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Anomalies are data points that are few and different. As a result of these properties, we show
that, anomalies are susceptible to a mechanism called isolation. This paper proposes a method
called Isolation Forest (iForest) which detects anomalies purely based on the concept of isolation
without employing any distance or density measure—fundamentally different from all existing
methods.

As a result, iForest is able to exploit subsampling (i) to achieve a low linear time-complexity
and a small memory-requirement, and (ii) to deal with the effects of swamping and masking
effectively. Our empirical evaluation shows that iForest outperforms ORCA, one-class SVM, LOF
and Random Forests in terms of AUC, processing time, and it is robust against masking and
swamping effects. iForest also works well in high dimensional problems containing a large number
of irrelevant attributes, and when anomalies are not available in training sample.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—
Data Mining; I.2.6 [Artificial Intelligence]: Learning

General Terms: Algorithm, Design, Experimentation

Additional Key Words and Phrases: Anomaly detection, outlier detection, ensemble methods,
binary tree, random tree ensemble, isolation, isolation forest

1. INTRODUCTION

Anomalies are data patterns that have different data characteristics from normal
instances. The ability to detect anomalies has significant relevance, and anomalies
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often provides critical and actionable information in various application domains.
For example, anomalies in credit card transactions could signify fraudulent use of
credit cards. An anomalous spot in an astronomy image could indicate the discovery
of a new star. An unusual computer network traffic pattern could stand for an
unauthorised access. These applications demand anomaly detection algorithms
with high detection accuracy and fast execution.

Most existing anomaly detection approaches, including classification-based meth-
ods [Abe et al. 2006; Shi and Horvath 2006], Replicator Neural Network (RNN)
[Williams et al. 2002], one-class SVM [Tax and Duin 2004] and clustering-based
methods [He et al. 2003], construct a profile of normal instances, then identify
anomalies as those that do not conform to the normal profile. Their anomaly de-
tection abilities are usually a ‘side-effect’ or by-product of an algorithm originally
designed for a purpose other than anomaly detection (such as classification or clus-
tering). This leads to two major drawbacks: (i) these approaches are not optimized
to detect anomalies—as a consequence, these approaches often under-perform re-
sulting in too many false alarms (having normal instances identified as anomalies)
or too few anomalies being detected; (ii) many existing methods are constrained
to low dimensional data and small data size because of the legacy of their original
algorithms.

This paper proposes a different approach that detects anomalies by isolating
instances, without relying on any distance or density measure. To achieve this, our
proposed method takes advantage of two quantitative properties of anomalies: i)
they are the minority consisting of few instances, and ii) they have attribute-values
that are very different from those of normal instances. In other words, anomalies
are ‘few and different’, which make them more susceptible to a mechanism we called
Isolation. Isolation can be implemented by any means that separates instances.
We opt to use a binary tree structure called isolation tree (iTree), which can be
constructed effectively to isolate instances. Because of the susceptibility to isolation,
anomalies are more likely to be isolated closer to the root of an iTree; whereas
normal points are more likely to be isolated at the deeper end of an iTree. This
forms the basis of our method to detect anomalies. Although, this is a very simple
mechanism, we show in this paper that it is both effective and efficient in detecting
anomalies.

The proposed method, called Isolation Forest (iForest), builds an ensemble of
iTrees for a given data set; anomalies are those instances which have short average
path lengths on the iTrees. There are two training parameters and one evaluation
parameter in this method: the training parameters are the number of trees to build
and subsampling size; the evaluation parameter is the tree height limit during
evaluation. We show that iForest’s detection accuracy converges quickly with a
very small number of trees; it only requires a small subsampling size to achieve
high detection accuracy with high efficiency; and the different height limits are
used to cater for anomaly clusters of different density.

Apart from the key difference in using isolation as the means to detect anomalies,
iForest is distinguished from existing model-based (e.g. [Abe et al. 2006; He et al.
2003]), link-based (e.g. [Ghoting et al. 2004]), depth-based (e.g. [Rousseeuw and
Leroy 1987]), distance-based (e.g. [Knorr and Ng 1998]) and density-based methods
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(e.g. [Breunig et al. 2000]) in the follow ways:

I The characteristic of isolation trees enables them to exploit subsampling to an
extent that is not feasible in existing methods (more details are provided in
Section 5.5).

II iForest utilizes no distance or density measures to detect anomalies. This
eliminates a major computational cost of distance calculation in all distance-
based and density-based methods.

III iForest has a linear time complexity with a small constant and a minimal mem-
ory requirement; it is an algorithm with constant training time and space com-
plexities. To the best of our knowledge, the best performing existing method
achieves only approximate linear time and space complexities [Angiulli and
Fassetti 2009].

IV iForest has the capacity to scale up to handle extremely large data size and
high-dimensional problems with a large number of irrelevant attributes (Section
5.6).

This paper only concerns with unsupervised, non-parametric approaches for mul-
tivariate data anomaly detection and we focus on continuous-valued data only. We
assume that all attributes in a data set contribute equally to the anomaly detection
and we do not deal with conditional anomalies [Song et al. 2007] in this paper.
This paper is organised as follows: In Section 2, we demonstrate isolation at

work using an iTree that recursively partitions data. In Section 3, we compare
isolation, density and distance measures to understand their fundamental differ-
ences. In Section 4, we provide the algorithms to construct iTrees and iForest. A
new anomaly score based on iTrees is also proposed. We utilize the subsampling
size and evaluation height-limit to tackle the problems of swamping and masking.
Section 5 empirically compares iForest with four state-of-the-art anomaly detec-
tors; we also analyse iForest’s detection performance (i) under different parameter
settings, (ii) with increasing number of dense anomalies (masking effect), (iii) when
the distance between anomalies and normal points reduces (swamping effect), (iv)
high dimensionality in data, and (v) when anomalies are not available in training
sample. Section 6 surveys the related work, Section 7 describes possible future
work and Section 8 concludes this paper. Extending from the preliminary version
of this article [Liu et al. 2008a], we have enriched Section 2 with extra illustrations
and new materials can be found in Sections 3, 4.5, 5.2, 5.3, 5.4, 5.5, 5.7, 6, 7 and
Appendices A, B, C, D and E.

2. ISOLATION AND ISOLATION TREES

In this paper, the term isolation means ‘separating an instance from the rest of the
instances’. In general, an isolation-based method measures individual instances’
susceptibility to be isolated; and anomalies are those that have the highest suscep-
tibility. To realize the idea of isolation, we turn to a data structure that naturally
isolates data. In randomly generated binary trees where instances are recursively
partitioned, these trees produce noticeable shorter paths for anomalies since (a)
in the regions occupied by anomalies, less anomalies result in a smaller number of
partitions – shorter paths in a tree structure, and (b) instances with distinguishable
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(a) Isolating xi (b) Isolating xo

(c) Average path lengths converge

Fig. 1. Anomalies are more susceptible to isolation and hence have short path lengths. Given a
Gaussian distribution (135 points), (a) a normal point xi requires twelve random partitions to be
isolated; (b) an anomaly xo requires only four partitions to be isolated. (c) averaged path lengths
of xi and xo converge when the number of trees increases.

attribute-values are more likely to be separated early in the partitioning process.
Hence, when a forest of random trees collectively produce shorter path lengths for
some particular points, they are highly likely to be anomalies.
In Figures 1(a) and 1(b), we observe that a normal point, xi, generally requires

more partitions to be isolated. The opposite is also true for an anomaly, xo, which
generally requires less partitions to be isolated. In this example, partitions are gen-
erated by randomly selecting an attribute and then randomly selecting a split value
between the maximum and minimum values of the selected attribute. Since recur-
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Fig. 2. iForest is able to detect not only outlying scattered points, it can also detect anomalies

surrounded by normal points as shown above. Thirteen anomalies are separated from surrounding
normal points by high anomaly scores (> 0.7). Anomaly score ranges from 0 to 1 and it will be
introduced in Section 4.3.

sive partitioning can be represented by a tree structure, the number of partitions
required to isolate a point is equivalent to the traversal of path length from the
root node to a terminating node. In this example, the path length of xi is greater
than the path length of xo.
Since each partition is randomly generated, individual trees are generated with

different sets of partitions. We average path lengths over a number of trees to find
the expected path length. Figure 1(c) shows that the average path lengths of xo and
xi converge when the number of trees increases. Using 1000 trees, the average path
lengths of xo and xi converge to 4.0 and 12.8 respectively. It shows that anomalies
have path lengths shorter than normal instances.
In addition to detecting scattered outliers as shown above, iForest is also capable

of detecting anomalies surrounded by normal points. Figure 2 illustrates such a
scenario in which normal points form a ring shape and anomalies are at the ‘centre’
of the ring rather than on the outside. An anomaly score contour with two contour
lines of 0.7 from an iForest is shown in the figure. The anomalies have anomaly
scores above 0.7 and normal points under 0.7. Anomaly score formulation will be
detailed in Section 4.3.

Definition : Isolation Tree. Let T be a node of an isolation tree. T is either
an external-node with no child, or an internal-node with one test and exactly two
daughter nodes (Tl, Tr). A test at node T consists of an attribute q and a split
value p such that the test q < p determines the traversal of a data point to either
Tl or Tr.

Let X = {x1, ..., xn} be the given data set of a d-variate distribution. A sample
of ψ instances X ′ ⊂ X is used to build an isolation tree (iTree). We recursively
divide X ′ by randomly selecting an attribute q and a split value p, until either: (i)
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the node has only one instance or (ii) all data at the node have the same values. An
iTree is a proper binary tree, where each node in the tree has exactly zero or two
daughter nodes. Assuming all instances are distinct, each instance is isolated to an
external node when an iTree is fully grown, in which case the number of external
nodes is ψ and the number of internal nodes is ψ− 1; the total number of nodes of
an iTrees is 2ψ − 1; and thus the memory requirement is bounded and only grows
linearly with ψ. For the definitions of symbols and notations, please refer to Table
I for details.

x a data point
X a data set of n instances
n number of data points in a data set, n = |X |
m index of data point xm, m ∈ {0, ..., n− 1}
Q a set of attributes
d number of attributes, d = |Q|
q an attribute
T a tree or a node
t number of trees

h(x) returns the path length of x
hlim evaluation height limit
ψ subsampling size
l a possible path length
s an anomaly score or function which returns an anomaly score
k the number of nearest neighbours
a contamination level of anomalies in a data set
cl number of anomaly clusters

Table I. Symbols and Notations

The task of anomaly detection is to provide a ranking that reflects the degree of
anomaly. Using iTrees, the way to detect anomalies is to sort data points according
to their average path lengths; and anomalies are points that are ranked at the top
of the list. We define path length as follows:

Definition : Path Length h(x) of a point x is measured by the number of edges
x traverses an iTree from the root node until the traversal is terminated at an
external node.

We employ path length as a measure of the degree of susceptibility to isolation:

• short path length means high susceptibility to isolation,

• long path length means low susceptibility to isolation.

A probabilistic explanation of iTree can be found in Appendix A.

3. ISOLATION, DENSITY AND DISTANCE MEASURES

In this paper, we assert that path-length-based isolation is more appropriate for
the task of anomaly detection than the basic density and distance measures.
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Using basic density measures, the assumption is that ‘Normal points occur in

dense regions, while anomalies occur in sparse regions ’. Using basic distance mea-
sures, the basic assumption is that ‘Normal point is close to its neighbours and

anomaly is far from its neighbours’ [Chandola et al. 2009].
There are violations to these assumptions, e.g., high density and short distance

do not always imply normal instances; likewise low density and long distance do
not always imply anomalies. When density or distance is measured in a local
context, which is often the case, points with high density or short distance could
be anomalies in the global context of the entire data set. However, there is no
ambiguity in path-length-based isolation and we demonstrate that in the following
three paragraphs.
In density based anomaly detection, anomalies are defined to be data points in

regions of low density. Density is commonly measured as (a) the reciprocal of the
average distance to the k-nearest neighbours (the inverse distance) and (b) the
count of points within a given fixed radius [Tan et al. 2005].
In distance based anomaly detection, anomalies are defined to be data points

which are distant from all other points. Two common ways to define distance-
based anomaly score are (i) the distance to kth nearest neighbour and (ii) the
average distance to k-nearest neighbours [Tan et al. 2005]. One of the weaknesses
in these density and distance measures is their inability to handle data sets with
regions of different densities1. Also, for these methods to detect dense anomaly
clusters, k has to be larger than the size of the largest anomaly cluster. This
creates a search problem: finding an appropriate k to use. Note that a large k
increases the computation substantially.
On the surface, the function of an isolation measure is similar to a density measure

or a distance measure, i.e., isolation ranks scattered outlying points higher than
normal points. However, we find that path length based isolation behaves differently
from a density or distance measure, under data with different distributions. In
Figure 3, dense points on the left (anomalies) are at the fringe of a normal cluster on
the right. The path length, density (k-nn) and kthnn distance are plotted in Figures
3(a) and 3(b). We use k = 10 in both density and distance calculations. In Figure
3(a), density reports a high density for the anomaly points and low density for
the normal cluster. In Figure 3(b), kthnn distance reports a small distance for the
anomaly points and a slightly larger distance for the normal cluster. These results
based on distance and density measures are counter-intuitive. Path length, however
is able to address this situation by giving the isolated dense points shorter path
lengths. The main reason for this is that path length is grown in adaptive context,
in which the context of each partitioning is different, from the first partition (the
root node) in the context of the entire data set, to the last partition (the leaf node)
in the context of local data-points. However, density (k-nn) and kthnn distance
only concern with k neighbours (local context) and fail to take the context of the
entire data set into consideration.
In summary, we have compared three fundamental approaches to detect anoma-

lies; they are isolation, density and distance. We find that the isolation measure

1Modified density-based methods, e.g., LOF [Breunig et al. 2000], are able to handle regions of
different densities.
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(a)

(b)

Fig. 3. This example show that points with high density and short distance (dense points on
the left) could well be anomalies. On the other hand, low density points and points with long
distance (the normal distribution) could also be normal instances. Note that path length is able to
correctly detect the dense cluster as anomalies, by giving it shorter path length. Using a normal
distribution of a dense cluster of twenty (on the left) and a thousand points (on the right), we
compare path length with (a) density (k-nn) and (b) kthnn distance, k = 10.
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(path length) is able to detect both clustered and scattered anomalies; whereas both
distance and density measures can only detect scattered anomalies. While there
are many ways to enhance the basic distance and density measures, the isolation
measure is better because no further ‘adjustment’ to the basic measure is required
to detect both clustered and scattered anomalies.

4. ANOMALY DETECTION USING IFOREST

In this section, we describe the detail mechanism of iForest and formulate an
anomaly score that is meaningful for anomaly detection. Also, we explain why using
small sub-samples brings about better isolation models and examine the changes
of detection behaviour by adjusting the evaluation height-limit.
Anomaly detection using iForest is a two-stage process. The first (training)

stage builds isolation trees using sub-samples of the given training set. The second
(evaluation) stage passes test instances through isolation trees to obtain an anomaly
score for each instance.

4.1 Training Stage

In the training stage, iTrees are constructed by recursively partitioning a sub-
sample X ′ until all instances are isolated. Details of the training stage can be
found in Algorithms 1 and 2. Each iTree is constructed using a sub-sample X ′

randomly selected without replacement from X , X ′ ⊂ X .

Algorithm 1 : iForest(X, t, ψ)

Inputs: X - input data, t - number of trees, ψ - subsampling size
Output: a set of t iTrees

1: Initialize Forest
2: for i = 1 to t do
3: X ′ ← sample(X,ψ)
4: Forest← Forest ∪ iT ree(X ′)
5: end for

6: return Forest

There are two input parameters to the iForest algorithm in Algorithm 1. They are
the subsampling size ψ and the number of trees t; and the effects of the parameters
are given below.
subsampling size ψ controls the training data size. We find that when ψ

increases to a desired value, iForest detects reliably and there is no need to increase
ψ further because it increases processing time and memory size without any gain in
detection accuracy. As we assume that anomalies are ‘few’ and ‘different’, normal
points are also assumed to be ‘many’ and ‘similar’. Under these assumptions, a
small subsampling size is enough for iForest to distinguish anomalies from normal
points.
Empirically, we also find that setting ψ to 28 or 256 generally is enough to

perform anomaly detection across a wide range of data. Unless otherwise specified,
we use ψ = 256 as the default value for our experiment. An analysis on the effect
of subsampling size can be found in Section 5.5 which shows that the detection
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Algorithm 2 : iT ree(X ′)

Inputs: X ′ - input data
Output: an iTree

1: if X ′ cannot be divided then

2: return exNode{Size← |X ′|}
3: else

4: let Q be a list of attributes in X ′

5: randomly select an attribute q ∈ Q
6: randomly select a split point p between the max and min values of attribute

q in X ′

7: Xl ← filter(X ′, q < p)
8: Xr ← filter(X ′, q ≥ p)
9: return inNode{Left← iT ree(Xl),

10: Right← iT ree(Xr),
11: SplitAtt← q,
12: SplitV alue← p}
13: end if

performance is near optimal at this default setting and insensitive to a wide range
of ψ.
Number of trees t controls the ensemble size. We find that path lengths

usually converge well before t = 100. Unless otherwise specified, we use t = 100 as
the default value in our experiment.
At the end of the training process, a collection of trees is returned and is ready

for evaluation. The worse case time complexity of training an iForest is O(tψ2) and
the space complexity is O(tψ).

4.2 Evaluation Stage

Algorithm 3 : PathLength(x, T, hlim, e)

Inputs : x - an instance, T - an iTree, hlim - height limit, e - current path length;
to be initialized to zero when first called
Output: path length of x

1: if T is an external node or e ≥ hlim then

2: return e+ c(T.size) {c(.) is defined in Equation 1}
3: end if

4: a← T.splitAtt
5: if xa < T.splitV alue then
6: return PathLength(x, T.left, hlim, e+ 1)
7: else {xa ≥ T.splitV alue}
8: return PathLength(x, T.right, hlim, e+ 1)
9: end if

In the evaluation stage, as implemented in Algorithm 2, a single path length h(x)
is derived by counting the number of edges e from the root node to an external node

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Month 20YY.



Isolation-based Anomaly Detection · 11

as instance x traverses through an iTree. When the traversal reaches a predefined
height limit hlim, the return value is e plus an adjustment c(Size). This adjustment
accounts for estimating an average path length of a random sub-tree which could be
constructed using data of Size beyond the tree height limit. When h(x) is obtained
for each tree of the ensemble, an anomaly score is computed. The anomaly score
and the adjustment c(Size) are to be defined in the next subsection. The worse
case time complexity of the evaluation process is O(ntψ), where n is the testing
data size. Details of the evaluation stage can be found in Algorithm 3.

4.3 Anomaly Score

An anomaly score is required for any anomaly detection method. The difficulty
in deriving such a score from h(x) is that while the maximum possible height of
iTree grows in the order of ψ, the average height grows in the order of logψ. When
required to visualize or compare path lengths from models of different subsampling
sizes, normalization of h(x) by any of the above terms either is not bounded or
cannot be directly compared. Thus, a normalized anomaly score is needed for the
aforementioned purposes.

iTree BST

Proper binary trees Proper binary trees

External node termination Unsuccessful search

Not applicable Successful search

Table II. List of equivalent structure and operations in iTree and Binary Search Tree (BST)

Since iTrees have an equivalent structure to Binary Search Tree or BST (see
Table II), the estimation of average h(x) for external node terminations is the same
as that of the unsuccessful searches in BST. We borrow the analysis from BST
to estimate the average path length of iTree. Given a sample set of ψ instances,
Section 10.3.3 of [Preiss 1999] gives the average path length of unsuccessful searches
in BST as:

c(ψ) =











2H(ψ − 1)− 2(ψ − 1)/n for ψ > 2,

1 for ψ = 2,

0 otherwise.

(1)

whereH(i) is the harmonic number and it can be estimated by ln(i) + 0.5772156649
(Euler’s constant). As c(ψ) is the average of h(x) given ψ, we use it to normalise
h(x). The anomaly score s of an instance x is defined as:

s(x, ψ) = 2
−

E(h(x))

c(ψ) , (2)

where E(h(x)) is the average of h(x) from a collection of iTrees. The following
conditions provide three special values of the anomaly score:

(a) when E(h(x))→ 0, s→ 1;

(b) when E(h(x))→ ψ − 1, s→ 0; and

(c) when E(h(x))→ c(ψ), s→ 0.5.
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Figure 4 illustrates the relationship between E(h(x)) and s, and the range of values
are 0 < s ≤ 1 and 0 < h(x) ≤ ψ − 1.

Fig. 4. The relationship of expected path length E(h(x)) and anomaly score s. c(ψ) is the average
path length as defined in equation 1. If the expected path length E(h(x)) is equal to the average
path length c(ψ), then s = 0.5, regardless of the value of ψ.

Using the anomaly score s, we are able to make the following assessment:

(i) if instances return s very close to 1, then they are definitely anomalies,

(ii) if instances have s much smaller than 0.5, then they are quite safe to be
regarded as normal instances, and

(iii) if all the instances return s ≈ 0.5, then the entire sample does not really have
any distinct anomaly.

A contour of the anomaly score can be produced by passing a lattice sample
through iForest, facilitating a detailed analysis of the detection result. Figure 5
shows an example of such a contour, in order to visualise and identify anomalies in
the instance space. Using the contour, we can clearly identify three points, where
s > 0.6, which are the potential anomalies.

4.4 Small Sub-samples Build Better Isolation Models

The problems of swamping and masking have been studied extensively in anomaly
detection [Murphy 1951]. Swamping refers to situations where normal instances
are wrongly identifying as anomalies. It happens when the number of normal
instances increases or they become more scattered. Masking, on the other hand,
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Fig. 5. Anomaly score contour of iForest for a Gaussian distribution of sixty-four points. Contour
lines for s = 0.5, 0.6, 0.7 are illustrated. Potential anomalies can be identified as points where
s > 0.6.

is the existence of too many anomalies concealing their own presence. It happens
when anomaly clusters become large and dense. Under these circumstances, many
anomaly detectors break down. Note that both swamping and masking effects are
results of too many data for the purpose of anomaly detection.
iForest is able to build a model by using multiple sub-samples to reduce the effects

of swamping and masking. We find that each sub-sample of a small size builds
a better performing iTree than that from the entire data set. This is because
sub-samples have fewer normal points ‘interfering’ with anomalies; thus, making
anomalies easier to isolate.
To illustrate how subsampling reduces the effects of masking and swamping, Fig-

ure 6(a) shows a data set of 4096 instances generated by Mulcross data generator
[Rocke and Woodruff 1996]. We deliberately set two rather large and dense anomaly
clusters close to a large cluster of normal points to illustrate the effects of mask-
ing and swamping. There are interfering normal points surrounding the anomaly
clusters, and the anomaly clusters are denser than the normal cluster. Figure 6(b)
shows a sub-sample of 128 instances of the original data. The anomaly clusters are
clearly identifiable in the sub-sample. Those ‘spurious’ normal instances surround-
ing the two anomaly clusters, which causes the swamping effect, have been cleared
out; and the data size of anomaly clusters in Figure 6(a), which causes the masking
effect, becomes smaller as shown in Figure 6(b). The net effect is that they make the
anomaly clusters easier to isolate. When using the entire set in Figure 6(a), iForest
reports an AUC of 0.67. When using a subsampling size of 128 and 256, iForest
achieves an AUC of 0.91 and 0.83, respectively. The result shows that iForest is ex-
cellent in handling the effects swamping and masking through significantly reduced
sub-samples. Note that anomalies are still denser than normal points even under
subsampling as shown in Figure 6(b)); and they still evade detection from distance
and density based methods. In the next subsection, we will see how iForest can
make use of the evaluation height limit to further handle dense anomaly clusters.
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(a) Original sample

(4096 instances)

(b) Sub-sample

(128 instances)

Fig. 6. Using an artificially generated data set to demonstrate the effects of swamping and masking.
Figure (a) shows the original data generated by Mulcross (n = 4096, a = 0.1, cl = 2, D = 0.8, d =
2) and Figure (b) shows a sub-sample of the original data. Circles (◦) denote normal instances
and triangles (△) denote anomalies.

4.5 Adjusting the Granularity of Anomaly Scores

In anomaly detection, a decision needs to be made to decide whether an isolated
data cluster is abnormal or its surrounding points are. We show in this section that
Isolation Forest is able to detect in either case by changing the tree height limit pa-
rameter at the evaluation stage. Note that adjusting the height limit at evaluation
stage does not alter the trained model and it does not require a re-training of the
model. Using a data set generated by Mulcross data generator, in Figure 7, two
anomaly score contours are illustrated with different height limits, i.e., hlim = 1
and 6. The data generated has a sparse cluster much larger than a small dense
cluster. It can be noticed that at a higher height limit, i.e., hlim = 6, scattered
points surrounding the large and small clusters have higher anomaly scores than
those of the core points of both clusters. In this setting, scatter points surrounding
both large and small clusters are considered as anomalies. When hlim = 1, the
entire small dense cluster have higher anomaly scores, leading them to be identified
as anomalies. The effect of using a lower height limit can be described as lower-
ing the granularity of anomaly scores, which higher height limit provides higher
granularity to detect scatter points that surround data clusters. This change of
granularity brings about an advantage in detecting dense anomalies, which we shall
see in Section 5.3.

In the normal usage of iForest, the default value of evaluation height limit is set
to maximum, i.e. ψ − 1, so that the anomaly score has the highest granularity.
Unless otherwise specified, the evaluation tree height is set to the maximum by
default throughout this paper.
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(a) hlim = 6,

points surrounding both clusters are treated as anomalies.

Note that there is a contour line of 0.55 inside the small dense cluster.

(b) hlim = 1,

the small isolated cluster and the surrounding points of the large cluster are treated as anomalies.

Fig. 7. Adjusting the evaluation height limit changes the granularity of the anomaly score s
which helps to modify the detection behaviour of Isolation Forest. Using a data set generated by
Mulcross (n = 4096, a = 0.06, cl = 1, D = 1, d = 2), (a) when the evaluation height limit is set to
hlim = 6, both the large sparse cluster (normal instances) and small dense cluster (anomalies) are
encircled by contour line s = 0.55. Under this setting, scatter points surrounding both clusters
are considered anomalies (having s < 0.55). (b) When hlim = 1, only the sparse large cluster
(normal instances) has a contour line of s = 0.5 and there is no contour line in the small dense
cluster. The small dense cluster is now considered as anomalies.
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Summary

We have described the process of anomaly detection using iForest—a realization
of anomaly detection by isolation, and provided a meaningful anomaly score for-
mulation based on path length. We also have analysed and explained why iForest
produces a better performing model using a small subsampling size and provides
different levels of detection granularity by adjusting the tree height limit during the
evaluation stage.

5. EMPIRICAL EVALUATION

This section presents the detailed results for seven sets of experiment designed to
evaluate iForest and also compare with four stat-of-the-art anomaly detectors. Sec-
tion 5.1 presents the data sets used in this section. In Section 5.2, we present two
experiments for benchmark evaluation. In the first experiment, two well known
statistical data sets are used to verify the anomaly detection ability of each of the
detectors. This experiment demonstrates the behaviours of these detectors. In the
second experiment, we compare iForest with other detectors using twelve data sets
that are previously used to evaluate anomaly detectors in the literature. In Section
5.3, the third experiment examines the breakdown characteristic of all anomaly
detectors, due to masking, under size-increasing dense anomaly clusters. We also
examine the different evaluation height limits and their effects on the breakdown
characteristic of iForest. In Section 5.4, the fourth experiment examines the break-
down characteristic, due to swamping, when anomalies come close to normal points
(swamping effect). In Section 5.5, the fifth experiment examines the impact of
different subsampling sizes on iForest. The results provide insights as to what sub-
sampling size should be used and its effects on detection performance. We also
demonstrate that the training time complexity is constant when the subsampling
size and ensemble size are fixed. In Section 5.6, the sixth experiment investigates
iForest’s ability to handle high-dimensional data; we reduce the attribute space
before the tree construction by using a simple uni-variate test. We aim to find out
whether this simple mechanism is able to improve iForest’s detection performance
in high dimensional spaces. In many situations, anomaly data are hard to obtain;
in Section 5.7, the seventh experiment examines iForest’s performance when only
normal instances are available for training.
For all the experiments, actual CPU time and Area Under Curve (AUC) are

reported. Anomaly scores from all data points are used in AUC calculation. AUC
is equivalent to the probability of an anomaly detector in scoring anomalies higher
than normal points. Since AUC is cutoff independent, it measures detection accu-
racy regardless of the number of anomalies in data sets. AUC in our experiments are
calculated by a standard performance analysis package ‘ROCR’ [Sing et al. 2005]
in R (www.r-project.org). The procedure to calculate AUC for anomaly detection
is provided in Appendix E. All experiments are conducted as single-threaded jobs
processed at 2.3GHz in a Linux cluster (www.vpac.org).
The four state-of-the-art anomaly detectors used in experiments are ORCA [Bay

and Schwabacher 2003], one-class SVM [Schölkopf et al. 2001], LOF [Breunig et al.
2000] and Random Forests (RF) [Shi and Horvath 2006].
ORCA is a k-Nearest Neighbour (k-nn) based method, where the largest demand
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of processing time comes from the distance calculation of k nearest neighbours.
Using sample randomisation together with a simple pruning rule, ORCA is able to
cut down the complexity of O(n2) to near linear time [Bay and Schwabacher 2003].
In ORCA, the parameter k determines the number of nearest neighbours, in-

creasing k also increases the run time. We use ORCA’s default setting of k = 5
in our experiments unless otherwise specified. The parameter N determines how
many anomalies are to be reported. If N is small, ORCA increases the running
cut-off rapidly and pruning off more searches, resulting in a much faster run time.
However, it would be unreasonable to set N below the number of anomalies due
to AUC’s requirement to report anomaly scores for every instances. Since choosing
N has an effect on run time and the number of anomalies is not supposed to be
known in the training stage, we will use a reasonable value N = n

8 unless otherwise
specified2. In reporting processing time, we report the total training and testing
time, but omit the pre-processing time “dprep” from ORCA.
For one-class SVM, we use the commonly used Radial Basis Function kernel

and inverse width parameter estimated by the method suggested in [Caputo et al.
2002]. For LOF, a well-known density based method, we use a commonly used
setting of k = 10 in our experiments. We also include RF, since this is also a tree
ensemble algorithm. For RF, we use t = 100 and other parameters in their default
values. Because RF is a supervised learner, we follow the exact instruction as in
[Shi and Horvath 2006] to generate synthetic data as the alternative class. The
instances for the alternative class are generated by uniformly sampling random
points valued between the maximum and minimum of every attribute. A proximity
measure between every pair of instances is calculated after decision trees are being
constructed, and anomalies are instances whose proximities to all other instances
in the data are small.
For algorithms that have random elements, their results are reported using an

average of ten runs. Such algorithms are ORCA, Random Forest and iForest.

5.1 Data Sets

We use two statistical data sets hbk and wood [Rousseeuw and Leroy 1987] for the
first experiment. As for other performance analysis and evaluation, eleven natu-
ral data sets plus a synthetic data set are used. They are selected because they
contain known anomaly classes which will be used as the ground truth; and these
data sets have been used in the literature to evaluate anomaly detectors in similar
settings. They include: the two biggest data subsets (Http and Smtp) of KDD
CUP 99 network intrusion data as used in [Yamanishi et al. 2000], Annthyroid, Ar-
rhythmia, Wisconsin Breast Cancer (Breastw), Forest Cover Type (ForestCover),
Ionosphere, Pima, Satellite, Shuttle [Asuncion and Newman 2007], Mammography3

and Mulcross [Rocke and Woodruff 1996]. Their previous usages can be found in
[Yamanishi et al. 2000; Abe et al. 2006; He et al. 2005; Bay and Schwabacher 2003;

2ORCA is able to provide an estimation of anomaly score to every point, even though N is set to
be less than n. ORCA provides accurate score of the top N points, and a rough estimated score
for the rest of the points. Thus, all points are used in the AUC calculation even though N = n/8.
Using ORCA’s original default setting (k = 5 and N = 30), all data sets larger than one thousand
points report AUC close to 0.5, which is equivalent to randomly selecting points as anomalies.
3The Mammography data set was made available courtesy of Aleksandar Lazarevic.
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Lazarevic and Kumar 2005; Williams et al. 2002]. Since we are only interested in
continuous-valued attributes in this paper, all nominal and binary attributes are
removed. The synthetic data generator, Mulcross generates a multi-variate normal
distribution with a user-specified number of anomaly clusters. In our experiments,
the basic setting for Mulcross is as following: number of points n = 262144, contam-
ination ratio a = 10% (the number of anomalies over the total number of points),
distance factor D = 2 (distance between the center of normal cluster and the cen-
ters of anomaly clusters), the number of dimensions d = 4, and number of anomaly
clusters cl = 2. This setting is used unless otherwise stated. An example of the
Mulcross data can be found in Figure 6. Table III provides the properties of all data
sets and information on anomaly classes sorted by the size of data in descending
order. The treatment of using minor classes as anomalies is adopted from previous
works in a similar setting, e.g. [Abe et al. 2006].

n d anomaly class

Http (KDDCUP99) 567497 3 attack (0.4%)

ForestCover 286048 10

class 4 (0.9%)

vs. class 2

Mulcross 262144 4 2 clusters (10%)

Smtp (KDDCUP99) 95156 3 attack (0.03%)

Shuttle 49097 9 classes 2,3,5,6,7 (7%)

Mammography 11183 6 class 1 (2%)

Annthyroid 6832 6 classes 1, 2 (7%)

Satellite 6435 36
3 smallest

classes (32%)

Pima 768 8 pos (35%)

Breastw 683 9 malignant (35%)

Arrhythmia 452 274

classes 03,04,05,07,

08,09,14,15 (15%)

Ionosphere 351 32 bad (36%)

hbk 75 4 14 points (19%)

wood 20 6 6 instances (30%)

Table III. Properties of the data used in the experiments, where n is the number of instances,
and d is the number of dimensions, and the percentage in bracket indicates the percentage of
anomalies.

It is assumed that anomaly labels are unavailable in the training stage. Anomaly
labels are only used to compute the performance measure AUC after the evaluation
stage.

5.2 Empirical Comparison of iForest, ORCA, SVM, LOF and Random Forests

This subsection consists of two experiments. In the first experiment, using two
previously used statistical data sets, hbk and wood [Rousseeuw and Leroy 1987], we
examine the basic behaviour of each anomaly detector. In the second experiment,
we evaluate the performance of each detector in terms of AUC and processing time.
Statistical data sets. Our first statistical data set is the hbk data set, it consists

of 75 instances of which 14 are anomalies. Anomalies comprises of two small clusters
with one more scattered than the other. Figure 8 shows the top 20 anomalies from
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five anomaly detectors and a plot of the first two principle components4 established
from the original 4 attributes. The result shows that iForest and RF are the only
two detectors which have ranked all the anomalies at the top of the list.

rank# iForest Orca SVM LOF RF

1 14 14 1 14 12

2 12 12 3 47 14

3 13 11 4 68 13

4 11 13 7 16 11

5 10 7 10 61 4

6 4 47 11 34 9

7 7 4 12 53 1

8 1 3 13 12 10

9 2 1 14 52 7

10 8 10 16 42 6

11 9 6 43 37 3

12 3 70 44 75 8

13 5 53 47 44 2

14 6 25 49 36 5

15 47 68 60 31 43
16 52 43 68 70 22
17 68 8 2 62 61
18 53 2 5 30 20
19 43 62 6 35 38
20 60 5 8 43 74

Fig. 8. (left) Anomaly ranking of the hbk data set, bold-faced datum indexes are actual anomalies.
(right) Visualization of hbk data with its first two principle components, datum 1 to 10 are located
at the bottom right corner as a dense cluster, datum 11 to 14 are located top right corner as
scattered points.

rank# iForest Orca SVM LOF RF

1 19 19 10 19 11
2 8 8 11 8 10
3 10 6 12 6 13
4 4 4 19 4 8

5 6 10 1 7 7
6 20 7 2 10 4

7 12 12 3 12 12
8 7 11 4 18 9
9 11 9 5 13 19

10 13 13 6 11 6

Fig. 9. (left) Anomaly ranking of the wood data set, bold-faced datum indexes are actual anoma-
lies. (right) Visualization of the wood data with its two principle components, datum 4, 6, 8, 19
are located on the right hand side as dense points.

4Principle components are used for visualization purpose only; the detection results are obtained
using original attributes.
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AUC
iForest ORCA SVM LOF RF

Http (KDDCUP99) 1.00 0.36 0.90 * **
ForestCover 0.87 0.83 0.90 0.57 **

Mulcross 0.96 0.33 0.59 0.59 **
Smtp (KDDCUP99) 0.89 0.80 0.78 0.32 **

Shuttle 1.00 0.60 0.79 0.55 **
Mammography 0.84 0.77 0.65 0.67 **

Annthyroid 0.84 0.68 0.63 0.72 **
Satellite 0.73 0.65 0.61 0.52 **

Pima 0.67 0.71 0.55 0.49 0.65
Breastw 0.98 0.98 0.66 0.37 0.97

Arrhythmia 0.81 0.78 0.71 0.73 0.60

Ionosphere 0.83 0.92 0.71 0.89 0.85

(a) AUC performance

Time (seconds)
iForest ORCA SVM LOF RF

Train Eval. Total

Http 0.25 15.33 15.58 9487.47 35872.09 * **
ForestCover 0.76 15.57 16.33 6995.17 9737.81 224380.19 **

Mulcross 0.26 12.26 12.52 2512.20 7342.54 156044.13 **
Smtp 0.14 2.58 2.72 267.45 986.84 24280.65 **

Shuttle 0.30 2.83 3.13 156.66 332.09 7489.74 **
Mammography 0.16 0.50 0.66 4.49 10.8 14647.00 **

Annthyroid 0.15 0.36 0.51 2.32 4.18 72.02 **
Satellite 0.46 1.17 1.63 8.51 8.97 217.39 **

Pima 0.17 0.11 0.28 0.06 0.06 1.14 4.98
Breastw 0.17 0.11 0.28 0.04 0.07 1.77 3.10

Arrhythmia 2.12 0.86 2.98 0.49 0.15 6.35 2.32
Ionosphere 0.33 0.15 0.48 0.04 0.04 0.64 0.83

(b) Actual processing time

* Execution time takes more than two weeks

** Out of memory

Table IV. iForest performs favourably to ORCA and SVM in terms of (a) AUC and (b) processing
time, especially for those large data sets where n > 1000. Boldfaced are best performance. iForest
is significantly faster than ORCA and SVM for large data sets where n > 1000. We do not have the
full results for LOF and RF because: (1) LOF has a high computation complexity and is unable
to complete the largest data set within two weeks; (2) RF has a huge memory requirement, which
requires system memory of (2n)2 to produce proximity matrix in unsupervised learning settings.

Our second statistical data set is the wood data set, it consists of 20 instances
of which 6 are anomalies. Anomalies are all in a smaller cluster. Figure 9 shows
the top 10 instances ranked by all anomaly detectors and a two dimensional plot of
two principle components of the original 6 dimensions. ORCA and LOF identify all
four anomalies correctly, while iForest has misranked one instance and RF performs
poorly in this data set.
Overall, iForest is the only anomaly detector that performs equally well in these

two statistical data sets.
Performance Evaluation. The aim of the second experiment is to compare
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iForest with ORCA, LOF, SVM and RF in terms of AUC and processing time.
Table IV reports the AUC score and the actual run time for all methods. From
the table, we observe that iForest compares favourably to all the other methods in
terms of AUC and processing time. In particular, iForest is fastest and the most
accurate for data sets larger than one thousand points. The only exception is the
ForestCover data set as shown in Table IV(a) in which SVM has a slightly better
AUC compared to iForest(0.03 difference in AUC).
Note that the difference in execution time is huge between iForest, ORCA, SVM

and LOF, especially in large data sets; this is due to the fact that iForest is not
required to compute pair-wise distances as in ORCA and LOF and kernel opti-
mization as in SVM. Note that LOF has an extended runtime and RF has a high
memory requirements; they fail to run on large data sets.
In terms of AUC, iForest compares favourable to ORCA in nine out of the twelve

data sets, SVM eleven out of twelve, LOF seven out of eight and RF four out of
four. In terms of processing time, iForest is superior in data sets larger than one
thousand points as compared with ORCA and SVM and iForest is better in all the
data sets as compared to LOF and RF.

(a) Arrhythmia (b) Satellite

Fig. 10. Detection performance AUC (y-axis) converges at a small t (x-axis).

The performance of iForest is stable in a wide range of t. Using the two data
sets of the greatest dimensionality, Figure 10 shows that AUC converges at a small
t. The full result is available at Appendix B. Since increasing t also increases
processing time, the early convergence of AUC suggests that iForest’s execution
time reported earlier can be further reduced if t is tuned to a data set.
As for the Http and Mulcross data sets, due to the large anomaly-cluster size

and the fact that anomaly clusters have an equal or higher density as compared to
the normal instances (i.e., the masking effect), ORCA reports a result poorer than
random guessing on these data sets. We also experiment ORCA on these data sets
using a much higher value of k (where k = 150), however the detection performance
is similar. This highlights a problematic assumption in ORCA and the other similar
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k-nn based methods: they can only detect low-density anomaly clusters of data size
smaller than k. Increasing k may solve the problem, but it is not practical in high
volume setting due to the increase in the processing time and the need to find an
appropriate k.

5.3 Breakdown Analysis with data-size-increasing Anomaly Clusters (Masking Effect)

Number of anomaly clusters

A
U
C

1 anomaly cluster 10 anomaly clusters

Contamination level a
(a) iForest (hlim=1) as compared to the four anomaly detectors.

A
U
C

Contamination level a
(b) iForest performance on various tree height limits.

Fig. 11. AUC performance (y-axis) of five anomaly detectors on Mulcross (n = 4096 ∗ (1+ a), a =
{0.02, ...,0.48, 0.5}, cl = {1, 4}, D = 1, d = 2), data under various contamination level (x-axis)
with 1 and 10 anomaly clusters.

In this subsection, we examine iForest’s breakdown characteristic in conjunction
with its ability to alter the detection behaviour by setting different evaluation height
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limits. For comparison, we also examine the breakdown characteristics of the four
anomaly detectors introduced in the beginning of this section.
Using the Mulcross data generator to generate 4096 normal instances with anoma-

lies of different contamination levels and different numbers of anomaly clusters, we
examine the detection accuracy (AUC) of all the detectors. AUC generally drops as
the contamination level increases—the rate the AUC drops indicates how quickly
an anomaly detector breaks down under the condition. The contamination level
ranges between a = 0.02 and a = 0.5.
In Figure 11(a), all the other four anomaly detectors have significantly lower

detection performance than iForest throughout the entire range of contamina-
tion, though some hold up better than the others as the contamination level in-
creases. The dense anomaly clusters mislead the other anomaly detectors more
than iForest—most of them break down with very low detection performance be-
fore the contamination level even reaches a = 0.1; iForest is more robust and it
breaks downs more gradually as the contamination level increases. Note that the
problem with ten anomaly clusters is an easier problem than the one with only one
anomaly cluster. It is because the same number of anomalies are now grouped into
ten clusters rather than concentrated on the one cluster at the same contamination
level. iForest almost maintains its detection performance for the entire contamina-
tion range. However, this only has a marginal effect on the other four detectors,
the high volume and high density of the anomaly clusters still pose difficulties.
For iForest, in Figure 11(b), we find that setting a lower evaluation height limit

is effective in handling dense anomaly clusters. iForest obtains its best perfor-
mance using hlim = 1. It is because iForest uses the coarsest granularity to detect
clustered anomalies.

5.4 Breakdown Analysis with Local Anomalies (Swamping Effect)

When anomalies become too close to normal instances, anomaly detectors break
down due to the proximity of anomalies. To examine the robustness of different
detectors against local anomalies, we generate anomalies with various distances
from a normal cluster in the context of two normal clusters of different densities.
We use a distance factor = l

r
, where l is the distance between anomaly cluster and

the center of a normal cluster and r is the radius of the normal cluster. When the
distance factor equals to one, the anomaly cluster is located right at the edge of
the dense normal cluster. In this evaluation, LOF and ORCA are given k = 15 so
that k is larger than the size of largest anomaly cluster. Random Forest and SVM
do not do well in this analysis. For clarity, only the top three detectors are shown
in this analysis.
As shown in Figure 12(a), when anomalies are scattered, iForest has a similar

performance as compared with LOF, followed by ORCA. When anomalies are clus-
tered, as shown in Figure 12(c) and (d), iForest clearly has a better performance
than LOF and ORCA. Figure 12(b) and (d) show both scenarios with the distance
factor = 1.5. The outstanding performance of iForest in clustered anomalies is
attributed to the use of isolation, which covers the context of the entire data set as
well as the context of local neighbourhood. When clustered anomalies are close to
the normal cluster, it is hard to detect them, i.e., they are not too far from their
neighbours and their relative densities are similar to other points. However, these
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A
U
C

Distance Factor
(a) Scattered anomalies (b) Distance Factor = 1.5

A
U
C

Distance Factor
(c) Clustered anomalies (d) Distance Factor = 1.5

Fig. 12. Performance in detecting Local Anomalies. Results are shown in (a) and (c) with AUC (y-
axis) versus distance factor (x-axis). (b) and (d) illustrate the data distributions in both scattered
and clustered anomales when distance factor = 1.5.

clustered anomalies are still distinguishable in the context of the entire data set.
That is why iForest is able to detect clustered anomalies well.

5.5 Analysis on the effect of subsampling

The following experiment investigates iForest’s efficiency in terms of the memory
requirement and training time, in relation to the subsampling size ψ. In addition,
we also examine how well the detectors perform with limited supply of data. In this
experiment we adjust the subsampling size in the range of ψ = 2, 4, 8, 16, ..., 65536.
Two examples of our findings are shown in Figure 13, we observe that the AUC

of iForest converges very quickly at a small ψ. AUC is near optimal when ψ = 128
for Http and ψ = 512 for ForestCover, and they are only a fraction of the original
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data (0.00045 for Http and 0.0018 for ForestCover), which makes iForest highly
efficient using a small ψ. For larger ψs, the variation of AUC is minimal: ±0.0014
and ±0.023 respectively. Also note that the processing time increases very modestly
when ψ increases from 4 up to 8192. iForest maintains its near optimal detection
performance within this range. It shows that the detection performance is mainly
due to the proposed tree-based algorithm and not subsampling. The increase of ψ
has an adverse effect on Mulcross generated data, after ψ > 64. It is due to the
masking effect of the dense anomaly clusters in Mulcross. As explained in Section
4.4, masking effect can be handled by reduced sub-samples in iForest. In a nutshell,
high detection performance is a characteristic of iForest and using a small ψ results
in low processing time, and a further increase of ψ is not necessary. For a complete
result of all data sets, please see Appendix C.

(a) Http (b) ForestCover

Fig. 13. A small subsampling size provides both high AUC (left y-axis, solid lines) and low
processing time (right y-axis, dashed lines, in seconds). subsampling size (x-axis, log scale) ranges
ψ = 2, 4, 8, 16, ..., 65536.

The implication of using a small sub-sample size is that one can easily host an
online anomaly detection system with a minimal memory footprint. Using ψ = 256,
the maximum number of nodes is 511. Let the memory requirement of a node be
b bytes, t be the number of trees. Thus, a working model to detect anomalies
is estimated to be less than 511tb bytes, which is trivial in modern computing
equipments. It is important to notice that the memory requirement is constant
using fixed number of trees and subsampling size.
As for training time, when we use a constant ψ = 256 on the Mulcross generated

data of different sizes, iForest’s training time grows less than half when the size of
the data doubles as reported in Table V. Discounting the operations of loading the
training data into the memory and the subsampling process, the time that took
to construct t = 100 trees is constant at approximately 0.04 second. The total
processing time of iForest grows in the same rate as the data size only when the
data size becomes very large; otherwise it is sub-linear. In contrast, both ORCA
and SVM have their execution times grow about four times when data size double.
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AUC Time (seconds)

iForest
n iForest ORCA SVM Train Eval Total ORCA SVM

1024 0.90 0.23 0.59 0.152 0.061 0.213 0.08 0.10
2048 0.89 0.28 0.60 0.151 0.077 0.228 0.21 0.68
4096 0.91 0.31 0.59 0.156 0.122 0.278 0.73 2.61
8192 0.90 0.33 0.49 0.162 0.201 0.363 2.63 9.59

16384 0.89 0.33 0.58 0.170 0.364 0.534 10.19 37.04
32768 0.91 0.33 0.59 0.182 0.775 0.957 40.20 152.82
65536 0.91 0.33 0.59 0.199 1.510 1.709 158.16 551.88

131072 0.95 0.33 0.59 0.227 2.948 3.175 637.83 2040.63
262144 0.94 0.33 0.59 0.272 5.970 6.242 2535.60 7899.46
524288 0.95 0.33 0.49 0.359 14.144 14.503 10203.64 28737.42

1048576 0.94 0.33 0.59 0.577 23.863 24.440 40779.85 155084.49

Table V. Performance of iForest, ORCA and SVM on Mulcross (n = {1024, ...,1048576}, d =
4, cl = 2, D = 2, a = 0.1) with various data sizes.

It is a significantly difference when the data size is large, e.g., with one million data
points, iForest takes less than one-fifteen hundredth of that from ORCA and one-
six thousandth of that from SVM; and the detection accuracy is a lot better too.
Note that using a smaller data size does not improve the detection result of ORCA
and SVM. When using constant ψ and t, the runtime and memory requirement to
construct iForest is basically constant regardless of the training data size.
In addition, we examine the effect of sub-sample on the different anomalies de-

tectors, with respect to AUC and processing time. The neighbourhood of every
instance changes dramatically from one subsample to another; this is likely to af-
fect the performance of k nearest neighbours (k-nn) based algorithms. With a
reduced data size in a subsample, we can expect the processing time to decrease.
We demonstrate the effect of subsampling using two data sets in the following
paragraphs.
In Figure 14, the performances of three detectors including (a) iForest, (b) ORCA

and (c) SVM, are reported over different subsample sizes of the original data set in
terms of four sampling ratios (0.25, 0.5, 0.75 and 1.0). We observe that the detec-
tion performances of iForest and SVM are stable across various ratios. However,
ORCA’s detection performance deteriorates when the sampling ratio reduces from
1 to 0.75. The detection performance as shown in ORCA is analogous to the learn-
ing curve commonly found in classification models, where the reduction of training
data generally results in poorer classification performance. The same is reported by
[Wu and Jermaine 2006]. Because SVM constructs a boundary for normal points,
it is able to construct one with a small sample; thus SVM has reached the best
detection performance with sampling ratio 0.25. However, its best performance is
not competitive, as in the case of Annthyroid.
In terms of processing time, note that ORCA and SVM have a super linear

increase in their processing times as the subsampling size increases, while iForest
has a linear increase in ForestCover and a sub-linear increase in Annthyroid. The
above result suggests that iForest is suitable for large data sets because it has a
linear or sub-linear increase in processing time and stable detection performance
across different data sizes. Note that the time complexity of iForest (for training
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ForestCover Annthyroid

(a) iForest

(b) ORCA

(c) SVM

Fig. 14. This figure shows the detection and runtime performances of three detectors under four
sampling ratios: 0.25, 0.5, 0.75 and 1 of the original data set. Samples are stratified to make sure
the proportion of anomalies is maintained in the small sample. Ten-run averages are reported.
Note that ORCA’s detection performance deteriorates when using subsamples of the original data.
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and evaluating) is O(tψ(ψ + n)). For large data sets, where n ≫ ψ, the time
complexity is dominated by n.

5.6 High Dimensional Data

One of the important challenges in anomaly detection is handling high dimensional
data. For distance-based or density-based methods, every point is equally sparse
in high dimensional space—rendering distance a useless measure (note that many
density based methods use distance to estimate density). Without any assistance,
iForest also suffers from the same ‘curse of dimensionality’. However, using a simple
attribute selector, we will see whether we can improve iForest’s ability to handle
high dimensional data.
In this experiment, we study a special case of high dimensional data in which

data sets have a large number of irrelevant attributes. We show that iForest has a
significant advantage in processing time. We simulate these high dimensional data
sets using the first thirteen data sets introduced in Table III. For each data set,
uniformly distributed random attributes, valued between 0 and 1 are added. Such
that, there is a total of 512 attributes in each data set. We use a simple statistical
test, Kurtosis [Joanes and Gill 1998], to select an attribute subspace from the
sub-sample before constructing each iTree. Kurtosis measures the ‘peakness’ of
a univariate distribution. Kurtosis is sensitive to the presence of anomalies and
hence it is a good attribute selector for anomaly detection. After Kurtosis has
provided a ranking for each attribute, a subspace of attributes is selected according
to this ranking to construct each tree. The result is promising and we show that the
detection performance improves when the subspace size comes close to the original
number of attributes. There are other attribute selectors that we can choose from,
e.g., Grubb’s test. However, in this section, we are only concern with showcasing
iForest’s ability to work with an attribute selector in reducing the dimensionality
of the anomaly detection tasks.
As an illustration, Figure 15 shows that a) the processing time of iForest in

Mammography and Arrhythmia remains less than 10 seconds for the whole range
of subspace sizes and b) AUC peaks when subspace size equals the number of
original attributes. The full result is available in Appendix D.
When ORCA is used on these two high dimensional data sets, it reports an AUC

close to 0.5 and a processing time of over one hundred seconds. It shows that these
high dimensional data sets are challenging, however, iForest is able to improve the
detection performance by a simple addition of Kurtosis test on small sub-samples
rather than the entire data set. It may well be possible for other methods to
apply similar attribute reduction technique to improve detection accuracy on high-
dimensional data, but they would need to perform the test on the whole data set.
An added advantage of iForest is its low processing time even in high dimensional
data.

5.7 Training Using Normal Instances Only

“Does iForest work when training set contains normal instances only?” To answer
this question, we remove anomalies from the training sample and evaluate the
trained model with both anomalies and normal instances. We report the average
AUC in Table VI. The result shows that the inclusion of anomalies make no or
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(a) Mammography (6 original attributes) (b) Arrhythmia (274 original attributes)

Fig. 15. iForest achieves good results on high dimensional data using Kurtosis to select attributes.
Irrelevant attributes are added so the the total number of attributes reaches 512. AUC (left y-
axis, solid lines) improves when the subspace size (x-axis) comes close to the number of original
attributes, and the processing time (right y-axis, dashed lines, in seconds) increases slightly as
subspace size increases. Training iForest using the original data has a slightly better AUC (shown
as the top dotted lines). Dotted dash lines indicate the original number of attributes.

little difference to the detection performance.
The reason why iForest is still able to detect anomalies even in their absence in

the training set is that iForest describes data distribution as seen in Appendix A
in which high path length values correspond to the presence of data points. Thus,
the presence of anomalies is irrelevant to iForest’s detection performance—one less
thing to worry about when using iForest.

Trained with
Normal instances

only

Trained with
Normal instances
and anomalies

Http 0.99 1.00

ForestCover 0.82 0.87

Mulcross 1.00 0.96
Smtp 0.88 0.89

Shuttle 1.00 1.00

Mammography 0.89 0.84
Annthyroid 0.90 0.84

Satellite 0.78 0.73
Pima 0.73 0.67

Breastw 1.00 0.98
Arrhythmia 0.82 0.81
Ionosphere (ψ = 128) 0.91 0.83

Table VI. Comparing the AUC performance of iForest trained with normal instances only versus
iForest trained with both the normal instances and anomalies. Better performance are boldfaced.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Month 20YY.



30 · Liu, Ting and Zhou

6. RELATED WORK

The development of anomaly detection can be divided into three major approaches;
they are the density-based, distance-based and model-based approaches. Under
each approach, methods share a common principle in how anomalies are detected.
Note that it is possible that some methods be categorised into more than one
approach. The purpose of the rest of this section is to contrast the isolation-
based approach among these three approaches. Our coverage is not meant to be
exhaustive, however, we provide our view of the development which helps to position
the isolation-based approach. For a good survey on recent developments in anomaly
detection, please see [Chandola et al. 2009] for more details.

6.1 Density-based approach

Density-based approach operates on the principle that instances in low density re-
gions are considered as anomalies. There are many ways to estimate density, so
there are many density-based methods. Well-known methods in density based ap-
proach are Local Outlier Factor (LOF) [Breunig et al. 2000], Connectivity-based
Outlier Factor (COF) [Tang et al. 2002], LOcal Correlation Integral (LOCI) [Pa-
padimitriou et al. 2003] and Resolution-based Outlier Factor (ROF) [Fan et al.
2006].
In LOF [Breunig et al. 2000], a LOF value is computed for each instance. The

LOF value indicates the sparseness of a point in relation to its local neighbourhood.
Instances with the highest LOF values are considered as anomalies.
COF [Tang et al. 2002] enhances LOF by taking into account the connectivity

of the neighbours of a point, in addition to the densities of its neighbours. The
anomaly score is calculated using the ratio of the average distance from the point
to its k-distance neighbours and the average distance from its k-distance neighbours
to their own k-distance neighbours. Tang et al. [2002] separate the treatment of
low-density points and isolated points. COF defines isolativity as the degree of
disconnectivity to other neighbouring points. High isolativity implies low density,
however, low density does not always imply high isolativity. Isolativity is different
from the ‘isolation’ concept we proposed in this paper, because isolativity is defined
by density and isolation is not.
Papadimitriou et al. [2003] propose LOCI based on multi-granularity deviation

factor (MDEF). MDEF measures the relative deviation of density of a point’s neigh-
bourhood in order to detect anomaly clusters.
ROF [Fan et al. 2006] defines anomaly as a point which is inconsistent with

the majority of the data at different resolutions. ROF is defined as the accumu-
lated ratio of the sizes of clusters containing a point in two consecutive resolutions.
Anomalies are data points with the lowest ROF values.
K-d Tree [Chaudhary et al. 2002] is a tree-based density model, which partitions

instance space into rectangular regions. Each region has nearly uniform sparseness
and the degree of anomaly of a region is measured by the relative sparseness to its
nearby regions. Since sparseness is the inverse of density, this method still requires
density calculation for each region. Different from iForest, K-d Tree is a single tree
implementation that utilizes density instead of path length to detect anomalies.
Feature Bagging [Lazarevic and Kumar 2005] is proposed to improve LOF, in
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which data from single attributes are used to generate multiple models and the
final anomaly scores are aggregated from multiple models. The improvement is
marginal with the largest AUC gain of 0.025 among the six data sets reported.
The development of density-based approach is marked by an increasing number

of derivatives of the original notion of density. Density-based methods introduce
more and more sophisticated definitions to handle data sets of diverse density, and
to widen the scope from scattered anomalies to anomaly clusters. Since density
estimation is usually costly, efficiency is never a strength for density-based meth-
ods. The density-based approach seems to stagnate due to efficiency issues. Also,
density definitions are based on the full dimensional distance calculation between
two points, which is subjected to the curse of dimensionality.

6.2 Distance-based approach

The working principle of the distance-based approach is to identify anomalies as
points that are distant from its neighbours. Euclidean distance is commonly used
as the distance measure in distance-based methods. Examples are DB(p,D) [Knorr
and Ng 1998; Knorr et al. 2000], Dk

n [Ramaswamy et al. 2000], ORCA [Bay and
Schwabacher 2003] and DOLPHIN [Angiulli and Fassetti 2009].
Knorr et al. [2000] and Knorr and Ng [1998] define “a point x in a data set X

is a DB(g,D) outlier if at least a fraction g of the points in X lies at a greater

distance than D from x”. Their focus was to speed up the distance calculation and
proposed three algorithms based on the same anomaly definition, i.e., index-based,
nested-loop and cell-based algorithms. The former two algorithms have the time-
complexity of O(n2d), the last one has the time-complexity of O(cd + n), where c
is a constant. DB(p,D) is sensitive to the parameters D and p, and it does not
provide a ranking on anomalies.
Ramaswamy et al. [2000] modify the definition in [Knorr et al. 2000] based on the

distance of kth nearest neighbour. This provides a ranking for a predefined number
of anomalies and simplifies the user-defined parameter to a single k. Ramaswamy
et al. [2000] also optimize the index-based and nested-loop algorithms and introduce
a partition-based algorithm to prune off unnecessary distance calculations.
ORCA [Bay and Schwabacher 2003] is an optimized nested-loop algorithm that

has near linear time complexity. ORCA randomizes the data and partitions them
into blocks. It keeps track of a set of user-defined number of data points as potential
anomalies along with their anomaly scores. The minimum anomaly score of the set
is used as a cut-off. The cut-off is updated if there is a point with a higher score in
other blocks. If a point has a lower score than the cut-off, the point will be pruned.
This pruning process only speeds up the distance calculation if the ordering of data
is uncorrelated. ORCA’s worse case time-complexity is still O(n2) and the I/O cost
is quadratic [Tao et al. 2006]. ORCA can use an anomaly definition of either kth

nearest neighbour or average distance of k nearest neighbours.
DOLPHIN [Angiulli and Fassetti 2009] has a time-complexity of O(k

p
nd) linear

to the number of data points n, where p is the probability of randomly picking a
point from a dataset that is a neighbour of a point in the index. With exactly two
data scans, DOLPHIN only utilizes k

p
amount of memory. However, DOLPHIN

degenerates to O(n2d) when k
p
is as large as n. Empirically, DOLPHIN compares
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favourable to ORCA in terms of the execution time and I/O cost.
The development of distance-based approach is marked by a number of improve-

ments to speed up the calculation of distance with little or no change to its anomaly
definition. As a result, distance-based methods would still have trouble handling
dense anomaly clusters and data sets with diverse densities. Inherently distance-
based methods rely on pair-wise distance measured in full dimensional space, which
is computationally expensive in high dimensional data sets.

6.3 Model-based approach

To detect anomalies, most existing model-based methods construct a model of the
data, then identify the anomalies as the data points that do not fit the model
well [Tan et al. 2005]. Notable examples are: classification-based methods [Abe
et al. 2006], Replicator Neural Network (RNN) [Williams et al. 2002], one-class
SVM [Tax and Duin 2004], clustering-based methods [He et al. 2003], link-based
methods [Ghoting et al. 2004] and Convex peeling [Rousseeuw and Leroy 1987];
they all use this general principle.
In classification-based methods [Abe et al. 2006], when anomaly class is not

known, the general approach is to first convert an unsupervised anomaly detection
problem into a supervised classification problem by injecting artificial instances as a
“background” class, which is the complement of the normal class. The background
class is randomly generated samples of data instances so that the decision boundary
between the normal class and the background class can be learned. Utilizing the
generalization ability, the classifiers are able to detect anomalies as instances in the
background class. Random Forests [Shi and Horvath 2006] as used in this paper is a
classification-based method; it utilizes a proximity matrix in addition to a classifier
to detect anomalies. Random Forests has a O(n2) space complexity because the
size of proximity matrix is 2n× 2n.
In RNN [Williams et al. 2002], the anomaly detection ability comes from RNN’s

“inability” to reconstruct some of the data points using a neural network. Those
that are poorly reconstructed are deemed anomalies.
In one-class SVM [Tax and Duin 2004], the aim is to find the smallest region

that contains most of the normal data points; the points outside of this region are
deemed anomalies.
In clustering-based methods [He et al. 2003], data are first clustered by a cluster-

ing algorithm; then, any small clusters or points that are distant from large cluster
centroids are deemed anomalies.
LOADED [Ghoting et al. 2004] employs the idea from link analysis that data

similar to each other have more “supports”, and anomalies are those that have less
support.
Convex peeling [Rousseeuw and Leroy 1987] is a depth-based method using ideas

from the computational geometry. Using the definition of the half-space depth
[Tukey 1977], each data point is assigned a depth, anomalies are points that have
smaller depth values. Convex peeling is only suitable for up to 2-dimensional data.
In general, depth-based methods measure how deep a point is with reference to
a single data cloud [Liu et al. 1999]. In contrast, the isolation-based approach
measures how isolated a point is without any assumption on the data distribution
and it is able to handle data with multiple data clouds.
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Most of the model-based methods suffer from the fact that their anomaly detec-
tion abilities are by-products of other algorithms designed for other purposes. The
development of model-based methods seem to be ad hoc and without continuity.
Their detection performance hinged very much on how well the data fit into their
assumptions.

The isolation-based approach can be considered as a model-based approach, how-
ever, isolation-based approach is specially designed for anomaly detection. Unlike
density and distance approaches, the definition of anomaly based on isolation covers
both scattered anomalies as well as clustered anomalies. The first isolation method,
iForest, has a very simple design and yet we have showed that the efficiency of this
method is very competitive even before any attempt to speed up the processing
time. iForest has a time complexity of O(t(n + ψ)ψ) and a space complexity of
O(tψ); for large data sets, tψ2 ≪ n is a very small constant making iForest an
algorithm of low linear time-complexity with a low memory requirement.

6.4 Miscellaneous

iForest is fundamentally different from popular tree-ensemble-based classifiers, for
examples, Variable Random Trees [Liu et al. 2008b] and Random Forests [Breiman
2001]. Although they share very similar data structure. The main purpose of using
tree structures in classification is to separate different classes and utilize the class
labels at leaf nodes for classification. iForest however only uses the tree structures
as a means to isolate the instances without the class information and only the path
length information is utilized.

Yu et al [2009] have investigated a deterministic isolation tree on the premise
that iForest has inferior detection performance with comparison to LOF. However,
we have showed in a technical report [Liu et al. 2010a] that iForest and LOF have
similar detection performance in terms of AUC in the artificial data sets they have
employed. Using real-world data sets, our result presented in Table IV(a) shows
that iForest outperforms LOF in ten out of eleven data sets, which contradicts this
premise.

We have showed that iForest can detect global clustered anomalies in this pa-
per. However, iForest fails to detect local clustered anomalies. SCiForest [Liu
et al. 2010b], a deterministic variant of iForest, is able to detect local clustered
anomalies. SCiForest is different from iForest in that models are constructed us-
ing hyper-planes and split points are selected deterministically. Using hyperplanes
and the deterministic selection criterion increases training time. Thus, it is only
recommended when local clustered anomalies are present in the data.

Previous analyses [Knuth 2006; Ruskey 1980] in generating all possible trees pro-
vide a probabilistic explanation why “fringes points have markedly shorter path
lengths than those from the core points.” These analyses are summarized in Ap-
pendix A. However, none of the previous analyses conceive isolation as a means
to detect anomalies. In addition, we show that isolation trees have this property
without generating all trees—in fact, only a small number of trees generated from
small sub-samples is required.
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7. FUTURE WORK

iForest may be extended to deal with categorical data, online anomaly detection
and high dimensional data.
Unlike continuous-valued data, categorical data have no ordering information

and have limited possible values. Choosing a split becomes a problem under this
situation. Existing treatment that assigns possible values into different bins [Quin-
lan 1993] is unlikely to work well with isolation-based methods. Furthermore, in
situations with mixed data types in an isolation model, categorical attributes will
have a lesser impact as compared to continuous-valued attributes simply because
the number of possible values in a categorical attribute can be significantly less.
This would have an undesirable effect on detection performance when categorical
attributes are relevant. To properly handle categorical data in isolation models is
an area of further investigation.
Online applications in data streams, with potentially infinite data, demand an

one-pass algorithm which is able to adapt to concept drift in evolving data streams.
iForest is likely to be applicable to online anomaly detection. It can start detecting
early in a data stream and easily adapt to concept drift because of using small
sub-samples in building a model. We expect that this line of research will be very
fruitful.

8. CONCLUSIONS

This paper proposes the first isolation method, iForest, and makes three key contri-
butions in the area of anomaly detection. Firstly, we introduce the use of isolation
as a more effective and efficient means to detect anomalies than the commonly used
basic distance and density measures. We show that the concept of isolation, when
implemented in a tree structure, takes full advantage of anomalies’ properties of
‘few and different’ that isolates anomalies closer to the root node as compared to
the normal points. This enables a profile of the instance space to be constructed
using path length.
Secondly, iForest is an algorithm with a low linear time complexity and a small

memory requirement. It builds a good performing model with a small number of
trees using small sub-samples of fixed size, regardless of how large a data set is. It
has constant time and space complexities during training.
Thirdly, our empirical comparison with four state-of-the-art anomaly detectors

shows that iForest is superior in terms of:

—runtime, detection accuracy and memory requirement, especially in large data
sets,

—robustness with i) the masking and swamping effects, and ii) clustered anomalies,
and

—its ability to deal with high dimensional data with irrelevant attributes.

We also show that iForest is capable of:

—being trained with or without anomalies in the training data, and

—providing detection results with different levels of granularity without re-training.
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APPENDIX

A. A PROBABILISTIC EXPLANATION TO ISOLATION TREES

P (.) The probability function
E(.) The expectation function
c(n) average height of random binary trees,c(n) = 2H(n− 1)− 2(n− 1)/n
H(i) harmonic number H(i) ≈ ln(i) + 0.5772156649 (Euler’s constant)

Cp The Catalan Number, Cp =

(

2p
p

)

−

(

2p
p− 1

)

Cpr The Catalan Number, Cpr =

(

p+ r
p

)

−

(

p+ r
p− 1

)

Table VII. Symbols and Notations

In this appendix, in order to understand the susceptibility of isolation in terms of
the average path length, we generalize the expected path length to a summation of
a series from all possible isolation trees for univariate cases. Symbols and notations
used in this appendix can be found in Table VII.
Let us start with a simple model. Given a simple univariate distribution of
{x0, x1, x2} ∈ X , where x0 < x1 < x2, as shown below.

x0 x1 x2

Given these three points, there are two possible tree structures:
(Tree A)

x0 x1 x2

(Tree B)

x0 x1
x2

In this case, if the initial split point falls between x0 and x1, then tree A is
constructed, else tree B. By the Law of Large Numbers, the expected path length
for each point can be calculated exactly according to the possible tree structures
above:

E(h(x0)) = P (h(x0) = 1)× 1 + P (h(x0) = 2)× 2,

E(h(x1)) = P (h(x1) = 1)× 1 + P (h(x1) = 2)× 2,

E(h(x2)) = P (h(x2) = 1)× 1 + P (h(x2) = 2)× 2.

In this simple case, assuming uniform distribution, to calculate the probability of
each path length component, we denote D0,1 as the distance between x0 and x1. In
this simple example, the first split point of a tree basically decides which possible
structure will be formed. So, the probability of P (h(x0) = 1) = P (h(x2) = 2) =

P (A) =
D0,1

D0,2
and P (h(x0) = 2) = P (h(x2) = 1) = P (B) =

D1,2

D0,2
.

In general, where |X | > 1, the number of possible trees is Cj , a Cata-
lan number of j, where j = |X | − 1. The number grows as follows:
{1, 2, 5, 14, 42, 132, 429, 1430, 4862} for |X | ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}. Note that in
cases where the number of samples is more than three, each probabilistic compo-
nent is mapped to multiple possible tree structures. For each data point of interest
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x, the expected path length E(h(x)) is a summation of a series of the possible path
lengths with probabilistic components such that:

E(h(x)) =
∑

l

P (h(x) = l)× l. (3)

The generalised possible path lengths for any fringe points are h(x) ∈ [1, |X | − 1];
and the generalised possible path lengths for any non-fringe points are h(x) ∈
[2, |X | − 1]. The sum of the probabilistic components of all possible path lengths
∑

l P (h(x) = l) = 1.
Assuming that each possible tree structure is equally probable, i.e., uniform dis-

tribution; the term P (h(x) = l) can be estimated by
tlmj

Cj
[Knuth 2006], where tlmj

is the total number of possible trees that has h(xm) = l with j internal nodes,

tlmj =

n
∑

u=0

(

l
u

)

C(m−u)(m−l)C(j−m−l+u)(n−m−l). (4)

Fig. 16. The average path length E(h(x)) of randomly generated binary trees for uniformly
distributed data points. P (h(x)) is represented by grey scale distribution.

The average path length of a data point xm is E(h(x)) =
hmj

Cj
[Knuth 2006], where
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hmj is the sum of path lengths for xm in all possible trees with j internal nodes,

hmj = 2

(

2m
m

)(

2j − 2m
j −m

)

(2m+ 1)(2j − 2m+ 1)

(j + 1)(j + 2)
− Cj , (5)

and m ∈ {0, ..., j}.
The average path length of all possible trees5 was initially investigated by [Ruskey

1980], and it is shown in Figure 16, which has a dome shape. The probabilistic
component P (h(x) = l) in Equation 3 gives the grey scale distribution in Figure
16. The height of this shape is approximately 4

√

j/π [Knuth 2006]. For regions
that have no data point, i.e., x < x0 and x > xj , those regions share the same path
length as their closest fringe points. In Figure 16, the dome shape reveals that the
fringe points have much lower expected path lengths as compared to those of the
core points.

5Ruskey called this the shape of random trees.
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B. IFOREST’S PERFORMANCE AGAINST VARIOUS NUMBER OF TREES

Http ForestCover Mulcross

Smtp Shuttle Mammography

Annthyroid Satellite Pima

Breastw Arrhythmia Ionosphere

Fig. 17. iForest’s AUC performance (y1-axis) and processing time (y2-axis) versus the different
number of trees t used (x-axis).
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C. IFOREST’S PERFORMANCE AGAINST VARIOUS SAMPLING SIZE

Http ForestCover Mulcross

Smtp Shuttle Mammography

Annthyroid Satellite Pima

Breastw Arrhythmia Ionosphere

Fig. 18. iForest’s AUC performance (y1-axis) and processing time (y2-axis) versus the different
subsampling sizes ψ in log scale (x-axis).
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D. IFOREST’S PERFORMANCE USING KURTOSIS AS FEATURE SELECTOR

Http ForestCover Mulcross

Smtp Shuttle Mammography

Annthyroid Satellite Pima

Breastw Arrhythmia Ionosphere

Fig. 19. iForest’s AUC performance (y1-axis, solid lines) and processing time (y2-axis, dashed
lines) versus the different number of attributes selected from Kurtosis (x-axis, log scale) in irrele-
vant attribute added data. Dotted lines denote the AUC performance of iForest using the original
data without added attributes. Dotted dash lines indicate the original number of attributes.
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E. AUC CALCULATION FOR ANOMALY DETECTION

AUC is known as the area under receiver operating characteristic curve. In data
mining, it is usually used to measure the overall performance of classifiers regardless
of the threshold between the true positives and true negatives. In the context of
anomaly detection, anomalies are treated as the positive class. To calculate AUC,
a simple approach adopted from [Hand and Till 2001] is as follows:

Algorithm 4 : AUC

1: let na be the number of true anomalies.
2: let nn be the number of true normal points.
3: rank all instances according to their anomaly scores in descending order.
4: let S be the sum of rankings of the actual anomalies, S =

∑na

i=1 ri, where ri is
the rank of the ith anomaly in the ranked list.

5: AUC =
S − (n2

a + na)/2

nann
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