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Tri-Training: Exploiting Unlabeled Data
Using Three Classifiers

Zhi-Hua Zhou,Member, IEEEand Ming Li

Abstract— In many practical data mining applications such as
web page classification, unlabeled training examples are readily
available but labeled ones are fairly expensive to obtain. There-
fore, semi-supervised learning algorithms such asco-training
have attracted much attention. In this paper, a new co-training
style semi-supervised learning algorithm namedtri-training is
proposed. This algorithm generates three classifiers from the
original labeled example set. These classifiers are then refined
using unlabeled examples in the tri-training process. In detail,
in each round of tri-training, an unlabeled example is labeled
for a classifier if the other two classifiers agree on the labeling,
under certain conditions. Since tri-training neither requires the
instance space be described withsufficient and redundant viewsnor
does it put any constraints on the supervised learning algorithm,
its applicability is broader than that of previous co-training
style algorithms. Experiments on UCI data sets and application
to the web page classification task indicate that tri-training
can effectively exploit unlabeled data to enhance the learning
performance.

Index Terms— Data Mining, Machine Learning, Learning from
Unlabeled Data, Semi-supervised Learning, Co-training, Tri-
training, Web Page Classification

I. I NTRODUCTION

I N many practical data mining applications such as web
page classification, unlabeled training examples are readily

available but labeled ones are fairly expensive to obtain
because they require human effort. Therefore, semi-supervised
learning that exploits unlabeled examples in addition to labeled
ones has become a hot topic.

Many current semi-supervised learning algorithms use a
generative model for the classifier and employ Expectation-
Maximization (EM) [11] to model the label estimation or pa-
rameter estimation process. For example, mixture of Gaussians
[26], mixture of experts [17], and naive Bayes [20] have been
respectively used as the generative model, while EM is used
to combine labeled and unlabeled data for classification. There
are also many other algorithms such as using transductive
inference for support vector machines to optimize performance
on a specific test set [16], constructing a graph on the examples
such that the minimum cut on the graph yields an optimal
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labeling of the unlabeled examples according to certain opti-
mization functions [4], etc.

A prominent achievement in this area is theco-training
paradigm proposed by Blum and Mitchell [5], which trains
two classifiers separately on two different views, i.e. two
independent sets of attributes, and uses the predictions of each
classifier on unlabeled examples to augment the training set
of the other. Such an idea of utilizing the natural redundancy
in the attributes has been employed in some other works. For
example, Yarowsky [28] performed word sense disambiguation
by constructing a sense classifier using the local context of the
word and a classifier based on the senses of other occurrences
of that word in the same document; Riloff and Jones [23]
classified a noun phrase for geographic locations by consid-
ering both the noun phrase itself and the linguistic context
in which the noun phrase appears; Collins and Singer [8]
performed named entity classification using both the spelling
of the entity itself and the context in which the entity occurs. It
is noteworthy that the co-training paradigm has already been
used in many domains such as statistical parsing and noun
phrase identification [15] [21] [24] [27].

The standard co-training algorithm [5] requires twosuffi-
cient and redundant views, that is, the attributes be naturally
partitioned into two sets, each of which is sufficient for
learning and conditionally independent to the other given
the class label. Dasgupta et al. [10] have shown that when
the requirement is met, the co-trained classifiers could make
fewer generalization errors by maximizing their agreement
over the unlabeled data. Unfortunately, such a requirement
can hardly be met in most scenarios. Goldman and Zhou
[14] proposed an algorithm which does not exploit attribute
partition. However, it requires using two different supervised
learning algorithms that partition the instance space into a set
of equivalence classes, and employing time-consuming cross
validation technique to determine how to label the unlabeled
examples and how to produce the final hypothesis.

In this paper, a new co-training style algorithm namedtri-
training is proposed. Tri-training does not require sufficient
and redundant views, nor does it require the use of different
supervised learning algorithms whose hypothesis partitions the
instance space into a set of equivalence classes. Therefore it
can be easily applied to common data mining scenarios. In
contrast to previous algorithms that utilize two classifiers, tri-
training uses three classifiers. This setting tackles the problem
of determining how to label the unlabeled examples and how
to produce the final hypothesis, which contributes much to
the efficiency of the algorithm. Moreover, better generaliza-
tion ability can be achieved through combining these three
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classifiers.Experiments on UCI data sets [3] and application
to the web page classification task show that tri-training
can effectively exploit unlabeled data, and the generalization
ability of its final hypothesis is quite good, sometimes even
outperforms that of the ensemble of three classifiers being
provided with labels of all the unlabeled examples.

The rest of this paper is organized as follows. Section
2 presents the tri-training algorithm. Section 3 reports on
the experiments on UCI data sets. Section 4 describes the
application to the task of web page classification. Finally,
Section 5 concludes and raises several issues for future work.

II. T RI-TRAINING

Let L denote the labeled example set with size|L| andU
denote the unlabeled example set with size|U |. In previous
co-training style algorithms, two classifiers are initially trained
from L, each of which is then re-trained with the help of
unlabeled examples that are labeled by the latest version of
the other classifier. In order to determine which example in
U should be labeled and which classifier should be biased in
prediction, the confidence of the labeling of each classifier
must be explicitly measured. Sometimes such a measuring
process is quite time-consuming [14].

Assume that besides these two classifiers, i.e.h1 andh2, a
classifierh3 is initially trained fromL. Then, for any classifier,
an unlabeled example can be labeled for it as long as the other
two classifiers agree on the labeling of this example, while the
confidence of the labeling of the classifiers are not needed to
be explicitly measured. For instance, ifh2 andh3 agree on the
labeling of an examplex in U , thenx can be labeled forh1. It
is obvious that in such a scheme if the prediction ofh2 andh3

on x is correct, thenh1 will receive a valid new example for
further training; otherwiseh1 will get an example with noisy
label. However, even in the worse case, the increase in the
classification noise rate can be compensated if the amount of
newly labeled examples is sufficient, under certain conditions,
as shown below.

Inspired by Goldman and Zhou [14], the finding of Angluin
and Laird [1] is used in the following analysis. That is, if a
sequenceσ of m samples is drawn, where the sample sizem
satisfies Eq. 1:

m ≥ 2
ε2 (1− 2η)2

ln (
2N

δ
) (1)

whereε is the hypothesis worst-case classification error rate,
η (< 0.5) is an upper bound on the classification noise rate,
N is the number of hypothesis, andδ is the confidence, then a
hypothesisHi that minimizes disagreement withσ will have
the PAC property:

Pr [d(Hi,H
∗) ≥ ε] ≤ δ (2)

whered(, ) is sum over the probability of elements from the
symmetric difference between the two hypothesis setsHi and
H∗ (the ground-truth). Letc = 2µ ln ( 2N

δ ) where µ makes
Eq. 1 hold equality, then Eq. 1 becomes Eq. 3:

m =
c

ε2 (1− 2η)2
(3)

To simplify the computation, it is helpful to compute the
quotient of the constantc divided by the square of the error:

u =
c

ε2
= m (1− 2η)2 (4)

In each round of tri-training, the classifiersh2 andh3 choose
some examples inU to label forh1. Since the classifiers are
refined in the tri-training process, the amount as well as the
concrete unlabeled examples chosen to label may be different
in different rounds. LetLt andLt−1 denote the set of examples
that are labeled forh1 in thet-th round and the(t−1)-th round,
respectively. Then the training set forh1 in the t-th round
and (t − 1)-th round are respectivelyL ∪ Lt and L ∪ Lt−1,
whose sample sizemt andmt−1 are |L∪Lt| and |L∪Lt−1|,
respectively. Note that the unlabeled examples labeled in the
(t − 1)-th round, i.e.Lt−1, won’t be put into the original
labeled example set, i.e.L. Instead, in thet-th round all the
examples inLt−1 will be regarded as unlabeled and put into
U again.

Let ηL denote the classification noise rate ofL, that is, the
number of examples inL that are mislabeled isηL|L|. Let
ět
1 denote the upper bound of the classification error rate of

h2&h3 in the t-th round, i.e. the error rate of the hypothesis
derived from the combination ofh2 and h3. Assuming there
arez number of examples on which the classification made by
h2 agrees with that made byh3, and among these examples
both h2 and h3 make correct classification onz′ examples,
then ět

1 can be estimated as(z−z′)
z . Thus, the number of

examples inLt that are mislabeled išet
1|Lt|. Therefore the

classification noise rate in thet-th round is:

ηt =
ηL |L|+ ět

1 |Lt|
|L ∪ Lt| (5)

Then,according to Eq. 4,ut can be computed as:

ut = mt
(
1− 2ηt

)2 =
∣∣L ∪ Lt

∣∣
(

1− 2
ηL |L|+ ět

1 |Lt|
|L ∪ Lt|

)2

(6)
Similarly, ut−1 can be computed as:

ut−1 = mt−1
(
1− 2ηt−1

)2

=
∣∣L ∪ Lt−1

∣∣
(

1− 2
ηL |L|+ ět−1

1

∣∣Lt−1
∣∣

|L ∪ Lt−1|

)2

(7)

As shown in Eq. 4, sinceu is in proportion to1/ε2, it can
be derived that ifut > ut−1 then εt < εt−1, which implies
that h1 can be improved through utilizingLt in its training.
This condition can be expressed as Eq. 8 by comparing Eqs. 6
and 7:

∣∣L ∪ Lt
∣∣
(

1− 2
ηL |L|+ ět

1 |Lt|
|L ∪ Lt|

)2

>

∣∣L ∪ Lt−1
∣∣
(

1− 2
ηL |L|+ ět−1

1

∣∣Lt−1
∣∣

|L ∪ Lt−1|

)2

(8)

Consideringthat ηL can be very small and assuming0 ≤
ět
1, ě

t−1
1 < 0.5, then the first term on the left hand of Eq. 8 is
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bigger than its correspondence on the right hand if|Lt−1| <
|Lt|, while the second term on the left hand is bigger than
its correspondence on the right hand ifět

1|Lt| < ět−1
1 |Lt−1|.

These restrictions can be summarized into the condition shown
in Eq. 9, which is used in tri-training to determine when an
unlabeled example could be labeled for a classifier.

0 <
ět
1

ět−1
1

<
|Lt−1|
|Lt| < 1 (9)

Note that whenět
1 < ět−1

1 and |Lt−1| < |Lt|, ět
1|Lt| may

not be less thaňet−1
1 |Lt−1| due to the fact that|Lt| may be

far bigger than|Lt−1|. When this happens, in some casesLt

could be randomly subsampled such thatět
1|Lt| < ět−1

1 |Lt−1|.
Given ět

1, ět−1
1 , and|Lt−1|, let integers denote the size ofLt

after subsampling, then if Eq. 10 holds,ět
1|Lt| < ět−1

1 |Lt−1|
is obviously satisfied.

s =
⌈

ět−1
1 |Lt−1|

ět
1

− 1
⌉

(10)

whereLt−1 shouldsatisfy Eq. 11 such that the size ofLt after
subsampling, i.e.s, is still bigger than|Lt−1|.

|Lt−1| > ět
1

ět−1
1 − ět

1

(11)

The pseudo-code of tri-training is presented in Table I.
The functionMeasureError(hj&hk) attempts to estimate
the classification error rate of the hypothesis derived from the
combination ofhj and hk. Since it is difficult to estimate
the classification error on the unlabeled examples, here only
the original labeled examples are used, heuristically based on
the assumption that the unlabeled examples hold the same
distribution as that held by the labeled ones. In detail, the
classification error of the hypothesis is approximated through
dividing the number of labeled examples on which bothhj

andhk make incorrect classification by the number of labeled
examples on which the classification made byhj is the same as
that made byhk. The functionSubsample(Lt, s) randomly
removes|Lt| − s number of examples fromLt where s is
computed according to Eq. 10.

It is noteworthy that the initial classifiers in tri-training
should be diverse because if all the classifiers are identical,
then for any of these classifiers, the unlabeled examples
labeled by the other two classifiers will be the same as
these labeled by the classifier for itself. Thus, tri-training
degenerates toself-training [19] with a single classifier. In
the standard co-training algorithm, the use of sufficient and
redundant views enables the classifiers be different. In fact,
previous research has shown that even when there is no natural
attribute partitions, if there are sufficient redundancy among
the attributes then a fairly reasonable attribute partition will en-
able co-training exhibit advantages [19]. While in the extended
co-training algorithm which does not require sufficient and
redundant views, the diversity among the classifiers is achieved
through using different supervised learning algorithms [14].
Since the tri-training algorithm does not assume sufficient
and redundant views and different supervised learning algo-
rithms, the diversity of the classifiers have to be sought from

TABLE I

PSEUDO-CODE DESCRIBING THE TRI-TRAINING ALGORITHM

tri-training(L, U , Learn)
Input: L: Original labeled example set

U : Unlabeled example set
Learn: Learning algorithm

for i ∈ {1..3} do
Si ← BootstrapSample(L)
hi ← Learn(Si)

e
′
i ← .5; l

′
i ← 0

end of for
repeat until none ofhi (i ∈ {1..3}) changes

for i ∈ {1..3} do
Li ← ∅; updatei ← FALSE
ei ← MeasureError(hj&hk) (j, k 6= i)

if (ei < e
′
i) % otherwise Eq. 9 is violated

then for everyx ∈ U do
if hj (x) = hk (x) (j, k 6= i)
then Li ← Li ∪ {(x, hj (x))}

end of for
if (l

′
i = 0) % hi has not been updated before

then l
′
i ←

⌊
ei

e
′
i
−ei

+ 1

⌋
% refer Eq. 11

if (l
′
i < |Li|) % otherwise Eq. 9 is violated

then if (ei|Li| < e
′
il
′
i) % otherwise Eq. 9 is violated

then updatei ← TRUE

else if l
′
i > ei

e
′
i
−ei

% refer Eq. 11

then Li ← Subsample(Li,

⌈
e
′
il
′
i

ei
− 1

⌉
)

% refer Eq. 10
updatei ← TRUE

end of for
for i ∈ {1..3} do

if updatei = TRUE

then hi ← Learn (L ∪ Li); e
′
i ← ei; l

′
i ← |Li|

end of for
end of repeat

Output: h (x) ← arg max
y∈label

∑
i: hi(x)=y

1

otherchannels. Indeed, here the diversity is obtained through
manipulating the original labeled example set. In detail, the
initial classifiers are trained from data sets generated via
bootstrap sampling [13] from the original labeled example set.
These classifiers are then refined in the tri-training process,
and the final hypothesis is produced viamajority voting.
The generation of the initial classifiers looks like training
an ensemble from the labeled example set with a popular
ensemble learning [12] algorithm, that is, Bagging [6].

Tri-training can be regarded as a new extension to the co-
training algorithms [5] [14]. As mentioned before, Blum and
Mitchell’s algorithm requires the instance space be described
by two sufficient and redundant views, which can hardly be
satisfied in common data mining scenarios. Since tri-training
does not rely on different views, its applicability is broader.
Goldman and Zhou’s algorithm does not rely on different
views either. However, their algorithm requires two different
supervised learning algorithms that partition the instance space
into a set of equivalence classes. Moreover, their algorithm
frequently uses 10-fold cross validation on the original labeled
example set to determine how to label the unlabeled examples
and how to produce the final hypothesis. If the original labeled
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example set is rather small, cross validation will exhibit high
variance and is not helpful for model selection. Also, the
frequently used cross validation makes the learning process
time-consuming. Since tri-training does not put any constraint
on the supervised learning algorithm nor does it employ time-
consuming cross validation process, both its applicability and
efficiency are better.

III. E XPERIMENTS ONUCI DATA SETS

Twelve UCI data sets [3] are used in the experiments.
Information on these data sets are tabulated in Table II, where
pos/negpresents the percentage of the number of positive
examples against that of negative examples. Note that these
data sets do not hold sufficient and redundant views.

TABLE II

EXPERIMENTAL DATA SETS

dataset attribute size class pos/neg

australian 14 690 2 55.5%/44.5%
bupa 6 345 2 42.0%/58.0%
colic 22 368 2 63.0%/37.0%
diabetes 8 768 2 65.1%/34.9%
german 20 1,000 2 70.0%/30.0%
hypothyroid 25 3,163 2 4.8%/95.2%
ionosphere 34 351 2 35.9%/64.1%
kr-vs-kp 36 3,196 2 52.2%/47.8%
sick 29 3,772 2 6.1%/93.9%
tic-tac-toe 9 958 2 65.3%/34.7%
vote 16 435 2 61.4%/38.6%
wdbc 30 569 2 37.3%/62.7%

For each data set, about 25% data are kept as test examples
while the rest are used as the pool of training examples,
i.e. L ∪ U . In each pool,L and U are partitioned under
different unlabel ratesincluding 80%, 60%, 40%, and 20%.
For instance, assuming a pool contains 1,000 examples, when
the unlabel rate is 80%, 200 examples are put intoL with
their labels while the remaining 800 examples are put into
U without their labels. Here the pos/neg ratio ofL, U , and
the test set are similar to that of the original data set. Note
that on some big data sets, such ashypothyroid,kr-vs-kp, and
sick, the number of labeled examples might be sufficient to
train a good classifier even under 80% unlabel rate. However,
even in these cases, semi-supervised learning algorithms such
as tri-training can still be helpful, which will be shown in the
experiments reported in this section.

J4.8 decision trees [29], BP neural networks, and Naive
Bayes classifiers are used in the experiments. Under each
unlabel rate, three independent runs with different random
partition of L andU are performed. The averaged results are
summarized in Tables III to VI, which present the classification
error rates of the hypothesis at round 0, i.e. the combination of
the three initial classifiers trained fromL, the final hypothesis
generated by tri-training, and the improvement of the latter
over the former.

The performance of tri-training is compared with three
semi-supervised learning algorithms, i.e.co-training, self-
training1, and self-training2. The co-training algorithm is
almost the same as the standard one [5] except that since
the experimental data sets are without natural sufficient and

redundant views, the original attribute sets are randomly
partitioned into two subsets with similar sizes and then each
subset is regarded as a view. The self-training1 algorithm uses
the same three initial classifiers as these used by tri-training. In
each round, instead of using the other two classifiers to label
examples, each classifier labels unlabeled examples for itself
while in predicting new examples, all the three classifiers are
used. In other words, three single classifiers refined by self-
training [19] is combined via majority voting. In contrast to tri-
training, this algorithm does not utilize any co-training process
while the voting scheme is used to improve generalization.
The self-training2 algorithm also uses the same three initial
classifiers as these used by tri-training. In each round, the
unlabeled examples are labeled via majority voting the clas-
sifiers, and each classifier is refined by the same copy of the
newly labeled data. Finally, the newly labeled examples and
the original labeled examples are used together to train a single
classifier which is used in prediction. It is worth noting that
although self-training2 uses the same initial classifiers as these
used in tri-training and self-training1, its initial hypotheses
are different because it uses a single classifier instead of an
ensemble in prediction. For fair comparison, the termination
criteria used by these semi-supervised learning algorithms
are similar to that used by tri-training. In Tables III to VI,
the biggest improvements achieved by the semi-supervised
learning algorithms have been boldfaced. Note that some
values in the tables may look inconsistent due to truncation.
For example, the initial and final performance of tri-training
with J4.8 decision tree onhypothyroid appear identical in
Table V but the improvement is not zero.

Tables III to VI show that tri-training can effectively im-
prove the hypotheses with all the classifiers under all the
unlabel rates. In fact, if the improvements are averaged across
all the data sets, classifiers and unlabel rates, it can be found
that the average improvement of tri-training is about 11.9%.
It is impressive that with all the classifiers and under all the
unlabel rates, tri-training has achieved the biggest average
improvement. Moreover, Tables III to VI also show that if
the algorithms are compared through counting the number
of winning data sets, i.e. the number of data sets on which
an algorithm has achieved the biggest improvement among
the compared algorithms, tri-training is almost always the
winner. In detail, under 80% unlabel rate, when J4.8 decision
trees are used, tri-training has 11 wining data sets while the
other algorithms have at most one winning data set; when
Naive Bayes classifiers are used, tri-training and self-training1
have 7 winning data sets, respectively, while the remaining
algorithms do not have winning data sets. Under 60% unlabel
rate, when J4.8 decision trees and BP neural networks are
used, tri-training has 8 and 9 winning data sets, respectively,
while the other algorithms have at most 2 and 3 winning data
sets, respectively; when Naive Bayes classifiers are used, tri-
training has 10 winning data sets, while the other algorithms
have at most 5 winning data sets. Under 40% unlabel rate, tri-
training has 7, 6, and 9 winning data sets when J4.8 decision
trees, BP neural networks, and Naive Bayes classifiers are
used, respectively, while the other algorithms have at most 5,
4, and 6 winning data sets, respectively. Under 20% unlabel
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TABLE III

THE CLASSIFICATION ERROR RATES OF THE INITIAL AND FINAL HYPOTHESES AND THE CORRESPONDING IMPROVEMENTS OF TRI-TRAINING ,

CO-TRAINING , SELF-TRAINING1, AND SELF-TRAINING2, UNDER 80% UNLABEL RATE

J4.8decision tree
tri-training co-training self-training1 self-training2Dataset

initial final improv initial final improv initial final improv initial final improv

australian .222 .193 13.0% .263 .253 3.7% .222 .202 8.7% .198 .186 5.9%
bupa .399 .368 7.8% .448 .433 3.4% .399 .380 4.9% .394 .448 -13.7%
colic .181 .163 10.0% .206 .188 8.8% .181 .174 4.0% .188 .181 3.8%
diabetes .316 .288 8.8% .280 .266 5.0% .316 .300 4.9% .313 .299 4.4%
german .351 .324 7.6% .349 .337 3.4% .351 .337 3.8% .341 .341 0.0%
hypothyroid .012 .011 10.3% .018 .016 9.3% .012 .012 0.0% .008 .009 -10.0%
ionosphere .155 .121 22.0% .167 .144 13.6% .155 .144 7.3% .129 .137 -5.9%
kr-vs-kp .035 .025 29.8% .125 .123 1.7% .035 .022 36.9% .022 .023 -5.8%
sick .024 .021 11.9% .055 .051 7.1% .024 .023 4.5% .024 .028 -14.3%
tic-tac-toe .292 .258 11.4% .299 .295 1.4% .292 .269 7.6% .291 .281 3.3%
vote .076 .055 28.0% .083 .074 11.1% .076 .070 8.0% .052 .052 0.0%
wdbc .094 .075 20.0% .096 .082 14.6% .094 .092 2.5% .089 .094 -5.3%

ave. .180 .159 15.1% .199 .189 6.9% .180 .169 7.8% .171 .173 -3.1%

BP neural networks
tri-training co-training self-training1 self-training2Dataset

initial final improv initial final improv initial final improv initial final improv

australian .200 .181 9.6% .143 .135 5.4% .200 .189 5.8% .149 .151 -1.3%
bupa .337 .295 12.5% .399 .379 4.9% .337 .326 3.4% .348 .348 0.0%
colic .254 .232 8.6% .253 .239 5.7% .254 .261 -2.9% .283 .243 14.1%
diabetes .286 .257 10.3% .271 .262 3.2% .286 .262 8.5% .264 .278 -5.3%
german .301 .287 4.9% .283 .275 2.8% .301 .284 5.8% .315 .311 1.3%
hypothyroid .029 .021 25.0% .033 .030 10.0% .029 .024 16.2% .052 .036 30.3%
ionosphere .201 .178 11.3% .160 .141 11.9% .201 .178 11.3% .167 .175 -4.5%
kr-vs-kp .034 .027 22.2% .101 .098 2.9% .034 .025 27.2% .030 .030 -1.4%
sick .036 .034 4.0% .051 .046 9.2% .036 .034 4.0% .045 .045 -0.8%
tic-tac-toe .071 .036 49.0% .269 .256 4.7% .071 .026 62.7% .015 .015 0.0%
vote .061 .050 17.5% .076 .058 24.0% .061 .043 30.0% .043 .043 0.0%
wdbc .042 .033 22.2% .037 .028 25.0% .042 .038 11.1% .032 .030 7.1%

ave. .154 .136 16.4% .173 .162 9.1% .154 .141 15.3% .145 .142 3.3%

Naive Bayes
tri-training co-training self-training1 self-training2Dataset

initial final improv initial final improv initial final improv initial final improv

australian .243 .224 7.9% .238 .234 1.6% .243 .224 7.9% .236 .236 0.0%
bupa .481 .442 8.1% .459 .448 2.5% .481 .438 8.9% .490 .475 3.1%
colic .217 .207 5.0% .207 .203 1.8% .217 .203 6.7% .210 .221 -5.2%
diabetes .267 .257 3.9% .250 .245 2.1% .267 .264 1.3% .246 .241 2.1%
german .285 .276 3.3% .257 .253 1.6% .285 .272 4.7% .262 .267 -2.0%
hypothyroid .024 .021 8.9% .025 .024 3.4% .024 .021 8.9% .022 .022 0.0%
ionosphere .155 .129 17.1% .183 .175 4.2% .155 .136 12.2% .178 .186 -4.3%
kr-vs-kp .142 .128 10.0% .144 .143 0.6% .142 .128 9.4% .139 .138 0.9%
sick .089 .084 5.6% .043 .042 1.7% .089 .083 6.3% .079 .078 0.9%
tic-tac-toe .343 .324 5.7% .286 .280 2.0% .343 .328 4.5% .293 .294 -0.5%
vote .113 .104 8.1% .098 .098 0.0% .113 .110 2.7% .098 .101 -3.1%
wdbc .054 .047 13.0% .071 .066 6.7% .054 .045 17.4% .068 .073 -6.9%

ave. .201 .187 8.0% .188 .184 2.4% .201 .188 7.6% .193 .194 -1.3%

rate, when J4.8 decision trees and BP neural networks are
used, tri-training has 8 and 9 winning data sets, respectively,
while the remaining algorithms have at most 3 and 2 winning
data sets, respectively; when Naive Bayes classifiers are used,
tri-training has 7 winning data sets while the other algorithms
have at most 6 winning data sets. Only when BP neural
networks are used under 80% unlabel rate, tri-training has
fewer winning data sets than self-training1.

The error rates of the compared algorithms are depicted in
Figs. 1 to 3. Besides the semi-supervised learning algorithms,
on each data set three single classifiers are trained from only
the labeled training examples, i.e.L. The average error rate
of the single classifiers is shown as a horizontal line in each
figure, which is denoted bysingle. Moreover, three ensembles
each comprising three classifiers are trained by Bagging from
the pool of training examples, i.e.(L ∪ U) while labels of

all the examples are provided. The average error rate of the
ensembles is also shown as a horizontal line in each figure,
which is denoted byens-all. Note that in Figs. 1 to 3 the
error rates have been averaged across all the experimental data
sets, and since the semi-supervised learning algorithms may
terminate in different rounds, the error rates at termination are
used as the error rates of the rounds after termination.

Figs. 1 to 3 reveal that on all the subfigures, the final
hypotheses generated by tri-training are better than the initial
hypotheses, which confirms that tri-training can effectively ex-
ploit unlabeled examples to enhance the learning performance.
When J4.8 decision trees are used, the hypotheses generated
by tri-training are apparently better than these generated by
the other semi-supervised learning algorithms in the same
rounds, except that under 40% unlabel rate the hypotheses
generated by tri-training and self-training1 are comparable.
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TABLE IV

THE CLASSIFICATION ERROR RATES OF THE INITIAL AND FINAL HYPOTHESES AND THE CORRESPONDING IMPROVEMENTS OF TRI-TRAINING ,

CO-TRAINING , SELF-TRAINING1, AND SELF-TRAINING2, UNDER 60% UNLABEL RATE

J4.8decision tree
tri-training co-training self-training1 self-training2Dataset

initial final improv initial final improv initial final improv initial final improv

australian .171 .162 5.6% .223 .213 4.3% .171 .166 3.4% .168 .166 1.1%
bupa .376 .341 9.3% .402 .398 1.0% .376 .376 0.0% .371 .390 -5.2%
colic .185 .163 11.8% .210 .199 5.2% .185 .167 9.8% .210 .199 5.2%
diabetes .286 .252 12.1% .286 .267 6.7% .286 .288 -0.6% .267 .264 1.3%
german .337 .316 6.3% .318 .313 1.7% .337 .333 1.2% .306 .325 -6.1%
hypothyroid .014 .011 21.2% .034 .033 3.7% .014 .010 27.3% .014 .012 14.7%
ionosphere .102 .087 14.8% .134 .103 22.9% .102 .091 11.1% .121 .129 -6.3%
kr-vs-kp .021 .018 17.6% .078 .077 1.6% .021 .020 7.8% .013 .014 -6.5%
sick .020 .016 21.1% .045 .042 6.3% .020 .018 10.5% .021 .021 0.0%
tic-tac-toe .176 .163 7.9% .255 .252 1.1% .176 .188 -6.3% .225 .221 1.9%
vote .058 .049 15.8% .073 .055 25.0% .058 .049 15.8% .049 .040 18.8%
wdbc .089 .077 13.2% .089 .075 15.8% .089 .073 18.4% .094 .089 5.0%

ave. .153 .138 13.1% .179 .169 7.9% .153 .148 8.2% .155 .156 2.0%

BP neural networks
tri-training co-training self-training1 self-training2Dataset

initial final improv initial final improv initial final improv initial final improv

australian .152 .135 11.4% .155 .143 7.5% .152 .152 0.0% .155 .151 2.5%
bupa .353 .302 14.4% .386 .363 6.0% .353 .306 13.3% .340 .344 -1.1%
colic .203 .192 5.4% .242 .217 10.4% .203 .192 5.4% .225 .232 -3.2%
diabetes .245 .233 5.0% .250 .243 2.8% .245 .238 2.8% .243 .257 -5.7%
german .296 .281 5.0% .308 .288 6.5% .296 .292 1.4% .282 .297 -5.2%
hypothyroid .027 .024 10.9% .025 .024 5.1% .027 .027 1.6% .024 .027 -12.5%
ionosphere .182 .159 12.5% .148 .129 12.8% .182 .174 4.2% .155 .163 -4.9%
kr-vs-kp .020 .015 25.0% .111 .108 3.0% .020 .016 18.8% .015 .020 -37.1%
sick .040 .033 18.6% .044 .040 8.1% .040 .033 17.7% .034 .043 -28.1%
tic-tac-toe .025 .021 16.7% .258 .244 5.4% .025 .025 0.0% .015 .014 9.1%
vote .046 .037 20.0% .055 .046 16.7% .046 .037 20.0% .055 .070 -27.8%
wdbc .040 .031 23.5% .052 .045 13.6% .040 .035 11.8% .052 .052 0.0%

ave. .136 .122 14.0% .170 .158 8.2% .136 .127 8.1% .133 .139 -9.5%

Naive Bayes
tri-training co-training self-training1 self-training2Dataset

initial final improv initial final improv initial final improv initial final improv

australian .262 .256 2.2% .197 .193 2.0% .262 .256 2.2% .183 .187 -2.1%
bupa .453 .434 4.3% .444 .425 4.3% .453 .430 5.1% .460 .468 -1.7%
colic .207 .196 5.3% .206 .199 3.5% .207 .196 5.3% .221 .210 4.9%
diabetes .257 .241 6.1% .277 .274 1.2% .257 .243 5.4% .283 .288 -1.8%
german .279 .269 3.3% .253 .249 1.6% .279 .276 1.0% .257 .257 0.0%
hypothyroid .027 .025 6.3% .022 .021 3.8% .027 .025 6.3% .020 .019 4.3%
ionosphere .235 .201 14.5% .220 .220 0.0% .235 .205 12.9% .225 .217 3.4%
kr-vs-kp .129 .121 6.5% .147 .146 0.6% .129 .122 5.8% .143 .143 0.3%
sick .086 .084 2.5% .043 .043 0.8% .086 .085 1.2% .086 .087 -1.2%
tic-tac-toe .311 .299 4.0% .270 .267 1.0% .311 .303 2.7% .287 .287 0.0%
vote .110 .104 5.6% .123 .120 2.5% .110 .104 5.6% .119 .116 2.6%
wdbc .040 .038 5.9% .073 .068 6.5% .040 .040 0.0% .072 .070 3.2%

ave. .200 .189 5.5% .190 .185 2.3% .200 .190 4.4% .196 .196 1.0%

WhenBP neural networks are used, the hypotheses generated
by tri-training are apparently better than these generated by
co-training under all the unlabel rates, apparently better than
these generated by self-training1 under 20% unlabel rate, and
apparently better than these generated by self-training2 on
all but 80% unlabel rate. When Naive Bayes classifiers are
used, the hypotheses generated by tri-training are comparable
to these generated by co-training and self-training1, while
apparently better than these generated by self-training2 under
all the unlabel rates.

For further studying the performance of the compared semi-
supervised learning algorithms, the number of test examples
misclassified by the algorithms are depicted in Figs. 4 to 6,
which belongs to the one of the three runs of each algorithm
that has the median performance. Note that here only a small
number of figures are depicted since it may be too tedious

to present all the figures (12 data sets× 3 classifiers× 4
unlabel rates = 144 figures). The figures presented are chosen
according to the following two criteria. First, for each classifier
and under each unlabel rate, the data sets where tri-training
achieves median improvements can be chosen. For instance,
according to Table VI, when BP neural networks are used
under 20% unlabel rate, tri-training achieves its 6th and 7th
biggest improvements onsick and wdbc, respectively, among
all the twelve data sets. Thereforesick and wdbc can be
chosen. Second, attempts are made to choose as more diverse
data sets as possible. For instance, sincesickhas already been
chosen when J4.8 decision trees are used under 80% unlabel
rate, wdbc instead ofsick is chosen for BP neural networks
under 20% unlabel rate.

Figs. 4 to 6 reveal that on all the subfigures, the final
hypotheses generated by tri-training are better than the initial
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TABLE V

THE CLASSIFICATION ERROR RATES OF THE INITIAL AND FINAL HYPOTHESES AND THE CORRESPONDING IMPROVEMENTS OF TRI-TRAINING ,

CO-TRAINING , SELF-TRAINING1, AND SELF-TRAINING2, UNDER 40% UNLABEL RATE

J4.8decision tree
tri-training co-training self-training1 self-training2Dataset

initial final improv initial final improv initial final improv initial final improv

australian .162 .148 8.3% .190 .180 5.1% .162 .154 4.8% .164 .160 2.4%
bupa .391 .353 9.9% .360 .348 3.2% .391 .380 3.0% .340 .375 -10.2%
colic .196 .185 5.6% .203 .196 3.6% .196 .188 3.7% .195 .188 3.7%
diabetes .293 .273 7.1% .279 .267 4.3% .293 .267 8.9% .278 .269 3.1%
german .316 .293 7.2% .318 .313 1.7% .316 .301 4.6% .290 .297 -2.3%
hypothyroid .011 .011 7.4% .015 .014 5.7% .011 .011 7.4% .010 .010 0.0%
ionosphere .102 .087 14.8% .126 .118 6.1% .102 .080 22.2% .102 .125 -22.2%
kr-vs-kp .013 .010 20.0% .073 .073 0.6% .013 .008 33.3% .016 .016 0.0%
sick .018 .012 30.0% .043 .041 4.2% .018 .017 2.0% .017 .016 4.3%
tic-tac-toe .150 .133 11.1% .222 .219 1.3% .150 .143 4.6% .212 .217 -2.6%
vote .061 .049 20.0% .083 .077 7.4% .061 .040 35.0% .067 .067 0.0%
wdbc .080 .066 17.6% .063 .047 25.9% .080 .073 8.8% .080 .080 0.0%

ave. .149 .135 13.3% .165 .158 5.8% .149 .139 11.5% .148 .152 -2.0%

BP neural networks
tri-training co-training self-training1 self-training2Dataset

initial final improv initial final improv initial final improv initial final improv

australian .148 .137 7.8% .145 .135 6.7% .148 .150 -1.3% .134 .155 -15.9%
bupa .318 .283 11.0% .422 .406 3.7% .318 .295 7.4% .348 .383 -10.0%
colic .192 .178 7.5% .246 .239 2.9% .192 .170 11.3% .240 .225 6.1%
diabetes .248 .238 4.2% .288 .283 1.8% .248 .245 1.4% .249 .247 0.7%
german .303 .285 5.7% .287 .259 9.8% .303 .301 0.4% .307 .295 3.9%
hypothyroid .023 .019 16.4% .031 .029 6.8% .023 .021 7.3% .027 .023 14.1%
ionosphere .140 .117 16.2% .084 .065 22.7% .140 .125 10.8% .091 .095 -4.2%
kr-vs-kp .016 .013 21.1% .077 .069 10.8% .016 .014 13.2% .012 .011 6.9%
sick .030 .028 5.9% .043 .039 8.4% .030 .031 -4.7% .033 .054 -62.8%
tic-tac-toe .022 .018 18.7% .241 .224 6.9% .022 .022 0.0% .026 .022 15.8%
vote .055 .052 5.6% .067 .052 22.7% .055 .052 5.6% .049 .052 -6.2%
wdbc .040 .031 23.5% .033 .028 14.3% .040 .028 29.4% .031 .033 -7.7%

ave. .128 .117 12.0% .164 .152 9.8% .128 .121 6.7% .129 .133 -4.9%

Naive Bayes
tri-training co-training self-training1 self-training2Dataset

initial final improv initial final improv initial final improv initial final improv

australian .254 .254 0.0% .246 .242 1.6% .254 .249 2.3% .236 .236 0.0%
bupa .450 .419 6.9% .406 .375 7.6% .450 .411 8.6% .441 .464 -5.3%
colic .210 .196 6.9% .203 .203 0.0% .210 .203 3.4% .243 .243 0.0%
diabetes .266 .247 7.2% .243 .238 2.1% .266 .247 7.2% .248 .243 2.1%
german .240 .231 3.9% .277 .276 0.5% .240 .233 2.8% .269 .269 0.0%
hypothyroid .021 .019 11.8% .025 .024 3.4% .021 .019 11.8% .020 .021 -4.1%
ionosphere .174 .163 6.5% .194 .190 2.0% .174 .167 4.3% .194 .194 0.0%
kr-vs-kp .146 .139 5.1% .137 .136 0.6% .146 .139 4.9% .135 .135 -0.3%
sick .082 .079 3.9% .048 .048 0.0% .082 .079 3.4% .076 .076 0.0%
tic-tac-toe .275 .271 1.5% .277 .276 0.5% .275 .269 2.0% .309 .309 0.0%
vote .089 .080 10.3% .098 .098 0.0% .089 .080 10.3% .098 .098 0.0%
wdbc .068 .061 10.3% .061 .061 0.0% .068 .063 6.9% .061 .061 0.0%

ave. .190 .180 6.2% .185 .181 1.5% .190 .180 5.7% .194 .196 -0.6%

hypotheses. Comparing with co-training, the final hypotheses
of tri-training are almost always better except on Fig. 5 (a)
where the final hypothesis of co-training is slightly better.
Comparing with self-training1, the final hypotheses of tri-
training are better on most subfigures except on Fig. 4 (a),
Fig. 6 (b), (c), and (d) where the final hypotheses of tri-
training and self-training1 are comparable. Comparing with
self-training2, the final hypotheses of tri-training are better on
most subfigures except on Fig. 4 (d) where the final hypotheses
of tri-training and self-training2 are comparable, and on Fig. 5
(a) and Fig. 6 (d) where the final hypotheses of self-training2
are better.

Figs. 4 to 6 also show that sometimes the performance of
ens-all is worse than that of single, especially when Naive
Bayes classifiers are used. This is not strange because previous
research on ensemble learning has disclosed that Bagging does

not always improve the performance and especially it does not
work well with stable learners such as Naive Bayes classifiers
[6]. However, Figs. 4 to 5 reveal that when ens-all is effective
and although it has utilized more resource, i.e. being provided
with labels of all the examples inL andU , sometimes the final
hypotheses generated by tri-training can outperform that of
ens-all, such as on Fig. 4 (b) and Fig. 5 (b) and (c). The above
observations confirm that the tri-training process is effective
in exploiting unlabeled examples.

IV. A PPLICATION TO WEB PAGE CLASSIFICATION

Theweb page classificationdata set1 consists of 1,051 web
pages collected from web sites of Computer Science depart-
ments of four universities: Cornell University, University of

1This data set is available at http://www.cs.cmu.edu/afs/cs/project/theo-
11/www/wwkb/
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TABLE VI

THE CLASSIFICATION ERROR RATES OF THE INITIAL AND FINAL HYPOTHESES AND THE CORRESPONDING IMPROVEMENTS OF TRI-TRAINING ,

CO-TRAINING , SELF-TRAINING1, AND SELF-TRAINING2, UNDER 20% UNLABEL RATE

J4.8decision tree
tri-training co-training self-training1 self-training2Dataset

initial final improv initial final improv initial final improv initial final improv

australian .162 .148 8.3% .217 .207 4.5% .162 .154 4.8% .124 .126 -1.6%
bupa .376 .310 17.5% .367 .352 4.2% .376 .353 6.2% .336 .332 1.1%
colic .185 .170 7.8% .192 .181 5.7% .185 .178 3.9% .207 .185 10.5%
diabetes .297 .267 9.9% .294 .290 1.2% .297 .267 9.9% .286 .288 -0.6%
german .317 .296 6.7% .327 .320 2.0% .317 .305 3.8% .314 .305 3.0%
hypothyroid .011 .010 14.8% .016 .015 5.3% .011 .012 -7.4% .010 .010 0.0%
ionosphere .129 .102 20.6% .122 .103 15.6% .129 .117 8.8% .129 .137 -5.9%
kr-vs-kp .013 .010 22.6% .095 .094 0.9% .013 .009 29.0% .009 .009 -4.8%
sick .015 .013 16.3% .041 .040 2.6% .015 .013 14.0% .012 .015 -23.5%
tic-tac-toe .143 .125 12.6% .252 .249 1.1% .143 .158 -10.7% .165 .166 -0.8%
vote .052 .040 23.5% .073 .064 12.5% .052 .037 29.4% .061 .067 -10.0%
wdbc .066 .049 25.0% .058 .042 28.0% .066 .061 7.1% .061 .054 11.5%

ave. .147 .128 15.5% .171 .163 7.0% .147 .139 8.2% .143 .141 -1.8%

BP neural networks
tri-training co-training self-training1 self-training2Dataset

initial final improv initial final improv initial final improv initial final improv

australian .160 .135 15.7% .134 .124 7.2% .160 .137 14.5% .137 .145 -5.6%
bupa .345 .318 7.8% .356 .348 2.2% .345 .337 2.3% .356 .313 12.0%
colic .199 .181 9.1% .185 .178 3.9% .199 .217 -9.1% .200 .185 7.3%
diabetes .238 .220 7.3% .256 .252 1.4% .238 .236 0.7% .265 .286 -7.8%
german .288 .252 12.5% .270 .257 4.9% .288 .256 11.1% .287 .299 -4.2%
hypothyroid .020 .015 25.0% .024 .022 7.0% .020 .020 0.0% .026 .024 6.7%
ionosphere .117 .087 25.8% .064 .049 23.5% .117 .091 22.6% .095 .095 0.0%
kr-vs-kp .013 .009 26.7% .072 .069 4.6% .013 .009 30.0% .010 .006 42.3%
sick .034 .029 16.5% .051 .049 4.1% .034 .038 -10.3% .038 .038 -0.9%
tic-tac-toe .024 .019 17.6% .209 .196 6.0% .024 .022 5.9% .018 .025 -38.5%
vote .037 .028 25.0% .064 .055 14.3% .037 .024 33.3% .055 .052 5.6%
wdbc .045 .038 15.8% .042 .037 11.1% .045 .052 -15.8% .051 .049 4.5%

ave. .127 .111 17.1% .144 .136 7.5% .127 .120 7.1% .128 .126 1.8%

Naive Bayes
tri-training co-training self-training1 self-training2Dataset

initial final improv initial final improv initial final improv initial final improv

australian .218 .202 7.1% .247 .245 0.8% .218 .204 6.2% .244 .242 0.8%
bupa .473 .442 6.6% .410 .394 3.8% .473 .457 3.3% .448 .475 -6.0%
colic .250 .250 0.0% .199 .192 3.6% .250 .250 0.0% .232 .232 0.0%
diabetes .257 .245 4.7% .251 .247 1.4% .257 .243 5.4% .261 .259 0.7%
german .260 .247 5.1% .268 .265 1.0% .260 .245 5.6% .242 .243 -0.6%
hypothyroid .024 .021 12.3% .021 .021 1.9% .024 .021 12.3% .021 .021 2.0%
ionosphere .152 .136 10.0% .156 .152 2.4% .152 .136 10.0% .171 .175 -2.2%
kr-vs-kp .134 .127 5.3% .132 .131 0.6% .134 .127 5.6% .125 .126 -0.7%
sick .067 .064 4.8% .046 .045 1.6% .067 .064 3.7% .064 .065 -1.1%
tic-tac-toe .290 .281 3.3% .281 .278 1.0% .290 .279 3.8% .309 .309 0.0%
vote .095 .092 3.2% .101 .098 3.0% .095 .098 -3.2% .095 .095 0.0%
wdbc .056 .047 16.7% .077 .077 0.0% .056 .049 12.5% .077 .077 0.0%

ave. .190 .179 6.6% .182 .179 1.8% .190 .181 5.4% .191 .193 -0.6%

Texas, University of Washington, and University of Wisconsin.
These pages have been labeled into a number of categories,
among which the categorycourse home pageis regarded as
the target. That is, course home pages (22%) are the positive
examples and all other pages are negative examples.

Here the experimental configuration is the same as that
used in [5]. In each experiment, 263(25%) of the 1,051 web
pages are first selected at random as test examples. The
remaining data is used to generate a labeled training example
set L containing 3 positive and 9 negative examples drawn
at random. The remaining examples that are not drawn for
L are used as the unlabeled poolU . Five runs with different
training/test splits are performed, and the average result and
standard deviation are recorded.

Note that this data set is with two sufficient and redundant
views since a web page can be classified based on the words

occurring on that page as well as these occurring in hyperlinks
that point to that page [5]. Therefore, Blum and Mitchell [5]
trained a page-based classifier and a hyperlink-based classifier
for co-training. In addition, they defined a combined classifier
to merge the outputs of these two classifiers.

Here the algorithm described in [5] is re-implemented and
the parameters are set to the same values as in [5]. J4.8
decision trees, BP neural networks, and Naive Bayes classifiers
are used as alternatives to train the classifiers. The average
predictive error rates and corresponding standard deviations
are shown in Table VII, whereinitial denotes the performance
achieved before semi-supervised learning, i.e. the performance
obtained using only the labeled training examples,final de-
notes the performance achieved after semi-supervised learning,
improvdenotes the corresponding improvements, andHypoth-
esisdenotes the performance of the hypotheses, i.e. the learned
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(a) 80% unlabel rate (b) 60% unlabel rate

(c) 40% unlabel rate (d) 20% unlabel rate

Fig. 1. Error rates averaged across all the data sets when J4.8 decision trees are used

(a) 80% unlabel rate (b) 60% unlabel rate

(c) 40% unlabel rate (d) 20% unlabel rate

Fig. 2. Error rates averaged across all the data sets when BP neural networks are used

models. Note that after stemming and feature selection, 66 and
5 features are used to train the page-based and hyperlink-based
classifiers, respectively. Table VII also presents the results
obtained by tri-training, self-training1, and self-training2 on

this data set. Note that since these algorithms do not require
different views, the page-based and hyperlink-based features
are put together in training the individual classifiers. In the
table the best final hypothesis and the biggest improvement
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(a) 80% unlabel rate (b) 60% unlabel rate

(c) 40% unlabel rate (d) 20% unlabel rate

Fig. 3. Error rates averaged across all the data sets when Naive Bayes classifiers are used

(a) sick, 80% unlabel rate (b) diabetes, 60% unlabel rate

(c) tic-tac-toe,40% unlabel rate (d) hypothyroid, 20% unlabel rate

Fig. 4. Results on data sets where tri-training achieves median improvement (J4.8 decision trees are used)

with each base classifier have been boldfaced.

Table VII shows that on the web page classification task, tri-
training can effectively utilize unlabeled data to enhance the
learning performance. Actually, when Naive Bayes classifiers

are used, the improvement of the final hypothesis generated
by tri-training is about 13.4%, while when J4.8 decision trees
and BP neural networks are used, the improvements are more
impressive, i.e. 39.0% and 25.3%, respectively.
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(a) ionosphere, 80% unlabel rate (b) bupa, 60% unlabel rate

(c) australian, 40% unlabel rate (d) wdbc, 20% unlabel rate

Fig. 5. Results on data sets where tri-training achieves median improvement (BP neural networks are used)

(a) vote,80% unlabel rate (b) colic, 60% unlabel rate

(c) ionosphere, 40% unlabel rate (d) german, 20% unlabel rate

Fig. 6. Results on data sets where tri-training achieves median improvement (Naive Bayes classifiers are used)

Table VII also shows that the improvement of tri-training
is bigger than that of the co-training algorithm and the self-
training algorithms when J4.8 decision trees and BP neural
networks are used. While when Naive Bayes classifiers are

used, the improvement of tri-training is smaller than that of
co-training and the self-training algorithms. In particular, when
J4.8 decision trees and BP neural networks are used, the
improvements brought by tri-training are much bigger than that
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TABLE VII

THE PERFORMANCES OF TRI-TRAINING , CO-TRAINING , SELF-TRAINING1, AND SELF-TRAINING2 ON THE WEB PAGE CLASSIFICATION PROBLEM

Componentlearner J4.8decision tree BP neural network Naive Bayes classifier
or hypothesis initial final improv initial final improv initial final improv

tri-training
Component1 .246± .052 .141± .023 42.7% .143± .031 .106± .019 25.9% .106± .022 .100± .030 5.7%
Component 2 .211± .089 .141± .023 33.2% .134± .049 .107± .021 20.1% .102± .024 .095± .030 6.9%
Component 3 .215± .075 .141± .023 34.4% .186± .033 .115± .031 38.2% .142± .019 .100± .028 29.6%

Hypothesis .231± .068 .141± .023 39.0% .146± .033 .109± .022 25.3% .112± .027 .097± .028 13.4%

co-training
Page-based .152± .032 .172± .027 -13.2% .130± .052 .154± .030 -18.5% .113± .026 .100± .019 11.5%
Hyperlink-based .159± .014 .137± .035 13.8% .160± .035 .116± .010 27.5% .157± .040 .144± .022 8.3%

Hypothesis .151± .030 .144± .012 4.6% .126± .028 .116± .031 7.9% .115± .019 .078± .017 32.2%

self-training1
Component1 .246± .052 .212± .101 13.8% .143± .031 .110± .029 23.1% .106± .022 .090± .016 15.1%
Component 2 .211± .089 .165± .009 21.8% .134± .049 .103± .019 23.1% .102± .024 .088± .021 13.7%
Component 3 .215± .075 .176± .027 18.1% .186± .033 .113± .013 39.2% .142± .019 .103± .028 27.5%
Hypothesis .231± .068 .160± .013 30.7% .146± .033 .110± .021 24.7% .112± .027 .094± .022 16.1%

self-training2
Component1 .246± .052 .165± .009 32.9% .143± .031 .122± .029 25.9% .106± .022 .099± .020 6.6%
Component 2 .211± .089 .165± .009 21.8% .134± .049 .122± .029 20.1% .102± .024 .099± .020 2.9%
Component 3 .215± .075 .165± .009 23.3% .186± .033 .122± .029 38.2% .142± .019 .099± .020 30.3%
Hypothesis .165± .009 .165± .009 0.0% .114± .025 .122± .029 -7.0% .116± .019 .099± .020 14.7%

broughtby co-training; while when Naive Bayes classifiers are
used, the improvement of tri-training is much smaller than that
of co-training. However, Table VII shows that the component
Naive Bayes classifiers refined by tri-training are better than
these refined by co-training. This may imply that although
the majority voting scheme used by tri-training is effective in
combining the component J4.8 decision trees and BP neural
networks, it may be far less effective than the combination
scheme used by the co-training algorithm in combining the
component Naive Bayes classifiers.

Actually, through observing Table VII it can be found that
when J4.8 decision trees and BP neural networks are used, the
page-based classifiers degenerate in the co-training process,
but the final hypotheses of co-training are still not bad. This
suggests that the combination scheme used by the co-training
algorithm may play an important role. Moreover, the co-
training algorithm evidently utilizes the advantages offered by
the two sufficient and redundant views, because even when one
component classifier has degenerated, the improvement of the
other component classifier can still enable the improving of the
final hypothesis. This confirms the claim raised by Blum and
Mitchell [5], that is, when there exist sufficient and redundant
views, appropriately utilizing them will benefit the learning
performance.

V. CONCLUSION

In this paper, the tri-training algorithm is proposed. Through
employing three classifiers, tri-training is facilitated with good
efficiency and generalization ability because it could gracefully
choose examples to label and use multiple classifiers to com-
pose the final hypothesis. Moreover, its applicability is wide
because it neither requires sufficient and redundant views nor
does it put any constraint on the employed supervised learning

algorithm. Experiments on UCI data sets and application to
web page classification indicate that although the algorithm is
simple, it could exploit unlabeled examples effectively.

Note that the performance of semi-supervised learning algo-
rithms are usually not stable because the unlabeled examples
may often be wrongly labeled during the learning process [4]
[20]. A promising solution to this problem may be usingdata
editing mechanisms, such as the one described in [18], to
help identify the wrongly labeled examples. Incorporating data
editing mechanisms into tri-training and other semi-supervised
learning algorithms is an interesting issue to be investigated
in future work.

Ensemble learning techniques [12], in particular, Boosting,
have already been introduced into semi-supervised learning [2]
[9]. It is evident that the working style of tri-training exhibits a
new way to exploit ensemble techniques in this area. However,
in its current form, such an exploitation is very limited because
there are only three classifiers. Although previous research
has shown that using three classifiers to make an ensemble
could already improve the generalization ability [22], better
performance can be anticipated with more classifiers, which
is another interesting future issue.

Besides semi-supervised learning, unlabeled examples can
be exploited by active learning [7], where the labels of some
selected unlabeled examples are asked from the user. The
employment of ensemble techniques in tri-training enables the
introduction of a classic active learning method, i.e.query-
by-committee[25]. Roughly, the most disagreed unlabeled
example by the classifiers can be selected to query. Designing
effective algorithm to combine tri-training with query-by-
committee is an issue well-worth studying.

Moreover, in the present implementation of tri-training, the
classifiers are re-trained in each round. If the base learners are
incremental algorithms, it might be feasible for the classifiers
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to learn only the newly labeled examples, which could help
improve the efficiency. This is also an interesting issue to be
explored in the future.
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