(·, ·) is
a Lipschitz function with the first argument.

For regression, we always use the square loss as the loss function in neural network as follows:

ℓ(f(w,x, r), y) = (y − f(w,x, r))2.

For bounded f(w,x, r) and y, it is easy to find that ℓ(·, ·) is a Lipschitz function with the first argument.
Based on Lemma 3, it is easy to estimate Rn(ℓ◦FW) from Rn(FW); therefore, we will focus on how to

estimate Rn(FW) for different types of dropouts and different neural networks in the subsequent section.
Finally, we introduce a useful lemma as follows:

Lemma 4. Let r1 = (r11, . . . , r1d) and r2 = (r21, . . . , r2d) be two random variable vectors, and each
element in r1 and r2 is drawn i.i.d. from distribution Bern(ρ). For x ∈ X , we have

Er1 [⟨x ⊙ r1,x ⊙ r1⟩] = ρ⟨x,x⟩, (4)

Er1,r2 [⟨x ⊙ r1 ⊙ r2,x ⊙ r1 ⊙ r2⟩] = ρ2⟨x,x⟩. (5)

Further, let r = (r1, . . . , rk) be k random variables drawn i.i.d. from distribution Bern(ρ). We have

Er1,r

⟨
x ⊙ r1

∏k
i=1 ri,x ⊙ r1

∏k
i=1 ri

⟩
= ρk+1⟨x,x⟩, (6)

Er,r1,r2

⟨
x ⊙ r1 ⊙ r2

∏k
i=1 ri,x ⊙ r1 ⊙ r2

∏k
i=1 ri

⟩
= ρk+2⟨x,x⟩. (7)

Proof. Let x = (x1, . . . , xd). From the definitions of inner product and entrywise product, Eq. 4 holds
from

Er1 [⟨x ⊙ r1,x ⊙ r1⟩] = Er1

[ d∑
j=1

xjxjr
2
1j

]
= ρ

d∑
j=1

xjxj

where we use the fact Er1j [r
2
1j ] = ρ since r1j is drawn i.i.d. from distribution Bern(ρ). In a similar manner,

Eqs. 5-7 hold from Er1j ,r2j [r
2
1jr

2
2j ] = ρ2, Er,r1j [r1j

∏k
i=1(ri)2] = ρ1+k and Er,r1j ,r2j [r

2
1jr

2
2j

∏k
i=1(ri)2] =

ρ2+k, respectively. This lemma follows as desired.
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4 Dropouts on Different Types of Network

We study the two types of most fundamental dropouts: dropout units [14] and dropout weights [16].
In addition, we also study dropout both units and weights. For ρ ∈ [0, 1], these types of dropouts are
defined as:

• Type I (Drp(I)): randomly drop out each unit including input unit (corresponding to input feature)
with probability 1 − ρ.

• Type II (Drp(II)): randomly drop out each weight with probability 1 − ρ.
• Type III (Drp(III)): randomly drop out each weight and unit including input unit (corresponding to

input feature) with probability 1 − ρ.
We assume that a full-connected neural network has k hidden layers, and the ith hidden layer has mi

hidden units. The general output for this neural network is given by

f(w,x) = ⟨w[k]
1 , Ψk⟩ with Ψi = (σ(⟨w[i−1]

1 , Ψi−1⟩), . . . , σ(⟨w[i−1]
mi

,Ψi−1⟩)) for i ∈ [k]

and Ψ0 = x, where w = (w[k]
1 ,w[k−1]

1 , . . . ,w[k−1]
mk , . . . ,w[0]

1 , . . . ,w[0]
m1) in which each w[j]

i has the same
size as Ψj and σ is an activation function.

Throughout this work, we assume that activation function σ is Lipschitz with constant L and σ(0) = 0,
and many commonly used activation functions satisfy such assumptions, e.g., tanh, center sigmoid, relu
[34], etc.

Formally, three types of dropouts for the full-connected network are defined as:
• The output for Drp(I) (first type) is given by

f (I)(w,x, r) = ⟨w[k]
1 , Ψk ⊙ r[k]⟩ with

Ψi = (σ(⟨w[i−1]
1 ,Ψi−1 ⊙ r[i−1]⟩), . . . , σ(⟨w[i−1]

mi
, Ψi−1 ⊙ r[i−1]⟩))

(8)

for i ∈ [k] and Ψ0 = x. Here r = (r[k], . . . , r[1], r[0]), each r[i] has the same size with Ψi and each element
in r[i] is drawn i.i.d. from Bern(ρ).

• The output for Drp(II) (second type) is given by

f (II)(w,x, r) = ⟨w[k]
1 ⊙ r[k]

1 , Ψk⟩ with

Ψi = (σ(⟨w[i−1]
1 ⊙ r[i−1]

1 ,Ψi−1⟩), . . . , σ(⟨w[i−1]
mi

⊙ r[i−1]
mi

, Ψi−1⟩))
(9)

for i ∈ [k] and Ψ0 = x. Here r = {r[k]
1 , r[k−1]

1 , . . . , r[k−1]
mk , . . . , r[0]

1 , . . . , r[0]
m1}, and for 0 6 j 6 k, r[j]

i has the
same size with Ψj , and each element in r[j]

i is drawn i.i.d. from Bern(ρ).
• The output for Drp(III) (third type) is given by

f (III)(w,x, r) = ⟨w[k]
1 ⊙ r[k]

1 , Ψk ⊙ r[k]
2 ⟩ with

Ψi = (σ(⟨w[i−1]
1 ⊙ r[i−1]

1 , Ψi−1 ⊙ r[i−1]
mi+1⟩), . . . , σ(⟨w[i−1]

mi
⊙ r[i−1]

mi
, Ψi−1 ⊙ r[i−1]

mi+1⟩))
(10)

for i ∈ [k] and Ψ0 = x. Here r = (r[k]
1 , r[k]

2 , . . . , r[0]
1 , . . . , r[0]

m1+1), and for 0 6 j 6 k, r[i]
j has the same size

with Ψj , and each element in r[i]
j is drawn i.i.d. from Bern(ρ).

Given a set W, we denote

F (I)
W = {f (I)(w,x, r) : w ∈ W} (11)

F (II)
W = {f (II)(w,x, r) : w ∈ W} (12)

F (III)
W = {f (III)(w,x, r) : w ∈ W} (13)

where f (I)(w,x, r), f (II)(w,x, r) and f (III)(w,x, r) are defined in Eqs. 8-10.
We will focus on full-connected neural networks, both shallow ones (with none or one hidden layer)

and deep ones (with more hidden layers ).
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4.1 Shallow Network without Hidden Layer

We first consider the shallow network without hidden layer, and therefore, the output is a linear function,
i.e., f(w,x) = ⟨w,x⟩. Further, the outputs for Drp(I), Drp(II) and Drp(III) are given, respectively, by

f (I)(w,x, r) = ⟨w,x ⊙ r⟩
f (II)(w,x, r) = ⟨w ⊙ r,x⟩

f (III)(w,x, (r1, r2)) = ⟨w ⊙ r1,x ⊙ r2⟩

where r, r1 and r2 are of size d, and each element in r, r1 and r2 is drawn i.i.d. from Bern(ρ). The
following theorem shows the Rademecher complexity for three types of dropouts:
Theorem 2. Let W = {w : ∥w∥ < B1}, X = {x : ∥x∥ 6 B2}, and F (I)

W , F (II)
W and F (III)

W are defined in
Eqs. 11-13. Then, we have

Rn(F (1)
W ) = Rn(F (2)

W ) 6 B1B2

√
ρ/n and Rn(F (3)

W ) 6 B1B2ρ/
√

n.

If we do not drop out any weights and input units (corresponding to input features), i.e., ρ = 1,
the above theorem gives a similar estimation for the Rademacher complexity of linear function space as
stated in [28, Theorem 3]. Also, these complexities are independent to feature dimension, and thus can
be applied to high-dimensional data. In addition, such result has independent interests in missing feature
problems.
Proof. From ⟨w ⊙ r,x⟩ = ⟨w,x ⊙ r⟩, it is easy to prove Rn(F (I)

W ) = Rn(F (II)
W ). For Sn = {x1, . . . ,xn}

and RSn = {r1, . . . , rn}, we have

R̂n(F (I)
W , Sn, RSn) =

1
n

Eϵ sup
w∈W

n∑
i=1

ϵi⟨w,xi ⊙ ri⟩

where ϵ = (ϵ1, . . . , ϵn) are rademacher variables, and this yields that

R̂n(F (I)
W , Sn, RSn) =

1
n

Eϵ sup
w∈W

⟨
w,

n∑
i=1

ϵixi ⊙ ri

⟩
.

By using the Cauchy-Schwartz inequality ⟨a, b⟩ 6 ∥a∥∥b∥ and ∥w∥ 6 B1, we have

R̂n(F (I)
W , Sn, RSn) 6 B1

n
Eϵ

∥∥∥ n∑
i=1

ϵixi ⊙ ri

∥∥∥
=

B1

n
Eϵ

( n∑
i=1

n∑
j=1

ϵiϵj⟨xi ⊙ ri,xj ⊙ rj⟩
)1/2

6 B1

n

( n∑
i=1

n∑
j=1

Eϵi,ϵj ϵiϵj⟨xi ⊙ ri,xj ⊙ rj⟩
)1/2

where the last inequality holds from Jensen’s inequality. Since Eϵi,ϵj ϵiϵj = 0 for i ̸= j and Eϵiϵiϵi = 1 for
rademacher variables, we have

R̂n(F (I)
W , Sn, RSn) 6 B1

n

( n∑
i=1

⟨xi ⊙ ri,xi ⊙ ri⟩
) 1

2
. (14)

Based on the above inequality, it holds that

Rn(F (I)
W ) = ESn,RSn

[R̂n(F (I)
W , Sn, RSn)]

6 B1

n
ESn,RSn

( n∑
i=1

⟨xi ⊙ ri,xi ⊙ ri⟩
)1/2
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6 B1

n
ESn

( n∑
i=1

Eri⟨xi ⊙ ri,xi ⊙ ri⟩
)1/2

where the second inequality holds from Jensen’s inequality. Finally, we have Rn(F (I)
W ) 6 B1B2

√
ρ/n

from Eq. 4 and ∥xi∥ 6 B2.
In a similar manner, we have Rn(F (III)

W ) 6 B1B2ρ/
√

n from ⟨w ⊙ r1,x ⊙ r2⟩ = ⟨w,x ⊙ r1 ⊙ r2⟩ and
Eq. 5. This theorem follows as desired.

4.2 Shallow Network with One Hidden Layer

We consider the shallow network with only one hidden layer, and assume that the hidden layer has m

hidden units. The output for such network is given by

f(w,x) = ⟨w[1], Ψ(w[0]
1 , . . . ,w[0]

m ,x)⟩

with
Ψ(w[0]

1 , . . . ,w[0]
m ,x) = (σ(⟨w[0]

1 ,x⟩), . . . , σ(⟨w[0]
m ,x⟩)) (15)

where w = (w[1],w[0]
1 , . . . ,w[0]

m ), and w[1] and w[0]
i (i ∈ [m]) are of size m and d, respectively.

From Eqs. 8-10, the outputs for Drp(I), Drp(II) and Drp(III) are given, respectively, by

f (I)(w,x, r) = ⟨w[1], r[1]
1 ⊙ Ψ(w[0]

1 , . . . ,w[0]
m ,x ⊙ r[0]

1 )⟩

f (II)(w,x, r) = ⟨w[1] ⊙ r[1]
1 , Ψ(w[0]

1 ⊙ r[0]
1 , . . . ,w[0]

m ⊙ r[0]
m ,x)⟩

and
f (III)(w,x, r) = ⟨w[1] ⊙ r[1]

1 , r[1]
2 ⊙ Ψ(w[0]

1 ⊙ r[0]
1 , . . . ,w[0]

m ⊙ r[0]
1 ,x ⊙ r[0]

m+1)⟩

where Ψ is defined in Eq. 15. Here r[1]
i and r[0]

j are of size m and d, respectively, and each element in r[1]
i

and r[0]
j is drawn i.i.d. from Bern(ρ). The following theorem shows the Rademecher complexity for three

types of dropouts.
Theorem 3. Let W = {(w[1],w[0]

1 , . . . ,w[0]
m ) : ∥w[1]∥1 6 B1, ∥w[0]

i ∥ 6 B0}, X = {x ∈ Rd : ∥x∥ 6 B̂}
and F (I)

W , F (II)
W , F (III)

W are defined in Eqs. 11-13. Suppose that the activation σ is Lipschitz with constant
L and σ(0) = 0. Then, we have

Rn(F (I)
W ) 6 Rn(F (II)

W ) 6 LB1B0B̂ρ/
√

n and Rn(F (III)
W ) 6 LB1B0B̂ρ2/

√
n.

Proof. We first have
Rn(F (I)

W ) 6 Rn(F (II)
W )

from f (II)(w,x, r) = f (I)(w,x, r′) by selecting r[0]
1 = · · · = r[0]

m = r′[0] and r[1] = r′[1]. In the following,
we will estimate Rn(F (II)

W ).
Given Sn = {x1, . . . ,xn} and RSn = {r1, . . . , rn}, it holds that

R̂n(F (II)
W , Sn, RSn) =

1
n

Eϵ

[
sup
w

⟨
w[1],

n∑
i=1

ϵir
[1]
i ⊙ ∆i

⟩]
6 B1Eϵ

[
sup
w

⟨ w[1]

∥w[1]∥1
,
1
n

n∑
i=1

ϵir
[1]
i ⊙ ∆i

⟩]
where ∆i = Ψ(w[0]

1 ⊙ r[0]
i1 , . . . ,w[0]

m ⊙ r[0]
im,xi) and Ψ is defined by Eq. 15 and the inequality holds from

∥w[1]∥1 6 B. From Lemma 1, we have

R̂n(F (II)
W , Sn, RSn) 6 B1

n
Eϵ sup

w
[0]
1

n∑
i=1

ϵir
[1]
i1 σ(⟨w[0]

1 ⊙ r[0]
i1 ,xi⟩). (16)
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From σ(0) = 0 and r
[1]
i1 ∈ {0, 1}, we have r

[1]
i1 σ(t) = σ(r[1]

i1 t). Since σ(·) is Lipschitz with constant L,
Lemma 2 gives

Eϵ sup
w

[0]
1

n∑
i=1

ϵir
[1]
i1 σ(⟨w[0]

1 ⊙ r[0]
i1 ,xi⟩) 6 LEϵ sup

w
[0]
1

n∑
i=1

ϵi⟨w[0]
1 ⊙ r[0]

ij , r
[1]
i1 xi⟩.

Similarly to the proof of Eq. 14, we have

Eϵ sup
w

[0]
1

n∑
i=1

ϵi⟨w[0]
1 , r

[1]
i1 xi ⊙ r[0]

i1 ⟩ = B0

( n∑
i=1

⟨r[1]
i1 xi ⊙ r[0]

i1 , r
[1]
i1 xi ⊙ r[0]

i1 ⟩
) 1

2
.

Combining with the previous analysis, we have

Rn(F (II)
W ) = E[R̂n(F (II)

W , Sn, RSn)]

6 LB1B0

n
ESn,RSn

( n∑
i=1

⟨r[1]
i1 xi ⊙ r[0]

i1 , r
[1]
i1 xi ⊙ r[0]

i1 ⟩
) 1

2

6 LB1B0

n
ESn

n∑
i=1

ERSn⟨r
[1]
i1 xi ⊙ r[0]

i , r
[1]
i1 xi ⊙ r[0]

i ⟩ 6 LB1B0B̂ρ/
√

n,

where the last inequality holds from Eq. 6 and ∥xi∥ 6 B̂.
In a similar way, we can prove Rn(F (III)

W ) 6 B1B0B̂ρ2/
√

n by combining with Eqs. 6-7, and ⟨w ⊙
r1,x ⊙ r2⟩ = ⟨w,x ⊙ r1 ⊙ r2⟩. This completes the proof.

4.3 Deep Network with k Hidden Layers

Now we consider the neural network with k (k > 1) hidden layers, and the ith layer has mi hidden units
(i ∈ [k]). The output for this neural network is given by

f(w,x) = ⟨w[k]
1 , Ψk⟩ with Ψ0 = x, and for i ∈ [k]

Ψi = (σ(⟨w[i−1]
1 , Ψi−1⟩), . . . , σ(⟨w[i−1]

mi , Ψi−1⟩)),

and three types of dropouts Drp(I), Drp(II) and Drp(III) are defined by Eqs. 8-10. The following theorem
shows the Rademecher complexity for three types of dropouts:
Theorem 4. Let W = {(w[k]

1 ,w[k−1]
1 , . . . ,w[k−1]

mk , . . . , w[0]
1 , . . . ,w[0]

m2) : ∥w[0]
i ∥ 6 B0, ∥w[j]

i ∥1 6 Bj for j >
1}, X = {x ∈ Rd : ∥x∥ 6 B̂}, and F (I)

W , F (II)
W , and F (III)

W are defined in Eqs. 11-13. Suppose that the
activation σ is Lipschitz with constant L and σ(0) = 0. Then, we have

Rn(F (I)
W ) 6 Rn(F (II)

W ) 6 ρ(k+1)/2

√
n

LkB̂
k∏

j=0

Bj and Rn(F (III)
W ) 6 ρ(k+1)

√
n

LkB̂
k∏

j=0

Bj .

Here the Lipschitz constant L is dependent on the activation function, e.g., L 6 1 if we choose the
center sigmoid and relu [34] as activation function, and this follows Lρ < 1 for ρ < 1, which could improve
the generalization bounds.

This theorem shows that dropout can lead to an exponential reduction of the Rademacher complexity
with respect to the number of hidden layers within neural network. If we do not drop out any weights
and units (including hidden units, or input units corresponding to input features), i.e., ρ = 1, the above
theorem improves the results in [35, Lemma 26]. The Rademacher complexities are dependent on the
norms of weights, but irrelevant to the number of units and weights in the network, as well as the
dimension of input datasets.

Previous empirical studies showed that dropout tends to be resistant to overfitting in many real ap-
plications [7, 15, 16, 19]. This theoretical result discloses the reason that dropout makes an exponential
reduction of the Rademacher complexity, i.e., dropout can reduce the model complexity so as to avoid
overfitting.
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Finally, this theorem is also consistent with the empirical experience of training deep network1), e.g.,
multi-layer network with multi-layers of dropout performs not worse than that of single layer of dropout.
An interesting open problem is to study the convergence rate of learning algorithms such as SGD for
multi-layer dropout network.
Proof. We first have

Rn(F (I)
W ) 6 Rn(F (II)

W )

from f (II)(w,x, r) = f (I)(w,x, r′) by selecting r[i]
1 = · · · = r[i]

mi+1 = r′[i] for 0 6 i 6 k − 1 and r[k]
1 = r′[k]

1 .
For any Sn = {x1, . . . ,xn} and RSn = {r1, . . . , rn}, we will prove that

R̂n(F (II)
W , Sn, RSn) 6 Lk

n
Eϵ

[
sup
w

[0]
1

n∑
i=1

ϵi

⟨
w[0]

1 ⊙ r[0]
i,1,xi

k∏
s=1

r
[s]
i,js+1,js

⟩] k∏
j=1

Bj (17)

by induction on k, i.e., the number of layers in neural network, where jk+1 = 1. It is easy to find the
above holds for k = 1 from Eq. 16. Assume that Eq. 17 holds for neural network of k − 1 layers (k > 2),
and in the following we will prove for neural network of k layers.

For ∥w[k]
1 ∥1 6 Bk, we have

R̂n(F (II)
W , Sn, RSn) =

1
n

Eϵ sup
w

n∑
i=1

ϵi⟨w[k]
1 ⊙ r[k]

i1 , Ψik⟩

=
1
n

Eϵ sup
w

⟨
w[k]

1 ,
n∑

i=1

ϵiΨik ⊙ r[k]
i1

⟩
6 Bk

n
Eϵ sup

w

⟨ w[k]
1

∥w[k]
1 ∥1

,
n∑

i=1

ϵiΨik ⊙ r[k]
i1

⟩
where Ψij = (σ(⟨w[j−1]

1 ⊙ r[j−1]
i1 , Ψi,j−1⟩), . . . , σ(w[j−1]

mj ⊙r[j−1]
mj , Ψi,j−1)) for j ∈ [k] and Ψi0 = xi. From

Lemma 1, we have

Eϵ sup
w

⟨ w[k]
1

∥w[k]
1 ∥1

,
n∑

i=1

ϵiΨik ⊙ r[k]
i1

⟩
6 Eϵ sup

w

n∑
i=1

ϵir
[k]
i,1,1 × σ(⟨w[k−1]

1 ⊙ r[k−1]
i,1 , Ψi,k−1⟩),

which yields that

R̂n(F (II)
W , Sn, RSn) 6 Bk

n
Eϵ sup

w

n∑
i=1

ϵir
[k]
i,1,1 × σ(⟨w[k−1]

1 ⊙ r[k−1]
i,1 ,Ψi,k−1⟩)

Since σ(0) = 0 and σ is Lipschitz with constant L, Lemma 2 gives

R̂n(F (II)
W , Sn, RSn) 6 LBk

n
Eϵ sup

w

n∑
i=1

ϵir
[k]
i,1,1⟨w

[k−1]
1 ⊙ r[k−1]

i,1 , Ψi,k−1⟩. (18)

By using r
[k]
i,1,1σ(t) = σ(r[k]

i,1,1t), the term

1
n

Eϵ sup
w

n∑
i=1

ϵir
[k]
i,1,1⟨w

[k−1]
1 ⊙ r[k−1]

i,1 ,Ψi,k−1⟩

can be viewed as the empirical Rademacher for another k − 1 layers neural network with respect to
sample S′

n = {x1r
[k]
i,1,1, . . . ,xnr

[k]
i,1,1} and RS′

n = (r[k−1]
1 , r[k−2]

1 , . . . , r[k−2]
mk−2 , r

[0]
1 , . . . , r[0]

m1). Therefore, by
our assumption that Eq. 17 holds for any k − 1 layers neural network, we have

1
n

Eϵ sup
w

n∑
i=1

ϵir
[k]
i,1,1⟨w

[k−1]
1 ⊙ r[k−1]

i,1 ,Ψi,k−1⟩

6 Lk−1
∏k−1

i=1 Bi

n
Eϵ

n∑
i=1

ϵi

⟨
w[0]

1 ⊙ r[0]
i,1,xi

k−1∏
s=1

r
[s]
i,js+1,js

⟩
1) This is devoted to one reviewer.
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which proves that Eq. 17 holds for k layers neural network by combining with Eq.18.
Similarly to the proof of Theorem 2, the term in Eq. 17 can be further bounded by

Eϵ sup
w

[0]
1

n∑
i=1

ϵi

⟨
w[0]

1 ⊙ r[0]
i,1,xi

k∏
s=1

r
[s]
i,js+1,js

⟩
6 B0

( ∑
i

⟨r[0]
i,1 ⊙ xi

k∏
s=1

r
[s]
i,js+1,js

, r[0]
i,1 ⊙ xi

k∏
s=1

r
[s]
i,js+1,js

⟩
) 1

2

which yields that, from Eq. 6,

Rn(F (II)
W ) 6 1√

n
Lkρ(k+1)/2B̂

k∏
i=0

Bi.

In a similar manner, we can prove that

Rn(F (III)
W ) 6 1√

n
Lkρk+1B̂

k∏
i=0

Bi.

by using Eq. 7, and this completes the proof.

5 Conclusion

Deep neural networks have witnessed great successes in various real applications. Many implementation
techniques have been developed, however, theoretical understanding of many aspects of deep neural
networks is far from clear. Dropout is an effective strategy to improve the performance as well as reduce
the influence of overfitting during training of deep neural network, and it is motivated from the intuition of
preventing complex co-adaptation of feature detectors. In this work, we study the Rademacher complexity
of different types of dropouts, and our theoretical results disclose that for shallow neural networks (with
one or none hidden layer) dropout is able to reduce the Rademacher complexity in polynomial, whereas for
deep neural networks it can amazingly lead to an exponential reduction of the Rademacher complexity.
An interesting future work is to present tighter generalization bounds for dropouts. In this work, we
focused on very fundamental types of dropouts. Analyzing other types of dropouts is another interesting
issue for future work, and we believe that the current work sheds a light on the way for the analysis.
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