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Abstract—In many practical data mining applications such as labeling of the unlabeled examples according to certain opti-
web page classification, unlabeled training examples are readily mization functions [4], etc.

available but labeled ones are fairly expensive to obtain. There- A prominent achievement in this area is the-training

fore, semi-supervised learning algorithms such asco-training . . . .
have attracted much attention. In this paper, a new co-training paradigm _proposed by Blum and M',tChe” [5]’_ Wh'ch trains
style semi-supervised learning algorithm namedtri-training is tWo classifiers separately on two different views, i.e. two
proposed. This algorithm generates three classifiers from the independent sets of attributes, and uses the predictions of each
original labeled example set. These classifiers are then refinedclassifier on unlabeled examples to augment the training set
using unlabeled examples in the tri-training process. In detail, f the other. Such an idea of utilizing the natural redundancy
in each round of tri-training, an unlabeled example is labeled . . .

for a classifier if the other two classifiers agree on the labeling, in the attributes has been employed in some other quks. _For
under certain conditions. Since tri-training neither requires the €xample, Yarowsky [28] performed word sense disambiguation
instance space be described withufficient and redundant view®r by constructing a sense classifier using the local context of the
does it put any constraints on the supervised learning algorithm, word and a classifier based on the senses of other occurrences
its applicability is broader than that of previous co-training of that word in the same document; Riloff and Jones [23]

style algorithms. Experiments on UCI data sets and application lassified h f hic locati b id
to the web page classification task indicate that tri-training classilied a noun phrase for geographic locations by consid-

can effectively exploit unlabeled data to enhance the learning €ring both the noun phrase itself and the linguistic context
performance. in which the noun phrase appears; Collins and Singer [8]

Index Terms— Data Mining, Machine Learning, Learning from performeq n_amed entity classificgtion .using both_ the spelling
Unlabeled Data, Semi-supervised Learning, Co-training, Tri- Of the entity itself and the context in which the entity occurs. It
training, Web Page Classification is noteworthy that the co-training paradigm has already been

used in many domains such as statistical parsing and noun
phrase identification [15] [21] [24] [27].
|. INTRODUCTION The standard co-training algorithm [5] requires twoffi-

N many practical data mining applications such as Wecgen't'and re.dundant viewshat is, the attributgs be pgturally
I page classification, unlabeled training examples are readfgrtitioned into two sets, each of which is sufficient for
available but labeled ones are fairly expensive to obtaf@™ing and conditionally independent to the other given
because they require human effort. Therefore, semi-supervidd@ class label. Dasgupta et al. [10] have shown that when
learning that exploits unlabeled examples in addition to labeldf requirement is met, the co-trained classifiers could make
ones has become a hot topic. ewer generalization errors by maximizing their agreement

Many current semi-supervised learning algorithms use Oyer the unlabeled data. Unfortunately, such a requirement

generative model for the classifier and employ Expectatioﬁ"-in hardly be met in most scenarios. Goldman and Zhou

Maximization (EM) [11] to model the label estimation or pa[14] proposed an algorithm which does not exploit attribute

rameter estimation process. For example, mixture of Gaussifﬁét't'on' However, it requires using two different supervised

[26], mixture of experts [17], and naive Bayes [20] have be arnin.g algorithms that partition the.instgnce space ipto a set
respectively used as the generative model, while EM is us® gqu_walence (_:Iasses, and emp"’y'”g time-consuming cross
to combine labeled and unlabeled data for classification. Thef@didation technique to determine how to label the unlabeled
are also many other algorithms such as using transductf?)éa””o',eS and how to produc.e .the final hypo?he3|s. )
inference for support vector machines to optimize performance' thiS paper, a new co-training style algorithm nanted

on a specific test set [16], constructing a graph on the exampli'@én'ng is proposed. Tri-training does not require sufficient

such that the minimum cut on the graph yields an optim@Md redundant views, nor does it require the use of different
supervised learning algorithms whose hypothesis partitions the
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classifiers.Experiments on UCI data sets [3] and application To simplify the computation, it is helpful to compute the
to the web page classification task show that tri-traininguotient of the constant divided by the square of the error:
can effectively exploit unlabeled data, and the generalization c 5

ability of its final hypothesis is quite good, sometimes even v="3= m (1 — 2n) (4)
outperforms that of the ensemble of three classifiers bemgIn each round of tri-training, the classifigrs andh; choose

prc_l)_\;:ded V\i'thflat?]?ls of all the unlabgleccjj exarfnpl)lles. Seci some examples iV to label for ;. Since the classifiers are

5 s erﬁf '?he tl_str;z?\p_er IZI org_?hmze Sea?c'oo gwse. oetc 'Wfined in the tri-training process, the amount as well as the
presents ri-training algoritm. ction > TEPONLS Ol ¢rete unlabeled examples chosen to label may be different

the experiments on UCI data sets. Section 4 describes F Qiifferent rounds. Lef.! and !~ denote the set of examples

application to the task of web page classification. Finall¥ at are labeled fab; in the-th round and thet—1)-th round
Section 5 concludes and raises several issues for future wqr pectively. Then the training set fan in the t-th round

and (t — 1)-th round are respectively U L' and L U L'~ 1,
whose sample sizer! andm!~! are|LU L!| and|LU L',

d Let I ﬁenOtT Lh? Igbeled elx ample .Sﬁt Wk'[th ISii¢ anQU respectively. Note that the unlabeled examples labeled in the
enote the unlabeled example set with siz&. In previous , 1)-th round, i.e.L*~!, won't be put into the original

co-training style algorithms, two classifiers are initially traine beled example set, i.d.. Instead, in the-th round all the

from L, each of which is then re-trained with the help o) xf';lmples it~ will be regarded as unlabeled and put into
unlabeled examples that are labeled by the latest version again

the other classifier. In order to determine which example In Let . denote the classification noise ratelofthat is, the
U should be labeled and which classifier should be biased .[]mberLof examples ifl, that are mislabeled igy |L| ,Let

prediction, the confidence of the labeling of each classmg{ denote the upper bound of the classification error rate of

must be_ expl_icitl;_/ measured._ Sometimes such a measuri hs in the t-th round, i.e. the error rate of the hypothesis
process is quite time-consuming [14]. derived from the combination df; and hs. Assuming there

| As?f‘ﬂm; t.ha.lt .E)_e?dfs.th%s]? twcz c_Irahssm?rs,fuleanld hng.a arez number of examples on which the classification made by
classifierhs is initially trained fromL. Then, for any classifier, agrees with that made by, and among these examples

an unlabeled example can be labeled for it as long as the ot fh hy and hy make correct classification off examples

two <_:Ia55|f|ers agree on the labeling of _thls example, while ﬂﬁ?en ¢l can be estimated ak=*) Thus, the number of
confidence of the labeling of the classifiers are not needed to z

- : . examples inL! that are mislabeled ig}|L!|. Therefore the

be explicitly measured. For instancehif andhs agree on the e : . -

: : classification noise rate in theth round is:
labeling of an example in U, thenz can be labeled fok; . It
is obvious that in such a scheme if the predictiorhofandhg . nol|L|+é LY
on z is correct, ther; will receive a valid new example for = —\L ULt %)
further training; otherwisé:; will get an example with noisy ) .
label. However, even in the worse case, the increase in thel hen,according to Eq. 4y’ can be computed as:

II. TRI-TRAINING

classification noise rate can be compensated if the amount of ) ne |L| + ¢t | LY 2
newly labeled examples is sufficient, under certain conditionsy’ = m' (1 —2p")" = |[LU L'| (1 -2 LU Li\ )
as shown below. (6)
Inspired by _Goldmar_1 and Zhou [_14], the finf:Iing of A_ngl_uin Similarly, u'~! can be computed as:
and Laird [1] is used in the following analysis. That is, if a
sequencer of m samples is drawn, where the sample size )
satisfies Eq. 1: u'”t = w1 -2p"h)
2
> 2w (1) AN A s G L
“ei—m? o B |LU Lt

wheree is the hypothesis worst-case classification error rate, o shown in Eq. 4, since is in proportion tol /€2, it can
n (< 0.5) is an upper bound on the classification noise rat§g §erived that ifit > w1 thenet < ¢!, which implies
N is the number of hypothesis, aids the confidence, then Athat h; can be improved through utilizing! in its training.

hypothesisH; that minimizes disagreement withwill have i condition can be expressed as Eq. 8 by comparing Egs. 6
the PAC property: and 7:

- Pr[d(Hi,H)Ze]ngé (2) ‘LuLt|<1_277L|L|+é1|Lt>2>
whered(,) is sum over the probability of elements from the |L U Lt|

symmetric difference between the two hypothesis é&tand st—1 | 7t—1]\ 2

H* (the ground-truth). Let = 2u1n(2¥) where u malkes ILuL (1 _ oL Ll +eé |z ‘) 8)
Eqg. 1 hold equality, then Eq. 1 becomes Eg. 3: |L U L1

_ c 3) Consideringthat n;, can be very small and assuming<
2 (1—2n)° &t ¢!=1 < 0.5, then the first term on the left hand of Eq. 8 is



biggerthan its correspondence on the right handzif—!| <

|Lt|, while the second term on the left hand is bigger than

its correspondence on the right hancff Lt| < ¢!~ |Lt1).

TABLE |
PSEUDO-CODE DESCRIBING THE TR{TRAINING ALGORITHM

These restrictions can be summarized into the condition showti-training(Z, U, Learn)

in Eq. 9, which is used in tri-training to determine when an

unlabeled example could be labeled for a classifier.

4 _ 1o

éﬁ—l |Lt|

0<

<1 (9)

Note that whené! < ¢i=! and |L*~1| < |Lt|, &;|Lt| may
not be less tham!™*|L*~!| due to the fact thatL!| may be
far bigger than L!~!|. When this happens, in some cadés
could be randomly subsampled such that.?| < ¢! 'Lt
Giveneél, ¢i7!, and|Lt~|, let integers denote the size okt
after subsampling, then if Eq. 10 hold$,|L!| < ¢~ Lt
is obviously satisfied.

st—1)7t—1

5= [61{;' - 1] (10)
€1

whereL!~! shouldsatisfy Eg. 11 such that the size bf after

subsampling, i.es, is still bigger than|L!~1|.

Input: L: Original labeled example set
U: Unlabeled example set
Learn: Learning algorithm

for ¢ € {1..3} do
S; < BootstrapSample(L)
hi «— Learn(S;)
e; «— .5; l; «—0
end of for
repeat until none ofh; (¢ € {1..3}) changes
for i € {1..3} do
L; «— 0; update; — FALSE
e; « MeasureError(h;&hy) (4,k # 1)
if (e; < e;) % otherwise Eq. 9 is violated
then for everyz € U do
it hy () = hg (z) (4, k #19)
then L; «— L; U {(I, hj (I))}
end of for
if (I, =0) % h; has not been updated before

then l; — { i 4 IJ % refer Eq. 11

e.—e;

if (I, < |Ly|) % otherwise Eq. 9 is violated

then if (e;|L;| < e;l;) % otherwise Eq. 9 is violated
then update; — TRUE

else ifl; > 4 % refer Eq. 11
€.

€q

‘Lt71| >

>t
61 A
U
étlfl _ éﬁ (11) then L; «— Subsample(L;, eéi‘ — 1]))

% refer Eq. 1

The pseudo-code of tri-training is presented in Table I. update; — TRUE

The function MeasureError(h;&hi) attempts to estimate
the classification error rate of the hypothesis derived from the
combinatiqn thj and hy. Since it is difficult to estimate then hy < Learn (LU Li): ¢, — es: I, — | L]
the classification error on the unlabeled examples, here only end of for ‘ ‘

the original labeled examples are used, heuristically based on end of repeat

the assumption that the unlabeled examples hold the same
distribution as that held by the labeled ones. In detail, the
classification error of the hypothesis is approximated through
dividing the number of labeled examples on which baéth
andhj make incorrect classification by the number of labeled

examples on which the classification madeibys the same as otherchannels. Indeed, here the diversity is obtained through

removes|L!| — s number of examples froni! where s is initial classifiers are trained from data sets generated via

computed according to Eg. 10. bootstrap sampling [13] from the original labeled example set.
It is noteworthy that the initial classifiers in tri-trainingThese classifiers are then refined in the tri-training process,

should be diverse because if all the classifiers are identic@d the final hypothesis is produced wmajority voting.
then for any of these classifiers, the unlabeled exampqg,ge generation of the initial classifiers looks like training
labeled by the other two classifiers will be the same & ensemble from the labeled example set with a popular
these labeled by the classifier for itself. Thus, tri-trainin§nsemble learning [12] algorithm, that is, Bagging [6].
degenerates taelf-training [19] with a single classifier. In  Tri-training can be regarded as a new extension to the co-
the standard co-training algorithm, the use of sufficient arnichining algorithms [5] [14]. As mentioned before, Blum and
redundant views enables the classifiers be different. In fabtitchell's algorithm requires the instance space be described
previous research has shown that even when there is no natbgatwo sufficient and redundant views, which can hardly be
attribute partitions, if there are sufficient redundancy amorsgtisfied in common data mining scenarios. Since tri-training
the attributes then a fairly reasonable attribute partition will eloes not rely on different views, its applicability is broader.
able co-training exhibit advantages [19]. While in the extendégioldman and Zhou’s algorithm does not rely on different
co-training algorithm which does not require sufficient andiews either. However, their algorithm requires two different
redundant views, the diversity among the classifiers is achiev&gpervised learning algorithms that partition the instance space
through using different supervised learning algorithms [14ipto a set of equivalence classes. Moreover, their algorithm
Since the tri-training algorithm does not assume sufficiefrequently uses 10-fold cross validation on the original labeled
and redundant views and different supervised learning algexample set to determine how to label the unlabeled examples
rithms, the diversity of the classifiers have to be sought froend how to produce the final hypothesis. If the original labeled

end of for

for ¢+ € {1..3} do
if update; = TRUE

Output: A (z) < arg max Z 1
yelabel 4 p;(z)=y




example set is rather small, cross validation will exhibit highedundant views, the original attribute sets are randomly
variance and is not helpful for model selection. Also, thpartitioned into two subsets with similar sizes and then each
frequently used cross validation makes the learning procesgset is regarded as a view. The self-trainingl algorithm uses
time-consuming. Since tri-training does not put any constraitite same three initial classifiers as these used by tri-training. In
on the supervised learning algorithm nor does it employ timeach round, instead of using the other two classifiers to label
consuming cross validation process, both its applicability amsamples, each classifier labels unlabeled examples for itself
efficiency are better. while in predicting new examples, all the three classifiers are
used. In other words, three single classifiers refined by self-
training [19] is combined via majority voting. In contrast to tri-

) ) training, this algorithm does not utilize any co-training process
Twelve UCI data sets [3] are used in the experimenigpiie the voting scheme is used to improve generalization.

Information on these data sets are tabulated in Table Il, WhefRe self-training2 algorithm also uses the same three initial
pos/negpresents the percentage of the number of positiggssifiers as these used by tri-training. In each round, the
examples against that of negative examples. Note that thggiheled examples are labeled via majority voting the clas-

IIl. EXPERIMENTS ONUCI| DATA SETS

data sets do not hold sufficient and redundant views. sifiers, and each classifier is refined by the same copy of the
TABLE Il newly. Igbeled data. Finally, the newly labeled exam.ples gnd
EXPERIMENTAL DATA SETS the orlglnal Ia}beled exam'ples are qsed together to tra[n asingle
classifier which is used in prediction. It is worth noting that
dataset attribute _size  class _ pos/neg although self-training2 uses the same initial classifiers as these
austrlian 14 690 2  55.5%/44.5% i i _traini _traini ite initi
bupa 6 M5 2 2509/58 0% used in tri-training anq self tra|n|.ngl, its myt;al hypotheses
colic 22 368 2 63.0%/37.0% are different because it uses a single classifier instead of an
ggﬂf;ﬁs 280 17880 22 ‘;%g;/};//%%%‘:{z ensemble in prediction. For fair comparison, the termination
hypothyroid 25 3,163 2  4.8%/95.2% criteria used by these semi-supervised learning algorithms
:fr”\?ssﬁhefe gg 33%6 2 %g-g‘:{/"//i‘;-g;//‘) are similar to that used by tri-training. In Tables Il to VI,
“Vo- y . 0, . (] . . . . .
sick P 29 3772 2 6.1%/93.9% the biggest improvements achieved by the semi-supervised
t'g;teac'toe 196 igg % giﬁ‘?g‘é-g? learning algorithms have been boldfaced. Note that some
V . . . . . .
wdbc 30 560 2 37.3%/62.7% values in the tables may look inconsistent due to truncation.

For example, the initial and final performance of tri-training
with J4.8 decision tree otypothyroid appear identical in
For each data set, about 25% data are kept as test exampgsle V but the improvement is not zero.
while the rest are used as the pool of training examples,Tables Il to VI show that tri-training can effectively im-
iie. LUU. In each pool,L and U are partitioned under prove the hypotheses with all the classifiers under all the
different unlabel ratesincluding 80%, 60%, 40%, and 20%.unlabel rates. In fact, if the improvements are averaged across
For instance, assuming a pool contains 1,000 examples, wiadinthe data sets, classifiers and unlabel rates, it can be found
the unlabel rate is 80%, 200 examples are put ibtevith that the average improvement of tri-training is about 11.9%.
their labels while the remaining 800 examples are put intbis impressive that with all the classifiers and under all the
U without their labels. Here the pos/neg ratio bf U, and unlabel rates, tri-training has achieved the biggest average
the test set are similar to that of the original data set. Not@provement. Moreover, Tables Il to VI also show that if
that on some big data sets, suchhgpothyroid,kr-vs-kp and the algorithms are compared through counting the number
sick the number of labeled examples might be sufficient @f winning data setsi.e. the number of data sets on which
train a good classifier even under 80% unlabel rate. Howevan algorithm has achieved the biggest improvement among
even in these cases, semi-supervised learning algorithms stigh compared algorithms, tri-training is almost always the
as tri-training can still be helpful, which will be shown in thewinner. In detail, under 80% unlabel rate, when J4.8 decision
experiments reported in this section. trees are used, tri-training has 11 wining data sets while the
J4.8 decision trees [29], BP neural networks, and Naiegher algorithms have at most one winning data set; when
Bayes classifiers are used in the experiments. Under e&tdive Bayes classifiers are used, tri-training and self-trainingl
unlabel rate, three independent runs with different randonave 7 winning data sets, respectively, while the remaining
partition of L andU are performed. The averaged results amgorithms do not have winning data sets. Under 60% unlabel
summarized in Tables Il to VI, which present the classificatiorate, when J4.8 decision trees and BP neural networks are
error rates of the hypothesis at round 0, i.e. the combinationwsed, tri-training has 8 and 9 winning data sets, respectively,
the three initial classifiers trained from the final hypothesis while the other algorithms have at most 2 and 3 winning data
generated by tri-training, and the improvement of the latteets, respectively; when Naive Bayes classifiers are used, tri-
over the former. training has 10 winning data sets, while the other algorithms
The performance of tri-training is compared with thre@ave at most 5 winning data sets. Under 40% unlabel rate, tri-
semi-supervised learning algorithms, i.eo-training self- training has 7, 6, and 9 winning data sets when J4.8 decision
trainingl, and self-training2. The co-training algorithm istrees, BP neural networks, and Naive Bayes classifiers are
almost the same as the standard one [5] except that sinsed, respectively, while the other algorithms have at most 5,
the experimental data sets are without natural sufficient aAdand 6 winning data sets, respectively. Under 20% unlabel



TABLE Il
THE CLASSIFICATION ERROR RATES OF THE INITIAL AND FINAL HYPOTHESES AND THE CORRESPONDING IMPROVEMENTS OF FRRAINING,
CO-TRAINING, SELFTRAINING1, AND SELF-TRAINING 2, UNDER 80% UNLABEL RATE

I J4.8decision tree
Dataset || tri-training | co-training | self-trainingl | self-training2
|| initial final improv | initial final improv | initial final improv | initial final improv
australian 222193 13.0% | .263 .253 3.7% | .222 .202 8.7% | .198 .186 5.9%

bupa 399 .368 7.8% | .448 .433 3.4% | .399 .380 4.9% | .394 .448 -13.7%
colic .181 .163 10.0% | .206 .188 8.8% | .181 .174 4.0% | .188 .181 3.8%
diabetes 316 .288 8.8% | .280 .266 5.0% | .316 .300 4.9% | .313 .299 4.4%
german 351 324 7.6% | .349 .337 3.4% | .351 .337 3.8% | .341 .341 0.0%

hypothyroid|| .012 .011 10.3% | .018 .016 9.3% | .012 .012 0.0% | .008 .009 -10.0%
ionosphere || .155 .121 22.0% | .167 .144 13.6%| .155 .144 7.3% | .129 .137 -5.9%

kr-vs-kp .035 .025 29.8%| .125 .123 1.7% | .035 .022 36.9% | .022 .023 -5.8%
sick 024 .021 11.9% | .055 .051 7.1% | .024 .023 4.5% | .024 .028 -14.3%
tic-tac-toe || .292 .258 11.4% | .299 .295 1.4% | .292 .269 7.6% | .291 .281 3.3%
vote .076 .055 28.0% | .083 .074 11.1%| .076 .070 8.0% | .052 .052 0.0%
wdbc .094 .075 20.0% | .096 .082 14.6%| .094 .092 2.5% | .089 .094 -5.3%
ave. || 180 .159 15.1% | .199 .189 6.9% | .180 .169 7.8% | .171 .173 -3.1%
I BP neural networks
Dataset || tri-training | co-training | self-trainingl | self-training2

|| initial final improv | initial final improv | initial final improv | initial final improv
austmlian .200 .181 9.6% | .143 .135 54%| .200 .189 5.8% | .149 .151 -1.3%

bupa 337 295 12.5% | .399 .379 4.9% | .337 .326 3.4% | .348 .348 0.0%
colic 254 232 8.6% | .253 .239 5.7% | .254 .261 -2.9%| .283 .243 14.1%
diabetes .286 .257 10.3% | .271 .262 3.2% | .286 .262 8.5% | .264 .278 -5.3%
german 301 .287 4.9% | .283 .275 2.8% | .301 .284 58% | .315 .311 1.3%

hypothyroid|| .029 .021 25.0%| .033 .030 10.0%| .029 .024 16.2%| .052 .036 30.3%
ionosphere || .201 .178 11.3%| .160 .141 11.9% | .201 .178 11.3%| .167 .175 -4.5%

kr-vs-kp .034 .027 22.2%| .101 .098 2.9% | .034 .025 27.2% | .030 .030 -1.4%
sick .036 .034 4.0% | .051 .046 9.2% | .036 .034 4.0% | .045 .045 -0.8%
tic-tac-toe || .071 .036 49.0%| .269 .256 4.7% | .071 .026 62.7% | .015 .015 0.0%
vote .061 .050 17.5%| .076 .058 24.0%| .061 .043 30.0% | .043 .043 0.0%
wdbc .042 .033 22.2%| .037 .028 25.0% | .042 .038 11.1%| .032 .030 7.1%
ave. || 154 .136 16.4% | .173 .162 9.1% | .154 .141 15.3%| .145 .142 3.3%
I Naive Bayes
Dataset || tri-training | co-training | self-trainingl | self-training2

|| initial _final _improv | initial _final improv | initial final _improv | initial _final improv
austmlian 243 224 T7.9% | .238 .234 16% | .243 224 7.9% | .236 .236 0.0%

bupa 481 442 8.1% | 459 .448 25% | .481 .438 89% | 490 475 3.1%
colic 217 .207  5.0% | .207 .203 1.8% | .217 .203 6.7% | .210 .221 -5.2%
diabetes 267 .257 3.9% | .250 .245 2.1% | .267 .264 13% | .246 .241 2.1%
german 285 276 3.3% | .257 .253 1.6% | .285 .272 4.7% | .262 .267 -2.0%

hypothyroid|| .024 .021 8.9% | .025 .024 3.4% | .024 .021 8.9% | .022 .022 0.0%
ionosphere || .155 .129 17.1% | .183 .175 4.2% | .155 .136 12.2%| .178 .186 -4.3%

kr-vs-kp 142 128 10.0% | .144 .143 0.6% | .142 .128 9.4% | .139 .138 0.9%
sick .089 .084 5.6% | .043 .042 1.7% | .089 .083 6.3% | .079 .078 0.9%
tic-tac-toe 343 324 57% | .286 .280 2.0% | .343 .328 4.5% | .293 .294 -0.5%
vote 113 .104 8.1% | .098 .098 0.0% | .113 .110 2.7% | .098 .101 -3.1%
wdbc .054 .047 13.0%| .071 .066 6.7% | .054 .045 17.4% | .068 .073 -6.9%
ave. || 201 .187 8.0% | .188 .184 2.4% | .201 .188 7.6% | .193 .194 -1.3%

rate, when J4.8 decision trees and BP neural networks aalt the examples are provided. The average error rate of the
used, tri-training has 8 and 9 winning data sets, respectivedy)ysembles is also shown as a horizontal line in each figure,
while the remaining algorithms have at most 3 and 2 winninghich is denoted byens-all. Note that in Figs. 1 to 3 the
data sets, respectively; when Naive Bayes classifiers are usador rates have been averaged across all the experimental data
tri-training has 7 winning data sets while the other algorithmeets, and since the semi-supervised learning algorithms may
have at most 6 winning data sets. Only when BP neur@rminate in different rounds, the error rates at termination are
networks are used under 80% unlabel rate, tri-training hased as the error rates of the rounds after termination.
fewer winning data sets than self-training1. Figs. 1 to 3 reveal that on all the subfigures, the final
The error rates of the compared algorithms are depictedhgpotheses generated by tri-training are better than the initial
Figs. 1 to 3. Besides the semi-supervised learning algorithrhypotheses, which confirms that tri-training can effectively ex-
on each data set three single classifiers are trained from oplgit unlabeled examples to enhance the learning performance.
the labeled training examples, i.€. The average error rate When J4.8 decision trees are used, the hypotheses generated
of the single classifiers is shown as a horizontal line in eadly tri-training are apparently better than these generated by
figure, which is denoted bgingle. Moreover, three ensembleshe other semi-supervised learning algorithms in the same
each comprising three classifiers are trained by Bagging fraounds, except that under 40% unlabel rate the hypotheses
the pool of training examples, i.éL U U) while labels of generated by tri-training and self-trainingl are comparable.



TABLE IV
THE CLASSIFICATION ERROR RATES OF THE INITIAL AND FINAL HYPOTHESES AND THE CORRESPONDING IMPROVEMENTS OF FRRAINING,
CO-TRAINING, SELFTRAINING1, AND SELF-TRAINING 2, UNDER 60% UNLABEL RATE

I J4.8decision tree
Dataset || tri-training | co-training | self-trainingl | self-training2
|| initial final improv | initial final improv | initial final improv | initial final improv
australian A71 162 5.6% | .223 213 43% | .171 .166 3.4% | .168 .166 1.1%

bupa 376 .341 9.3% | 402 .398 1.0% | .376 .376 0.0% | .371 .390 -5.2%
colic 185 .163 11.8% | .210 .199 5.2% | .185 .167 9.8% | .210 .199 5.2%
diabetes 286 .252 12.1% | .286 .267 6.7% | .286 .288 -0.6%| .267 .264 1.3%
german 337 316 6.3% | .318 .313 1.7% | .337 .333 1.2% | .306 .325 -6.1%

hypothyroid|| .014 .011 21.2%| .034 .033 3.7% | .014 .010 27.3% | .014 .012 14.7%
ionosphere || .102 .087 14.8%| .134 .103 22.9% | .102 .091 11.1%| .121 .129 -6.3%

kr-vs-kp .021 .018 17.6% | .078 .077 1.6% | .021 .020 7.8% | .013 .014 -6.5%
sick .020 .016 21.1% | .045 .042 6.3% | .020 .018 10.5%| .021 .021 0.0%
tic-tac-toe || .176 .163 7.9% | .255 .252 1.1% | .176 .188 -6.3%| .225 .221 1.9%
vote .058 .049 15.8%| .073 .055 25.0% | .058 .049 15.8%| .049 .040 18.8%
wdbc .089 .077 13.2%| .089 .075 15.8%| .089 .073 18.4% | .094 .089 5.0%
ave. || 153 .138 13.1% | .179 .169 7.9% | .153 .148 8.2% | .155 .156 2.0%
I BP neural networks
Dataset || tri-training | co-training | self-trainingl | self-training2

|| initial final improv | initial final improv | initial final improv | initial final improv
austmlian 152 135 11.4% | .155 .143 7.5% | .152 .152 0.0% | .155 .151 2.5%

bupa 353 .302 14.4% | .386 .363 6.0% | .353 .306 13.3%| .340 .344 -1.1%
colic 203 192 54% | .242 217 10.4% | .203 .192 5.4% | .225 .232 -3.2%
diabetes 245 233 5.0% | .250 .243 2.8% | .245 .238 2.8% | .243 .257 -5.7%
german 296 281 5.0% | .308 .288 6.5% | .296 .292 1.4% | .282 .297 -5.2%

hypothyroid|| .027 .024 10.9% | .025 .024 5.1% | .027 .027 1.6% | .024 .027 -12.5%
ionosphere || .182 .159 12.5%| .148 .129 12.8% | .182 .174 4.2% | .155 .163 -4.9%

kr-vs-kp .020 .015 25.0% | .111 .108 3.0% | .020 .016 18.8%| .015 .020 -37.1%
sick .040 .033 18.6% | .044 .040 8.1% | .040 .033 17.7%| .034 .043 -28.1%
tic-tac-toe || .025 .021 16.7% | .258 .244 54% | .025 .025 0.0% | .015 .014 9.1%
vote .046 .037 20.0% | .055 .046 16.7%| .046 .037 20.0% | .055 .070 -27.8%
wdbc .040 .031 23.5% | .052 .045 13.6%| .040 .035 11.8%| .052 .052 0.0%
ave. || 1136 .122 14.0% | .170 .158 8.2% | .136 .127 8.1% | .133 .139 -9.5%
I Naive Bayes
Dataset || tri-training | co-training | self-trainingl | self-training2

|| initial _final _improv | initial _final improv | initial final _improv | initial _final improv
austmlian 262 256 2.2% | .197 .193 2.0% | .262 .256 2.2% | .183 .187 -2.1%

bupa 453 434 43% | 444 425 43% | 453 430 5.1% | 460 .468 -1.7%
colic 207 196 5.3% | .206 .199 3.5% | .207 .196 5.3% | .221 .210 4.9%
diabetes 257 241 6.1% | 277 274 12% | .257 .243 54% | .283 .288 -1.8%
german 279 269 3.3% | .253 249 1.6% | .279 .276 1.0% | .257 .257 0.0%

hypothyroid|| .027 .025 6.3% | .022 .021 3.8% | .027 .025 6.3% | .020 .019 4.3%
ionosphere || .235 .201 14.5% | .220 .220 0.0% | .235 .205 12.9%| .225 .217 3.4%

kr-vs-kp 129 121 6.5% | .147 .146 0.6% | .129 .122 5.8% | .143 .143 0.3%
sick .086 .084 25% | .043 .043 0.8% | .086 .085 1.2% | .086 .087 -1.2%
tic-tac-toe 311 299 4.0% | .270 .267 1.0% | .311 .303 2.7% | .287 .287 0.0%
vote 110 .104 5.6% | .123 .120 2.5% | .110 .104 5.6% | .119 .116 2.6%
wdbc .040 .038 5.9% | .073 .068 6.5% | .040 .040 0.0% | .072 .070 3.2%
ave. || 200 .189 55% | .190 .185 2.3% | .200 .190 4.4% | .196 .196 1.0%

WhenBP neural networks are used, the hypotheses generatedgresent all the figures (12 data sets3 classifiersx 4
by tri-training are apparently better than these generated tnylabel rates = 144 figures). The figures presented are chosen
co-training under all the unlabel rates, apparently better thaocording to the following two criteria. First, for each classifier
these generated by self-trainingl under 20% unlabel rate, aardl under each unlabel rate, the data sets where tri-training
apparently better than these generated by self-training2 achieves median improvements can be chosen. For instance,
all but 80% unlabel rate. When Naive Bayes classifiers aaecording to Table VI, when BP neural networks are used
used, the hypotheses generated by tri-training are comparabieer 20% unlabel rate, tri-training achieves its 6th and 7th
to these generated by co-training and self-trainingl, whibBggest improvements osick andwdbc, respectively, among
apparently better than these generated by self-training2 und#rthe twelve data sets. Therefoseck and wdbc can be
all the unlabel rates. chosen. Second, attempts are made to choose as more diverse
For further studying the performance of the compared serfiata sets as possible. For instance, ssickhas already been
supervised learning algorithms, the number of test exampl¥sen when J4.8 decision trees are used under 80% unlabel
misclassified by the algorithms are depicted in Figs. 4 to &te, wdbcinstead ofsick is chosen for BP neural networks
which belongs to the one of the three runs of each algorith#der 20% unlabel rate.
that has the median performance. Note that here only a smalFigs. 4 to 6 reveal that on all the subfigures, the final
number of figures are depicted since it may be too tediobgpotheses generated by tri-training are better than the initial



TABLE V
THE CLASSIFICATION ERROR RATES OF THE INITIAL AND FINAL HYPOTHESES AND THE CORRESPONDING IMPROVEMENTS OF FRRAINING,
CO-TRAINING, SELFTRAINING1, AND SELF-TRAINING 2, UNDER 40% UNLABEL RATE

I J4.8decision tree
Dataset || tri-training | co-training | self-trainingl | self-training2
|| initial final improv | initial final improv | initial final improv | initial final improv
australian 162 148 8.3% | .190 .180 5.1% | .162 .154 4.8% | .164 .160 2.4%

bupa 391 .353 9.9% | .360 .348 3.2% | .391 .380 3.0% | .340 .375 -10.2%
colic 196 .185 5.6% | .203 .196 3.6% | .196 .188 3.7% | .195 .188 3.7%
diabetes 293 273 7.1% | .279 .267 4.3% | .293 .267 8.9% | .278 .269 3.1%
german 316 293 7.2% | .318 .313 1.7% | .316 .301 4.6% | .290 .297 -2.3%

hypothyroid|| .011 .011 7.4% | .015 .014 5.7% | .011 .011 7.4% | .010 .010 0.0%
ionosphere || .102 .087 14.8%| .126 .118 6.1% | .102 .080 22.2% | .102 .125 -22.2%

kr-vs-kp .013 .010 20.0%| .073 .073 0.6% | .013 .008 33.3% | .016 .016 0.0%
sick .018 .012 30.0% | .043 .041 4.2% | .018 .017 2.0% | .017 .016 4.3%
tic-tac-toe || .150 .133 11.1% | .222 .219 1.3% | .150 .143 4.6% | .212 .217 -2.6%
vote .061 .049 20.0%| .083 .077 7.4% | .061 .040 35.0% | .067 .067 0.0%
wdbc .080 .066 17.6%| .063 .047 25.9% | .080 .073 8.8% | .080 .080 0.0%
ave. || 149 .135 13.3% | .165 .158 5.8% | .149 .139 11.5%] .148 .152 -2.0%
I BP neural networks
Dataset || tri-training | co-training | self-trainingl | self-training2

|| initial final improv | initial final improv | initial final improv | initial final improv
austmlian 148 137 7.8% | .145 135 6.7% | .148 .150 -1.3%| .134 .155 -15.9%

bupa 318 .283 11.0% | .422 .406 3.7% | .318 .295 7.4% | .348 .383 -10.0%
colic 192 178 7.5% | .246 239 2.9% | .192 .170 11.3% | .240 .225 6.1%
diabetes .248 238 4.2% | .288 .283 1.8% | .248 .245 1.4% | .249 .247 0.7%
german 303 .285 5.7% | .287 .259 9.8% | .303 .301 0.4% | .307 .295 3.9%

hypothyroid|| .023 .019 16.4% | .031 .029 6.8% | .023 .021 7.3% | .027 .023 14.1%
ionosphere || .140 .117 16.2%| .084 .065 22.7% | .140 .125 10.8%| .091 .095 -4.2%

kr-vs-kp 016 .013 21.1% | .077 .069 10.8%| .016 .014 13.2%| .012 .011 6.9%
sick .030 .028 59% | .043 .039 8.4% | .030 .031 -4.7%| .033 .054 -62.8%
tic-tac-toe || .022 .018 18.7% | .241 .224 6.9% | .022 .022 0.0% | .026 .022 15.8%
vote .055 .052 5.6% | .067 .052 22.7% | .055 .052 5.6% | .049 .052 -6.2%
wdbc .040 .031 23.5%| .033 .028 14.3%| .040 .028 29.4% | .031 .033 -7.7%
ave. || 1128 .117 12.0% | .164 .152 9.8% | .128 .121 6.7% | .129 .133 -4.9%
I Naive Bayes
Dataset || tri-training | co-training | self-trainingl | self-training2

|| initial _final _improv | initial _final improv | initial final _improv | initial _final improv
austmlian .254 254 0.0% | .246 .242 1.6% | .254 .249 2.3% | .236 .236 0.0%

bupa 450 419 6.9% | 406 .375 7.6% | .450 .411 8.6% | .441 .464 -5.3%
colic 210 196 6.9% | .203 .203 0.0% | .210 .203 3.4% | .243 .243 0.0%
diabetes 266 247 7.2% | .243 238 2.1% | .266 .247 7.2% | .248 .243 2.1%
german 240 231 3.9% | .277 .276 0.5% | .240 .233 2.8% | .269 .269 0.0%

hypothyroid|| .021 .019 11.8% | .025 .024 3.4% | .021 .019 11.8% | .020 .021 -4.1%
ionosphere || .174 .163 6.5% | .194 .190 2.0% | .174 .167 4.3% | .194 .194 0.0%

kr-vs-kp 146 139 5.1% | .137 .136 0.6% | .146 .139 4.9% | .135 .135 -0.3%
sick .082 .079 3.9% | .048 .048 0.0% | .082 .079 3.4% | .076 .076 0.0%
tic-tac-toe 275 271 15% | .277 276 0.5% | .275 .269 2.0% | .309 .309 0.0%
vote .089 .080 10.3% | .098 .098 0.0% | .089 .080 10.3% | .098 .098 0.0%
wdbc .068 .061 10.3% | .061 .061 0.0% | .068 .063 6.9% | .061 .061 0.0%
ave. || 190 .180 6.2% | .185 .181 1.5% | .190 .180 5.7% | .194 .196 -0.6%

hypotheses. Comparing with co-training, the final hypothesast always improve the performance and especially it does not
of tri-training are almost always better except on Fig. 5 (ayork well with stable learners such as Naive Bayes classifiers
where the final hypothesis of co-training is slightly bettef6]. However, Figs. 4 to 5 reveal that when ens-all is effective
Comparing with self-trainingl, the final hypotheses of triand although it has utilized more resource, i.e. being provided
training are better on most subfigures except on Fig. 4 (ajith labels of all the examples ih andU, sometimes the final
Fig. 6 (b), (c), and (d) where the final hypotheses of trhypotheses generated by tri-training can outperform that of
training and self-trainingl are comparable. Comparing wietns-all, such as on Fig. 4 (b) and Fig. 5 (b) and (c). The above
self-training2, the final hypotheses of tri-training are better aybservations confirm that the tri-training process is effective
most subfigures except on Fig. 4 (d) where the final hypothesesxploiting unlabeled examples.

of tri-training and self-training2 are comparable, and on Fig. 5

(a) and Fig. 6 (d) where the final hypotheses of self-training2 V- APPLICATION TOWEB PAGE CLASSIFICATION
are better. Theweb page classificatiodata set consists of 1,051 web

Figs. 4 to 6 also show that sometimes the performance RA9€S collected from web sites of Computer Science depart-
ens-all is worse than that of single, especially when Naif@ents of four universities: Cornell University, University of

Bayes classifiers are used. This is not strange because previouis gata set is available at http:/www.cs.cmu.edu/afs/cs/project/theo-
research on ensemble learning has disclosed that Bagging diagsww/iwwkb/



TABLE VI
THE CLASSIFICATION ERROR RATES OF THE INITIAL AND FINAL HYPOTHESES AND THE CORRESPONDING IMPROVEMENTS OF FRRAINING,
CO-TRAINING, SELFTRAINING1, AND SELF-TRAINING 2, UNDER 20% UNLABEL RATE

I J4.8decision tree
Dataset || tri-training | co-training | self-trainingl | self-training2
|| initial final improv | initial final improv | initial final improv | initial final improv
austalian 162 .148 8.3% | .217 207 45% | .162 .154 4.8% | .124 .126 -1.6%

bupa 376 .310 17.5% | .367 .352 4.2% | .376 .353 6.2% | .336 .332 1.1%
colic 185 170 7.8% | .192 .181 5.7% | .185 .178 3.9% | .207 .185 10.5%
diabetes 297 267 9.9% | .294 290 1.2% | .297 .267 9.9% | .286 .288 -0.6%
german 317 296 6.7% | .327 .320 2.0% | .317 .305 3.8% | .314 .305 3.0%

hypothyroid|| .011 .010 14.8% | .016 .015 5.3% | .011 .012 -7.4%| .010 .010 0.0%
ionosphere || .129 .102 20.6% | .122 .103 15.6%| .129 .117 8.8% | .129 .137 -5.9%

kr-vs-kp .013 .010 22.6%| .095 .094 0.9% | .013 .009 29.0% | .009 .009 -4.8%
sick .015 .013 16.3% | .041 .040 2.6% | .015 .013 14.0%| .012 .015 -23.5%
tic-tac-toe || .143 .125 12.6% | .252 .249 1.1% | .143 .158 -10.7% .165 .166 -0.8%
vote .052 .040 23.5%| .073 .064 12.5%| .052 .037 29.4% | .061 .067 -10.0%
wdbc .066 .049 25.0%| .058 .042 28.0% | .066 .061 7.1% | .061 .054 11.5%
ave. || 147 .128 15.5% | .171 .163 7.0% | .147 .139 8.2% | .143 .141 -1.8%
I BP neural networks
Dataset || tri-training | co-training | self-trainingl | self-training2

|| initial final improv | initial final improv | initial final improv | initial final improv
austmlian 160 .135 15.7% | .134 124 7.2% | .160 .137 14.5%] .137 .145 -5.6%

bupa 345 318 7.8% | .356 .348 2.2% | .345 .337 2.3% | .356 .313 12.0%
colic 199 181 9.1% | .185 .178 3.9% | .199 .217 -9.1%| .200 .185 7.3%
diabetes 238 220 7.3% | .256 .252 1.4% | .238 .236 0.7% | .265 .286 -7.8%
german 288 .252 125% | .270 .257 4.9% | .288 .256 11.1%| .287 .299 -4.2%

hypothyroid|| .020 .015 25.0% | .024 .022 7.0% | .020 .020 0.0% | .026 .024 6.7%
ionosphere || .117 .087 25.8% | .064 .049 23.5%| .117 .091 22.6%| .095 .095 0.0%

kr-vs-kp .013 .009 26.7%| .072 .069 4.6% | .013 .009 30.0%| .010 .006 42.3%
sick .034 .029 16.5% | .051 .049 4.1% | .034 .038 -10.3% .038 .038 -0.9%
tic-tac-toe || .024 .019 17.6% | .209 .196 6.0% | .024 .022 59% | .018 .025 -38.5%
vote .037 .028 25.0%| .064 .055 14.3%| .037 .024 33.3% | .055 .052 5.6%
wdbc .045 .038 15.8% | .042 .037 11.1%| .045 .052 -15.8%| .051 .049 4.5%
ave. || 127 111 17.1% | .144 136 7.5% | .127 120 7.1% | .128 .126 1.8%
I Naive Bayes
Dataset || tri-training | co-training | self-trainingl | self-training2

| initial _final improv | initial final improv | initial final _improv | initial _final _improv
austalian 218 202 7.1% | .247 245 0.8% | .218 .204 6.2% | .244 .242 0.8%

bupa 473 442 6.6% | 410 .394 3.8% | .473 457 3.3% | .448 475 -6.0%
colic 250 .250 0.0% | .199 .192 3.6% | .250 .250 0.0% | .232 .232 0.0%
diabetes 257 245 A47% | 251 247 1.4% | .257 .243 54% | .261 .259 0.7%
german 260 .247 5.1% | .268 .265 1.0% | .260 .245 5.6% | .242 .243 -0.6%

hypothyroid|| .024 .021 12.3% | .021 .021 1.9% | .024 .021 12.3% | .021 .021 2.0%
ionosphere || .152 .136 10.0% | .156 .152 2.4% | .152 .136 10.0% | .171 .175 -2.2%

kr-vs-kp 134 127 53% | .132 .131 0.6% | .134 .127 5.6% | .125 .126 -0.7%
sick .067 .064 4.8% | .046 .045 1.6% | .067 .064 3.7% | .064 .065 -1.1%
tic-tac-toe 290 .281 3.3% | .281 .278 1.0% | .290 .279 3.8% | .309 .309 0.0%
vote .095 .092 3.2% | .101 .098 3.0% | .095 .098 -3.2%| .095 .095 0.0%
wdbc .056 .047 16.7% | .077 .077 0.0% | .056 .049 12.5%| .077 .077 0.0%
ave. || 190 .179 6.6% | .182 .179 1.8% | .190 .181 54% | .191 .193 -0.6%

Texas, University of Washington, and University of Wisconsiroccurring on that page as well as these occurring in hyperlinks
These pages have been labeled into a number of categorileat point to that page [5]. Therefore, Blum and Mitchell [5]
among which the categorgourse home pages regarded as trained a page-based classifier and a hyperlink-based classifier
the target. That is, course home pages (22%) are the posifiveco-training. In addition, they defined a combined classifier
examples and all other pages are negative examples. to merge the outputs of these two classifiers.

Here the experimental configuration is the same as thatHere the algorithm described in [5] is re-implemented and
used in [5]. In each experiment, 263(25%) of the 1,051 wehe parameters are set to the same values as in [5]. J4.8
pages are first selected at random as test examples. #beision trees, BP neural networks, and Naive Bayes classifiers
remaining data is used to generate a labeled training examgte used as alternatives to train the classifiers. The average
set L containing 3 positive and 9 negative examples drawgredictive error rates and corresponding standard deviations
at random. The remaining examples that are not drawn fare shown in Table VII, whermitial denotes the performance
L are used as the unlabeled pdél Five runs with different achieved before semi-supervised learning, i.e. the performance
training/test splits are performed, and the average result aststained using only the labeled training exampliisal de-
standard deviation are recorded. notes the performance achieved after semi-supervised learning,

Note that this data set is with two sufficient and redundaimhprov denotes the corresponding improvements, ldggdoth-
views since a web page can be classified based on the wagdsdenotes the performance of the hypotheses, i.e. the learned
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Fig. 1. Error rates averaged across all the data sets when J4.8 decision trees are used
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Fig. 2. Error rates averaged across all the data sets when BP neural networks are used

models. Note that after stemming and feature selection, 66 ahit data set. Note that since these algorithms do not require
5 features are used to train the page-based and hyperlink-badiffdrent views, the page-based and hyperlink-based features
classifiers, respectively. Table VIl also presents the resudiee put together in training the individual classifiers. In the

obtained by tri-training, self-trainingl, and self-training2 omable the best final hypothesis and the biggest improvement
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Fig. 4. Results on data sets where tri-training achieves median improvement (J4.8 decision trees are used)

with each base classifier have been boldfaced. are used, the improvement of the final hypothesis generated

Table VII shows that on the web page classification task tH—y tri-training is about 13.4%, while Whgn J4.8 decision trees
training can effectively utilize unlabeled data to enhance th d BP neural networks are used, the improvements are more

L 0 0 .
learning performance. Actually, when Naive Bayes classifiefgPressive. 1.€. 39.0% and 25.3%, respectively.
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Fig. 6. Results on data sets where tri-training achieves median improvement (Naive Bayes classifiers are used)

Table VII also shows that the improvement of tri-trainingised, the improvement of tri-training is smaller than that of
is bigger than that of the co-training algorithm and the sel&o-training and the self-training algorithms. In particular, when
training algorithms when J4.8 decision trees and BP neutk.8 decision trees and BP neural networks are used, the
networks are used. While when Naive Bayes classifiers angprovements brought by tri-training are much bigger than that
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TABLE VI
THE PERFORMANCES OF TRITRAINING, CO-TRAINING, SELFTRAINING1, AND SELF-TRAINING2 ON THE WEB PAGE CLASSIFICATION PROBLEM

Componentearner| J4.8decision tree | BP neural network | Naive Bayes classifier
or hypothesis | initial final improv| initial final improv| initial final improv
tri-training

143+ .031 .1064+ .019 25.9%] .106+ .022 .100+ .030 5.7%

Component 2 211+ .089 .141+ .023 33.2%
Component 3 215+ .075 .141+ .023 34.4%

134+ .049 .107+ .021 20.1%
.186+ .033 .1154+ .031 38.2%

102+ .024 .095+ .030 6.9%

Componentl 246+ .052 .141+ .023 42.7%
142+ .019 .100+ .028 29.6%

Hypothesis | 231+ .068 .141+ .023 39.0% | .146+ .033 .109+ .022 25.3% | .112+ .027 .097 £ .028 13.4%
co-training
130+ .052 .154+ .030 -18.5%| .113+ .026 .100+ .019 11.5%

Page-based ‘ 152+ .032 .172+4 .027 -13.2%)

Hyperlink-based | .159+ .014 .137+ .035 13.8%| .160+ .035 .116+4+ .010 27.5%| .157 4+ .040 .144+ .022 8.3%
Hypothesis | 151+ .030 .1444+ .012 4.6% | .126+ .028 .116+ .031 7.9% | .115+ .019 .078+ .017 32.2%
self-training1

Componentl 246+ .052 212+ .101 13.8%| .143+ .031 .110+ .029 23.1%| .106+ .022 .090+ .016 15.1%
Component 2 2114+ .089 .165+ .009 21.8%| .134+ .049 .103+ .019 23.1%| .102+ .024 .088+ .021 13.7%
Component 3 2154+ .075 .176+ .027 18.1%| .186+ .033 .113+ .013 39.2%| .142+ .019 .103+ .028 27.5%
Hypothesis | 231+ .068 .160+ .013 30.7%]| .146+ .033 .110+ .021 24.7%| .112+ .027 .094+ .022 16.1%
self-training2

Componentl 246+ .052 .165+ .009 32.9%| .143+ .031 .122+ .029 25.9%] .106+ .022 .099+ .020 6.6%
Component 2 211+ .089 .165+ .009 21.8%| .134+ .049 .122+ .029 20.1%| .102+ .024 .099+ .020 2.9%
Component 3 2154+ .075 .1654+ .009 23.3%| .186+ .033 .122+ .029 38.2%| .142+ .019 .099+ .020 30.3%
Hypothesis | 165+ .009 .165+ .009 0.0% | .1144+ .025 .122+ .029 -7.0%|.116+ .019 .099+ .020 14.7%

broughtby co-training; while when Naive Bayes classifiers aralgorithm. Experiments on UCI data sets and application to
used, the improvement of tri-training is much smaller than thateb page classification indicate that although the algorithm is
of co-training. However, Table VII shows that the componesimple, it could exploit unlabeled examples effectively.

Naive Bayes classifiers refined by tri-training are better thanNote that the performance of semi-supervised learning algo-
these refined by co-training. This may imply that althoughithms are usually not stable because the unlabeled examples
the majority voting scheme used by tri-training is effective imay often be wrongly labeled during the learning process [4]
combining the component J4.8 decision trees and BP neui0]. A promising solution to this problem may be usidata
networks, it may be far less effective than the combinatiaditing mechanisms, such as the one described in [18], to
scheme used by the co-training algorithm in combining theelp identify the wrongly labeled examples. Incorporating data
component Naive Bayes classifiers. editing mechanisms into tri-training and other semi-supervised

Actually, through observing Table VIl it can be found thatearning algorithms is an interesting issue to be investigated
when J4.8 decision trees and BP neural networks are used,ith&ture work.
page-based classifiers degenerate in the co-training proces§nsemble learning techniques [12], in particular, Boosting,
but the final hypotheses of co-training are still not bad. Thisave already been introduced into semi-supervised learning [2]
suggests that the combination scheme used by the co-trainidp It is evident that the working style of tri-training exhibits a
algorithm may play an important role. Moreover, the corew way to exploit ensemble techniques in this area. However,
training algorithm evidently utilizes the advantages offered b its current form, such an exploitation is very limited because
the two sufficient and redundant views, because even when dinere are only three classifiers. Although previous research
component classifier has degenerated, the improvement of fles shown that using three classifiers to make an ensemble
other component classifier can still enable the improving of tleeuld already improve the generalization ability [22], better
final hypothesis. This confirms the claim raised by Blum angerformance can be anticipated with more classifiers, which
Mitchell [5], that is, when there exist sufficient and redundarg another interesting future issue.
views, appropriately utilizing them will benefit the learning Besides semi-supervised learning, unlabeled examples can
performance. be exploited by active learning [7], where the labels of some
selected unlabeled examples are asked from the user. The
employment of ensemble techniques in tri-training enables the
introduction of a classic active learning method, iogery-

In this paper, the tri-training algorithm is proposed. Throughy-committee[25]. Roughly, the most disagreed unlabeled
employing three classifiers, tri-training is facilitated with gooéxample by the classifiers can be selected to query. Designing
efficiency and generalization ability because it could gracefulbffective algorithm to combine tri-training with query-by-
choose examples to label and use multiple classifiers to cooommittee is an issue well-worth studying.
pose the final hypothesis. Moreover, its applicability is wide Moreover, in the present implementation of tri-training, the
because it neither requires sufficient and redundant views mtassifiers are re-trained in each round. If the base learners are
does it put any constraint on the employed supervised learningremental algorithms, it might be feasible for the classifiers

V. CONCLUSION



to learn only the newly labeled examples, which could helpo]
improve the efficiency. This is also an interesting issue to be
explored in the future. 21]
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