
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXX 200X 1

NeC4.5: Neural Ensemble Based C4.5
Zhi-Hua Zhou,Member, IEEE,and Yuan Jiang

Abstract— Decision tree is with good comprehensibility while
neural network ensemble is with strong generalization ability.
In this paper, these merits are integrated into a novel decision
tree algorithm NeC4.5. This algorithm trains a neural network
ensemble at first. Then, the trained ensemble is employed to
generate a new training set through replacing the desired class
labels of the original training examples with those output from
the trained ensemble. Some extra training examples are also
generated from the trained ensemble and added to the new
training set. Finally, a C4.5 decision tree is grown from the
new training set. Since its learning results are decision trees, the
comprehensibility of NeC4.5 is better than that of neural network
ensemble. Moreover, experiments show that the generalization
ability of NeC4.5 decision trees can be better than that of C4.5
decision trees.

Index Terms— Machine Learning; Decision Tree; Neural Net-
works; Ensemble Learning; Neural Network Ensemble; Gener-
alization; Comprehensibility.

I. I NTRODUCTION

GENERALIZATION ability is important for learning al-
gorithms because the main purpose of learning is to

accurately predict unseen data. Many kinds of algorithms
with strong generalization ability have been developed, among
which an impressive one is neural network ensemble [4][10].
Through training many neural networks and then combining
their predictions, neural network ensemble could behave re-
markably so well that it has become a hot topic and been
successfully applied to many real domains.

Comprehensibility, i.e. the transparency of learned knowl-
edge and the ability to give explanation for reasoning process,
is also important for learning algorithms especially when they
are to be used in reliable applications. Generally speaking,
decision trees are with good comprehensibility because the
learned knowledge is explicitly represented in trees, while
neural networks are with poor comprehensibility because the
learned knowledge is implicitly encoded in a lot of connec-
tions [5]. It is obvious that since a neural network ensemble
comprises many neural networks, its behavior is more difficult
to be understood than that of a single neural network. In other
words, the comprehensibility of neural network ensemble is
even worse than that of neural network.

Therefore, an interesting issue rises. That is, whether some
learning algorithms that exerts both the good comprehensi-
bility of decision tree and the strong generalization ability of
neural network ensemble can be developed. In this paper, such
an issue is investigated and a novel decision tree algorithm

Manuscript received xxx xx, 200x; revised xxx xx, 200x. This work was
supported by the National Outstanding Youth Foundation of China under the
Grant No. 60325207

The authors are with the National Laboratory for Novel Software Technol-
ogy, Nanjing University, Nanjing 210093, China (e-mail: zhouzh@nju.edu.cn;
jy@ai.nju.edu.cn).

NeC4.5, i.e. Neural ensemble based C4.5, is proposed. NeC4.5
could be viewed as a variant of C4.5 decision tree [6]
where a neural network ensemble is used to preprocess the
training data. Since the learning results of NeC4.5 are trees
instead of ensembles of neural networks, the comprehensibility
of NeC4.5 is better than that of neural network ensemble.
Moreover, experiments show that the generalization ability of
NeC4.5 decision trees can be better than that of C4.5 decision
trees.

The rest of this paper is organized as follows. Section 2
presents the NeC4.5 algorithm and explores the reason why
it can work. Section 3 reports on experiments. Section 4
summaries the main contribution of this paper and discusses
several issues related to the proposed algorithm.

II. N EC4.5

The notation conventions used in this paper are summarized
in Table I.

TABLE I

NOTATION CONVENTIONS USED IN THIS PAPER

i, j counter of feature vectors
X, Y the input space and the set of labels
x, y a feature vector and its desired label
x, y′ a feature vector and the label output from neural network ensemble
l, m number of original training examples and extra training examples
µ extra data ratio
F a functionF : X → Y
err error rate
(·)T (·) of a decision tree
(·)N (·) of a neural network ensemble
(·)∗T (·) of a decision tree grown from a training set generated by neural

network ensemble

(·)(c)T (·) of a decision tree grown from a training set which contains no
noise and captures the whole target distribution

(·)(n)
T (·) of a decision tree grown from a training set which captures the

whole target distribution but contains noise

(·)(s)T (·) of a decision tree grown from a training set which contains no
noise but does not capture the whole target distribution

Suppose there is a training setS = {(x1, y1), (x2, y2), · · · ,
(xl, yl)}. A neural network ensemble can be trained fromS.
Here Bagging [2] is employed to train the ensemble, which
utilizes bootstrap sampling [3] to generate multiple training
sets from the original training set and then trains a neural
network from each generated training set. Note that other kinds
of ensemble learning algorithms can also be used here.

For each feature vectorxi (i = 1, 2, · · · , l), if it is fed
to the trained neural network ensembleN∗ then a class
label y′i will be output from the ensemble. Through replac-
ing yi by y′i, a new example(xi, y

′
i) is obtained. Such a

process can be repeated so that a new training setS′ =
{(x1, y

′
1), (x2, y

′
2), · · · , (xl, y

′
l)} is generated, where all the

feature vectors appear inS also appear inS′.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXX 200X 2

S′ can be greatly enlarged by including extra training data
generated by the neural network ensemble. This is done by
randomly generating some feature vectors and then feeding
them to the trained ensemble. For each randomly generated
feature vectorx′j (j = 1, 2, · · · ,m), if it is fed to N∗ then a
class labely′j will be output from the ensemble. By combining
x′j and y′j , an example(x′j , y

′
j) is obtained. The amount of

the extra training data can be controlled by theextra data
ratio, which is computed through dividing the number of extra
training examples by the size of the original training set, i.e.
µ = m/l.

Note that the scheme of using a trained system to generate
examples has been employed in some information fusion
paradigms [7], where the examples are generated by different
sensors and then utilized to build a fuser. From the view of
ensemble learning, the different sensors can be regarded as
component learners while the fuser is the combiner. Therefore,
in these paradigms the examples are generated and used inside
the ensemble, that is, generated by the component learners
and used by the combiner. But in NeC4.5, the examples are
generated by the ensemble and used outside of the ensemble,
that is, used to train a learner which is not a part of the
ensemble. The pseudo-code of NeC4.5 is shown in Table II.

TABLE II

THE NEC4.5ALGORITHM

Input: training setS = {(x1, y1), · · · , (xl, yl)}, extra data ratioµ,
neural learnerN , trials of bootstrap samplingT

Output: decision treeDT
Process:

N∗ = Bagging(S, N, T) /* train a neural network ensembleN∗
from S via Bagging */

S′ = ∅
for i = 1 to l { /* process the original training set

with the trained ensemble*/
y′i = N∗(xi : (xi, yi) ∈ S)
S′ = S′ ∪ {(xi, y

′
i)}}

for j = 1 to µ× l { /* generate extra training data from the
trained ensemble */

x′j = Random() /* generate a random feature vector */
y′j = N∗(x′j)
S′ = S′ ∪ {(x′j , y′j)}

}
DT = C4.5(S′) /* grow a C4.5 decision tree from the

new training set */

In order to explore the reason why NeC4.5 works, suppose
the target to be learned is a functionF : X → Y . Note
that such a function expresses a distribution in the feature
space determined byX and Y . Let FN denote the function
implemented by a neural network ensemble trained on a given
training set. Then the probability forFN to approachF is as
Eq. 1.

PFN
= PF=FN

= 1− PF 6=FN
= 1− errN (1)

Let FT denote the function implemented by a decision tree
trained on a given training set. Then the probability forFT to
approachF is as Eq. 2.

PFT
= PF=FT

= 1− PF 6=FT
= 1− errT (2)

ErrT can be broken into three parts. The first part is an
error term caused by the limited learning ability of the decision
tree. That is, even the functionF (c)

T implemented by a decision
tree grown from a training set which contains no noise and
captures the whole target distribution may still make some
error in prediction. Such kind of error is denoted byerr

(c)
T .

Note thaterr(c)
T may be extremely small. The probability for

F
(c)
T to approach the targetF is as Eq. 3.

PF
(c)
T

= P
F=F

(c)
T

= 1− PF 6=F
(c)
T

= 1− err
(c)
T (3)

The second part is an error term caused by the noise
contained in the training set, which is denoted byerr

(n)
T . The

last part is an error term caused by the fact that a finite sample,
such as a training set which does not contains all possible
feature vectors, cannot fully capture the target distribution,
which is denoted byerr(s)

T . Therefore the error of a decision
tree can be decomposed as Eq. 4.

errT = err
(c)
T + err

(n)
T + err

(s)
T (4)

Now suppose the given training set has fully captured the
target distribution, that is, all the possible feature vectors have
appeared in the training set. In this case,err

(s)
T is zero, and

errT is dominated byerr(n)
T . Let F ∗T denote the function

implemented by a decision tree grown from the training set
processed by a neural network ensemble in the way as NeC4.5
does. Note that in this case no extra training data is generated
since all possible feature vectors have already appeared in
the original training set. From the view ofFN , this training
set contains no noise because all the examples are generated
from the same distribution. However, this distribution is not
really the target distributionF , and the probability for which
to approachF is PFN

. Therefore, the probability forF ∗T to
approachF is as Eq. 51.

PF∗
T

= PF=F∗
T

= PFN PF
(c)
T

(5)

Considering Eqs. 1 and 3, Eq. 5 can be transformed to
Eq. 6.

PF∗
T

= (1− errN)
(
1− err

(c)
T

)
(6)

Comparing Eq. 6 with Eq. 2, it can be derived thatPF∗
T

is
greater thanPFT

, i.e. F ∗T approachesF better thanFT does,
if Eq. 7 holds.

errN <
errT − err

(c)
T

1− err
(c)
T

(7)

Sinceerr
(n)
T dominateserrT anderr

(c)
T may be extremely

small, it is obvious that Eq. 7 can be satisfied so far as
errN is much smaller thanerrT . This indicates that using
a neural network ensemble to process the original training set
in the way as NeC4.5 does can benefit the construction of the

1Note that the rightest term should appear as a conditional one because
F

(c)
T is computed from the output ofFN , but since the use ofF (c)

T implicitly
expresses the statistical dependence, here the term is simplified. The authors
wish to thank the anonymous reviewer who indicated this issue.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXX 200X 3

decision tree, even when no extra training data is generated,
given that the ensemble is significantly more accurate than the
decision tree directly grown from the original training set, and
the original training set contains much noise.

Then, suppose the original training set contains no noise
but has not fully captured the target distribution. In this
case,err(n)

T is zero, anderrT is dominated byerr(s)
T . For

simplifying the discussion, assume the training set generated
by the neural network ensemble contains all the possible
feature vectors. Then from the view ofFN , this training set
captures the whole distribution. However, this distribution is
not really the target distributionF , and the probability for
which to approachF is PFN

. Therefore, the probability for
F ∗T to approachF can be expressed as Eq. 5 again. With a
similar derivation, Eq. 7 is obtained. This indicates that using
a neural network ensemble to generate more training examples
in the way as NeC4.5 does can benefit the construction of the
decision tree, given that the ensemble is significantly more
accurate than the decision tree directly grown from the original
training set, and the original training set has not fully captured
the target distribution.

Overall, above analysis shows that utilizing a neural network
ensemble in the way as NeC4.5 does can be beneficial to the
construction of a decision tree. This is because the original
training set may contain much noise, and may not fully capture
the target distribution.

III. E XPERIMENTS

NeC4.5 and C4.5 are compared on twenty data sets from
the UCI Machine Learning Repository [1]. Five runs of 10-
fold cross validation is performed on each data set, and the
average result is reported.

For each data set, the predictive error rates and the sizes of
the trees, i.e. the number of tree nodes, are recorded. Here the
parameterµ of NeC4.5 is set to 100% and 0%, respectively.
Note that in the latter case, no extra training data is generated
by the neural network ensemble. The predictive error rates
of the neural network ensembles employed by NeC4.5 are
also recorded. Each ensemble comprises five BP networks [8]
with one hidden layer containing ten hidden units. During
the training process, the generalization error of each network
is estimated in each epoch on a validation set. If the error
does not change in five consecutive epochs, the training of
the network is terminated in order to avoid overfitting. The
validation set used by a neural network is bootstrap sampled
[3] from its training set. The experimental results are tabulated
in Table III.

Table III shows that the generalization ability of NeC4.5
with µ = 100% is better than that of C4.5. In detail, pairwise
two-tailedt-tests indicate that there are ten data sets (balance,
breast, cleveland, credit, heart, iris, vehicle, waveform21,
waveform40, andwine) where NeC4.5 withµ = 100% is sig-
nificantly more accurate than C4.5, while there is no significant
difference on the remaining ten data sets. Table III also shows
that the learning results of NeC4.5 withµ = 100% are more
complex than that of C4.5 except oncredit. However, it is
evident that the comprehensibility of NeC4.5 withµ = 100%

is far better than that of neural network ensemble, because
the learned knowledge of NeC4.5 is explicitly represented in
the trees while that of neural network ensemble is implicitly
encoded in the connections of the networks and the voting
relationship among different networks.

On the other hand, Table III shows that the learning results
of NeC4.5 with µ = 0% are more simple than or at least
comparable to that of C4.5. This observation reveals that
the increased complexity of NeC4.5 decision trees withµ =
100% owes to the use of the extra training data generated
from the trained ensemble. Moreover, Table III shows that the
generalization ability of NeC4.5 withµ = 0% is still better
than that of C4.5. In detail, pairwise two-tailedt-tests indicate
that there are seven data sets (cleveland, diabetes, ionosphere,
liver, sonar, waveform21, and waveform40) where NeC4.5
with µ = 0% is significantly more accurate than C4.5, while
there is no significant difference on the remaining thirteen data
sets. This observation supports the claim that employing a
neural network ensemble to process the original training set
is beneficial even when no extra training data is generated.

However, since NeC4.5 withµ = 100% improves the
generalization ability of C4.5 on ten data sets while NeC4.5
with µ = 0% improves on only seven data sets, it is evident that
extra training data generated from the trained neural network
ensemble is helpful for decision tree induction. Moreover,
Table III shows that there are only three data sets (cleveland,
waveform21, and waveform40) where both NeC4.5 withµ
= 0% and that withµ = 100% improve the generalization
ability. For the remaining data sets, NeC4.5 withµ = 0% could
improve the generalization ability does not necessarily means
that NeC4.5 withµ = 100% could do so, and vice versa. This
observation implies that the improvement on the generalization
ability caused by extra training data is not stable.

Then, an interesting issue rises. That is, whether some
appropriate values ofµ exist, which enables the generalization
ability of NeC4.5 be better than that of C4.5 on any data sets.
To explore this issue, further experiments are performed on
data sets (australian, page, thyroid, voting, wdbc, wpbc) where
neither NeC4.5 withµ = 100% nor NeC4.5 withµ = 0% is
significantly more accurate than C4.5. The results are depicted
in Fig.s 1 and 2. Note that for better display, the predictive
error rates of NeC4.5 have been normalized according to that
of C4.5. In other words, the results shown in these figures are
the error ratios of NeC4.5 against C4.5.

Fig.s 1 and 2 reveal that for any data set, the generalization
ability of NeC4.5 could be better than that of C4.5, given that
µ is set to an appropriate value. However, such a value is not
a constant. The best values shown in the figures are 200% on
australian and wdbc, 300% onthyroid, 400% onpage, and
500% onvoting andwpbc, respectively.

Table III has revealed that NeC4.5 withµ = 100% is
relatively safe because it never significantly deteriorates the
generalization ability of C4.5. But when the value ofµ
becomes bigger, NeC4.5 becomes not so safe since there
are cases where it significantly deteriorates the generalization
ability of C4.5, as shown in Fig.s 1 and 2. The reason
might be that when too many extra training data are generated,
the chances of overfitting is enlarged. However, this is only

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXX 200X 4

TABLE III

COMPARING NEC4.5WITH C4.5 (THE NUMBERS FOLLOWING ‘±’ ARE THE STANDARD DEVIATIONS)

C4.5 NeC4.5 (µ = 100%) NeC4.5 (µ = 0%) Neural
Data set

Error Size Error Size Error Size Ensemble

australian .155±.047 25.6± 6.0 .159±.048 31.6± 9.1 .160±.042 19.4± 9.9 .131±.038
balance .342±.069 33.4± 2.3 .224±.044 168.0±28.7 .328±.056 29.4± 1.3 .158±.024
breast .272±.072 10.4± 8.0 .252±.054 25.2± 8.5 .270±.045 12.8± 3.9 .233±.063
cleveland .489±.069 47.3± 5.0 .433±.062 70.0±17.8 .416±.042 30.3± 4.5 .270±.017
credit .138±.029 17.2± 1.8 .119±.049 17.0± 5.7 .127±.024 10.9± 4.0 .113±.032
diabetes .249±.047 24.6± 5.4 .246±.032 64.5± 6.4 .242±.044 23.8±10.0 .214±.045
heart .211±.091 28.3± 3.9 .194±.070 44.2± 9.8 .207±.088 22.2± 4.2 .181±.073
ionosphere .109±.034 13.5± 1.4 .112±.045 29.3± 5.5 .096±.024 13.3± 2.3 .089±.050
iris .080±.061 4.5± 0.7 .040±.047 16.0± 4.5 .067±.063 4.5± 0.5 .022±.031
liver .319±.050 26.7± 6.0 .322±.056 39.8± 7.1 .295±.042 24.6± 5.0 .269±.087
page .030±.007 41.9± 3.8 .030±.006 486.4±108.0 .030±.006 27.7± 1.9 .022±.003
sonar .254±.102 14.1± 1.5 .244±.087 32.0± 4.1 .205±.083 15.3± 1.1 .188±.051
thyroid .074±.062 8.0± 1.4 .060±.069 21.6± 5.0 .070±.032 7.1± 1.9 .035±.024
vehicle .292±.033 71.2± 7.7 .264±.047 194.4±11.3 .275±.042 72.8± 7.7 .196±.022
voting .053±.030 9.0± 4.1 .050±.037 13.0± 8.5 .053±.030 9.0± 4.1 .037±.033
waveform21 .235±.017 291.9±17.0 .209±.021 760.9±13.3 .213±.012 235.1±10.5 .170±.009
waveform40 .252±.019 313.8±13.6 .218±.025 747.1±19.2 .228±.021 240.7± 9.9 .174±.014
wine .057±.060 6.0± 1.6 .036±.043 26.1± 2.3 .051±.055 6.0± 1.6 .023±.020
wdbc .063±.026 11.0± 2.1 .060±.032 50.7± 8.4 .063±.032 11.6± 1.5 .038±.021
wpbc .248±.099 14.0± 3.5 .238±.047 16.9± 9.2 .243±.051 7.4± 3.4 .232±.052

Fig. 1. NeC4.5 onaustralian, pageand thyroid.

Fig. 2. NeC4.5 onvoting, wdbcandwpbc.

a conjecture that should be justified by rigorous theoretical
analysis and far more experiments.

IV. CONCLUSION AND DISCUSSION

In this paper, a variant of C4.5 decision tree algorithm
named NeC4.5 is proposed, which utilizes neural network

ensemble to preprocess the training data for decision tree
induction. Such an algorithm can work well because the
original training set may contain much noise and may not
capture the whole target distribution. Since its learning results
can be more accurate than that of C4.5 while the reasoning
process remains explicitly explainable, NeC4.5 provides a
good choice for tasks where both the generalization ability
and the comprehensibility are concerned.

Since decision trees and neural networks are alternative
paradigms for classification, much research has addressed the
issue of developing hybrid learning algorithms that combine
them together. A review on this topic can be found in [9].
Different to previous hybrid learning algorithms, neither does
NeC4.5 use decision tree to help determine the topology of
neural networks, nor does it use neural network ensemble to
refine the splits or even embed as splits into the decision trees.
Therefore NeC4.5 exhibits a new way to hybrid learning.

A deficiency of NeC4.5 is that the cost of building a decision
tree is burdened by the training of a neural network ensemble.
Roughly speaking, the training time cost of NeC4.5 can be
broken into three parts, i.e.O = O1 + O2 + O3 where O1

is used to train the neural network ensemble,O2 is used to
generate data from the ensemble, andO3 is used to build
the decision tree.O3 is slightly larger than the time cost for
training a decision tree from the original training set.O2 is
not neglectable but the dominating part isO1 because training
multiple neural networks requires much time costs. However,
obtaining a stronger decision tree may be worthy of the extra
time cost in many applications. Moreover, it is noteworthy that
the training process is usually off-line, while the predictive
process of an NeC4.5 decision tree is almost as efficient as
that of a C4.5 decision tree.

The experiments reported in this paper show that given an
appropriate value ofµ, the generalization ability of NeC4.5
can be better than that of C4.5. However, how to determine
the appropriate value ofµ remains an open problem. Moreover,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXX 200X 5

designing appropriate mechanisms to control the generation of
extra training data is also an important issue to be investigated
in the future.

ACKNOWLEDGMENT

The comments and suggestions from the anonymous review-
ers greatly improved this paper.

REFERENCES

[1] C. Blake, E. Keogh, and C.J. Merz, “UCI repository of machine learning
databases” [http://www.ics.uci.edu/∼mlearn/MLRepository.html], De-
partment of Information and Computer Science, University of California,
Irvine, CA, 1998.

[2] L. Breiman, “Bagging predictors,” Machine Learning, vol.24, no.2,
pp.123–140, 1996.

[3] B. Efron and R. Tibshirani, An Introduction to the Bootstrap, New York:
Chapman & Hall, 1993.

[4] L.K. Hansen and P. Salamon, “Neural network ensembles, ” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.12,
no.10, pp.993–1001, 1990.

[5] Y. Kodratoff and C. Nédellec, Eds. Working Notes of the IJCAI-95
Workshop on Machine Learning and Comprehensibility, 1995.

[6] J.R. Quinlan, C4.5: Programs for Machine Learning, San Mateo, CA:
Morgan Kaufmann, 1993.

[7] N.S.V. Rao, “On fusers that perform better than best sensor,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.23, no.8,
pp.904–909, 2001.

[8] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Processing:
Explorations in The Microstructure of Cognition, D.E. Rumelhart and
J.L. McClelland, Eds. Cambridge, MA: MIT Press, vol.1, pp.318–362,
1986.

[9] Z.-H. Zhou and Z.-Q. Chen. “Hybrid decision tree,” Knowledge-Based
Systems, vol.15, no.8, pp.515–528, 2002.

[10] Z.-H. Zhou, J. Wu, and W. Tang, “Ensembling neural networks: many
could be better than all,” Artificial Intelligence, vol.137, no.1–2, pp.239–
263, 2002.

