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Abstract

Dimensionality reduction is among the keys in mining high-
dimensional data. This paper studies semi-supervised di-
mensionality reduction. In this setting, besides abundant un-
labeled examples, domain knowledge in the form of pair-
wise constraints are available, which specifies whether a pair
of instances belong to the same class (must-linkconstraints)
or different classes (cannot-linkconstraints). We propose
the SSDR algorithm, which can preserve the intrinsic struc-
ture of the unlabeled data as well as both the must-link and
cannot-link constraints defined on the labeled examples in
the projected low-dimensional space. The SSDR algorithm
is efficient and has a closed form solution. Experiments on a
broad range of data sets show that SSDR is superior to many
established dimensionality reduction methods.

1 Introduction

With the rapid accumulation of high-dimensional data such
as digital images, financial time series and gene expression
microarrays, dimensionality reduction has been a fundamen-
tal tool for many data mining tasks. According to whether
supervised information is available or not, existing dimen-
sionality reduction methods can be roughly categorized into
supervised ones and unsupervised ones. Fisher Linear Dis-
criminant (FLD) [7] is an example of supervised dimension-
ality reduction methods, which can extract the optimal dis-
criminant vectors when class labels are available; while Prin-
cipal Component Analysis (PCA) [11] is an example of un-
supervised dimensionality reduction methods, which works
through trying to preserve the global covariance structure of
data when class labels are not available.

Semi-supervised dimensionality reduction can be seen
as a new issue in semi-supervised learning, which learns
from a combination of both labeled and unlabeled data. In
many practical data mining applications, unlabeled training
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examples are readily available but labeled ones are fairly ex-
pensive to obtain, therefore semi-supervised learning has at-
tracted much attention. Current research on semi-supervised
learning could be roughly categorized into three classes, i.e.
semi-supervised classification [5, 19], semi-supervised re-
gression [6, 20], and semi-supervised clustering [2, 16]. Re-
search advances of semi-supervised learning can be found in
an excellent recent survey [21].

Utilizing domain knowledge has been an important is-
sue in many data mining tasks [1, 16, 17]. In general, do-
main knowledge can be expressed in diverse forms, such
as class labels, pairwise constraints or other prior informa-
tion. We focus on domain knowledge in the form of pair-
wise constraints, i.e. pairs of instances known as belonging
to the same class (must-linkconstraints) or different classes
(cannot-linkconstraints). Pairwise constraints arise naturally
in many tasks such as image retrieval. In those applications,
considering the pairwise constraints is more practical than
trying to obtain class labels, because the true labels may not
be knowna priori, while it could be easier for a user to spec-
ify whether some pairs of instances belong to the same class
or not. Moreover, the pairwise constraints can be derived
from labeled data but not vice versa. Furthermore, unlike
class labels, the pairwise constraints can sometimes be auto-
matically obtained without human intervention [1].

Several recent works have attempted to exploit pairwise
constraints or other prior information in dimensionality re-
duction. Bar-Hillel et al. [1] proposed the constrained FLD
(cFLD) for dimensionality reduction from equivalence con-
straints, as a interim-step for Relevant Component Analy-
sis (RCA). However, cFLD can only deal with the must-
link constraints. Also, as in FLD, cFLD has the singular
problem when constraints are limited. Tang and Zhong [15]
used pairwise constraints to guide dimensionality reduction,
which can exploit both must-link constraints and cannot-link
constraints but does not consider the usefulness of abundant
unlabeled data. Yang et al. [18] exploited prior information
in the form of on-manifold coordinates of certain data sam-



ples for dimensionality reduction. It is evident that usually
obtaining the pairwise constraints is much easier than obtain-
ing the on-manifold coordinates of data samples.

In this paper, we study the dimensionality reduction
problem where both unlabeled data and pairwise constraints
are available. We propose a simple but efficient algorithm
called SSDR (Semi-Supervised Dimensionality Reduction),
which can simultaneously preserve the structure of original
high-dimensional data and the pairwise constraints specified
by users. Moreover, SSDR has a closed solution of an
eigen-problem of some specific Laplacian matrix [10, 19]
and therefore it is quite efficient. In the following we start by
presenting SSDR and then reporting on the experiments.

2 SSDR

Here we formulate semi-supervised dimensionality reduc-
tion as follows: Given a set of data samplesX =
[x1,x2, ...,xn] together with some pairwise must-link con-
straints (M ) and cannot-link constraints (C), find a set of
projective vectorsW = [w1,w2, ...,wd], such that the
transformed low-dimensional representationsyi = W T xi

can preserve the structure of the original data set as well as
the pairwise constraintsM andC, i.e. instances involved by
M should be close while instances involved byC should be
far in the low-dimensional space.

Define the objective function as maximizingJ(w)

J(w) =
1

2nC

∑

(xi,xj)∈C

(yi − yj)2

− β

2nM

∑

(xi,xj)∈M

(yi − yj)2

=
1

2nC

∑

(xi,xj)∈C

(wT xi −wT xj)2

− β

2nM

∑

(xi,xj)∈M

(wT xi −wT xj)2(2.1)

w.r.t. wT w = 1. Hereyi = wT xi is the transformed
low-dimensional representation ofxi. For the convenience
of discussion, one-dimensional case is considered here but
it is not difficult to extend to high-dimensions.nC and
nM are the number of cannot-link and must-link constraints,
respectively.

The intuition behind Eq.2.1 is to let the average distance
in the transformed low-dimensional space between instances
involved by the cannot-link setC as large as possible,
while distances between instances involved by the must-link
set M as small as possible. Since the distance between
instances in the same class is typically smaller than that in
different classes, we add a scaling parameterβ to balance
the contributions of the two terms in Eq.2.1.

Eq.2.1 considers only the constraints. When there are

abundant unlabeled examples, Eq.2.1 should be extended
such that both the constraints and the unlabeled data are
considered. Here ‘unlabeled’ means the data has neither
class labels nor pairwise constraints involvements. The
extended objective function is defined as maximizingJ(w)
w.r.t. wT w = 1, where

J(w) =
1

2n2

∑

i,j

(wT xi −wT xj)2

+
α

2nC

∑

(xi,xj)∈C

(wT xi −wT xj)2

− β

2nM

∑

(xi,xj)∈M

(wT xi −wT xj)2(2.2)

The first term of Eq.2.2 expresses the average squared
distance between all data samples in the transformed space,
which is equivalent to the PCA criterion. The motivation
for exploiting unlabeled data is to use them to enhance per-
formance when constraints are few. Since the contribution
of abundant unlabeled data is included, it is expected to be
more stable than using only the constraints. As in Eq.2.1,
we add another scaling parameterα to balance the contribu-
tion of the cannot-linked constraints. Intuitively, distance of
samples involved in the cannot-link setC should typically be
near to the expected distance, so we empirically setα = 1
andβ > 1.

Eq.2.2 is evidently more general than Eq.2.1, and when
bothα andβ take big values, the constraints will dominate
the equation, then Eq.2.2 will degrade to Eq.2.1.

There exists a concise form for Eq.2.2:

J(w) =
1
2

∑

i,j

(wT xi −wT xj)2Sij(2.3)

where

Sij =





1
n2 + α

nC
if (xi, xj) ∈ C

1
n2 − β

nM
if (xi, xj) ∈ M

1
n2 otherwise

(2.4)

From Eq.2.3, we have

1
2
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(wT xi −wT xj)2Sij

=
1
2

∑

i,j

(wT xix
T
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T
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T
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T
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= wT XLXT w



HereD is a diagonal matrix whose entries are column
(or row) sums ofS, i.e. Dii =

∑
j Sij . L = D − S is

called the Laplacian matrix in spectral graph theory. Thus,
Eq.2.2 or Eq.2.3 can be simplified as maximizingJ(w) w.r.t.
wT w = 1, where

J(w) = wT XLXT w(2.5)

Clearly, the problem expressed by Eq.2.5 is a typical
eigen-problem, which can be easily and efficiently solved by
computing the eigenvectors ofXLXT corresponding to the
largest eigenvalues.

We have some remarks on the SSDR algorithm:

• SSDR can have different implementations which are
determined by the weightsS it used. In this paper, we
focus on three ways to construct the weights and denote
the corresponding algorithms as:

(1) SSDR-M: Using only the must-link constraints, with

Sij =
{ − β

nM
if (xi, xj) ∈ M

0 otherwise
(2.6)

(2) SSDR-CM: Using both the cannot-link and must-
link constraints, with

Sij =





α
nC

if (xi, xj) ∈ C

− β
nM

if (xi, xj) ∈ M

0 otherwise
(2.7)

(3) SSDR-CMU: Using both the cannot-link and must-
link constraints together with unlabeled data, with the
weightsS defined in Eq.2.4.

• Although the form of Eq.2.5 is similar as that of the
Laplacian spectral embedding methods [3, 10, 13],
actually they are completely different. First, their
purposes are different. Laplacian spectral embed-
ding methods originate from unsupervised dimension-
ality reduction with locality preserving, while SSDR is
proposed for semi-supervised dimensionality reduction
with constraints preserving. Moreover, their adjacent
graph and weights are constructed in different ways.
Laplacian spectral embedding methods usually employ
thek-nearest neighborhood orε-neighborhood and it is
hard to select the appropriate value fork or ε, while
SSDR is based on the constraints and its weights are
directly determined by Eq.2.4 (or Eq.2.6 and Eq.2.7).

3 Experiments

In this section, we evaluate the performance of the SSDR al-
gorithms on a broad range of data sets, including six UCI
data sets [4], i.e.balance, ionosphere, iris, sonar, soybean
andwine, YaleB facial image data set [8], and three text data

sets derived from 20-Newsgroup [2], i.e. News-Different-
300, News-Similar-300 and News-Same-300. In our exper-
iments, the pairwise constraints are obtained by randomly
selecting pairs of instances from the training set (for UCI
data) or the whole data set (for YaleB and 20-Newsgroups),
and creating must-link or cannot-link constraints depending
on whether the underlying classes of the two instances are
the same or different. After obtaining the constraints, data
without constraints in the training set (for UCI data) or the
whole data set (for YaleB and 20-Newsgroup) are used as
unlabeled data. Different levels of constraints are generated
relative to the number of total data samples. In all cases, re-
sults are averaged over 100 runs with different generation of
constraints. The parameters in SSDR are always set toα = 1
andβ = 20 if without extra explanations.

3.1 Results on UCI Data SetsIn this section we assess
the relative performance of SSDR over other dimensional-
ity reduction methods for classification. We choose the fully
unsupervised PCA as the baseline. We also test the perfor-
mance of supervised FLD which uses the ground-truth class
labels of all the training data. We compare SSDR (includ-
ing SSDR-M, SSDR-CM and SSDR-CMU) with cFLD un-
der different level of constraints. After dimensionality reduc-
tion, nearest neighborhood (1-NN) classifier is employed for
classification. For each data set, we use the first half of the
data for training (learning the projections) and the remaining
data for testing.

Figures 1 shows that SSDR-CMU nearly always
achieves the highest accuracy on all data sets. In particu-
lar, when the number of constraints are limited, SSDR-CMU
outperforms other algorithms significantly. It can also be
shown from Figure 1 that in most cases the performance
of PCA is the worst. We believe that this is because PCA
does not use the constraints. On the other hand, the poor
performance of SSDR-M implies that only using the must-
link constraints is not sufficient. Actually, by exploiting
the cannot-constraints, SSDR-CM significantly improves the
performance of SSDR-M. Both SSDR-CM and SSDR-CMU
are superior to cFLD. It is amazing that the performance of
SSDR-CMU is even better than that of the supervised FLD.

To see how the dimensionality of the projected space af-
fects the accuracy, we compare the classification accuracies
on 3 UCI data sets with different number of dimensions, as
shown in Figure 2. It is impressive that SSDR-CMU almost
always achieves the highest accuracy no matter under which
dimensionality. Moreover, it seems that SSDR-CMU is little
affected by the dimensionality and is stable for a wide range
of dimensions, while other methods typically require rela-
tive more dimensions to obtain a good accuracy. This is an
advantageous of SSDR-CMU since in most cases, working
in lower-dimensional space is much easier than in a higher-
dimensional space.
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Figure 1: Classification accuracy on 6 UCI data sets with different number of constraints. Also shown in each panel are
N -the number of data examples,C-the number of classes,D-the dimension of original data andd-the reduced dimension
in projected space. Here, FLD useC-1 discriminant vectors, while other algorithms used projective vectors.
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Figure 2: Classification accuracy on 3 UCI data sets with different number of dimensions.
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Figure 3: Cumulative purity graph on YaleB data set with different percentiles of constraints.
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Figure 4: Clustering accuracy on 3 newsgroups data sets with different number of constraints.

As shown in the experiments on UCI data sets, SSDR-
CMU nearly always outperforms SSDR-M and SSDR-CM.
Thus in the rest of this paper, we only consider SSDR-CMU,
denoted as SSDR for short.

3.2 Results on YaleB Face Image Data SetIn this sec-
tion, we investigate the performance of SSDR for face recog-
nition. Figure 3 displays the cumulative purity [1] graph on
YaleB data set with different levels of constraints. Here the
cumulative purity graph denotes the average (over all data
points) percentage of correct neighbors among the firstk
neighbors, as a function ofk, and the level of constraints
is relative to the total number of face images. It can be seen
that SSDR always outperforms other methods no matter how
many constraints are used. Figure 3 also reveals that as the
number of constraints increases, the performance of cFLD
becomes close to that of SSDR, and both significantly better
than PCA. However, when there are only a few constraints,
the performance of cFLD degrades severely. We also com-
pare the performances of SSDR and cFLD when combin-
ing with RCA. Although RCA can help improve the perfor-
mance of cFLD, it brings little improvement on SSDR.

3.3 Results on 20-Newsgroups Data SetThis section re-
ports on the experiments on three text data sets including
News-Different-300, News-Similar-300 and News-Same-
300, derived from 20-Newsgroup.

Figure 4 shows the clustering accuracies ofk-means
in the original 100-dimensional space, PCA, cFLD (with
and without RCA) and SSDR (with and without RCA)
on reduced 3-dimensional space. At each testk-means
is applied 10 times with different starting points and the
best result in term of the objective function ofk-means is
recorded. Hereclustering accuracyis defined as

ClusAcc =
1
n

n∑

i=1

δ(si,map(ri))

whereri and si are respectively the obtained cluster label
and the ground-truth label of instancexi, n is the number of

Table 1: F-scores on Newsgroups data with 10% constraints
Methods Different-300 Similar-300 same-300

Shental[14] 0.554 0.553 0.429
Basu[2] 0.582 0.492 0.459

Lange[12] 0.658 0.540 0.588
SSDR 0.692 0.504 0.492

SSDR(best) 0.878 0.557 0.546

Table 2: F-scores on Newsgroups data with 30% constraints
Methods Different-300 Similar-300 same-300

Shental[14] 0.871 0.532 0.487
Basu[2] 0.608 0.530 0.552

Lange[12] 0.594 0.514 0.507
SSDR 0.836 0.542 0.532

SSDR(best) 0.923 0.606 0.615

instances,δ(x, y) equals one ifx = y and zero otherwise,
andmap(ri) is a permutation mapping function that maps
each cluster labelri to the equivalent label from the data
set. As can be seen from Figure 4, for both cFLD and
SSDR, increasing the number of constraints leads to the
improvement on the performance. When there are enough
number of constraints, the accuracy of cFLD is near to that of
SSDR and both considerably outperformk-means and PCA.
However, when there are only limited number of constraints,
SSDR is significantly superior to cFLD. It can also be seen
that on these data sets, RCA seems help little on improving
the accuracies of cFLD as well as SSDR.

We also compare SSDR with some recent algorithms
which also use pairwise constraints on the same data sets.
Following [12], we first use SSDR to project the original
data to a 20-dimensional space and then performk-means
on the reduced space. Tables 1 and 2 give the F-scores
(i.e. the harmonic mean of precision and recall) [12] with
10% and 30% constraints, respectively. Here for SSDR, we
perform 100 constraints realizations for each case, and both
the average (denoted as SSDR in tables) and the best results
are recorded. As can be seen, SSDR is very competitive with
other algorithms. To make it more clearly, we compute the



total rank of the five algorithms on all six cases. For example,
on News-Different-300 with 10% constraints, the rank of the
five algorithms is: SSDR (best) (1)> SSDR (2)> Lange et
al. (3)> Basu et al. (4)> Shental et al. (5). The total rank
on these three data sets is: SSDR (best) (7)> SSDR (17)>
Lange et al. (21)> Shental et al. (22)> Basu et al. (23).
Here the values in the brackets show the ranks.

3.4 Runtime Performance Computationally, SSDR is a
standard eigen-problem on a symmetric matrix, which can
be efficiently computed, e.g. by the singular value decom-
position (SVD). For large sparse high-dimensional data such
as text data, there exists efficient sparse SVD algorithms [9]
which can also be used by SSDR.

For dimensionality reduction, we empirically find that
the efficiency of SSDR is nearly the same as that of PCA,
both being a bit superior to that of cFLD. For clustering,
since SSDR considers the constraints only once for dimen-
sionality reduction and then performsk-means, it is much
efficient than algorithms which use constraints in the process
of k-means clustering, e.g. Basu et al’s algorithm where the
constraints are considered in each iterative step ofk-means.
This is a clear advantage of SSDR over its competitors.

4 Conclusion

In this paper, we propose a simple but efficient semi-
supervised dimensionality reduction algorithm called SSDR,
which exploits both cannot-link and must-link constraints to-
gether with unlabeled data. SSDR can preserve the intrinsic
structure of the data set as well as the pairwise constraints
specified by users in the projected low-dimensional space.
Experiments show that SSDR leads to considerable improve-
ments in embedding, classification and clustering over con-
ventional dimensionality reduction methods.

In this paper, the intrinsic structure preserved by SSDR
is the global covariance structure. Investigating that whether
SSDR can preserve local structures together with constraints
is an interesting future work. In our experiments the pair-
wise constraints are randomly generated and have no contra-
diction, investigating the performance of SSDR with incon-
sistent constraints is also an interesting future work.
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