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Abstract— In multi-label learning, each instance in the training  multi-label kernel methods [2], [8], [16]. In this paper, a neural
set is associated with a set of labels, and the task is to output anetwork algorithm named BMLL, i.e. Backpropagation for
label set whose size is unknowa priori for each unseen instance. Multi-Label Learning, is proposed, which is the first multi-

In this paper, this problem is addressed in the way that a neural . . . -
network algorithm named Bp-MLL, i.e. Backpropagation for label neural network algorithm. As its name impliedp-B

Multi-Label Learning, is proposed. It is derived from the popular ~ MLL is derived from the popular Backpropagation algorithm
Backpropagation algorithm through employing a novel error [24] through replacing its error function with a new function
function capturing the characteristics of multi-label learning, i.e. defined to capture the characteristics of multi-label learning,
the labels belonging to an instance should be ranked higher than that is, the labels belonging to an instance should be ranked
those not belonging to that instance. Applications to two real- | . ’ . . L
world multi-label learning problems, i.e. functional genomics and higher than those not_ belonging t_o that mstanc_e. Appllc_atlons
text categorization, show that the performance of B-mLL is tO two real-world multi-label learning problems, i.e. functional

superior to those of some well-established multi-label learning genomics and text categorization, show tha&mLL outper-

algorithms. forms some well-established multi-label learning algorithms.
Index Terms— Machine Learning, Data Mining, Multi-Label The rest of this paper is organized as follows. In Section Il,

Learning, Neural Networks, Backpropagation, Functional Ge- formal definition of multi-label learning is given and previous

nomics, Text Categorization. works in this area are reviewed. In Section IlIp®ILL is

presented. In Section IV, evaluation metrics used in multi-
label learning are briefly introduced. In Section V and VI,
experiments of B-MLL on two real-world multi-label learning

M ULTI-label learning tasks are ubiquitous in real-worlghroplems are reported respectively. Finally in Section VII, the

problems. For instance, in text categorization, eaghain contribution of this paper is summarized.
document may belong to several predefined topics, such as

governmentand health [18], [28]; in bioinformatics, each
gene may be associated with a set of functional classes,

such agnetabolismtranscriptionandprotein synthesif3]; in Let X = R? denote the domain of instances and Jet=
scene classification, each scene image may belong to sevefab ... Q} be the finite set of labels. Given a training set
semantic classes, such beachand urban [2]. In all these T — {(x; V), (x2,Y2), ..., (Xpm, Yi)} (x; € X, V; C )
cases, instances in the training set are each associated withid@ drawn from an unknown distributio®, the goal of the
set of labels, and the task is to output the label set whose si@grning system is to output a multi-label classifter X —
is not knowna priori for the unseen instance. 2Y which optimizes some specific evaluation metric. In most
Traditional two-class and multi-class problems can both h@ses however, instead of outputting a multi-label classifier, the
cast into multi-label ones by restricting each instance to hakgrning system will produce a real-valued function of the form
only one label. On the other hand, the generality of multit . ' x) — R. Itis supposed that, given an instangeand its
label problems inevitably makes it more difficult to leamnassociated label s&f, a successful learning system will tend
An intuitive approach to solving multi-label problem is tao output larger values for labels ¥ than those not iy}, i.e.
decompose it into multiple independent binary classificatiof(x,, y,) > f(x;, ) for anyy, € Y; andy, ¢ Y;. The real-
problems (one per category). However, this kind of methaglued functionf(-, -) can be transformed to a ranking function
does not consider the correlations between the different Iabegﬁlkf(.’ -), which maps the outputs of(x;,) for anyy €
of each instance and the expressive power of such a systpmo {1,2,...,Q} such that if f(x;,41) > f(x,y2) then
can be weak [8], [18], [28]. Fortunately, several approach@gnk,(x;,y:) < ranks(x;,y2). Note that the corresponding
specially designed for multi-label learning tasks have beefulti-label classifier:(-) can also be derived from the function
proposed, such as multi-label text categorization algorithmgs. .): h(x;) = {y|f(x;,y) > t(x;), y € Y}, wheret(-) is a
[12], [18], [28], [30], multi-label decision trees [4], [5] andthreshold function which is usually set to be the zero constant
function.
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categorization [5], [12], [16], [18], [28], [30], bioinformatics with existing biological knowledge. It is also noteworthy that
[4], [8] and scene classification [2]. their goal is to learn a set of accurate rules, not necessarily

Research of multi-label learning was initially motivatech complete classification. One year later, through defining
by the difficulty of concept ambiguity encountered in tex& special cost function based oanking loss(as shown in
categorization, where each document may belong to sdg.(24)) and the corresponding margin for multi-label models,
eral topics (labels) simultaneously. One famous approach Ebsseeff and Weston [8] proposed a kernel method for multi-
solving this problem is BOSTEXTER proposed by Schapire label classification and tested their algorithm on a Yeast gene
and Singer [28], which is in fact extended from the populdunctional classification problem with positive results. In 2004,
ensemble learning methodDAB0OOST [10]. In the training Boutell et al. [2] applied multi-label learning techniques to
phase, BOSTEXTER maintains a set of weights over bothscene classification. They decomposed the multi-label learning
training examples and their labels, where training examplpsoblem into multiple independent binary classification prob-
and their corresponding labels that are hard (easy) to predams (one per category), where each example associated with
correctly get incrementally higher (lower) weights. In 1999abel setY” will be regarded as positive example when building
McCallum [18] proposed a Bayesian approach to multi-labelassifier for clasg € Y while regarded as negative example
document classification, where a mixture probabilistic modelhen building classifier for clasg ¢ Y. They also provided
(one mixture component per category) is assumed to genenaeous labeling criteria to predict a set of labels for each test
each document and EM [6] algorithm is utilized to learn thimstance based on its output on each binary classifier. Note
mixture weights and the word distributions in each mixturthat although most works on multi-label learning assume that
component. In 2003, Ueda and Saito [30] presented twam instance can be associated with multiple valid labels, there
types of probabilistic generative models for multi-label texdre also works assuming that only one of the labels associated
called parametric mixture modelsNi® 1, PMM2), where the with an instance is correct [14]
basic assumption underM®s is that multi-label text has a  As reviewed above, most of the existing multi-label learning
mixture of characteristic words appearing in single-label tesigorithms are derived from traditional learning techniques
that belong to each category of the multi-categories. It is woruch as probabilistic generative models [18], [30], boosting
noting that the generative models used in [18] and [30] amethods [28], decision trees [4], [5], and maximal margin
both based on learning text frequencies in documents, amethods [2], [8], [16]. However, as a popular and effective
are thus specific to text applications. Also in 2003, Céneit |earning mechanism, there hasn’t been any multi-label learning
al. [5] extended alternating decision tree [9] to handle multalgorithm derived from neural network model. In the following
label data, where the BaBoosT.MH algorithm proposed by section, the first multi-label learning algorithm based on neural
Schapire and Singer [27] is employed to train the multi-labektwork model, i.e. B-MLL, is proposed.
alternating decision trees.

In 2004, Gao et al. [12] generalized the maximal figure-
of-merit (MFoM) approach [11] for binary classifier learn- . BP-MLL
ing to the case of multiclass, multi-label text categorization.
They defined a continuous and differentiable function of t
classifier parameters to simulate specific performance metricsAs defined in the literature [17], neural networks are
such as precision and recall etc. (micro-averadingn their massively parallel interconnected networks of simple (usually
paper). Their method assigns a uniform score function &glaptive) elements and their hierarchical organizations which
each category of interest for each given test example, am@ intended to interact with the objects of the real world in
thus the classical Bayes decision rules can be applied. Qhe same way as biological nervous systems do. Earliest work
year later, Kazawa et al. [16] converts the original multi-labeln neural networks dates back to McCulloch and Pitts’s M-P
learning problem of text categorization into a multiclass singleaodel of a neuron [19], which is then followed by considerable
label problem by regarding a set of topics (labels) as a neverks in the 1950s and 1960s on single-layer neural networks
class. To cope with the data sparseness caused by the H@g§[31]. Although single-layer neural networks were success-
number of possible classes (@pics will yield 29 classes), ful in classifying certain patterns, it had a number of limita-
they embedded labels into a similarity-induced vector spacetions so that even simple functions such as XOR could hardly
which prototype vectors of similar labels will be placed clospe learned [20]. Such limitations led to the decline of research
to each other. They also provided an approximation methegl neural networks during the 1970s. In the early 1980s,
in learning and efficient classification algorithms in testing teesearch on neural networks resurged largely due to successful
overcome the demanding computational cost of their methadarning algorithms for multi-layer neural networks. Currently,

In addition to text categorization, multi-label learning hagliverse neural networks exist, such as multi-layer feed-forward
also manifested its effectiveness in other real-world apphetworks, radial basis function networks, adaptive resonance
cations, such as bioinformatics and scene classification. theory models, self-organizing feature mapping networks, etc.
2001, Clare and King [4] adapted C4.5 decision tree [22] feural networks provide general and practical techniques for
handle multi-label data (gene expression in their case) throughrning from examples, which have been widely used in
modifying the definition of entropy. They chose decision treagrious areas.
as the baseline algorithm because of its output (equivalently
a set of symbolic rules) is interpretable and can be compareén this paper, only the former formalism of multi-label learning is studied.

. Neural Networks
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In this paper, traditional multi-layer feed-forward neural net- c
works are adapted to learn from multi-label examples. Feed- 5 o e
forward networks have neurons arranged in layers, with the
first layer taking inputs and the last layer producing outputs.
The middle layers have no connection with the external world
and hence are called hidden layers. Each neuron in one layer ie
connected (usually fully) to neurons on the next layer and the bias
is no connection among neurons in the same layer. Therefore, b,
information is constanthfed forward from one layer to the
next one. Parameters of the feed-forward networks are learned
by minimizing some error function defined over the training
examples, which commonly takes the form of the sum of the  pias
squared difference between the network output values andthe % ¥ ¥ oo
target values on each training example. The most popular aQ & 8y
approach to minimizing this sum-of-squares error function
is the Backpropagation algorithm [24], which uses gradiehig- 1. Architecture of the B-mLL neural network.
descent to update parameters of the feed-forward networks by
propagating the errors of the output layer successively back ) )
to the hidden layers. More detailed information about neur§f’€ré £i is the error of the network om;, which could be
networks and related topics can be found in textbooks suchdgfined as:
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[1] and [13]. Q@ -
Actually, adapting traditional feed-forward neural networks E; = Z(@- —dj) (2)
from handlingsingle-labelexamples tamulti-label examples j=1

requires two keys. The first key is to design some specifjhereqi — ¢;(x;) is the actual output of the network s on
error function other than the simple sum-of-squares functiqﬂej_th class,d’ is the desired output of; on the j-th class
to capture the characteristics of multi-label learning. Secongyich takes thé value of either 3 € Y;) or -1 (j ¢ Y;).
some revisions have to be made accordingly for the cIassicabombining Eq.(2) with Eq.(1), various optimization meth-
learning algorithm in order to minimize the newly designedqys can be directly applied to learn from the multi-label

error function. These two keys will be described in detalil iﬂaining instances. In this paper, the classical Backpropagation

the following two subsections respectively. algorithm [24] is used to learn from this intuitive global error
) function and the resulting algorithm is named assB-Bp.
B. Architecture However, although BsICBP is feasible, some important char-
Let X = R? be the instance domain anyy. = acteristics of multi-label learning are not considered by this

{1,2,...,Q} be the finite set of class labels. Suppose thmethod. Actually, the error function defined in Eq.(2) only
training set is composed ofn multi-label instances, i.e. concentrates on individual label discrimination, i.e. whether a
{(x1,Y1), (x2,Y2), ..., (xm, Yy) }, Where each instance; € particular labelj € ) belongs to the instance, or not, it does

X is a d-dimensional feature vector and C ) is the set not consider the correlations between the different labels of

of labels associated with this instance. Now suppose a singieg. labels in; should be ranked higher than those notjn
hidden-layer feed-forward BMmLL neural network as shown In this paper, these characteristics of multi-label learning are
in Fig. 1 is used to learn from the training set. The-B appropriately addressed by rewriting the global error function
MLL neural network had input units each corresponding to aas follows:

dimension of thei-dimensional feature vectof) output units m m 1 , ,
each corresponding to one of the possible classes, and dfle= » E; =Y —— > exp(—(d—d) (3
hidden layer withAM hidden units. The input layer is fully i=1 i=1 YallYil (k,1)EY; XV

connected to the hidden layer with weights= [v;,s] (1 < :
h<d | <s< M) and the hidden layer is also fuIIyAs regard to the rightmost haind oj Eq.(;), theéh error te.rm
gmm Dok 1yev v exp(—(c, — cl))) in the summation

connected to the output layer with weighté = [w,;] (1 < . _ <
s < M, 1< j < Q). The bias parameters (1 < s < M) of efines the error of the network on th¢h multi-label training

the hidden units are shown as weights from an extra input uff@mple (x;, Y;). Here, Y, is the complementary set df;

ao having a fixed value of 1. Similarly, the bias parametef8 V and| - | measures the cardinality of a set. Specifically,

0, (1 < j < Q) of the output units are shown as weights fronfi, — ¢, Measures the dlffere_nce between the outputs of the

an extra hidden unity, with activation again fixed at 1. network on one label belonging to; (k € Y;) and one label
Since the goal of multi-label learning is to predict the labdlot belonging to it (l€ Y7;). It is obvious that the bigger

sets of unseen instances, an intuitive way to define the gloffa¢ difference, the better the performance. Furthermore, the
error of the network on the training set could be: negation of this difference is fed to the exponential function

m in order to severely penalize thieth error term if ¢} (i.e.
= ZEL 1) the outppt on the label belonging t&;) is much. smaller
Py than ¢; (i.e. the output on the label not belonging %3).
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The summation in the-th error term takes account of the Since “tanh” function is differentiable, we can define the
accumulated difference between the outputs of any pair @éneral error of theg-th output unit as:
labels with one belonging te; and another not belonging to
x;, which is then normalized by the total number of possible dj =— OF; 9)
pairs, i.e.|Y;||Y;|?. In this way, the correlations between Inetc;
different labels ofk;, i.e. labels inY; should get larger network
outputs than those if;, are appropriately addressed.

As analyzed above, Eq.(3) focuses on the difference be- d— _8Ei dcj —%f’( te; +0)) (10)
tween the network's outputs on labels belonging to one T " 9c; dnete; e, 0T
instance and on other labels not belonging to it. Therefore,
minimization of Eq.(3) will lead the system to output largethen consideringz; = |Yi‘1|?i| Yk ney:xv; exp(=(cx — a)),
values for labels belonging to the training instance and small¥e get
values for those not belonging to it. When the training set

sufficiently covers the distribution information of the learing g, 0 [mlﬁ D kney;xv; exp(—(ck — 01))}

consideringe; = f(netc; + 6,;), we get

problem, the well-trained neural network model encodingy,. — e

these information will also eventually give larger outputs for 1 ! £ eV

the labels belonging to the test instance than those labels not ANl IEX?:V exp(—(¢; —a)), if j €Y
belonging to it. Actually, this error function is closely related = ’ - (12)
to theranking losscriterion (as shown in Eq.(24)) which will Wl‘ﬁ kg exp(—(ck — ¢j)), if j €Y

be introduced in Section IV.

In this paper, minimization of the global error functiorgincef/(netcj +6;) = (1+¢;)(1—¢;), then substituting this
is carried out by gradient descent combined with the errgguation and Eq.(11) into Eq.(10), we get
backpropagation strategy [24], which is scrutinized in the

following subsection. dj =
1 . — NI
C. Training and Testing (lYiYil le%veXp( (c; Cl))) (1+¢;)(1 —¢)
For training instancex; and its associated label sk, the e
! L " . ifjey;
actual output of thg-th output unit is (omitting the superscript 12
¢ without lose of generality): (12)
¢; = f(nete; + 6;) 4) <_Y1|1Y1 kg exp(—(cr — Cj))) (T4¢)(1 —¢)
where 6; is the bias of thej-th output unit, f(z) is the R e
. L K . R . if VS Yz
activation function of the output units which is set to be the
“tanh” function: Similarly, we can define the general error of th¢h hidden
o _ o unit as:
f(@) = ——+ 5)
e es = — 08 (13)
netc; is the input to thej-th output unit: ® Onetb,
M consideringb; = f(netbs + vs), we get
netc; = Z bswg; (6)
s=1 e. = _aEz abs
wherewy; is the weight connecting theth hidden unit and 9bs Onetbs
the j-th output unit, andV/ is the number of hidden units, Q OE; Onetc; ,
is the output of thes-th hidden unit =\ 2 Gerg; aw, | Fetha ) A4
=1 °
bs = f(netbs +vs) @) y
where~, is the bias of thes-th hidden unit,f(u) is also the then consideringl; = —aggﬁ;j andnetc; = - bsws;, we
“tanh” function. netb, is the input to thes-th hidden unit: get s=1
d M
netby = Z ARVhs (8) Q 0 {Z bsu)sj}
h=1 es = Zd]% f’(netbs + ’YS)
where a;, is the h-th component ofx;, v,s iS the weight J=1 8
connecting thew-th input unit and thes-th hidden unit. o
2In this paper, the exampléx;,Y;) is simply excluded from the training = Z djws; f’(netbs +7s) (15)

set for BP-MLL if either Y; or Y; is an empty set. j=1
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since f/(netbs +vs) = (14 bs)(1 — bs), then substituting this When the minimum is not unique and the optimal values are
equation into Eq.(15) we get a segment, the middle of this segment is chosen. Based on the
above process, the parameters of the threshold function can

< be learned through solving the matrix equatidn w’ = t.
es = Zdjwsj (14bs)(1 = bs) (16)  Here matrix® has dimensionsn x (Q + 1) whosei-th row
=1 is (ci,...,ch, 1), w' is the Q+1)-dimensional vectofw,b),

In order to reduce error, we can uggadient descent andt is them-dimensional vectoft(x1), ¢(xz2), . . ., t(xm)).
strategy, i.e. make the change of the weights be proportiohalthis paper, linear least squares method is then applied to
to negative gradient: find the solution of the above equation. When a test instance

x is given, it is firstly fed to the trained network to get the
Aw,j = —a OE; _ _ _OE; Onelc; output vectorc(x). After that, the threshold value fox is
‘ ws; dnetcj ws; computed viat(x) = w - ¢(x) + b.
M It is worth noting that the number of computations needed
g (E bsws; ) to evaluate the derivatives of the error function scales linearl
s=1 y
= ad; dws; = ad;b, (A7) with the size of the network. In words, 181 be the total
‘ number of weights and biases of thee-BiLL network, i.e.
OF; OE; Onetb, W = (d+1)x M+(M+1)xQ (usuallyd > Q andM > Q).
Avps = _O‘avh = T Y%eth oo The total number of computations needed mainly comes from
* 3 * three phases, i.e. the forward propagation phase (compiyting
0 (Z ahvhs) andc;), the backward propagation phases (computingnd
— ae, h=1 — aeqap (18) i) and the weights and biases update phase (computing,
Ovps Awvp;, AB; and Av;). In the forward propagation phase, most

computational cost is spent in evaluating the sums as shown
in Eq.(6) and Eq.(8), with the evaluation of the activation
%Yhctions as shown in Eq.(4) and Eq.(7) representing a small
overhead. Each term in the sum in Eq.(6) and Eq.(8) requires
Ab; = adj; A, = e, (19) ©one multiplication and one addition, leading to an overall
computational cost which i©(W); In the backward phase, as
where «a is the learning ratewhose value is in the range ofshown in Eq.(12) and Eq.(16), computing eakhande; both
(0.0,1.0). requiresO(Q) computations. Thus, the overall computational
Therefore, based on the above derivation, the training preest in the backward propagation phas®ig?)+0(Q x M),
cedure of B-MLL can be conveniently set up. In detail, inwhich is at mostO(W); As for the weights and biases update
each training epoch of BMLL, the training instances are fedphase, it is evident that the overall computational cost is again
to the network one by one. For each multi-labeled instan¢® 7). To sum up, the total number of computations needed
(x;,Y;), the weights (and biases) are modified according to update the B-mLL network on each multi-label instance
Egs.(17) to (19). After thatx; 11, Y;+1) is fed to the network is O(W) indicating that the network training algorithm is
and the training process is iterated until the global etdtor very efficient. Thus, the overall training cost ofPBiLL is
doesn't decrease any more or the number of training epocd$W - m - n), wherem is the number of training examples
increases to a threshold. and n is the total number of training epochs. The issues of
When a trained B-MLL network is used in prediction for the total number of epochs before a local solution is obtained,
an unseen instance, the actual outputs; (j =1,2,...,Q) and the possibility of getting stuck in a “bad” local solution
will be used for label ranking. The associated label set favill be discussed in Subsection V-B.
x is determined by a threshold functioff{x), i.e. ¥ =
{jle; > t(x), j € Y}. A natural solution is to set(x)
to be the zero constant function. Nevertheless, in this paper,
the threshold learning mechanism used in the literature [8] isBefore presenting comparative results of each algorithm,
adopted which generalizes the above natural solution. In detelfaluation metrics used in multi-label learning is firstly in-
t(x) is modelled by a linear function(x) = w? - ¢(x) + b, troduced in this section. Performance evaluation of multi-
wherec(x) = (c1(x), c2(x), ..., co(x)) is the@-dimensional label learning system is different from that of classical
vector whosej-th component corresponds to the actual outpsingle-label learning system. Popular evaluation metrics used
of the trained network o on thej-th class. The procedurein single-label system include accuracy, precision, recall
used to learn the parameters igk) (i.e. the weight vector and F-measure [29]. In multi-label learning, the evaluation
wT and bias valué) is described as follows. For each multiis much more complicated. Adopting the same notations

the biases are changed according to (by fixing the activati
of the extra input unitzy and hidden uniby at 1):

IV. EVALUATION METRICS

label training examplgx;,Y;) (1 < i < m), let ¢(x;) = as used in the beginning of Section I, for a test set

(ci,¢5,...,cq) and set the target valueéx;) as: S = {(x1,Y1), (x2,Y2), ..., (xp, Y,)}, the following multi-
label evaluation metrics proposed in [28] are used in this paper:

t(x;) = (1) hamming lossevaluates how many times an instance-label

argmin, ([{k|k € Y;, ¢, <t} + [{{l €Y, ¢f >t}|) (20) pairis misclassified, i.e. a label not belonging to the instance is
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predicted or a label belonging to the instance is not predicted Saccham:qyfgcmgae
The performance is perfect whérosss(h) = 0; the smaller
the value ofhlossg(h), the better the performance.

osss (1) = £ 3° Ljn v R ME‘;“’““H E"jwl oo i, Hemrme

..... A fmimim

o s ;

whereA standsfor the symmetric difference between two sets{3en, -5, i H5mmee IS s
|
|
|
1 #ca\ Rescue,
§ L Defense, cell
i Death and Aging
i
}
|
}
|

i=1

Cellular Transport,
Transport Mechanisms

and @ is the total number of possible class labels. Note that :
when |Y;| = 1 for all instances, a multi-label system is in — {—
fact a multi-class single-label one and the hamming Iosé IS | Homeostasis ﬁg:g;;:g;s
timesthe usual classification error. I
While hamming loss is based on the multi-label classifier
h(-), the following metrics are defined based on the real-valued i
function f(-, -) which concern the ranking quality of different O —i-
labels for each instance:
(2) one-error. evaluates how many times the top-ranked labElg. 2. First level of the hierarchy of the Yeast gene functional classes. One
is not in the set of proper labels of the instance. The perf %naedez’ﬁr:";::;)cgftﬂ]i izepgzg?slg YALOG2W, can belong to several classes
mance is perfect whenne-error s(f) = 0; the smaller the

value ofone-error 5(f), the better the performance.

-

! Transposable Elements
+ | Viral and Plasmid Proteins

i
i
i
i
i
i
=)

12 Note that in the rest of this paper, performance of each
one-error 5(f) = = Y [[argmax f(x;,y)] ¢ ¥;]  (22) multi-label learning algorithm is evaluated base on the above
Pim vy five metrics.

where for any predicater, [x] equals 1 if7 holds and O
otherwise. Note that, for single-label classification problems, V. APPLICATION TO FUNCTIONAL GENOMICS
the one-erroris identical to ordinary classification error. A. Functional Genomics

(3) coverageevaluates how far we need, on the average, 0 gogiginformatics or computational biology is a new inter-

down the list of labels in order to cover all the proper labelgscipjinary field where techniques from applied mathematics,
of the instance. It is loosely related to precision at the levglormatics and computer science are applied to biology
of perfect recall. Thesmallerthe value ofcoverages(f), the iy order to model systems, extract information, understand
better the performance. process, etc. Major efforts in this field include sequence
12 alignment, protein structure prediction, analysis of protein-
coverageg(f) = — Zﬂgyx ranky(x;,y) — 1 (23)  protein interactions, functional genomics, etc. Among which
=t functional genomicdgs of great importance which aims at
As mentioned in the beginning of Section Hank;(-,-) is characterizing the function of genes and the proteins they
derived from the real-valued functiofy-, -), which maps the encode in determining traits, physiology or development of
outputs of f(x;,y) for anyy € Y to {1,2,...,Q} such that an organism. As the steady growing of the rate of genome
if f(xi,y1) > f(x4,y2) thenranky(x;,y1) < ranky(x;,y2). sequencing and increasing of the amount of available data,
(4) ranking loss: evaluates the average fraction of label paitsmputational functional genomics becomes both possible and
that are reversely ordered for the instance. The performaneeessary. It uses high-throughput techniques like DNA micro-
is perfect whenrlossg(f) = 0; the smaller the value of arrays, proteomics, metabolomics and mutation analysis to

rlossg(f), the better the performance. describe the function and interactions of genes. The range of
» recent work in computational functional genomics includes

rlossg(f) = lz |Dﬂ (24) improved sequence similarity search algorithms, micro-array

P 1Yil|Ys] expression analysis, computational prediction of protein sec-

ondary structure, differential genome analysis, etc [3].
In this paper, the effectiveness of multi-label learning al-
(5) average precisionevaluates the average fraction of IabelgOrlthms is evaluated through predicting .the gene _funct|onal
Classes of the Yeagaccharomyces cerevisjiaghich is one

rankgd apqve a partlclulgr Iabglg i Wh.'Ch actually are in of the best studied organisms. Specifically, the Yeast data set
Y. Itis originally used in information retrieval (IR) systemsto, .~ . . - .

. .studied in the literatures [8] and [21] is investigated. Each gene
evaluate the document ranking performance for query retrieva

[26]. The performance is perfect whemgprecs(f) — 1: the IS described by the concatenation of micro-array expression
. S — 1,

bigger the value ofavgprecg(f), the better the performance.data .and phylogenetic profile a_nd IS agsomated with a S?t of
functional classes whose maximum size can be potentially

1<~ 1 |L;| more than 190. In order to make it easier, Elisseeff and Weston

avgprecs(f) = » Z ;| Z rank;(xi,y) (25)  preprocessed the data set where only the known structure
=1 " yey; ; of the functional classes are used. Actually, the whole set

whereL; = {y/|ranks(x;,vy') < ranks(x;,y), v’ € Y;}. of functional classes is structured into hierarchies up to 4

whereY denotesthe complementary set df in Y while
D; = {(y1, y2)|f (x5, 91) < f(xi,92), (y1,92) € Yi x Y}
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Fig. 3. The performance of BMLL with different number of hidden neurons~=< input dimensionality) changes as the number of training epochs
increasing. (aplobal training error;, (b) hamming loss; (cbne-error, (d) coverage (e) ranking loss (f) average precision.

levels deep. In this paper, the same data set as used in tB&TER* [28], multi-label decision tree ATBOOST.MH® [5],
literature [8] is adopted. In this data set, only functional classaad the multi-label kernel methodaRk-svm [8], which are
in the top hierarchy (as depicted in Fig. 2) are considereall general-purpose multi-label learning algorithms applicable
The resulting multi-label data set contains 2,417 genes edohvarious multi-label problems. In addition,PBJLL is also
represented by a 103-dimensional feature vector. There arecbnpared with BSICBP, i.e. the intuitive implementation
possible class labels and the average number of labels for eatmeural networks for multi-label learning as described in
gene is4.24 + 1.57. Section lll, to see whether the more complex global error
function as defined in Eq.(3) will perform better than the
intuitive solution.
For BP-MLL, the learning rate is set to be 0.05. The number
As reviewed in Section II, there have been several apt hidden units of the network is set to 9% to 100%
proaches to solving multi-label problems. In this papep; B

: . . . 4 ; . : .
MLL is Compared with the boostlng-style algorlthrTDBsT- 5Program a\{allable at http.//www.(?s.pr|nceton.'edquchaplre/boosFexter.html.
The algorithm and a graphical user interface are available at
http://www.grappa.univ-lille3.fr/grappa/index.php3?info=logiciels.  Further-
3See http://mips.gsf.de/projlyeast/catalogues/funcat/ for more details. more,ranking lossis not provided by the outputs of this implementation.

B. Results
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TABLE |
EXPERIMENTAL RESULTS OFEACH MULTI-LABEL LEARNING ALGORITHM (MEAN= STD. DEVIATION) ON THE YEAST DATA.

EVALUATION ALGORITHM

CRITERION BP-MLL BOOSTEXTER ADTBOOST.MH RANK-SVM BAsICBP
HAMMING LOSS 0.2064+0.011 0.22040.011 0.20740.010 0.2074+0.013  0.2@008
ONE-ERROR 0.2334+0.034 0.27840.034 0.2444-0.035 0.2434+0.039  0.246032
COVERAGE 6.42140.237 6.5500.243 6.3904+0.203  7.09040.503 6.6580.219
RANKING LOSS 0.1714+0.015 0.186+0.015 N/A 0.19%0.021 0.184-0.017

AVERAGE PRECISION  0.756+0.021 0.737+0.022 0.7444+0.025 0.750+0.026  0.740022

TABLE I
RELATIVE PERFORMANCEBETWEEN EACH MULTI-LABEL LEARNING ALGORITHM ON THE Y EAST DATA.

EVALUATION ALGORITHM

CRITERION Al1-BP-MLL; A2-BOOSTEXTER; A3-ADTBOOSTMH; A4-RANK-SVM; A5-BASICBP
Al = A2 (p=25x10"%), A3~ A2 (p=8.4x 1077), Ad = A2 (p = 4.7 x 10~ 3),

HAMMING Loss A5 = A2 (p=6.1x107%)

Al = A2 (p=1.4x1073), Al = A5 (p=1.4x1072), A3 = A2 (p =72 x 107%),
ONE-ERROR A4 = A2 (p=4.4x 1072), A5 = A2 (p=2.0 x 1079)

Al = A4 (p="T7.0x 107%), Al = A5 (p=7.1 x 107°), A2 = A4 (p = 8.4 x 1073),
COVERAGE A2 = A5 (p=2.7x1072), A3~ A2 (p =8.9 x 1073), A3 = A4 (p = 8.9 x 1074),
A3~ A5 (p="7.4x107%), A5 = A4 (p =13 x 1072)

RANKING LOss Al = A2 (p =13 x107%), Al = A4 (p = 6.3 x 1073), Al = A5 (p = 1.0 x 1077)

AVERAGE PRECISION Al = A2 (p = 1.3 x 107%4), Al = A3 (p=1.4 x 1073), A1 = A5 (p = 6.9 x 1079)
TOTAL ORDER BP-MLL (11)>ADTBOOST.MH(4)>{RANK-SVM(-3), BASICBP(-3)} >BOOSTEXTER(-9)

of the number of input units with an interval @)%, while better than other values of in terms of coverage ranking

the number of training epochs varies from 10 to 100 with dnssandaverage precisioifFigs. 3(d)-3(f)). Furthermore, after
interval of 10. Furthermore, in order to avoid overfitting, &0 epochs of training, the global training error (Fig. 3(a))
regularization term equal to one tenth of the sum of squarasd those evaluation metric values (Figs. 3(b)-3(f)) of- B

of all network weights and biases is added to the global ermacL will not significantly change. Therefore, for the sake of
function; For BOOSTEXTER [28] and ADTBOOST.MH [5], the computational cost, all the results oPBALL shown in the rest
number of boosting rounds is set to be 500 and 50 respectivefythis paper are obtained with the number of hidden units set
because on the Yeast data set (also the Reuters collectobe20% of the number of input units. The number of training
studied in the next Section), the performance of these twpochs for B-MLL is fixed to be 100.

algorithms will not significantly change after the specified 1 o | reports the experimental results ob-BILL and

boosting rounds; For RNK-SvM [8], polynomial kernels with - oyher mylti-label learning algorithms on the Yeast data, where
degree 8 are used which yield the best performance as ShQWA pest result on each metric is shown in bold face. To
in the literature [8]; For BSICBP, the number of fraining yaxe a clearer view of the relative performance between
epochs is set to be 1500 and the number of hidden unitSgigeyy 4gorithm, a partial order “~" is defined on the set of
set to be four times of the number of input units to yield,, comparing algorithms for each evaluation criterion, where
comparable results. Al ~ A2 means that the performance of algorith#l is
Ten-fold cross-validation is performed on this data set. btatistically better than that of algorithm2 on the specific
detail, the original data set is randomly divided into ten parteetric (based on two-tailed pairgdtest at5% significance
each with approximately the same size. In each fold, one platel). The partial order on all the comparing algorithms in
is held-out for testing and the learning algorithm is trained derms of each evaluation criterion is summarized in Table II,
the remaining data. The above process is iterated ten tinvdsere thep-value shown in the parentheses further gives a
so that each part is used as the test data exactly once, whrantification of the significance level.
the averaged metric values out of ten runs are reported for thef\lote that the partial order “>"

lqorith only measures the relative
algorithm.

performance between two algorithm&él and A2 on one
Fig. 3 illustrates how the global training error and variouspecific evaluation criterion. However, it is quite possible that
metric values of B-MLL change as the number of trainingA1l performs better tham2 in terms of some metrics but
epochs increases. Different curves correspond to differambrse thatA2 in terms of other ones. In this case, it is hard
number of hidden neurons (sxinput dimensionality) used to judge which algorithm is superior. Therefore, in order to
by Bp-MLL. Fig. 3 shows that when is set to be 20%, B- give an overall performance assessment of an algorithm, a
MLL performs comparable to other values pfin terms of score is assigned to this algorithm which takes account of
hamming lossand one-error (Figs. 3(b)-3(c)), while slightly its relative performance with other algorithms on all metrics.
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TABLE IlI
COMPUTATION TIME OF EACH MULTI-LABEL LEARNING ALGORITHM (MEAN= STD. DEVIATION) ON THE YEAST DATA, WHERE TRAINING TIME IS
MEASURED INHOURSWHILE TESTING TIME IS MEASURED IN SECONDS

COMPUTATION ALGORITHM

TIME BP-MLL BOOSTEXTER ADTBOOSTMH RANK-SVM BAsICBP
TRAINING PHASE (HOURYS) 6.989+0.235  0.1540.015 0.4150.031 7.7234+5.003  0.743+0.002
TESTING PHASE (SECONDS)  0.739+0.037 1.1060.123 0.942-0.124 1.2554+0.052 1.3024+0.030

Concretelyfor each evaluation criterion, for each possible pair
of algorithms A1 and A2, if A1 > A2 holds, thenAl is
rewarded by a positive score +1 amtR is penalized by a
negative score -1. Based on the accumulated score of each
algorithm on all evaluation criteria, a total order ">" is defined 2
on the set of all comparing algorithms as shown in the Iastg !
line of Table I, whereAl > A2 means thatdl performs =2
better thanA2 on the Yeast data. The accumulated score of S
each algorithm is also shown in bold face in the parentheses‘;
Table Il shows that B-MLL performs fairly well interms of &
all the evaluation criteria, where on all the evaluation criteria §
no algorithm has outperformedPBvLL . Especially, B-MLL
outperforms all the other algorithms with respectrémking
los$ since minimization of the global error function ofFB
MLL could be viewed as approximately optimizing tiamking 0
losscriterion. Furthermore, B-MLL outperforms BSICBP on
all the evaluation criteria exceptamming loson which the
two algorithms are Comparable. These facts illustrate that thg 4. Quantile piot regarding the number of training epochs ofNB L
more complex global error function employed bp-BILL (as out of 200 runs of experiments.
defined in Eq.(3)) really works better than the intuitive one
employed by BsIcBP (as defined in Eq.(1) and Eq.(2)). It
is also worth noting that BOSTEXTER performs quite poorly epochs are needed before a local solution is obtained and
compared to other algorithms. As indicated in the literature [&he possibility of getting stuck in a “bad” local solution, the
the reason may be that the simple decision function realized fylowing experiments are conducted. In detail, 500 examples
this method is not suitable to learn from the Yeast data set. @i randomly selected from the Yeast data (totally 2,417
the whole (as shown by the total order)p-BiLL outperforms  eyamples) constituting the test set and the remaining 1,917
all the other algorithms on the multi-label learning problem Qfyamples forms the potential training set. After that, 200
Yeast functional genomics. o runs of experiments are performed where in each run 1,000
Table Il reports the computation time consumed by eagyamples are randomly selected from the potential training set
multi-label learning algorithm on the Yeast data, where a train a Bp-MLL neural network and the trained model is then
experiments are conducted on an HP Server equipped with 4Ga|yated on the test set. The maximum number of training
RAM and 4 Intel Xerod™ CPUs each running at 2.80GHz epochs is set to be 200 and the training process terminates as
As shown in Table Ill, B-mMLL consumes much more time|ong as the global training error of BMLL does not decrease
in the training phase than @STEXTER, ADTBOOSTMH  enough. Concretely, Igf* denotes the global training error of
and BasicBp mainly due to itscomplexglobal error function pp.yi | at thet-th training epoch, the training process will
which needs to be optimized and titerative processing of terminate before reaching the maximum number of training
training examples. On the other hand, although the trainiggochs if the condition of! — E*+! < ¢ - Et is satisfied. It
complexity of B>-MLL is high, the time cost of BMLL On g ghvious that the smaller the value afthe more training
testing unseen examples is quite trivial. epochs are executed before termination. In this papisrset
As analyzed in the end of Subsection IlI-C, the total cost bee 10-6 for illustration purpose.
training a B>-MLL network scales t@(W - m - n). Here W Fig. 4 gives the quantile plot regarding the number of
is the total number of weights and biases of the netwetk, training epochs of B-MLL out of 200 runs of experiments
is the number of training examples ands the total number where each pointz, y) in the plot means that the numbér
of training epochs. In order to illustrate how many '[rainin%]c training epochs c7>f B-mLL will be smaller or equal tay

6Note that ranking lossis not provided in the outputs of the px- iN 100 - 2% cases out of the 200 runs. It was shown that the
BOOST.MH algorithm. training process will terminate before 80 epochs in alBodt
"Codes of ROSTEXTER and ADTBOOST.MH are written in C |anguage, cases and before 140 epochs in am% cases. Furthermore’
while those of B-MLL, RANK-SvM and BasicBp are developed with . . . L
Jable IV summarizes the statistics of each evaluation criterion

MatLAB TM. Note that programs written in C usually run several times fast i it -
than those written in MTLAB. out of 200 runs of experiments, where the minimal, maximal

0 01 02 03 04 05 06 07 08 09 1
fraction value
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TABLE IV
STATISTICS OFEACH EVALUATION CRITERION OUT OF200 RUNS OFEXPERIMENTS, WHERE VALUES FALL ONE STANDARD DEVIATION OUTSIDE OF
THE MEAN VALUE ARE REGARDED AS“BAD” L OCAL SOLUTIONS.

Evaluation STATISTICS OUT OF200 RUNS OFEXPERIMENTS

Criterion MIN MAX  MEAN=£STD. DEVIATION  PROB. OF “BAD” L OC. SOL.
HAMMING Loss 0.198 0.221 0.2060.004 14.0%
ONE-ERROR 0.200 0.244 0.2280.008 14.0%
COVERAGE 6.354 6.890 6.5420.106 15.0%

RANKING Loss 0.170 0.187 0.1760.003 18.0%
AVERAGE PRECISION 0.736 0.762 0.7490.004 14.5%

and mean (together with standard deviation) value of eadb that achieved by human experts while at the same time
metric are illustrated. In this paper, the metric value fall oneonsiderably saves the experts labor costs [29].
standard deviation outside of the mean value will be regardedThe first step in ML-based TC is to transform documents,
as “bad” local solutioh Based on this, the probability of which typically are strings of characters, into a representation
getting stuck in a “bad” local solution with regard to a specifisuitable for the learning algorithm and the classification task.
metric can be calculated as shown in the last column of Talllee most commonly used document representation is the so-
IV. It is revealed that B-mLL will get stuck in a “bad” local called vector space model where each documkig repre-
solution with no more thar20% probability in terms of any sented as a vector of term weights=< wy, ws, . . . , W] >
evaluation metric. Since there is no criterion available fddere7 is the set of terms (usually the set of words) that occur
judging whether the learning algorithm has terminated atad least once in at least one document of the trainingset,
“bad” or “good” local solution during the training phase, onepproximately represents how much terne 7 contributes to
possible solution is to train manymMLL neural networks the semantics of documetit Various approaches are available
based on different initial configurations and then combine theo determine the term weights, such as Boolean weighting (set
predictions. In this way, the power of ensemble learning [34}; to 1 if term ¢; occurs ind and O otherwise), frequency-
may be utilized to achieve strong generalization ability arfthsed weighting (setv; to the frequency of ternt; in d)
it will be an interesting issue for future work as indicated iand the widely usedf-idf (term frequency - inverse document
Section VII. frequency) weighting [29]. Note that the dimensionality of
the vector space may be prohibitively too high (the term set
7 could contain hundreds of thousands of terms) for any
o ML algorithm to efficiently build classifiersgdimensionality
A. Text Categorization reduction(DR) techniques are necessary to reduce the size of
Text categorization (TC) is the task of building learninghe vector space frof¥ | to |7’ < |7|. A lot of DR methods
systems capable of classifying text (or hypertext) documeritave been proposed, such &sm selectionmethods based
under one or more of a set of predefined categories or subjestdocument frequency, information gain, mutual information,
codes [15]. Due to the increased availability of ever largef® statistic, etc., anderm extractionmethods based on term
numbers of text documents in digital form and by the ensuirgustering and latent semantic indexing [33]. Various ML
need to organize them for easier use, TC has become omethods have been applied to solve TC problems, including
of the key techniques for handling and organizing text dateecision trees, support vector machines, nearest neighbor
TC is now being applied to a wide range of applications/lassifiers, Bayesian probabilistic classifiers, inductive rule
including document organization, text filtering, automatel¢arning algorithms and more [29]. In most cases, the multi-
metadata generation, word sense disambiguation, Web p&ajeel learning problem of TC is decomposed into multiple
categorization under hierarchical catalogues, etc [29]. independent binary classification problems where a separate
In the 1980's, the most popular approach to TC is based olassifier is built for each category. For more information about
knowledge engineeringKE) techniques which aim at manu-TC research, an excellent and comprehensive survey on this
ally defining a set of logical rules encoding expert knowleddepic is given in the literature [29].
on how to classify documents under the given categories. Since
the early of 1990's, thenachine learning(ML) approach t0 g Results
TC has gradually gained popularity where a general inductive L
process is employed to automatically build a text classifier E/The Reuters collection is the most commonly-used collec-

VI. APPLICATION TO TEXT CATEGORIZATION

learning from a set of preclassified documents. The advanta as for TC evalgatiqn and various versipns of this collectiqn
of the ML approach over the KE approach lie in the fa ave been studied in the TC community [29], [32]. In this

that the former one can achieve comparable performarﬁ:%per’ the Reuters-21578 Distribution 1i§ used to f_urther
evaluate the performance ofPBuLL and other multi-label

8For the metricaverage precision“fall outside” means the value is more |eaming algorithms- Reuters-21578 consists of 21,578 Reuters

than one standard deviation smaller than the mean value. While for the other
four evaluation criteria, “fall outside” means the value is more than one °Data set available at http://www.daviddlewis.com/resources/testcollections/
standard deviation larger than the mean value. reuters21578/.
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TABLE V
CHARACTERISTICS OF THEPREPROCESSEMATA SETS. PMC DENOTES THEPERCENTAGE OFDOCUMENTSBELONGING TOMORE THAN ONE
CATEGORY, AND ANL DENOTES THEAVERAGE NUMBER OF LABELS FOREACH DOCUMENT.

DATA NUMBER OF NUMBER OF VOCABULARY
PMC ANL

SET CATEGORIES DOCUMENTS SIZE

FIRST3 3 7,258 529 0.74, 1.0074
FIRST4 4 8,078 598 139 1.0140
FIRSTS 5 8,655 651 198, 1.0207
FIRST6 6 8,817 663 3.43% 1.0352
FIRST7 7 9,021 677 3.6% 1.0375
FIRST8 8 9,158 683 3.8% 1.0396
FIRST9 9 9,190 686 4.49%  1.0480

TABLE VI

EXPERIMENTAL RESULTS OFEACH MULTI-LABEL LEARNING ALGORITHM ON THE REUTERS- 21578 LLECTION IN TERMS OFHAMMING LOSS

DATA ALGORITHM

SET BP-MLL BOOSTEXTER  ADTBOOSTMH RANK-SVM  BASICBP
FIRST3 0.0368 0.0236 0.0404 0.0439 0.0433
FIRST4 0.0256 0.0250 0.0439 0.0453 0.0563
FIRSTS 0.0257 0.0260 0.0469 0.0592 0.0433
FIRST6 0.0271 0.0262 0.0456 0.0653 0.0439
FIRST7 0.0252 0.0249 0.0440 0.0576 0.0416
FIRST8 0.0230 0.0229 0.0415 0.0406 0.0399
FIRST9 0.0231 0.0226 0.0387 0.0479 0.0387
AVERAGE 0.0266 0.0245 0.0430 0.0514 0.0439

TABLE VII

EXPERIMENTAL RESULTS OFEACH MULTI-LABEL LEARNING ALGORITHM ON THE REUTERS 21578 GLLECTION IN TERMS OFONE-ERROR

DATA ALGORITHM

SET BpP-MLL BOOSTEXTER ADTBOOSTMH  RANK-SVM BAsICBP
FIRST3 0.0506 0.0287 0.0510 0.0584 0.0558
FIRST4 0.0420 0.0384 0.0730 0.0647 0.0847
FIRSTS 0.0505 0.0475 0.0898 0.0873 0.0842
FIRST6 0.0597 0.0569 0.1024 0.1064 0.1055
FIRST7 0.0632 0.0655 0.1206 0.1438 0.1147
FIRST8 0.0673 0.0679 0.1249 0.0997 0.1422
FIRST9 0.0708 0.0719 0.1383 0.1288 0.1489
AVERAGE 0.0577 0.0538 0.1000 0.0985 0.1051

TABLE VIII

EXPERIMENTAL RESULTS OFEACH MULTI-LABEL LEARNING ALGORITHM ON THE REUTERS 21578 (LLECTION IN TERMS OFCOVERAGE.

DATA ALGORITHM

SET BP-MLL BOOSTEXTER ADTBOOSTMH RANK-SVM  BASICBP
FIRST3 0.0679 0.0416 0.0708 0.0869 0.0761
FIRST4 0.0659 0.0635 0.1187 0.1234 0.1419
FIRSTS 0.0921 0.0916 0.1624 0.1649 0.1390
FIRST6 0.1363 0.1397 0.2438 0.2441 0.2552
FIRST7 0.1488 0.1635 0.2882 0.3301 0.2837
FIRST8 0.1628 0.1815 0.3194 0.3279 0.4358
FIRST9 0.1905 0.2208 0.3811 0.4099 0.4995
AVERAGE 0.1235 0.1289 0.2263 0.2410 0.2616

newswire documents appeared in 1987, where less than hddicument.

of the documents have human assigned topic labels. Alleor each document, the following preprocessing operations
documents without any topic label or with empty main t€xdre performed before experiments: All words were converted
are discarded from the collection. Each remaining docume&gliower case, punctuation marks were removed, and “function
belongs to at least one of the 135 possible topics (categori§gyrds” such as “of’ and “the” on the SMART stop-list
where a “sub-category” relation governs categories and nipgs) were removed. Additionally all strings of digits were

of them constitute the top level of this hierarchy. In this papehapped to a single common token. Following the same
only those top level categories are used to label each remaininga set generation scheme as used in [28] and [5], subsets
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TABLE IX
EXPERIMENTAL RESULTS OFEACH MULTI-LABEL LEARNING ALGORITHM ON THE REUTERS 21578 WLLECTION IN TERMS OFRANKING LOSS

DATA ALGORITHM

SET BpP-MLL BOOSTEXTER ADTBOOSTMH  RANK-SVM BAsICBP
FIRST3 0.0304 0.0173 N/A 0.0398 0.0345
FIRST4 0.0172 0.0164 N/A 0.0363 0.0435
FIRSTS 0.0176 0.0173 N/A 0.0354 0.0302
FIRST6 0.0194 0.0199 N/A 0.0406 0.0448
FIRST7 0.0177 0.0198 N/A 0.0471 0.0407
FIRST8 0.0166 0.0190 N/A 0.0393 0.0563
FIRST9 0.0166 0.0197 N/A 0.0434 0.0563
AVERAGE 0.0193 0.0185 N/A 0.0403 0.0438

TABLE X

EXPERIMENTAL RESULTS OFEACH MULTI-LABEL LEARNING ALGORITHM ON THE REUTERS 21578 QLLECTION IN TERMS OFAVERAGE PRECISION.

DATA ALGORITHM

SET BpP-MLL BOOSTEXTER ADTBOOSTMH  RANK-SVM BAsICBP
FIRST3 0.9731 0.9848 0.9725 0.9673 0.9699
FIRST4 0.9775 0.9791 0.9587 0.9615 0.9512
FIRSTS 0.9719 0.9730 0.9481 0.9491 0.9530
FIRST6 0.9651 0.9658 0.9367 0.9345 0.9343
FIRST7 0.9629 0.9603 0.9326 0.9134 0.9286
FIRST8 0.9602 0.9579 0.9211 0.9336 0.9071
FIRST9 0.9570 0.9540 0.9112 0.9149 0.8998
AVERAGE 0.9668 0.9679 0.9401 0.9392 0.9348

of the k categories with the largest number of articles for The experimental results on each evaluation criterion are
k = 3,...,9 are selected resulting in 7 different data set®ported in Tables VI to X, where the best result on each data
denoted as RST3, FIRST4,...,ARSTI9. The simple term set is shown in bold face. Parameter configuration for each
selection method based alocument frequencfthe number algorithm is the same as that used in Section V. Similarly
of documents containing a specific term) is used to reduase the Yeast data, the partial order™(based on two-tailed
the dimensionality of each data set. Actually, ol words pairedi-test at5% significance level) and total order-" are

with highest document frequency are retained in the finalso defined on the set of all comparing algorithms which
vocabulary®. Note that other term selection methods such ase shown in Table XI. Again, the same as Table H,
information gaincould also be adopted. Each document imalue is given to indicate the level of significance and the
the data set is described as a feature vector usingBhg-6f- accumulated score of each algorithm is shown in bold face in
Words representation [7], i.e. each dimension of the featutbe parentheses at last line.

vector corresponds to the number of times a word in the
vocabulary appearing in this document. Table V summariz

the char_acterlsch of the_ pre_processed _data Sets. . all evaluation criteria (ranking losis not available for AT-
Adopting the same validation mechanism as used in the Ig— 0STMH). Furthermore, as shown in Table VII to Table
eratures [28] and [5], three-fold cross-validation is performﬁgp ' ' '

0 h dat t In detail h dat tis randomlv divida BpP-MLL is inferior to BoOSTEXTER when the number
on each data set. ctall, each dala set Is randomly (?Tdcategories is small (RsT3 to HRST6). However, when

into three parts each with appr0>_<|mately the same size. In_ e%g corresponding data sets get more difficult to learn from,
TOId' one partis held-o_ut_ for testing and the learning a_Ig(_)nthzlpe_ the number of categories becomes larger and the portion
IS tramgd on the remaining datg. The above process is 'terag?%ocuments belonging to more than one category increases
three times so that each part is used as the test data ex hﬁsﬂ to FRSTI), BP-MLL outperforms BOSTEXTER. In
once, where the averaged metric values out of three runs Riition. the facts 'that BMLL outperforms BSICBP on. all

reported for the algorithm. the evaluation criteria again proves that-BILL works better
10 is worth noting that principles used in document weighting andh@n BASICBP when the more complex global error function
dimensionality reduction may have some differences. Although in sevel@s defined in Eq.(3)) is employed to learn from the multi-label
document weighting schemes suchtiaslf weighting [29], words that occur ﬁ?jning examples. On the whole (as shown by the total order),
a

in most documents are assumed to be less useful in representing indivi . . .
documents. For dimensionality reduction however, the words with highdstP-MLL is comparable to BOSTEXTER but is superior to all

document frequency, excluding those “function words” which have alreadiie other algorithms on the Reuters collection.

been removed from the vocabulary using the SMART stop-list [25], are

representative in describing the information contained in the corpus. Actually, The same as the Yeast data, Table Xl reports the compu-
based on a series of experiments, Yang and Pedersen [33] have shown{hfibn time consumed by each multi-label Iearning algorithm

based on document frequency, it is possible to reduce the dimensionality b . .
a factor of 10 with no loss in effectiveness and by a factor of 100 with quH the Reuters collection. As shown in Table XIIp#iLL

a small loss. consumes much more time in the training phase than all the

Table XI shows that B-MLL and BOOSTEXTER are both
gﬁperior to MTBOOST.MH, RANK-SVM and BasicBpP on
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TABLE XI
RELATIVE PERFORMANCEBETWEEN EACH MULTI-LABEL LEARNING ALGORITHM ON THE REUTERS 21578 LLECTION.

EVALUATION ALGORITHM

CRITERION A1-BP-MLL; A2-BOOSTEXTER; A3-ADTBOOST.MH; A4-RANK-SVM; A5-BASICBP
Al = A3 (p=32x10"%), Al =~ A4 (p=9.4x10~%), A1 = A5 (p = 6.7 x 10~ %),

HAMMING Loss A2 - A3 (p=8.2x1078), A2 A4 (p=1.2 x 107%), A2 = A5 (p =T7.5 x 1073),

A3 = A4 (p=12.4x1072)

Al = A3 (p=2.4x 1073), Al = A4 (p=4.0 x 1073), A1 = A5 (p =2.3 x 1073),
ONE-ERROR A2 A3 (p=1.7x107%), A2~ A4 (p =6.9 x 1074), A2 = A5 (p =3.1 x 107%)

Al = A3 (p=5.8x1073), Al = A4 (p=5.4 x 1073), Al = A5 (p = 1.8 x 1072),
COVERAGE A2 A3 (p=1.6x1073), A2~ A4 (p =18 x 1073), A2 = A5 (p = 1.1 x 1072),
A3 = A4 (p=4.6 x 1072)

Al = A4 (p=15x107%), Al = A5 (p=2.6 x 1073), A2 = A4 (p = 1.4 x 1079),
RANKING Loss A2 A5 (p=3.5x 107%)

Al = A3 (p=2.9x 1073), Al = A4 (p= 2.7 x 1073), A1l = A5 (p = 4.1 x 1073),
AVERAGE PRECISION A2 = A3 (p=3.5x 107%), A2 = A4 (p=4.8 x 107%), A2~ A5 (p=1.0 x 1073)
ToTAL ORDER {BP-MLL (14), BOOSTEXTER(14)} >ADTBOOST.MH(-6)>BAsICBP(-10) >RANK -SVM(-12)

TABLE XII
COMPUTATION TIME OF EACH MULTI-LABEL LEARNING ALGORITHM ON THE REUTERS21578 LLECTION, WHERE TRAINING TIME (DENOTED AS
TrPhas@ |s MEASURED INHOURSWHILE TESTING TIME (DENOTED AsTePhasgls MEASURED IN SECONDS

ALGORITHM

DATA BP-MLL BOOSTEXTER ADTBOOST.MH RANK-SVM BASICBP

SET TrPhase TePhase TrPhase TePhase TrPhase TePhase TrPhase TePhase TrPhase TePhase
FIRST3 44.088 4,552 0.115 2.938 0.776 2.561 2.873 28.594 6.395 7.094
FIRST4 57.442 6.891 0.202 3.785 1.055 2.720 5.670 37.328 12.264 6.969
FIRSTS 60.503 8.547 0.237 5.575 1.188 3.933 8.418 48.078 20.614 12.969
FIRST6 69.615 9.328 0.277 7.331 1.539 4.966 15.431 50.969 20.274 13.766
FIRST7 73.524 14.083 0.321 8.305 1.739 5.837 16.249 55.016 22.792 18.922
FIRST8 74.220 15.292 0.343 9.841 1.940 6.945 26.455 55.141 20.927 17.219
FIRST9 75.291 17.922 0.373 11.817 2.107 7.494 28.106 48.141 23.730 23.578
AVERAGE 64.955 10.945 0.267 7.085 1.478 4.922 14.743 46.181 18.142 14.360
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