
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Multi-Label Neural Networks with Applications to
Functional Genomics and Text Categorization

Min-Ling Zhang and Zhi-Hua Zhou,Senior Member, IEEE

Abstract— In multi-label learning, each instance in the training
set is associated with a set of labels, and the task is to output a
label set whose size is unknowna priori for each unseen instance.
In this paper, this problem is addressed in the way that a neural
network algorithm named BP-MLL , i.e. Backpropagation for
Multi-Label Learning, is proposed. It is derived from the popular
Backpropagation algorithm through employing a novel error
function capturing the characteristics of multi-label learning, i.e.
the labels belonging to an instance should be ranked higher than
those not belonging to that instance. Applications to two real-
world multi-label learning problems, i.e. functional genomics and
text categorization, show that the performance of BP-MLL is
superior to those of some well-established multi-label learning
algorithms.

Index Terms— Machine Learning, Data Mining, Multi-Label
Learning, Neural Networks, Backpropagation, Functional Ge-
nomics, Text Categorization.

I. I NTRODUCTION

M ULTI-label learning tasks are ubiquitous in real-world
problems. For instance, in text categorization, each

document may belong to several predefined topics, such as
governmentand health [18], [28]; in bioinformatics, each
gene may be associated with a set of functional classes,
such asmetabolism,transcriptionandprotein synthesis[8]; in
scene classification, each scene image may belong to several
semantic classes, such asbeachand urban [2]. In all these
cases, instances in the training set are each associated with a
set of labels, and the task is to output the label set whose size
is not knowna priori for the unseen instance.

Traditional two-class and multi-class problems can both be
cast into multi-label ones by restricting each instance to have
only one label. On the other hand, the generality of multi-
label problems inevitably makes it more difficult to learn.
An intuitive approach to solving multi-label problem is to
decompose it into multiple independent binary classification
problems (one per category). However, this kind of method
does not consider the correlations between the different labels
of each instance and the expressive power of such a system
can be weak [8], [18], [28]. Fortunately, several approaches
specially designed for multi-label learning tasks have been
proposed, such as multi-label text categorization algorithms
[12], [18], [28], [30], multi-label decision trees [4], [5] and

Manuscript received September 16, 2005; revised March 17, 2006. This
work was supported by the National Science Foundation of China under
Grant No. 60473046 and the National Science Fund for Distinguished Young
Scholars of China under Grant No. 60325207.

The authors are with the National Laboratory for Novel Soft-
ware Technology, Nanjing University, Nanjing 210093, China. E-mail:
{zhangml,zhouzh}@lamda.nju.edu.cn.

multi-label kernel methods [2], [8], [16]. In this paper, a neural
network algorithm named BP-MLL , i.e. Backpropagation for
Multi-Label Learning, is proposed, which is the first multi-
label neural network algorithm. As its name implied, BP-
MLL is derived from the popular Backpropagation algorithm
[24] through replacing its error function with a new function
defined to capture the characteristics of multi-label learning,
that is, the labels belonging to an instance should be ranked
higher than those not belonging to that instance. Applications
to two real-world multi-label learning problems, i.e. functional
genomics and text categorization, show that BP-MLL outper-
forms some well-established multi-label learning algorithms.

The rest of this paper is organized as follows. In Section II,
formal definition of multi-label learning is given and previous
works in this area are reviewed. In Section III, BP-MLL is
presented. In Section IV, evaluation metrics used in multi-
label learning are briefly introduced. In Section V and VI,
experiments of BP-MLL on two real-world multi-label learning
problems are reported respectively. Finally in Section VII, the
main contribution of this paper is summarized.

II. M ULTI -LABEL LEARNING

Let X = Rd denote the domain of instances and letY =
{1, 2, . . . , Q} be the finite set of labels. Given a training set
T = {(x1, Y1), (x2, Y2), ..., (xm, Ym)} (xi ∈ X , Yi ⊆ Y)
i.i.d. drawn from an unknown distributionD, the goal of the
learning system is to output a multi-label classifierh : X →
2Y which optimizes some specific evaluation metric. In most
cases however, instead of outputting a multi-label classifier, the
learning system will produce a real-valued function of the form
f : X×Y → R. It is supposed that, given an instancexi and its
associated label setYi, a successful learning system will tend
to output larger values for labels inYi than those not inYi, i.e.
f(xi, y1) > f(xi, y2) for any y1 ∈ Yi andy2 /∈ Yi. The real-
valued functionf(·, ·) can be transformed to a ranking function
rankf (·, ·), which maps the outputs off(xi, y) for any y ∈
Y to {1, 2, . . . , Q} such that iff(xi, y1) > f(xi, y2) then
rankf (xi, y1) < rankf (xi, y2). Note that the corresponding
multi-label classifierh(·) can also be derived from the function
f(·, ·): h(xi) = {y|f(xi, y) > t(xi), y ∈ Y}, wheret(·) is a
threshold function which is usually set to be the zero constant
function.

As stated in the above section, the generality of multi-
label problems inevitably makes it more difficult to solve than
traditional single-label (two-class or multi-class) problems.
Until now, only a few literatures on multi-label learning
are available, which mainly concern the problems of text

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

categorization [5], [12], [16], [18], [28], [30], bioinformatics
[4], [8] and scene classification [2].

Research of multi-label learning was initially motivated
by the difficulty of concept ambiguity encountered in text
categorization, where each document may belong to sev-
eral topics (labels) simultaneously. One famous approach to
solving this problem is BOOSTEXTER proposed by Schapire
and Singer [28], which is in fact extended from the popular
ensemble learning method ADABOOST [10]. In the training
phase, BOOSTEXTER maintains a set of weights over both
training examples and their labels, where training examples
and their corresponding labels that are hard (easy) to predict
correctly get incrementally higher (lower) weights. In 1999,
McCallum [18] proposed a Bayesian approach to multi-label
document classification, where a mixture probabilistic model
(one mixture component per category) is assumed to generate
each document and EM [6] algorithm is utilized to learn the
mixture weights and the word distributions in each mixture
component. In 2003, Ueda and Saito [30] presented two
types of probabilistic generative models for multi-label text
called parametric mixture models (PMM 1, PMM 2), where the
basic assumption under PMMS is that multi-label text has a
mixture of characteristic words appearing in single-label text
that belong to each category of the multi-categories. It is worth
noting that the generative models used in [18] and [30] are
both based on learning text frequencies in documents, and
are thus specific to text applications. Also in 2003, Comité et
al. [5] extended alternating decision tree [9] to handle multi-
label data, where the ADABOOST.MH algorithm proposed by
Schapire and Singer [27] is employed to train the multi-label
alternating decision trees.

In 2004, Gao et al. [12] generalized the maximal figure-
of-merit (MFoM) approach [11] for binary classifier learn-
ing to the case of multiclass, multi-label text categorization.
They defined a continuous and differentiable function of the
classifier parameters to simulate specific performance metrics,
such as precision and recall etc. (micro-averagingF1 in their
paper). Their method assigns a uniform score function to
each category of interest for each given test example, and
thus the classical Bayes decision rules can be applied. One
year later, Kazawa et al. [16] converts the original multi-label
learning problem of text categorization into a multiclass single-
label problem by regarding a set of topics (labels) as a new
class. To cope with the data sparseness caused by the huge
number of possible classes (Qtopics will yield 2Q classes),
they embedded labels into a similarity-induced vector space in
which prototype vectors of similar labels will be placed close
to each other. They also provided an approximation method
in learning and efficient classification algorithms in testing to
overcome the demanding computational cost of their method.

In addition to text categorization, multi-label learning has
also manifested its effectiveness in other real-world appli-
cations, such as bioinformatics and scene classification. In
2001, Clare and King [4] adapted C4.5 decision tree [22] to
handle multi-label data (gene expression in their case) through
modifying the definition of entropy. They chose decision trees
as the baseline algorithm because of its output (equivalently
a set of symbolic rules) is interpretable and can be compared

with existing biological knowledge. It is also noteworthy that
their goal is to learn a set of accurate rules, not necessarily
a complete classification. One year later, through defining
a special cost function based onranking loss(as shown in
Eq.(24)) and the corresponding margin for multi-label models,
Elisseeff and Weston [8] proposed a kernel method for multi-
label classification and tested their algorithm on a Yeast gene
functional classification problem with positive results. In 2004,
Boutell et al. [2] applied multi-label learning techniques to
scene classification. They decomposed the multi-label learning
problem into multiple independent binary classification prob-
lems (one per category), where each example associated with
label setY will be regarded as positive example when building
classifier for classy ∈ Y while regarded as negative example
when building classifier for classy /∈ Y . They also provided
various labeling criteria to predict a set of labels for each test
instance based on its output on each binary classifier. Note
that although most works on multi-label learning assume that
an instance can be associated with multiple valid labels, there
are also works assuming that only one of the labels associated
with an instance is correct [14]1.

As reviewed above, most of the existing multi-label learning
algorithms are derived from traditional learning techniques
such as probabilistic generative models [18], [30], boosting
methods [28], decision trees [4], [5], and maximal margin
methods [2], [8], [16]. However, as a popular and effective
learning mechanism, there hasn’t been any multi-label learning
algorithm derived from neural network model. In the following
section, the first multi-label learning algorithm based on neural
network model, i.e. BP-MLL , is proposed.

III. B P-MLL

A. Neural Networks

As defined in the literature [17], neural networks are
massively parallel interconnected networks of simple (usually
adaptive) elements and their hierarchical organizations which
are intended to interact with the objects of the real world in
the same way as biological nervous systems do. Earliest work
on neural networks dates back to McCulloch and Pitts’s M-P
model of a neuron [19], which is then followed by considerable
works in the 1950s and 1960s on single-layer neural networks
[23] [31]. Although single-layer neural networks were success-
ful in classifying certain patterns, it had a number of limita-
tions so that even simple functions such as XOR could hardly
be learned [20]. Such limitations led to the decline of research
on neural networks during the 1970s. In the early 1980s,
research on neural networks resurged largely due to successful
learning algorithms for multi-layer neural networks. Currently,
diverse neural networks exist, such as multi-layer feed-forward
networks, radial basis function networks, adaptive resonance
theory models, self-organizing feature mapping networks, etc.
Neural networks provide general and practical techniques for
learning from examples, which have been widely used in
various areas.

1In this paper, only the former formalism of multi-label learning is studied.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

In this paper, traditional multi-layer feed-forward neural net-
works are adapted to learn from multi-label examples. Feed-
forward networks have neurons arranged in layers, with the
first layer taking inputs and the last layer producing outputs.
The middle layers have no connection with the external world
and hence are called hidden layers. Each neuron in one layer is
connected (usually fully) to neurons on the next layer and there
is no connection among neurons in the same layer. Therefore,
information is constantlyfed forward from one layer to the
next one. Parameters of the feed-forward networks are learned
by minimizing some error function defined over the training
examples, which commonly takes the form of the sum of the
squared difference between the network output values and the
target values on each training example. The most popular
approach to minimizing this sum-of-squares error function
is the Backpropagation algorithm [24], which uses gradient
descent to update parameters of the feed-forward networks by
propagating the errors of the output layer successively back
to the hidden layers. More detailed information about neural
networks and related topics can be found in textbooks such as
[1] and [13].

Actually, adapting traditional feed-forward neural networks
from handlingsingle-labelexamples tomulti-label examples
requires two keys. The first key is to design some specific
error function other than the simple sum-of-squares function
to capture the characteristics of multi-label learning. Second,
some revisions have to be made accordingly for the classical
learning algorithm in order to minimize the newly designed
error function. These two keys will be described in detail in
the following two subsections respectively.

B. Architecture

Let X = Rd be the instance domain andY =
{1, 2, . . . , Q} be the finite set of class labels. Suppose the
training set is composed ofm multi-label instances, i.e.
{(x1, Y1), (x2, Y2), ..., (xm, Ym)}, where each instancexi ∈
X is a d-dimensional feature vector andYi ⊆ Y is the set
of labels associated with this instance. Now suppose a single-
hidden-layer feed-forward BP-MLL neural network as shown
in Fig. 1 is used to learn from the training set. The BP-
MLL neural network hasd input units each corresponding to a
dimension of thed-dimensional feature vector,Q output units
each corresponding to one of the possible classes, and one
hidden layer withM hidden units. The input layer is fully
connected to the hidden layer with weightsV = [vhs] (1 ≤
h ≤ d, 1 ≤ s ≤ M) and the hidden layer is also fully
connected to the output layer with weightsW = [wsj] (1 ≤
s ≤ M, 1 ≤ j ≤ Q). The bias parametersγs (1 ≤ s ≤ M) of
the hidden units are shown as weights from an extra input unit
a0 having a fixed value of 1. Similarly, the bias parameters
θj (1 ≤ j ≤ Q) of the output units are shown as weights from
an extra hidden unitb0, with activation again fixed at 1.

Since the goal of multi-label learning is to predict the label
sets of unseen instances, an intuitive way to define the global
error of the network on the training set could be:

E =
m∑

i=1

Ei (1)

bias

bias

b
1
b
0

a
0
 a
1
 a
2
 a
d

c
1
 c
2

c
Q

b
M

W
=
[
w

sj

]

j
=1,2, ,
 Q

s
=1,2, ,
 M

h
=1,2, ,
 d

s
=1,2, ,
 M

V
=
[
v
hs
]

Fig. 1. Architecture of the BP-MLL neural network.

whereEi is the error of the network onxi, which could be
defined as:

Ei =
Q∑

j=1

(ci
j − di

j)
2 (2)

whereci
j = cj(xi) is the actual output of the network onxi on

the j-th class,di
j is the desired output ofxi on thej-th class

which takes the value of either +1(j ∈ Yi) or -1 (j /∈ Yi).
Combining Eq.(2) with Eq.(1), various optimization meth-

ods can be directly applied to learn from the multi-label
training instances. In this paper, the classical Backpropagation
algorithm [24] is used to learn from this intuitive global error
function and the resulting algorithm is named as BASICBP.
However, although BASICBP is feasible, some important char-
acteristics of multi-label learning are not considered by this
method. Actually, the error function defined in Eq.(2) only
concentrates on individual label discrimination, i.e. whether a
particular labelj ∈ Y belongs to the instancexi or not, it does
not consider the correlations between the different labels ofxi,
e.g. labels inYi should be ranked higher than those not inYi.
In this paper, these characteristics of multi-label learning are
appropriately addressed by rewriting the global error function
as follows:

E =
m∑

i=1

Ei =
m∑

i=1

1
|Yi||Y i|

∑

(k,l)∈Yi×Y i

exp(−(ci
k − ci

l)) (3)

As regard to the rightmost hand of Eq.(3), thei-th error term(
1

|Yi||Y i|
∑

(k,l)∈Yi×Y i
exp(−(ci

k − ci
l))

)
in the summation

defines the error of the network on thei-th multi-label training
example(xi, Yi). Here, Y i is the complementary set ofYi

in Y and | · | measures the cardinality of a set. Specifically,
ci
k − ci

l measures the difference between the outputs of the
network on one label belonging toxi (k ∈ Yi) and one label
not belonging to it (l∈ Y i). It is obvious that the bigger
the difference, the better the performance. Furthermore, the
negation of this difference is fed to the exponential function
in order to severely penalize thei-th error term if ci

k (i.e.
the output on the label belonging toxi) is much smaller
than ci

l (i.e. the output on the label not belonging toxi).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

The summation in thei-th error term takes account of the
accumulated difference between the outputs of any pair of
labels with one belonging toxi and another not belonging to
xi, which is then normalized by the total number of possible
pairs, i.e. |Yi||Y i|2. In this way, the correlations between
different labels ofxi, i.e. labels inYi should get larger network
outputs than those inY i, are appropriately addressed.

As analyzed above, Eq.(3) focuses on the difference be-
tween the network’s outputs on labels belonging to one
instance and on other labels not belonging to it. Therefore,
minimization of Eq.(3) will lead the system to output larger
values for labels belonging to the training instance and smaller
values for those not belonging to it. When the training set
sufficiently covers the distribution information of the learning
problem, the well-trained neural network model encoding
these information will also eventually give larger outputs for
the labels belonging to the test instance than those labels not
belonging to it. Actually, this error function is closely related
to the ranking losscriterion (as shown in Eq.(24)) which will
be introduced in Section IV.

In this paper, minimization of the global error function
is carried out by gradient descent combined with the error
backpropagation strategy [24], which is scrutinized in the
following subsection.

C. Training and Testing

For training instancexi and its associated label setYi, the
actual output of thej-th output unit is (omitting the superscript
i without lose of generality):

cj = f(netcj + θj) (4)

where θj is the bias of thej-th output unit, f(x) is the
activation function of the output units which is set to be the
“tanh” function:

f(x) =
ex − e−x

ex + e−x
(5)

netcj is the input to thej-th output unit:

netcj =
M∑

s=1

bswsj (6)

wherewsj is the weight connecting thes-th hidden unit and
the j-th output unit, andM is the number of hidden units.bs

is the output of thes-th hidden unit:

bs = f(netbs + γs) (7)

whereγs is the bias of thes-th hidden unit,f(u) is also the
“tanh” function.netbs is the input to thes-th hidden unit:

netbs =
d∑

h=1

ahvhs (8)

where ah is the h-th component ofxi, vhs is the weight
connecting theh-th input unit and thes-th hidden unit.

2In this paper, the example(xi, Yi) is simply excluded from the training
set for BP-MLL if either Yi or Y i is an empty set.

Since “tanh” function is differentiable, we can define the
general error of thej-th output unit as:

dj = − ∂Ei

∂netcj
(9)

consideringcj = f(netcj + θj), we get

dj = −∂Ei

∂cj

∂cj

∂netcj
= −∂Ei

∂cj
f ′(netcj + θj) (10)

then consideringEi = 1
|Yi||Y i|

∑
(k,l)∈Yi×Y i

exp(−(ck − cl)),
we get

∂Ei

∂cj
=

∂
[

1
|Yi||Y i|

∑
(k,l)∈Yi×Y i

exp(−(ck − cl))
]

∂cj

=





− 1
|Yi||Y i|

∑
l∈Y i

exp(−(cj − cl)), if j ∈ Yi

1
|Yi||Y i|

∑
k∈Yi

exp(−(ck − cj)), if j ∈ Y i

(11)

sincef ′(netcj + θj) = (1 + cj)(1− cj), then substituting this
equation and Eq.(11) into Eq.(10), we get

dj =



(
1

|Yi||Y i|
∑

l∈Y i

exp(−(cj − cl))

)
(1 + cj)(1− cj)

if j ∈ Yi

(
− 1
|Yi||Y i|

∑
k∈Yi

exp(−(ck − cj))

)
(1 + cj)(1− cj)

if j ∈ Y i

(12)

Similarly, we can define the general error of thes-th hidden
unit as:

es = − ∂Ei

∂netbs
(13)

consideringbs = f(netbs + γs), we get

es = −∂Ei

∂bs

∂bs

∂netbs

= −



Q∑

j=1

∂Ei

∂netcj

∂netcj

∂bs


 f ′(netbs + γs) (14)

then consideringdj = − ∂Ei

∂netcj
and netcj =

M∑
s=1

bswsj , we

get

es =




Q∑

j=1

dj

∂

[
M∑

s=1
bswsj

]

∂bs


 f ′(netbs + γs)

=




Q∑

j=1

djwsj


 f ′(netbs + γs) (15)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

sincef ′(netbs + γs) = (1+ bs)(1− bs), then substituting this
equation into Eq.(15) we get

es =




Q∑

j=1

djwsj


 (1 + bs)(1− bs) (16)

In order to reduce error, we can usegradient descent
strategy, i.e. make the change of the weights be proportional
to negative gradient:

∆wsj = −α
∂Ei

∂wsj
= −α

∂Ei

∂netcj

∂netcj

∂wsj

= αdj




∂

(
M∑

s=1
bswsj

)

∂wsj


 = αdjbs (17)

∆vhs = −α
∂Ei

∂vhs
= −α

∂Ei

∂netbs

∂netbs

∂vhs

= αes




∂

(
d∑

h=1

ahvhs

)

∂vhs


 = αesah (18)

the biases are changed according to (by fixing the activations
of the extra input unita0 and hidden unitb0 at 1):

∆θj = αdj ; ∆γs = αes (19)

whereα is the learning ratewhose value is in the range of
(0.0,1.0).

Therefore, based on the above derivation, the training pro-
cedure of BP-MLL can be conveniently set up. In detail, in
each training epoch of BP-MLL , the training instances are fed
to the network one by one. For each multi-labeled instance
(xi, Yi), the weights (and biases) are modified according to
Eqs.(17) to (19). After that,(xi+1, Yi+1) is fed to the network
and the training process is iterated until the global errorE
doesn’t decrease any more or the number of training epochs
increases to a threshold.

When a trained BP-MLL network is used in prediction for
an unseen instancex, the actual outputscj (j = 1, 2, . . . , Q)
will be used for label ranking. The associated label set for
x is determined by a threshold functiont(x), i.e. Y =
{j|cj > t(x), j ∈ Y}. A natural solution is to sett(x)
to be the zero constant function. Nevertheless, in this paper,
the threshold learning mechanism used in the literature [8] is
adopted which generalizes the above natural solution. In detail,
t(x) is modelled by a linear functiont(x) = wT · c(x) + b,
wherec(x) = (c1(x), c2(x), . . . , cQ(x)) is theQ-dimensional
vector whosej-th component corresponds to the actual output
of the trained network onx on thej-th class. The procedure
used to learn the parameters oft(x) (i.e. the weight vector
wT and bias valueb) is described as follows. For each multi-
label training example(xi, Yi) (1 ≤ i ≤ m), let c(xi) =
(ci

1, c
i
2, . . . , c

i
Q) and set the target valuest(xi) as:

t(xi) =
arg mint

(|{k|k ∈ Yi, ci
k ≤ t}|+ |{l|l ∈ Y i, ci

l ≥ t}|) (20)

When the minimum is not unique and the optimal values are
a segment, the middle of this segment is chosen. Based on the
above process, the parameters of the threshold function can
be learned through solving the matrix equationΦ · w′ = t.
Here matrixΦ has dimensionsm × (Q + 1) whosei-th row
is (ci

1, . . . , c
i
Q, 1), w′ is the (Q+1)-dimensional vector(w, b),

and t is them-dimensional vector(t(x1), t(x2), . . . , t(xm)).
In this paper, linear least squares method is then applied to
find the solution of the above equation. When a test instance
x is given, it is firstly fed to the trained network to get the
output vectorc(x). After that, the threshold value forx is
computed viat(x) = wT · c(x) + b.

It is worth noting that the number of computations needed
to evaluate the derivatives of the error function scales linearly
with the size of the network. In words, letW be the total
number of weights and biases of the BP-MLL network, i.e.
W = (d+1)×M+(M+1)×Q (usuallyd À Q andM > Q).
The total number of computations needed mainly comes from
three phases, i.e. the forward propagation phase (computingbi

andcj), the backward propagation phases (computingdj and
ei) and the weights and biases update phase (computing∆wij ,
∆vhi, ∆θj and∆γi). In the forward propagation phase, most
computational cost is spent in evaluating the sums as shown
in Eq.(6) and Eq.(8), with the evaluation of the activation
functions as shown in Eq.(4) and Eq.(7) representing a small
overhead. Each term in the sum in Eq.(6) and Eq.(8) requires
one multiplication and one addition, leading to an overall
computational cost which isO(W); In the backward phase, as
shown in Eq.(12) and Eq.(16), computing eachdj andei both
requiresO(Q) computations. Thus, the overall computational
cost in the backward propagation phase isO(Q2)+O(Q×M),
which is at mostO(W); As for the weights and biases update
phase, it is evident that the overall computational cost is again
O(W). To sum up, the total number of computations needed
to update the BP-MLL network on each multi-label instance
is O(W) indicating that the network training algorithm is
very efficient. Thus, the overall training cost of BP-MLL is
O(W · m · n), wherem is the number of training examples
and n is the total number of training epochs. The issues of
the total number of epochs before a local solution is obtained,
and the possibility of getting stuck in a “bad” local solution
will be discussed in Subsection V-B.

IV. EVALUATION METRICS

Before presenting comparative results of each algorithm,
evaluation metrics used in multi-label learning is firstly in-
troduced in this section. Performance evaluation of multi-
label learning system is different from that of classical
single-label learning system. Popular evaluation metrics used
in single-label system include accuracy, precision, recall
and F-measure [29]. In multi-label learning, the evaluation
is much more complicated. Adopting the same notations
as used in the beginning of Section II, for a test set
S = {(x1, Y1), (x2, Y2), ..., (xp, Yp)}, the following multi-
label evaluation metrics proposed in [28] are used in this paper:
(1) hamming loss: evaluates how many times an instance-label
pair is misclassified, i.e. a label not belonging to the instance is

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

predicted or a label belonging to the instance is not predicted.
The performance is perfect whenhlossS(h) = 0; the smaller
the value ofhlossS(h), the better the performance.

hlossS(h) =
1
p

p∑

i=1

1
Q
|h(xi)∆Yi| (21)

where∆ standsfor the symmetric difference between two sets
and Q is the total number of possible class labels. Note that
when |Yi| = 1 for all instances, a multi-label system is in
fact a multi-class single-label one and the hamming loss is2

Q
times the usual classification error.

While hamming loss is based on the multi-label classifier
h(·), the following metrics are defined based on the real-valued
function f(·, ·) which concern the ranking quality of different
labels for each instance:
(2) one-error: evaluates how many times the top-ranked label
is not in the set of proper labels of the instance. The perfor-
mance is perfect whenone-error S(f) = 0; the smaller the
value ofone-error S(f), the better the performance.

one-error S(f) =
1
p

p∑

i=1

[[[arg max
y∈Y

f(xi, y)] /∈ Yi]] (22)

where for any predicateπ, [[π]] equals 1 ifπ holds and 0
otherwise. Note that, for single-label classification problems,
the one-error is identical to ordinary classification error.
(3) coverage: evaluates how far we need, on the average, to go
down the list of labels in order to cover all the proper labels
of the instance. It is loosely related to precision at the level
of perfect recall. Thesmaller the value ofcoverageS(f), the
better the performance.

coverageS(f) =
1
p

p∑

i=1

max
y∈Yi

rankf (xi, y)− 1 (23)

As mentioned in the beginning of Section II,rankf (·, ·) is
derived from the real-valued functionf(·, ·), which maps the
outputs off(xi, y) for any y ∈ Y to {1, 2, . . . , Q} such that
if f(xi, y1) > f(xi, y2) thenrankf (xi, y1) < rankf (xi, y2).
(4) ranking loss: evaluates the average fraction of label pairs
that are reversely ordered for the instance. The performance
is perfect whenrlossS(f) = 0; the smaller the value of
rlossS(f), the better the performance.

rlossS(f) =
1
p

p∑

i=1

|Di|
|Yi||Y i|

(24)

where Y denotesthe complementary set ofY in Y while
Di = {(y1, y2)|f(xi, y1) ≤ f(xi, y2), (y1, y2) ∈ Yi × Yi}.
(5) average precision: evaluates the average fraction of labels
ranked above a particular labely ∈ Y which actually are in
Y . It is originally used in information retrieval (IR) systems to
evaluate the document ranking performance for query retrieval
[26]. The performance is perfect whenavgprecS(f) = 1; the
bigger the value ofavgprecS(f), the better the performance.

avgprecS(f) =
1
p

p∑

i=1

1
|Yi|

∑

y∈Yi

|Li|
rankf (xi, y)

(25)

whereLi = {y′|rankf (xi, y
′) ≤ rankf (xi, y), y′ ∈ Yi}.

Yeast

Saccharomyces cerevisiae

Ionic

Homeostasis

Cell Growth,

Cell Division,

DNA Synthesis

Transposable Elements

Viral and Plasmid Proteins

Cell Rescue,

Defense, Cell

Death and Aging

Protein

Synthesis

Cellular

Biogenesis

Cellular

Organization

Cellular Transport,

Transport Mechanisms

Protein

Destination

Metabolism
 Transcription

Transport

Facilitation

Energy

Cellular Communication,

Signal Transduction

YAL062w

Fig. 2. First level of the hierarchy of the Yeast gene functional classes. One
gene, for instance the one named YAL062w, can belong to several classes
(shaded in grey) of the 14 possible classes.

Note that in the rest of this paper, performance of each
multi-label learning algorithm is evaluated base on the above
five metrics.

V. A PPLICATION TO FUNCTIONAL GENOMICS

A. Functional Genomics

Bioinformatics or computational biology is a new inter-
disciplinary field where techniques from applied mathematics,
informatics and computer science are applied to biology
in order to model systems, extract information, understand
process, etc. Major efforts in this field include sequence
alignment, protein structure prediction, analysis of protein-
protein interactions, functional genomics, etc. Among which
functional genomicsis of great importance which aims at
characterizing the function of genes and the proteins they
encode in determining traits, physiology or development of
an organism. As the steady growing of the rate of genome
sequencing and increasing of the amount of available data,
computational functional genomics becomes both possible and
necessary. It uses high-throughput techniques like DNA micro-
arrays, proteomics, metabolomics and mutation analysis to
describe the function and interactions of genes. The range of
recent work in computational functional genomics includes
improved sequence similarity search algorithms, micro-array
expression analysis, computational prediction of protein sec-
ondary structure, differential genome analysis, etc [3].

In this paper, the effectiveness of multi-label learning al-
gorithms is evaluated through predicting the gene functional
classes of the YeastSaccharomyces cerevisiae, which is one
of the best studied organisms. Specifically, the Yeast data set
studied in the literatures [8] and [21] is investigated. Each gene
is described by the concatenation of micro-array expression
data and phylogenetic profile and is associated with a set of
functional classes whose maximum size can be potentially
more than 190. In order to make it easier, Elisseeff and Weston
preprocessed the data set where only the known structure
of the functional classes are used. Actually, the whole set
of functional classes is structured into hierarchies up to 4

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

10 20 30 40 50 60 70 80 90 100
1.370

1.372

1.374

1.376

1.378

1.380

1.382

1.384

1.386

training epochs

gl
ob

al
tr

ai
n
in

g
er

ro
r

(×
10

3
)

(a)

γ =20%

γ =40%

γ =60%

γ =80%

γ =100%

10 20 30 40 50 60 70 80 90 100
0.2045

0.2050

0.2055

0.2060

0.2065

0.2070

0.2075

0.2080

0.2085

training epochs

ha
m

m
in

g
lo

ss

(b)

γ=20%

γ=40%

γ=60%

γ=80%

γ=100%

10 20 30 40 50 60 70 80 90 100
0.229

0.200

0.231

0.232

0.233

0.234

0.235

0.236

0.237

training epochs

on
e−

er
ro

r

(c)

γ =20%

γ =40%

γ =60%

γ =80%

γ =100%

10 20 30 40 50 60 70 80 90 100
6.415

6.420

6.425

6.430

6.435

6.440

6.445

6.450

6.455

training epochs

co
ve

ra
ge

(d)

γ =20%

γ =40%

γ =60%

γ =80%

γ =100%

10 20 30 40 50 60 70 80 90 100
0.1712

0.1714

0.1716

0.1718

0.1720

0.1722

0.1724

0.1726

0.1728

training epochs

ra
nk

in
g

lo
ss

(e)

γ =20%

γ =40%

γ =60%

γ =80%

γ =100%

10 20 30 40 50 60 70 80 90 100
0.7535

0.7540

0.7545

0.7550

0.7555

0.7560

0.7565

0.7570

0.7575

training epochs

av
er

ag
e

pr
ei

ci
si

on

(f)

γ =20%

γ =40%

γ =60%

γ =80%

γ =100%

Fig. 3. The performance of BP-MLL with different number of hidden neurons (=γ × input dimensionality) changes as the number of training epochs
increasing. (a)global training error; (b) hamming loss; (c)one-error; (d) coverage; (e) ranking loss; (f) average precision.

levels deep3. In this paper, the same data set as used in the
literature [8] is adopted. In this data set, only functional classes
in the top hierarchy (as depicted in Fig. 2) are considered.
The resulting multi-label data set contains 2,417 genes each
represented by a 103-dimensional feature vector. There are 14
possible class labels and the average number of labels for each
gene is4.24± 1.57.

B. Results

As reviewed in Section II, there have been several ap-
proaches to solving multi-label problems. In this paper, BP-
MLL is compared with the boosting-style algorithm BOOST-

3See http://mips.gsf.de/proj/yeast/catalogues/funcat/ for more details.

EXTER4 [28], multi-label decision tree ADTBOOST.MH5 [5],
and the multi-label kernel method RANK -SVM [8], which are
all general-purpose multi-label learning algorithms applicable
to various multi-label problems. In addition, BP-MLL is also
compared with BASICBP, i.e. the intuitive implementation
of neural networks for multi-label learning as described in
Section III, to see whether the more complex global error
function as defined in Eq.(3) will perform better than the
intuitive solution.

For BP-MLL , the learning rate is set to be 0.05. The number
of hidden units of the network is set to be20% to 100%

4Program available at http://www.cs.princeton.edu/˜schapire/boostexter.html.
5The algorithm and a graphical user interface are available at

http://www.grappa.univ-lille3.fr/grappa/index.php3?info=logiciels. Further-
more,ranking lossis not provided by the outputs of this implementation.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

TABLE I

EXPERIMENTAL RESULTS OFEACH MULTI -LABEL LEARNING ALGORITHM (MEAN± STD. DEVIATION) ON THE YEAST DATA .

EVALUATION ALGORITHM
CRITERION BP-MLL BOOSTEXTER ADTBOOST.MH RANK -SVM BASICBP

HAMMING LOSS 0.206±0.011 0.220±0.011 0.207±0.010 0.207±0.013 0.209±0.008
ONE-ERROR 0.233±0.034 0.278±0.034 0.244±0.035 0.243±0.039 0.245±0.032
COVERAGE 6.421±0.237 6.550±0.243 6.390±0.203 7.090±0.503 6.653±0.219
RANKING LOSS 0.171±0.015 0.186±0.015 N/A 0.195±0.021 0.184±0.017
AVERAGE PRECISION 0.756±0.021 0.737±0.022 0.744±0.025 0.750±0.026 0.740±0.022

TABLE II

RELATIVE PERFORMANCEBETWEEN EACH MULTI -LABEL LEARNING ALGORITHM ON THE YEAST DATA .

EVALUATION ALGORITHM
CRITERION A1-BP-MLL ; A2-BOOSTEXTER; A3-ADTBOOST.MH; A4-RANK -SVM; A5-BASICBP

HAMMING LOSS

A1 Â A2 (p = 2.5× 10−4), A3 Â A2 (p = 8.4× 10−5), A4 Â A2 (p = 4.7× 10−3),
A5 Â A2 (p = 6.1× 10−4)

ONE-ERROR

A1 Â A2 (p = 1.4× 10−3), A1 Â A5 (p = 1.4× 10−2), A3 Â A2 (p = 7.2× 10−4),
A4 Â A2 (p = 4.4× 10−2), A5 Â A2 (p = 2.0× 10−3)

A1 Â A4 (p = 7.0× 10−4), A1 Â A5 (p = 7.1× 10−5), A2 Â A4 (p = 8.4× 10−3),
COVERAGE A2 Â A5 (p = 2.7× 10−2), A3 Â A2 (p = 8.9× 10−3), A3 Â A4 (p = 8.9× 10−4),

A3 Â A5 (p = 7.4× 10−6), A5 Â A4 (p = 1.3× 10−2)

RANKING LOSS A1 Â A2 (p = 1.3× 10−4), A1 Â A4 (p = 6.3× 10−3), A1 Â A5 (p = 1.0× 10−5)

AVERAGE PRECISION A1 Â A2 (p = 1.3× 10−4), A1 Â A3 (p = 1.4× 10−3), A1 Â A5 (p = 6.9× 10−6)

TOTAL ORDER BP-MLL (11)>ADTBOOST.MH(4)>{RANK -SVM(-3), BASICBP(-3)}>BOOSTEXTER(-9)

of the number of input units with an interval of20%, while
the number of training epochs varies from 10 to 100 with an
interval of 10. Furthermore, in order to avoid overfitting, a
regularization term equal to one tenth of the sum of squares
of all network weights and biases is added to the global error
function; For BOOSTEXTER [28] and ADTBOOST.MH [5], the
number of boosting rounds is set to be 500 and 50 respectively
because on the Yeast data set (also the Reuters collection
studied in the next Section), the performance of these two
algorithms will not significantly change after the specified
boosting rounds; For RANK -SVM [8], polynomial kernels with
degree 8 are used which yield the best performance as shown
in the literature [8]; For BASICBP, the number of training
epochs is set to be 1500 and the number of hidden units is
set to be four times of the number of input units to yield
comparable results.

Ten-fold cross-validation is performed on this data set. In
detail, the original data set is randomly divided into ten parts
each with approximately the same size. In each fold, one part
is held-out for testing and the learning algorithm is trained on
the remaining data. The above process is iterated ten times
so that each part is used as the test data exactly once, where
the averaged metric values out of ten runs are reported for the
algorithm.

Fig. 3 illustrates how the global training error and various
metric values of BP-MLL change as the number of training
epochs increases. Different curves correspond to different
number of hidden neurons (=γ×input dimensionality) used
by BP-MLL . Fig. 3 shows that whenγ is set to be 20%, BP-
MLL performs comparable to other values ofγ in terms of
hamming lossand one-error (Figs. 3(b)-3(c)), while slightly

better than other values ofγ in terms of coverage, ranking
lossandaverage precision(Figs. 3(d)-3(f)). Furthermore, after
40 epochs of training, the global training error (Fig. 3(a))
and those evaluation metric values (Figs. 3(b)-3(f)) of BP-
MLL will not significantly change. Therefore, for the sake of
computational cost, all the results of BP-MLL shown in the rest
of this paper are obtained with the number of hidden units set
to be20% of the number of input units. The number of training
epochs for BP-MLL is fixed to be 100.

Table I reports the experimental results of BP-MLL and
other multi-label learning algorithms on the Yeast data, where
the best result on each metric is shown in bold face. To
make a clearer view of the relative performance between
each algorithm, a partial order “Â” is defined on the set of
all comparing algorithms for each evaluation criterion, where
A1 Â A2 means that the performance of algorithmA1 is
statistically better than that of algorithmA2 on the specific
metric (based on two-tailed pairedt-test at5% significance
level). The partial order on all the comparing algorithms in
terms of each evaluation criterion is summarized in Table II,
where thep-value shown in the parentheses further gives a
quantification of the significance level.

Note that the partial order “Â” only measures the relative
performance between two algorithmsA1 and A2 on one
specific evaluation criterion. However, it is quite possible that
A1 performs better thanA2 in terms of some metrics but
worse thatA2 in terms of other ones. In this case, it is hard
to judge which algorithm is superior. Therefore, in order to
give an overall performance assessment of an algorithm, a
score is assigned to this algorithm which takes account of
its relative performance with other algorithms on all metrics.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

TABLE III

COMPUTATION TIME OF EACH MULTI -LABEL LEARNING ALGORITHM (MEAN± STD. DEVIATION) ON THE YEAST DATA , WHERE TRAINING TIME IS

MEASURED IN HOURSWHILE TESTING TIME IS MEASURED IN SECONDS.

COMPUTATION ALGORITHM
TIME BP-MLL BOOSTEXTER ADTBOOST.MH RANK -SVM BASICBP

TRAINING PHASE (HOURS) 6.989±0.235 0.154±0.015 0.415±0.031 7.723±5.003 0.743±0.002
TESTING PHASE (SECONDS) 0.739±0.037 1.100±0.123 0.942±0.124 1.255±0.052 1.302±0.030

Concretely, for each evaluation criterion, for each possible pair
of algorithmsA1 and A2, if A1 Â A2 holds, thenA1 is
rewarded by a positive score +1 andA2 is penalized by a
negative score -1. Based on the accumulated score of each
algorithm on all evaluation criteria, a total order ”>” is defined
on the set of all comparing algorithms as shown in the last
line of Table II, whereA1 > A2 means thatA1 performs
better thanA2 on the Yeast data. The accumulated score of
each algorithm is also shown in bold face in the parentheses.

Table II shows that BP-MLL performs fairly well in terms of
all the evaluation criteria, where on all the evaluation criteria
no algorithm has outperformed BP-MLL . Especially, BP-MLL

outperforms all the other algorithms with respect toranking
loss6 since minimization of the global error function of BP-
MLL could be viewed as approximately optimizing theranking
losscriterion. Furthermore, BP-MLL outperforms BASICBP on
all the evaluation criteria excepthamming losson which the
two algorithms are comparable. These facts illustrate that the
more complex global error function employed by BP-MLL (as
defined in Eq.(3)) really works better than the intuitive one
employed by BASICBP (as defined in Eq.(1) and Eq.(2)). It
is also worth noting that BOOSTEXTER performs quite poorly
compared to other algorithms. As indicated in the literature [8],
the reason may be that the simple decision function realized by
this method is not suitable to learn from the Yeast data set. On
the whole (as shown by the total order), BP-MLL outperforms
all the other algorithms on the multi-label learning problem of
Yeast functional genomics.

Table III reports the computation time consumed by each
multi-label learning algorithm on the Yeast data, where all
experiments are conducted on an HP Server equipped with 4G
RAM and 4 Intel XeronTM CPUs each running at 2.80GHz7.
As shown in Table III, BP-MLL consumes much more time
in the training phase than BOOSTEXTER, ADTBOOST.MH
and BASICBP mainly due to itscomplexglobal error function
which needs to be optimized and theiterative processing of
training examples. On the other hand, although the training
complexity of BP-MLL is high, the time cost of BP-MLL on
testing unseen examples is quite trivial.

As analyzed in the end of Subsection III-C, the total cost of
training a BP-MLL network scales toO(W ·m · n). HereW
is the total number of weights and biases of the network,m
is the number of training examples andn is the total number
of training epochs. In order to illustrate how many training

6Note that ranking loss is not provided in the outputs of the ADT-
BOOST.MH algorithm.

7Codes of BOOSTEXTER and ADTBOOST.MH are written in C language,
while those of BP-MLL , RANK -SVM and BASICBP are developed with
MATLAB TM. Note that programs written in C usually run several times faster
than those written in MATLAB .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

fraction value

nu
m

be
r

of
 t

ra
in

in
g

ep
oc

hs

Fig. 4. Quantile plot regarding the number of training epochs of BP-MLL

out of 200 runs of experiments.

epochs are needed before a local solution is obtained and
the possibility of getting stuck in a “bad” local solution, the
following experiments are conducted. In detail, 500 examples
are randomly selected from the Yeast data (totally 2,417
examples) constituting the test set and the remaining 1,917
examples forms the potential training set. After that, 200
runs of experiments are performed where in each run 1,000
examples are randomly selected from the potential training set
to train a BP-MLL neural network and the trained model is then
evaluated on the test set. The maximum number of training
epochs is set to be 200 and the training process terminates as
long as the global training error of BP-MLL does not decrease
enough. Concretely, letEt denotes the global training error of
BP-MLL at the t-th training epoch, the training process will
terminate before reaching the maximum number of training
epochs if the condition ofEt − Et+1 ≤ ε · Et is satisfied. It
is obvious that the smaller the value ofε, the more training
epochs are executed before termination. In this paper,ε is set
to be10−6 for illustration purpose.

Fig. 4 gives the quantile plot regarding the number of
training epochs of BP-MLL out of 200 runs of experiments,
where each point(x, y) in the plot means that the number
of training epochs of BP-MLL will be smaller or equal toy
in 100 · x% cases out of the 200 runs. It was shown that the
training process will terminate before 80 epochs in about50%
cases and before 140 epochs in about80% cases. Furthermore,
Table IV summarizes the statistics of each evaluation criterion
out of 200 runs of experiments, where the minimal, maximal

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

TABLE IV

STATISTICS OFEACH EVALUATION CRITERION OUT OF200 RUNS OFEXPERIMENTS, WHERE VALUES FALL ONE STANDARD DEVIATION OUTSIDE OF

THE MEAN VALUE ARE REGARDED AS “B AD” L OCAL SOLUTIONS.

Evaluation STATISTICS OUT OF200 RUNS OFEXPERIMENTS
Criterion M IN MAX MEAN±STD. DEVIATION PROB. OF “B AD” L OC. SOL.
HAMMING LOSS 0.198 0.221 0.206±0.004 14.0%
ONE-ERROR 0.200 0.244 0.228±0.008 14.0%
COVERAGE 6.354 6.890 6.542±0.106 15.0%
RANKING LOSS 0.170 0.187 0.176±0.003 18.0%
AVERAGE PRECISION 0.736 0.762 0.749±0.004 14.5%

and mean (together with standard deviation) value of each
metric are illustrated. In this paper, the metric value fall one
standard deviation outside of the mean value will be regarded
as “bad” local solution8. Based on this, the probability of
getting stuck in a “bad” local solution with regard to a specific
metric can be calculated as shown in the last column of Table
IV. It is revealed that BP-MLL will get stuck in a “bad” local
solution with no more than20% probability in terms of any
evaluation metric. Since there is no criterion available for
judging whether the learning algorithm has terminated at a
“bad” or “good” local solution during the training phase, one
possible solution is to train many BP-MLL neural networks
based on different initial configurations and then combine their
predictions. In this way, the power of ensemble learning [34]
may be utilized to achieve strong generalization ability and
it will be an interesting issue for future work as indicated in
Section VII.

VI. A PPLICATION TO TEXT CATEGORIZATION

A. Text Categorization

Text categorization (TC) is the task of building learning
systems capable of classifying text (or hypertext) documents
under one or more of a set of predefined categories or subject
codes [15]. Due to the increased availability of ever larger
numbers of text documents in digital form and by the ensuing
need to organize them for easier use, TC has become one
of the key techniques for handling and organizing text data.
TC is now being applied to a wide range of applications,
including document organization, text filtering, automated
metadata generation, word sense disambiguation, Web page
categorization under hierarchical catalogues, etc [29].

In the 1980’s, the most popular approach to TC is based on
knowledge engineering(KE) techniques which aim at manu-
ally defining a set of logical rules encoding expert knowledge
on how to classify documents under the given categories. Since
the early of 1990’s, themachine learning(ML) approach to
TC has gradually gained popularity where a general inductive
process is employed to automatically build a text classifier by
learning from a set of preclassified documents. The advantages
of the ML approach over the KE approach lie in the fact
that the former one can achieve comparable performance

8For the metricaverage precision, “fall outside” means the value is more
than one standard deviation smaller than the mean value. While for the other
four evaluation criteria, “fall outside” means the value is more than one
standard deviation larger than the mean value.

to that achieved by human experts while at the same time
considerably saves the experts labor costs [29].

The first step in ML-based TC is to transform documents,
which typically are strings of characters, into a representation
suitable for the learning algorithm and the classification task.
The most commonly used document representation is the so-
called vector space model where each documentd is repre-
sented as a vector of term weights~d =< w1, w2, . . . , w|T | >.
HereT is the set of terms (usually the set of words) that occur
at least once in at least one document of the training set,wi

approximately represents how much termti ∈ T contributes to
the semantics of documentd. Various approaches are available
to determine the term weights, such as Boolean weighting (set
wi to 1 if term ti occurs ind and 0 otherwise), frequency-
based weighting (setwi to the frequency of termti in d)
and the widely usedtf-idf (term frequency - inverse document
frequency) weighting [29]. Note that the dimensionality of
the vector space may be prohibitively too high (the term set
T could contain hundreds of thousands of terms) for any
ML algorithm to efficiently build classifiers,dimensionality
reduction(DR) techniques are necessary to reduce the size of
the vector space from|T | to |T ′| ¿ |T |. A lot of DR methods
have been proposed, such asterm selectionmethods based
on document frequency, information gain, mutual information,
χ2 statistic, etc., andterm extractionmethods based on term
clustering and latent semantic indexing [33]. Various ML
methods have been applied to solve TC problems, including
decision trees, support vector machines, nearest neighbor
classifiers, Bayesian probabilistic classifiers, inductive rule
learning algorithms and more [29]. In most cases, the multi-
label learning problem of TC is decomposed into multiple
independent binary classification problems where a separate
classifier is built for each category. For more information about
TC research, an excellent and comprehensive survey on this
topic is given in the literature [29].

B. Results

The Reuters collection is the most commonly-used collec-
tion for TC evaluation and various versions of this collection
have been studied in the TC community [29], [32]. In this
paper, the Reuters-21578 Distribution 1.09 is used to further
evaluate the performance of BP-MLL and other multi-label
learning algorithms. Reuters-21578 consists of 21,578 Reuters

9Data set available at http://www.daviddlewis.com/resources/testcollections/
reuters21578/.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

TABLE V

CHARACTERISTICS OF THEPREPROCESSEDDATA SETS. PMC DENOTES THEPERCENTAGE OFDOCUMENTSBELONGING TO MORE THAN ONE

CATEGORY, AND ANL DENOTES THEAVERAGE NUMBER OF LABELS FOREACH DOCUMENT.

DATA NUMBER OF NUMBER OF VOCABULARY

SET CATEGORIES DOCUMENTS SIZE
PMC ANL

FIRST3 3 7,258 529 0.74% 1.0074
FIRST4 4 8,078 598 1.39% 1.0140
FIRST5 5 8,655 651 1.98% 1.0207
FIRST6 6 8,817 663 3.43% 1.0352
FIRST7 7 9,021 677 3.62% 1.0375
FIRST8 8 9,158 683 3.81% 1.0396
FIRST9 9 9,190 686 4.49% 1.0480

TABLE VI

EXPERIMENTAL RESULTS OFEACH MULTI -LABEL LEARNING ALGORITHM ON THE REUTERS-21578 COLLECTION IN TERMS OFHAMMING LOSS.

DATA ALGORITHM
SET BP-MLL BOOSTEXTER ADTBOOST.MH RANK -SVM BASICBP

FIRST3 0.0368 0.0236 0.0404 0.0439 0.0433
FIRST4 0.0256 0.0250 0.0439 0.0453 0.0563
FIRST5 0.0257 0.0260 0.0469 0.0592 0.0433
FIRST6 0.0271 0.0262 0.0456 0.0653 0.0439
FIRST7 0.0252 0.0249 0.0440 0.0576 0.0416
FIRST8 0.0230 0.0229 0.0415 0.0406 0.0399
FIRST9 0.0231 0.0226 0.0387 0.0479 0.0387
AVERAGE 0.0266 0.0245 0.0430 0.0514 0.0439

TABLE VII

EXPERIMENTAL RESULTS OFEACH MULTI -LABEL LEARNING ALGORITHM ON THE REUTERS-21578 COLLECTION IN TERMS OFONE-ERROR.

DATA ALGORITHM
SET BP-MLL BOOSTEXTER ADTBOOST.MH RANK -SVM BASICBP

FIRST3 0.0506 0.0287 0.0510 0.0584 0.0558
FIRST4 0.0420 0.0384 0.0730 0.0647 0.0847
FIRST5 0.0505 0.0475 0.0898 0.0873 0.0842
FIRST6 0.0597 0.0569 0.1024 0.1064 0.1055
FIRST7 0.0632 0.0655 0.1206 0.1438 0.1147
FIRST8 0.0673 0.0679 0.1249 0.0997 0.1422
FIRST9 0.0708 0.0719 0.1383 0.1288 0.1489
AVERAGE 0.0577 0.0538 0.1000 0.0985 0.1051

TABLE VIII

EXPERIMENTAL RESULTS OFEACH MULTI -LABEL LEARNING ALGORITHM ON THE REUTERS-21578 COLLECTION IN TERMS OFCOVERAGE.

DATA ALGORITHM
SET BP-MLL BOOSTEXTER ADTBOOST.MH RANK -SVM BASICBP

FIRST3 0.0679 0.0416 0.0708 0.0869 0.0761
FIRST4 0.0659 0.0635 0.1187 0.1234 0.1419
FIRST5 0.0921 0.0916 0.1624 0.1649 0.1390
FIRST6 0.1363 0.1397 0.2438 0.2441 0.2552
FIRST7 0.1488 0.1635 0.2882 0.3301 0.2837
FIRST8 0.1628 0.1815 0.3194 0.3279 0.4358
FIRST9 0.1905 0.2208 0.3811 0.4099 0.4995
AVERAGE 0.1235 0.1289 0.2263 0.2410 0.2616

newswire documents appeared in 1987, where less than half
of the documents have human assigned topic labels. All
documents without any topic label or with empty main text
are discarded from the collection. Each remaining document
belongs to at least one of the 135 possible topics (categories),
where a “sub-category” relation governs categories and nine
of them constitute the top level of this hierarchy. In this paper,
only those top level categories are used to label each remaining

document.

For each document, the following preprocessing operations
are performed before experiments: All words were converted
to lower case, punctuation marks were removed, and “function
words” such as “of” and “the” on the SMART stop-list
[25] were removed. Additionally all strings of digits were
mapped to a single common token. Following the same
data set generation scheme as used in [28] and [5], subsets

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

TABLE IX

EXPERIMENTAL RESULTS OFEACH MULTI -LABEL LEARNING ALGORITHM ON THE REUTERS-21578 COLLECTION IN TERMS OFRANKING LOSS.

DATA ALGORITHM
SET BP-MLL BOOSTEXTER ADTBOOST.MH RANK -SVM BASICBP

FIRST3 0.0304 0.0173 N/A 0.0398 0.0345
FIRST4 0.0172 0.0164 N/A 0.0363 0.0435
FIRST5 0.0176 0.0173 N/A 0.0354 0.0302
FIRST6 0.0194 0.0199 N/A 0.0406 0.0448
FIRST7 0.0177 0.0198 N/A 0.0471 0.0407
FIRST8 0.0166 0.0190 N/A 0.0393 0.0563
FIRST9 0.0166 0.0197 N/A 0.0434 0.0563
AVERAGE 0.0193 0.0185 N/A 0.0403 0.0438

TABLE X

EXPERIMENTAL RESULTS OFEACH MULTI -LABEL LEARNING ALGORITHM ON THE REUTERS-21578 COLLECTION IN TERMS OFAVERAGE PRECISION.

DATA ALGORITHM
SET BP-MLL BOOSTEXTER ADTBOOST.MH RANK -SVM BASICBP

FIRST3 0.9731 0.9848 0.9725 0.9673 0.9699
FIRST4 0.9775 0.9791 0.9587 0.9615 0.9512
FIRST5 0.9719 0.9730 0.9481 0.9491 0.9530
FIRST6 0.9651 0.9658 0.9367 0.9345 0.9343
FIRST7 0.9629 0.9603 0.9326 0.9134 0.9286
FIRST8 0.9602 0.9579 0.9211 0.9336 0.9071
FIRST9 0.9570 0.9540 0.9112 0.9149 0.8998
AVERAGE 0.9668 0.9679 0.9401 0.9392 0.9348

of the k categories with the largest number of articles for
k = 3, . . . , 9 are selected resulting in 7 different data sets
denoted as FIRST3, FIRST4,. . . ,FIRST9. The simple term
selection method based ondocument frequency(the number
of documents containing a specific term) is used to reduce
the dimensionality of each data set. Actually, only2% words
with highest document frequency are retained in the final
vocabulary10. Note that other term selection methods such as
information gaincould also be adopted. Each document in
the data set is described as a feature vector using the “Bag-of-
Words” representation [7], i.e. each dimension of the feature
vector corresponds to the number of times a word in the
vocabulary appearing in this document. Table V summarizes
the characteristics of the preprocessed data sets.

Adopting the same validation mechanism as used in the lit-
eratures [28] and [5], three-fold cross-validation is performed
on each data set. In detail, each data set is randomly divided
into three parts each with approximately the same size. In each
fold, one part is held-out for testing and the learning algorithm
is trained on the remaining data. The above process is iterated
three times so that each part is used as the test data exactly
once, where the averaged metric values out of three runs are
reported for the algorithm.

10It is worth noting that principles used in document weighting and
dimensionality reduction may have some differences. Although in several
document weighting schemes such astf-idf weighting [29], words that occur
in most documents are assumed to be less useful in representing individual
documents. For dimensionality reduction however, the words with highest
document frequency, excluding those “function words” which have already
been removed from the vocabulary using the SMART stop-list [25], are
representative in describing the information contained in the corpus. Actually,
based on a series of experiments, Yang and Pedersen [33] have shown that
based on document frequency, it is possible to reduce the dimensionality by
a factor of 10 with no loss in effectiveness and by a factor of 100 with just
a small loss.

The experimental results on each evaluation criterion are
reported in Tables VI to X, where the best result on each data
set is shown in bold face. Parameter configuration for each
algorithm is the same as that used in Section V. Similarly
as the Yeast data, the partial order “Â” (based on two-tailed
pairedt-test at5% significance level) and total order “>” are
also defined on the set of all comparing algorithms which
are shown in Table XI. Again, the same as Table II,p-
value is given to indicate the level of significance and the
accumulated score of each algorithm is shown in bold face in
the parentheses at last line.

Table XI shows that BP-MLL and BOOSTEXTER are both
superior to ADTBOOST.MH, RANK -SVM and BASICBP on
all evaluation criteria (ranking lossis not available for ADT-
BOOST.MH). Furthermore, as shown in Table VII to Table
X, BP-MLL is inferior to BOOSTEXTER when the number
of categories is small (FIRST3 to FIRST6). However, when
the corresponding data sets get more difficult to learn from,
i.e. the number of categories becomes larger and the portion
of documents belonging to more than one category increases
(FIRST7 to FIRST9), BP-MLL outperforms BOOSTEXTER. In
addition, the facts that BP-MLL outperforms BASICBP on all
the evaluation criteria again proves that BP-MLL works better
than BASICBP when the more complex global error function
(as defined in Eq.(3)) is employed to learn from the multi-label
training examples. On the whole (as shown by the total order),
BP-MLL is comparable to BOOSTEXTER but is superior to all
the other algorithms on the Reuters collection.

The same as the Yeast data, Table XII reports the compu-
tation time consumed by each multi-label learning algorithm
on the Reuters collection. As shown in Table XII, BP-MLL

consumes much more time in the training phase than all the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

TABLE XI

RELATIVE PERFORMANCEBETWEEN EACH MULTI -LABEL LEARNING ALGORITHM ON THE REUTERS-21578 COLLECTION.

EVALUATION ALGORITHM
CRITERION A1-BP-MLL ; A2-BOOSTEXTER; A3-ADTBOOST.MH; A4-RANK -SVM; A5-BASICBP

A1 Â A3 (p = 3.2× 10−4), A1 Â A4 (p = 9.4× 10−4), A1 Â A5 (p = 6.7× 10−4),
HAMMING LOSS A2 Â A3 (p = 8.2× 10−8), A2 Â A4 (p = 1.2× 10−4), A2 Â A5 (p = 7.5× 10−5),

A3 Â A4 (p = 2.4× 10−2)

ONE-ERROR

A1 Â A3 (p = 2.4× 10−3), A1 Â A4 (p = 4.0× 10−3), A1 Â A5 (p = 2.3× 10−3),
A2 Â A3 (p = 1.7× 10−4), A2 Â A4 (p = 6.9× 10−4), A2 Â A5 (p = 3.1× 10−4)

A1 Â A3 (p = 5.8× 10−3), A1 Â A4 (p = 5.4× 10−3), A1 Â A5 (p = 1.8× 10−2),
COVERAGE A2 Â A3 (p = 1.6× 10−3), A2 Â A4 (p = 1.8× 10−3), A2 Â A5 (p = 1.1× 10−2),

A3 Â A4 (p = 4.6× 10−2)

RANKING LOSS

A1 Â A4 (p = 1.5× 10−4), A1 Â A5 (p = 2.6× 10−3), A2 Â A4 (p = 1.4× 10−6),
A2 Â A5 (p = 3.5× 10−4)

AVERAGE PRECISION

A1 Â A3 (p = 2.9× 10−3), A1 Â A4 (p = 2.7× 10−3), A1 Â A5 (p = 4.1× 10−3),
A2 Â A3 (p = 3.5× 10−4), A2 Â A4 (p = 4.8× 10−4), A2 Â A5 (p = 1.0× 10−3)

TOTAL ORDER {BP-MLL (14), BOOSTEXTER(14)}>ADTBOOST.MH(-6)>BASICBP(-10)>RANK -SVM(-12)

TABLE XII

COMPUTATION TIME OF EACH MULTI -LABEL LEARNING ALGORITHM ON THE REUTERS-21578 COLLECTION, WHERE TRAINING TIME (DENOTED AS

TrPhase) IS MEASURED IN HOURSWHILE TESTING TIME (DENOTED ASTePhase) IS MEASURED IN SECONDS.

ALGORITHM
DATA BP-MLL BOOSTEXTER ADTBOOST.MH RANK -SVM BASICBP
SET

TrPhase TePhase TrPhase TePhase TrPhase TePhase TrPhase TePhase TrPhase TePhase
FIRST3 44.088 4.552 0.115 2.938 0.776 2.561 2.873 28.594 6.395 7.094
FIRST4 57.442 6.891 0.202 3.785 1.055 2.720 5.670 37.328 12.264 6.969
FIRST5 60.503 8.547 0.237 5.575 1.188 3.933 8.418 48.078 20.614 12.969
FIRST6 69.615 9.328 0.277 7.331 1.539 4.966 15.431 50.969 20.274 13.766
FIRST7 73.524 14.083 0.321 8.305 1.739 5.837 16.249 55.016 22.792 18.922
FIRST8 74.220 15.292 0.343 9.841 1.940 6.945 26.455 55.141 20.927 17.219
FIRST9 75.291 17.922 0.373 11.817 2.107 7.494 28.106 48.141 23.730 23.578
AVERAGE 64.955 10.945 0.267 7.085 1.478 4.922 14.743 46.181 18.142 14.360

other algorithms but is quite efficient in the testing phase to
predict labels for unseen examples.

VII. C ONCLUSION

In this paper, a neural network algorithm named BP-
MLL , which is the multi-label version of Backpropagation,
is proposed. Through employing a new error function, BP-
MLL captures the characteristics of multi-label learning, i.e. the
labels belonging to an instance should be ranked higher than
those not belonging to that instance. Applications to two real-
world multi-label learning problems, i.e. functional genomics
and text categorization, show that BP-MLL achieves superior
performance to some well-established multi-label learning
methods. Furthermore, as a common characteristic of neural
network methods, the computational complexity of BP-MLL

in the training phase is high while the time cost of making
predictions based on the trained model is quite trivial.

Recent research has shown that neural network ensemble
could significantly improve the generalization ability of neural
network based learning systems, which has become a hot topic
in both machine learning and neural network communities
[34]. So, it is interesting to see that whether better results
could be obtained with ensembles of BP-MLL networks.

ACKNOWLEDGEMENT

The authors wish to express their gratitude towards the
associate editor and the anonymous reviewers because their
valuable comments and suggestions significantly improved this
paper. The authors also want to thank A. Elisseeff and J.
Weston for the Yeast data and the implementation details of
RANK -SVM.

REFERENCES

[1] C. M. Bishop, Neural Networks for Pattern Recognition. New York:
Oxford University Press, 1995.

[2] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-label
scene classification,”Pattern Recognition, vol. 37, no. 9, pp. 1757–1771,
2004.

[3] A. Clare, “Machine learning and data mining for yeast functional
genomics,” Ph.D. dissertation, Department of Computer Science, Uni-
versity of Wales Aberystwyth, 2003.

[4] A. Clare and R. D. King, “Knowledge discovery in multi-label pheno-
type data,” inLecture Notes in Computer Science 2168, L. D. Raedt and
A. Siebes, Eds. Berlin: Springer, 2001, pp. 42–53.

[5] F. D. Comit́e, R. Gilleron, and M. Tommasi, “Learning multi-label
altenating decision tree from texts and data,” inLecture Notes in
Computer Science 2734, P. Perner and A. Rosenfeld, Eds. Berlin:
Springer, 2003, pp. 35–49.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,”Journal of the Royal
Statistics Society -B, vol. 39, no. 1, pp. 1–38, 1977.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[7] S. T. Dumais, J. Platt, D. Heckerman, and M. Sahami, “Inductive
learning algorithms and representation for text categorization,” inProc.
of the 7th ACM International Conference on Information and Knowledge
Management (CIKM’98), Bethesda, MD, 1998, pp. 148–155.

[8] A. Elisseeff and J. Weston, “A kernel method for multi-labelled clas-
sification,” in Advances in Neural Information Processing Systems 14,
T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA:
MIT Press, 2002, pp. 681–687.

[9] Y. Freund and L. Mason, “The alternating decision tree learning al-
gorithm,” in Proc. of the 16th International Conference on Machine
Learning (ICML’99), Bled, Slovenia, 1999, pp. 124–133.

[10] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,”Journal of Computer
and System Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[11] S. Gao, W. Wu, C.-H. Lee, and T.-S. Chua, “A maximal figure-of-merit
learning approach to text categorization,” inProc. of the 26th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, Toronto, Canada, 2003, pp. 174–181.

[12] S. Gao, W. Wu, C.-H. Lee, and T.-S. Chua, “A MFoM learning approach
to robust multiclass multi-label text categorization,” inProc. of the 21st
International Conference on Machine Learning, Banff, Canada, 2004,
pp. 329–336.

[13] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1999.

[14] R. Jin and Z. Ghahramani, “Learning with multiple labels,” inAdvances
in Neural Information Processing Systems 15, S. Becker, S. Thrun, and
K. Obermayer, Eds. Cambridge, MA: MIT Press, 2003, pp. 897–904.

[15] T. Joachims and F. Sebastiani, “Guest editor’s introduction to the
special issue on automated text categorization,”Journal of Intelligent
Information Systems, vol. 18, no. 2/3 (March-May), pp. 103–105, 2002.

[16] H. Kazawa, T. Izumitani, H. Taira, and E. Maeda, “Maximal margin
labeling for multi-topic text categorization,” inAdvances in Neural
Information Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou,
Eds. Cambridge, MA: MIT Press, 2005, pp. 649–656.

[17] T. Kohonen, “An introduction to neural computing,”Neural Networks,
vol. 1, no. 1, pp. 3–16, 1988.

[18] A. McCallum, “Multi-label text classification with a mixture model
trained by EM,” in Working Notes of the AAAI’99 Workshop on Text
Learning, Orlando, FL, 1999.

[19] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,”Bulletin of Mathematical Biophysics, vol. 5, pp.
115–133, 1943.

[20] M. Minsky and S. Papert,Perceptrons. Cambridge, MA: MIT Press,
1969.

[21] P. Pavlidis, J. Weston, J. Cai, and W. N. Grundy, “Combining microarray
expression data and phylogenetic profiles to learn functional categories
using support vector machines,” inProc. of the 5th Annual International
Conference on Computational Biology, Montréal, Canada, 2001, pp.
242–248.

[22] J. R. Quinlan,C4.5: Programs for Machine Learning. San Mateo,
California: Morgan Kaufmann, 1993.

[23] F. Rosenblatt,Principles of Neurodynamics: Perceptrons and the Theory
of Brain Mechanisms. Washington DC: Spartan Books, 1962.

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” inParallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, D. E. Rumelhart
and J. L. McClelland, Eds. Cambridge, MA: MIT Press, 1986, vol. 1,
pp. 318–362.

[25] G. Salton,Automatic Text Processing: The Transformation, Analysis, and
Retrieval of Information by Computer. Pennsylvania: Addison-Wesley,
Reading, 1989.

[26] G. Salton, “Developments in automatic text retrieval,”Science, vol. 253,
pp. 974–980, 1991.

[27] R. E. Schapire and Y. Singer, “Improved boosting algorithms using
confidence-rated predictions,” inProc. of the 11th Annual Conference
on Computational Learning Theory (COLT’98), New York, 1998, pp.
80–91.

[28] R. E. Schapire and Y. Singer, “BoosTexter: a boosting-based system for
text categorization,”Machine Learning, vol. 39, no. 2/3, pp. 135–168,
2000.

[29] F. Sebastiani, “Machine learning in automated text categorization,”ACM
Computing Surveys, vol. 34, no. 1, pp. 1–47, 2002.

[30] N. Ueda and K. Saito, “Parametric mixture models for multi-label text,”
in Advances in Neural Information Processing Systems 15, S. Becker,
S. Thrun, and K. Obermayer, Eds. Cambridge, MA: MIT Press, 2003,
pp. 721–728.

[31] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” inIRE
WESCON Convention Record, vol. 4, New York, 1960, pp. 96–104.

[32] Y. Yang, “An evaluation of statistical approaches to text categorization,”
Information Retrieval, vol. 1, no. 1-2, pp. 69–90, 1999.

[33] Y. Yang and J. O. Pedersen, “A comparative study on feature selection
in text categorization,” inProc. of the 14th International Conference on
Machine Learning (ICML’97), Nashville, TN, 1997, pp. 412–420.

[34] Z.-H. Zhou, J. Wu, and W. Tang, “Ensembling neural networks: Many
could be better than all,”Artificial Intelligence, vol. 137, no. 1-2, pp.
239–263, 2002.

Min-Ling Zhang received his BSc and MSc degrees
in computer science from Nanjing University, China,
in 2001 and 2004, respectively. Currently he is a
Ph.D. candidate in the Department of Computer
Science & Technology at Nanjing University and a
member of the LAMDA Group. His main research
interests include machine learning and data mining,
especially in multi-instance learning and multi-label
learning .

Zhi-Hua Zhou (S’00-M’01-SM’06) received the
BSc, MSc and PhD degrees in computer science
from Nanjing University, China, in 1996, 1998 and
2000, respectively, all with the highest honor. He
joined the Department of Computer Science & Tech-
nology of Nanjing University as a lecturer in 2001,
and is a professor and head of the LAMDA group
at present. His research interests are in artificial
intelligence, machine learning, data mining, pattern
recognition, information retrieval, neural computing,
and evolutionary computing. In these areas he has

published over 60 technical papers in refereed international journals or
conference proceedings. He has won the Microsoft Fellowship Award (1999),
the National Excellent Doctoral Dissertation Award of China (2003), and the
Award of National Science Fund for Distinguished Young Scholars of China
(2003). He is an associate editor ofKnowledge and Information Systems, and
on the editorial boards ofArtificial Intelligence in Medicine,International
Journal of Data Warehousing and Mining, Journal of Computer Science
& Technology, and Journal of Software. He served as program committee
member for various international conferences and chaired a number of native
conferences. He is a senior member of China Computer Federation (CCF) and
the vice chair of CCF Artificial Intelligence & Pattern Recognition Society, an
executive committee member of Chinese Association of Artificial Intelligence
(CAAI), the vice chair and chief secretary of CAAI Machine Learning Society,
a member of AAAI and ACM, and a senior member of IEEE and IEEE
Computer Society.

