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Abstract

The traditional setting of supervised learning requires a large amount of labeled training examples

in order to achieve good generalization. However, in many practical applications, unlabeled training

examples are readily available but labeled ones are fairly expensive to obtain. Therefore, semi-supervised

learning has attracted much attention. Previous research on semi-supervised learning mainly focuses

on semi-supervised classification. Although regression is almost as important as classification, semi-

supervised regression is largely understudied. In particular, although co-training is a main paradigm in

semi-supervised learning, few works has been devoted to co-training style semi-supervised regression

algorithms. In this paper, a co-training style semi-supervised regression algorithm, i.e. COREG, is

proposed. This algorithm uses two regressors each labels the unlabeled data for the other regressor,

where the confidence in labeling an unlabeled example is estimated through the amount of reduction in

mean square error over the labeled neighborhood of that example. Analysis and experiments show that

COREG can effectively exploit unlabeled data to improve regression estimates.
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I. INTRODUCTION

In the traditional setting of supervised learning, a large amount of training examples should

be available in order to construct a model with good generalization ability. It is noteworthy

that these training examples should be labeled, that is, the labels of these training examples

should be known in advance. Unfortunately, in many practical machine learning and data mining

applications, although a large number of unlabeled training examples can be at hand, usually

only a few labeled training examples are available because obtaining the labels requires human

effort. For example, in web user profile analysis, it is easy to get a lot of web user profiles

but assigning labels such as profitable user or non-profitable user to these data requires the

inspection, judgement, or even time-consuming tracing by human assessors, which is fairly

expensive. Therefore, exploiting unlabeled data to help supervised learning has become a hot

topic during the past few years.

Currently there are mainly three machine learning paradigms for exploiting unlabeled exam-

ples, that is, semi-supervised learning, transductive learning and active learning. Semi-supervised

learning [11], [54] deals with methods which attempt to automatically exploit unlabeled examples

where the unlabeled examples are usually different from the test examples; transductive learning

[40], [23] deals with methods which also attempt to automatically exploit unlabeled examples

but assuming that the unlabeled examples are exactly the test examples; active learning [1], [34]

deals with methods which assume the learner has some control over the input space, and an

oracle can be queried for labels of specific instances, with the goal of minimizing the number

of queries required. In this paper, semi-supervised learning is considered.

Many developments have been achieved in the research on semi-supervised learning. However,

it is noteworthy that previous research mainly focuses on classification. Although regression is

almost as important as classification, semi-supervised regression remains largely understudied. In

particular, co-training [8] has been recognized as one of the main paradigms of semi-supervised

learning, but its usefulness in semi-supervised regression has not been investigated well. In

this paper, a co-training style semi-supervised regression algorithm named COREG, i.e. CO-

training REGressors, is proposed. This algorithm employs two regressors each of which labels

the unlabeled data for the other during the learning process. In order to choose appropriate

unlabeled examples to label, COREG estimates the labeling confidence by consulting the influence
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of the labeling of unlabeled examples on the labeled examples. The final prediction is made by

combining the regression estimates generated by both regressors. Note that COREG seeks the

diversity between regressors through using different distance metrics and/or number of neighbors

instead of requiring two views of the data, and thus it is applicable to regression problems with

no natural attribute partitions. Analysis and experiments show that this algorithm can effectively

exploit unlabeled data to improve regression estimates.

The rest of this paper is organized as follows. Section 2 briefly reviews semi-supervised

learning. Section 3 proposes the COREG algorithm. Section 4 presents an analysis on the

algorithm. Section 5 reports on the experiments. Finally, Section 6 concludes.

II. SEMI-SUPERVISED LEARNING

The research on semi-supervised learning is usually dated back to Shahshahani and Land-

grebe’s work [35], but the usefulness of unlabeled examples in supervised learning has actually

been recognized earlier [25]. A likely reason for that there has been few works on this problem

during the early years is that it seems difficult to incorporate unlabeled data directly within

conventional supervised learning methods such as Backpropagation neural networks [26]. With

the rapid progress of machine learning, especially the explosive bloom of statistical learning

research, and the increasing requirement of exploiting unlabeled data, semi-supervised learning

has become a hot topic in both machine learning and data mining.

There are many effective semi-supervised learning approaches. Roughly speaking, most of

these approaches can be categorized into three main paradigms. In the first paradigm, a generative

model such as Naı̈ve Bayes classifier or mixture of Gaussians is used for the classifier, and EM

[16] is employed to model the label estimation or parameter estimation process. Representative

approaches of this paradigm include [19], [26], [28], [35]. In the second paradigm, unlabeled data

is used to regularize the learning process in various ways. For example, a graph can be defined

on the data set, where the nodes correspond to the labeled or unlabeled examples while the edges

reflect the similarity between the examples; then, the label smoothness can be enforced over the

graph as a regularization term. Representative approaches of this paradigm include [4], [5], [7],

[46], [55]. The third paradigm, i.e. co-training [8], is closely related to the work described in

this paper, therefore here we introduce it with more details.

The co-training method proposed by Blum and Mitchell [8] trains two classifiers separately on
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two sufficient and redundant views, i.e. two attribute sets each of which is sufficient for learning

and conditionally independent to the other given the class label, and uses the predictions of each

classifier on unlabeled examples to augment the training set of the other.

Such an idea of utilizing the natural redundancy in the attributes has been employed in some

other works. For example, Yarowsky [45] performed word sense disambiguation by constructing

a sense classifier using the local context of the word and a classifier based on the senses of other

occurrences of that word in the same document; Riloff and Jones [32] classified a noun phrase

for geographic locations by considering both the noun phrase itself and the linguistic context in

which the noun phrase appears; Collins and Singer [12] performed named entity classification

using both the spelling of the entity itself and the context in which the entity occurs; etc.

Dasgupta et al. [15] have theoretically shown that when the requirement of sufficient and

redundant views is met, the co-trained classifiers could make few generalization errors by

maximizing their agreement over the unlabeled data. As Nigam and Ghani [27] reported, when

an independent and redundant attribute split exists, the co-training algorithm outperforms many

other semi-supervised learning algorithms in utilizing unlabeled data; even when there is no

natural attribute divisions, if there are sufficient redundancy among the attributes and a fairly

reasonable division of the attributes can be identified, then the co-training algorithm may show

similar advantages to other algorithms.

However, although co-training has been used in many domains such as statistical parsing

and noun phrase identification [22], [29], [33], [38], in most scenarios the requirement of

sufficient and redundant views, or even the requirement of sufficient redundancy, could not be

met. Therefore, researchers attempt to develop variants of the co-training algorithm for relaxing

such a requirement.

Goldman and Zhou [20] proposed an algorithm which does not exploit attribute partition.

This algorithm requires using two different supervised learning algorithms that partition the

instance space into a set of equivalence classes, and employs cross validation to determine how

to label the unlabeled examples and how to produce the final hypothesis. Zhou and Li [51]

proposed the tri-training approach, which uses three classifiers such that the labeling confidence

(i.e., how confident a classifier is in labeling an unlabeled example) can be implicitly obtained

through consulting the agreement of the classifiers. By contrast, such labeling confidence should

be explicitly measured in previous co-training algorithms when a classifier attempts to label
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examples to the other classifier or when the classifications made by different classifiers are to

be merged. This algorithm does not require attribute partition, nor does it require using different

types of learning algorithms. Moreover, since more classifiers are involved, it is possible to

exploit ensemble learning [17] to help improve generalization. Recently this method has been

extended to use more learners to make better use of the power of ensemble learning, which

achieves success in computer-aided medical diagnosis [24]. Another co-training style algorithm

which uses more than two learners has been presented by Zhou and Goldman [47]. Some variants

of co-training [48], [49] which combine semi-supervised learning with active learning and do

not require different views, have been applied to content-based image retrieval, where images

provided by the user in the query and relevance feedbacks are regarded as labeled examples

while the images existing in the image database are regarded as unlabeled examples.

Note that Balcan et al. [3] have theoretically shown that given appropriately strong PAC-

learners on each view, an assumption of expansion on the underlying data distribution, which

is weaker than the assumption of sufficient and redundant views, is sufficient for iterative

co-training to succeed. This implies that the conditional independence [8] or even the weak

dependence [2] between the two views is not needed, at least, for iterative co-training which is

actually the working routine taken by many co-training style algorithms [20], [47], [48], [49],

[51]. In fact, the assumption of two sufficient views is too strong that Zhou et al. [53] have

shown that when this assumption can be met, semi-supervised learning given only one labeled

example is feasible. Recently, Wang and Zhou [43] have theoretically shown that co-training

style algorithms can be effective if the learners are diverse, which implies that the two views is

actually used to achieve the diversity of the learners, and therefore they are not needed if the

diversity can be achieved from other channels.

As mentioned before, previous research on semi-supervised learning mainly study semi-

supervised classification. Although regression is in general as important as classification, only

a few studies have been devoted to semi-supervised regression. One reason for this fact is

that the popular cluster assumption (i.e., similar instances should have the same label) in semi-

supervised classification does not naturally hold for regression problems and therefore most semi-

supervised classification methods are not straightforward applicable to regression. Fortunately,

another well-known assumption, the manifold assumption (i.e., similar instances should have

similar labels), still holds in regression problems, and thus, by exploiting the local smoothness
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in the feature space, semi-supervised regression is feasible. In addition to our work [50], Brefeld

et al. [9] developed another co-training style semi-supervised regression algorithm, CORLSR,

which extends a technique used in semi-supervised classification [36]. Semi-supervised kernel

[37] has also been studied in regression tasks [18], [30], [42].

III. COREG

Let L = {(x1,y1), · · · , (x|L|,y|L|)} denote the labeled example set, where xi is the i-th instance

described by d attributes, yi is its real-valued label, i.e. its expected real-valued output, and |L|
is the number of labeled examples; let U denote the unlabeled data set, where the instances are

also described by the d attributes, whose real-valued labels are unknown, and |U | is the number

of unlabeled examples.

Two regressors, i.e. h1 and h2, are generated from L, each of which is then refined with the

help of unlabeled examples that are labeled by the latest version of the other regressor. Here

the kNN regressor [14] is used as the base learner to instantiate h1 and h2, which labels a new

instance through averaging the real-valued labels of its k-nearest neighboring examples. The use

of kNN regressor is due to the following considerations. First, in semi-supervised learning, the

regressors will be refined in each of many learning iterations. Since kNN is a lazy learning

method which does not hold a separate training phase, the refinement of the kNN regressors

can be more efficiently realized than that of regressors such as neural networks which require

a separate training phase. Second, in order to choose appropriate unlabeled examples to label,

the labeling confidence should be estimated. Since the manifold assumption of local smoothness

holds in regression problems, in COREG the estimation utilizes the neighboring properties of the

training examples, which can be easily coupled with kNN regressors.

It is noteworthy that according to [43], in order to launch an effective co-training process,

the initial learners must be diverse. Extremely, if they are identical, then for either regressor,

the unlabeled examples labeled by the other regressor may be the same as these labeled by

the regressor itself. Consequently, the algorithm degenerates to self-training [27] with a single

learner. In the standard setting of co-training, the use of sufficient and redundant views enables

the learners to be different. Previous research has also shown that even when there is no

natural attribute partitions, a fairly reasonable attribute partition will enable co-training to exhibit

advantages if there are sufficient redundancy among the attributes [27]. While in an extended co-
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training algorithm which does not require sufficient and redundant views [20], the diversity among

the learners is achieved through using different learning algorithms. Since COREG assumes

neither two views nor different learning algorithms, the diversity of the regressors has to be

sought from other channels.

Here the diversity is achieved by utilizing different distance metrics and/or different k values.

In fact, two key points of a kNN learner are how to identify the nearest neighbors and how many

nearest neighbors are considered for a given instance. By using different distance metrics, the

vicinities identified for a given instance can be different even when the same k value is used;

while, by using different k values, the predictions for a given instance can also be different even

when the same distance metric is used. Thus, the kNN regressors h1 and h2 can be diverse by

instantiating them with different distance metrics and/or different k values. Such a setting can

also bring another advantage, that is, since it is usually difficult to decide which distance metric

and which k value is better for the concerned task, the functions of these regressors may be

somewhat complementary if they are combined. Note that the use of different distance metrics

has been shown helpful in some variants of co-training [48], [49].

In order to choose appropriate unlabeled examples to label, the labeling confidence should

be estimated such that the most confidently labeled example can be identified. Note that both

active learning and semi-supervised learning try to select “valued” unlabeled examples to use. In

active learning, the selected unlabeled example will be passed to an oracle to ask for its ground-

truth label. Therefore, the unlabeled example on which the learner is with the least confidence

is usually selected since it would be most valuable for improving the learner. While in semi-

supervised learning, since there is no oracle that can be relied, the unlabeled example on which

the learner is with the most confidence is usually selected to label. These two learning processes

have been combined in some previous work [48], [49].

Estimating the labeling confidence in classification is relatively straightforward because when

making classifications, many classifiers can also provide an estimated probability (or an approx-

imation) for the classification, e.g. a Naı̈ve Bayes classifier returns the maximum a posteriori

hypothesis where the posterior probabilities can be used; a Backpropagation neural network clas-

sifier returns thresholded classification where the real-valued outputs can be used; etc. Therefore,

the labeling confidence can be estimated through consulting the probabilities of the unlabeled

examples being labeled to different classes. For example, suppose the probability of the instance
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a being classified to the classes c1 and c2 is 0.90 and 0.10, respectively, while that of the instance

b is 0.60 and 0.40, respectively. Then the instance a is more confident to be labeled (to class

c1). Unfortunately, in regression there is no such estimated probability that can be used directly.

This is because in contrast to classification where the number of class labels to be predicted

is finite, the possible predictions in regression are infinite. Therefore, a key of COREG is the

mechanism for estimating the labeling confidence.

Intuitively, the most confidently labeled example of a regressor should be with such a property,

i.e. the error of the regressor on the labeled example set should decrease the most if the most

confidently labeled example is utilized. In other words, the most confidently labeled example

should be the one which makes the regressor most consistent with the labeled example set. Thus,

the mean squared error (MSE) of the regressor on the labeled example set can be evaluated first.

Then, the MSE of the regressor utilizing the information provided by (xu, ŷu) can be evaluated

on the labeled example set, where xu is an unlabeled instance while ŷu is the real-valued label

generated by the original regressor. Let ∆u denote the result of subtracting the latter MSE from

the former MSE. Note that the number of ∆u to be estimated equals to the number of unlabeled

examples. Finally, (xu, ŷu) associated with the biggest positive ∆u can be regarded as the most

confidently labeled example.

Since repeatedly measuring the MSE of the kNN regressor on the whole labeled example

set in each iteration will be time-consuming, considering that kNN regressor mainly utilizes

local information, COREG employs an approximation. That is, for each xu, COREG identifies its

k-nearest labeled examples and uses them to compute the MSE. In detail, for each xu, let Ωu

denote the set of its k-nearest neighbors in L, then the most confidently labeled example x̃ is

identified through maximizing the value of δxu in Eq. 1,

δxu =
∑

xi∈Ωu

(
(yi − h (xi))

2 − (yi − h′ (xi))
2
)

(1)

where h denotes the original regressor while h′ denotes the refined regressor which has utilized

the information provided by (xu, ŷu), ŷu = h(xu).

The pseudo code of COREG is shown in Table I, where the function kNN(Lj, kj, Dj) returns

a kNN regressor on the labeled example set Lj , whose k value is kj and distance metric is Dj .

The learning process stops when the maximum number of learning iterations, T , is reached, or

there is no unlabeled example which is capable of reducing the MSE of any of the regressors on
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TABLE I

PSEUDO-CODE DESCRIBING THE COREG ALGORITHM

ALGORITHM: COREG

INPUT: labeled example set L, unlabeled example set U ,

maximum number of learning iterations T ,

number of nearest neighbors k1, k2

distance metrics D1, D2

PROCESS:

L1 ← L; L2 ← L

Create pool U ′ of size s by randomly picking examples from U

h1 ← kNN(L1, k1, D1); h2 ← kNN(L2, k2, D2)

Repeat for T rounds:

for j ∈ {1, 2} do

for each xu ∈ U ′ do

Ωu ← Neighbors (xu, Lj , kj , Dj)

ŷu ← hj(xu)

h′j ← kNN(Lj ∪ {(xu, ŷu)}, kj , Dj)

δxu ←
∑

xi∈Ωu

(
(yi − hj (xi))

2 −
(
yi − h′j (xi)

)2
)

end of for

if there exists an δxu > 0

then x̃j ← arg max
xu∈U′

δxu ; ỹj ← hj(x̃j)

πj ← {(x̃j , ỹj)}; U ′ ← U ′ − {x̃j}
else πj ← ∅

end of for

L1 ← L1 ∪ π2; L2 ← L2 ∪ π1

if neither of L1 and L2 changes then exit

else

h1 ← kNN(L1, k1, D1); h2 ← kNN(L2, k2, D2)

Replenish U ′ to size s by randomly picking examples from U

end of Repeat

f1 ← Regressor(L1); f2 ← Regressor(L2)

OUTPUT: regressor f∗(x) ← 1
2

(f1 (x) + f2 (x))

the labeled example set. According to Blum and Mitchell’s suggestion [8], a pool of unlabeled

examples smaller than U is used, and the iterative co-training routine is executed. Note that in
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each iteration the unlabeled example chosen by h1 won’t be chosen by h2, which is an extra

mechanism for encouraging the diversity of the regressors. Thus, even when h1 and h2 are

similar, the examples they label for each other will still be different.

In each iteration the computational cost of COREG is mainly spent on identifying the neighbors

of examples. Since the neighboring labeled examples for every labeled training example can be

computed and stored in advance, actually only the neighborhood of the unlabeled examples

need to be identified and then the neighbors of the labeled training examples could be updated.

Moreover, the identified neighborhood of many unlabeled examples can be reused in iterations.

So, the computational cost of COREG is almost comparable to that of using kNN regressors to

predict the unlabeled examples.

Note that after using two kNN regressors to select and label the unlabeled examples, the

predictions can be made by other kinds of regressors instead of the kNN regressors. For example,

suppose we use linear regression. After using the two kNN regressors to select and label the

unlabeled examples, we get two augmented labeled training sets. On each training set we can

train a linear regressor. Then, the predictions of these two linear regressors are averaged as the

final prediction.

IV. ANALYSIS

This section attempts to analyze whether the learning process of COREG can use the unlabeled

examples to improve the regression estimates. In order to simplify the discussion, here the effect

of the pool U ′ is not considered as in [8]. That is, the unlabeled examples are assumed as being

picked from the unlabeled example set U directly.

In each learning iteration of COREG, for each unlabeled example xu, its k-nearest neighboring

labeled examples are put into the set Ωu. As mentioned before, the newly labeled example should

make the regressor become more consistent with the labeled data set. Therefore, the goodness

of xu can be evaluated using a criterion shown in Eq. 2,

∆u =
1

|L|
∑

xi∈L

(yi − h(xi))
2 − 1

|L|
∑

xi∈L

(yi − h′(xi))
2 (2)

where h is the original regressor while h′ is the one refined with (xu, ŷu). If the value of ∆u is

positive, then utilizing (xu, ŷu) is beneficial.
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In the COREG algorithm, the unlabeled example which maximizes the value of δxu is picked

out to be labeled. Therefore, the question is, whether the unlabeled example chosen according

to the maximization of δxu will result in a positive ∆u value or not.

First, assume that (xu, ŷu) is among the k-nearest neighbors of some examples in Ωu, and is

not among the k-nearest neighbors of any other examples in L. In this case, it is obvious that

utilizing (xu, ŷu) will only change the regression estimates on the examples in Ωu, therefore

Eq. 2 becomes Eq. 3.

∆u =
1

k

∑

xi∈Ωu

(yi − h(xi))
2 − 1

k

∑

xi∈Ωu

(yi − h′(xi))
2 (3)

Comparing Eqs. 1 with 3 it can be found that the maximization of δxu also results in the

maximization of ∆u.

Second, assume that (xu, ŷu) is not among the k-nearest neighbors of any example in Ωu. In

this case, the value of δxu is zero, therefore (xu, ŷu) won’t be chosen in COREG.

Third, assume that (xu, ŷu) is among the k-nearest neighbors of some examples in Ωu as well

as some examples in L−Ωu, and assume that these examples in L−Ωu are (x
′
1,y

′
1), · · · , (x′m,y

′
m).

Then Eq. 2 becomes Eq. 4.

∆u =
1

k + m
[

∑

xi∈Ωu

(
(yi − h(xi))

2 − (yi − h′(xi))
2
)

+
∑

q∈{1,···,m}

((
y
′
q − h(x

′
q)

)2 −
(
y
′
q − h′(x

′
q)

)2
)
] (4)

Maximizing δxu will maximize the first sum term of Eq. 4, but whether it can enable ∆u

be positive should also refer the second sum term. Unfortunately, the value of this sum term is

difficult to measure except that the neighboring relationships between all the labeled examples

and (xu, ŷu) are evaluated. Therefore, there may exist cases where the unlabeled example chosen

according to the maximization of δxu may decrease ∆u, which is the cost COREG takes for using

δxu that can be more efficiently computed to approximate ∆u. Nevertheless, experiments show

that in most cases such an approximation is effective.

It seems that using only one regressor to label the unlabeled examples for itself might be

feasible, where the unlabeled examples can be chosen according to the maximization of δxu .

While considering that the labeled example set usually contains noise, the use of two regressors
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can be helpful to reduce overfitting. Let Λ denote the set of noisy examples in L. For the unlabeled

instance xu, either of the regressors h1 and h2 will identify a set of k-nearest neighboring labeled

examples for xu. Let Ωu,1 and Ωu,2 denote these sets, respectively. Since h1 and h2 use different

distance metrics and/or different k values, Ωu,1 and Ωu,2 are usually different, and therefore

Ωu,1 ∩ Λ and Ωu,2 ∩ Λ are also different. Suppose xu is labeled by h1 and then (xu, h1(xu)) is

put into L1, where h1(xu) suffers from the noisy examples in Ωu,1 ∩ Λ. For another unlabeled

instance xv which is very close to xu, its k-nearest neighbors identified by h1 will be very

similar to Ωu,1 except that (xu, h1(xu)) has replaced a previous neighbor. Thus, h1(xv) will be

roughly affected by (Ωu,1 ∩ Λ) ∪ {(xu, h1(xu))}. Since (xu, h1(xu)) has already suffered from

the noisy examples in Ωu,1 ∩ Λ, h1(xv) will suffer from Ωu,1 ∩ Λ more seriously than h1(xu)

does. While, if the instance xu is labeled by h2 and (xu, h2(xu)) is put into L1, then h1(xv)

will suffer from Ωu,1 ∩ Λ only once, although xu is still very close to xv. Quantitative analysis

on such effect is rather difficult since it is related to the concrete data distribution, which is an

interesting issue for future study.

V. EXPERIMENTS

A. Configuration

Fifteen data sets are used in our experiments, including synthetic as well as real-world data sets.

The synthetic data sets are tabulated in Table II. The data sets 2-d Mexican Hat and 3-d Mexican

Hat have been used by Weston et al. [44] in investigating the performance of support vector

machines; Friedman #1, #2, #3 have been used by Breiman [10] in testing the performance

of Bagging; Gabor, Multi and SinC have been used by Hansen [21] in comparing ensemble

learning methods; Plane has been used by Ridgeway et al. [31] in exploring the performance

of boosted naive Bayesian regressors; all these data sets have been used by Zhou et al. [52] in

investigating selective ensemble. In the experiments, the instances contained in these data sets

were generated from the functions listed in Table II. The constraints on the attributes are also

shown in the table, where U[a, b] means a uniform distribution over the interval determined by

a and b. Note that the input attributes as well as the real-valued labels have been normalized to

[0.0, 1.0]. Gaussian noise terms have been added to the functions. The real-world data sets are

from the UCI machine learning repository [6] and StatLib [41], as shown in Table III.
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TABLE II

THE SYNTHETIC DATA SETS

Data set Function Attribute Size

2-d Mexican Hat y = sinc |x| = sin|x|
|x| x ∼ U [−2π, 2π] 5,000

3-d Mexican Hat y = sinc
√

x2
1 + x2

2 =
sin
√

x2
1+x2

2√
x2
1+x2

2

x1, x2 ∼ U [−4π, 4π] 3,000

Friedman #1 y = 10 sin (πx1x2) + 20 (x3 − 0.5)2 + 10x4 + 5x5 x1, x2, x3, x4, x5 ∼ U [0, 1] 5,000

x1 ∼ U [0, 100]

x2 ∼ U [40π, 560π]
Friedman #2 y =

√
x2

1 +
(
x2x3 −

(
1

x2x4

))2

x3 ∼ U [0, 1]
5,000

x4 ∼ U [1, 11]

x1 ∼ U [0, 100]

x2 ∼ U [40π, 560π]
Friedman #3 y = tan−1

x2x3− 1
x2x4

x1 x3 ∼ U [0, 1]
3,000

x4 ∼ U [1, 11]

Gabor y = π
2

exp
[
−2

(
x2

1 + x2
2

)]
cos [2π (x1 + x2)] x1, x2 ∼ U [0, 1] 3,000

Multi y = 0.79 + 1.27x1x2 + 1.56x1x4 + 3.42x2x5 + 2.06x3x4x5 x1, x2, x3, x4, x5 ∼ U [0, 1] 4,000

Plane y = 0.6x1 + 0.3x2 x1, x2 ∼ U [0, 1] 1,000

Polynomial y = 1 + 2x + 3x2 + 4x3 + 5x4 x ∼ U [0, 1] 3,000

SinC y = sin(x)
x

x ∼ U [0, 2π] 3,000

TABLE III

THE REAL-WORLD DATA SETS

Data sets # Features Size Source

chscase.census6 6 400 StatLib

kin8nm 2000 8 2000 UCI

no2 7 500 StatLib

pollen 5 3848 StatLib

puma8NH 2000 8 2000 UCI

Each data set is randomly partitioned into labeled/unlabeled/test data sets according to certain

ratios. Specifically, about 25% of the data are kept as test examples while the remaining 75%

of the data are used as the set of training examples, i.e. L∪U . In each training set, L and U are

partitioned under different label rates including 10%, 30% and 50%. For instance, assuming a

training set contains 1,000 examples, when the label rate is 10%, 100 examples are put into L
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with their labels while the remaining 900 examples are put into U without their labels.

A popular routine in evaluating semi-supervised algorithms [8], [20], [27], [51], [55] is

adopted. In detail, one hundred runs of experiments are conducted on each data set; in each

run, algorithms are evaluated on randomly partitioned labeled/unlabeled/test splits; the average

MSE at each iteration is recorded. In the experiments the maximum number of iterations, T ,

is set to 100, and the size of the pool used in the learning process is fixed to 100. Note that

the learning process may stop before the maximum number of iterations is reached, and in that

case, the final MSE is used in computing the average MSE of the following iterations.

B. Experiments on Using kNN Regressors on Synthetic Data Sets

1) Comparison with initial regression estimates: As mentioned before, COREG achieves the

diversity of the two kNN regressors by employing different distance metrics and/or different k

values. In our experiments, Euclidean distance and Mahalanobis distance are considered, and

the k values are fixed on 3 or 5. In this section, three different parameter settings of COREG are

evaluated: 1) k1 = k2 = 3, D1 = Euclidean and D2 = Mahalanobis, 2) k1 = 3, k2 = 5 and

D1 = D2 = Mahalanobis, and 3) k1 = 5, k2 = 3, D1 = Euclidean and D2 = Mahalanobis.

The improvements on MSE obtained by exploiting unlabeled examples under different label

rates are tabulated in Table IV, which is computed by subtracting the final MSE (i.e. the

MSE of regressors after semi-supervised learning process) from the initial MSE (i.e. the MSE

of regressors before utilizing any unlabeled examples) and then divided by the initial MSE.

Pairwise t-tests with significance level 0.05 are executed and the table entries with significant

improvements are boldfaced. The corresponding p-values are shown in Table V.

The tables show that COREG almost always perform significantly better than its initial regres-

sion estimates, which verifies that COREG is able to exploit the unlabeled data to improve the

regression estimates on all the evaluated configurations.

Moreover, it can be found from Table IV that COREG performs better under config-1 than

under config-2. This is not difficult to understand since the neighborhood identified by using a

smaller k is always a subset of that identified by using larger k, and thus, using different distance

metrics could be more effective than using different k values in achieving the diversity of the

kNN regressors. Moreover, it can be observed that COREG performs better under config-1 than

under config-3. One possible explanation is that although either the use of different metrics or
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TABLE IV

IMPROVEMENTS (%) ON MEAN SQUARED ERROR

label rate 10% label rate 30% label rate 50%
Data set

config-1 config-2 config-3 config-1 config-2 config-3 config-1 config-2 config-3

2-d MexicanHat 34.7 31.0 26.9 19.9 14.0 12.5 14.0 9.5 9.9

3-d MexicanHat 11.6 8.5 4.3 11.2 4.9 3.7 9.4 3.6 3.5

Friedman #1 3.0 -0.1 -0.6 2.5 -0.1 -0.3 1.7 -0.1 0.0

Friedman #2 7.0 1.3 1.6 4.7 0.9 0.9 3.6 0.7 1.1

Friedman #3 2.1 -1.3 -1.1 1.6 -1.3 -0.7 1.6 -1.0 -0.2

Gabor 17.6 15.0 5.7 14.9 8.2 7.9 11.3 6.3 6.4

Multi 5.5 1.4 0.8 4.2 0.8 0.5 3.4 0.7 0.7

Plane -1.4 -3.2 -2.9 0.2 -1.4 -1.3 0.3 -1.0 -1.0

Polynomial 39.3 41.2 26.2 27.2 23.7 15.7 18.8 12.9 10.9

SinC 44.9 43.3 36.1 26.3 20.2 18.2 19.8 14.8 14.0

avg. 16.4 13.7 9.7 11.3 7.0 5.7 8.4 4.6 4.5

TABLE V

THE p-VALUES OF THE PAIRWISE t-TESTS

label rate 10% label rate 30% label rate 50%
Data set

config-1 config-2 config-3 config-1 config-2 config-3 config-1 config-2 config-3

MexicanHat2d 1.80E-46 1.39E-31 7.03E-30 1.99E-51 3.66E-29 2.28E-28 1.52E-48 2.21E-27 2.29E-33

MexicanHat3d 1.25E-16 2.41E-12 1.21E-04 1.51E-24 2.63E-10 6.86E-06 8.51E-20 1.68E-04 7.89E-05

Friedman #1 1.40E-16 6.25E-01 3.30E-02 4.37E-25 6.41E-01 1.03E-01 4.32E-27 4.00E-01 8.43E-01

Friedman #2 2.29E-30 3.74E-03 5.51E-04 6.70E-34 2.12E-03 3.29E-04 1.32E-33 6.13E-04 3.77E-08

Friedman #3 2.43E-04 2.27E-02 5.47E-02 2.71E-04 4.81E-04 5.71E-02 2.25E-06 1.57E-03 6.29E-01

Gabor 3.96E-22 1.49E-15 2.57E-04 1.43E-29 4.95E-11 4.18E-11 3.75E-35 1.52E-11 5.42E-14

Multi 4.16E-17 1.02E-02 1.08E-01 9.02E-28 2.09E-03 5.35E-02 2.28E-29 1.81E-03 2.82E-03

Plane 1.05E-03 5.20E-14 1.76E-11 5.83E-01 4.71E-08 3.04E-08 2.10E-01 4.68E-06 7.94E-06

Polynomial 2.86E-32 1.20E-20 1.37E-12 1.42E-29 1.24E-18 4.71E-15 5.20E-33 2.58E-16 2.18E-16

SinC 1.14E-41 1.30E-31 1.43E-25 5.13E-61 6.07E-32 2.48E-31 8.20E-52 2.54E-30 8.84E-29

different k values can enable COREG to exploit unlabeled examples, their helpful effects might

counteract when they are used together, which means that some pairs of metric and k value

could return good performance but some could not. Thus, in order to exert the advantage of
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using different metrics and different k values simultaneously, a careful study on the cooperation

of metrics and k values has to be performed. For simplicity, in the following experiments we

use config-1 as the default configuration of COREG.

2) Comparison with other methods: In order to further evaluate the performance of COREG,

three semi-supervised regression methods, i.e. ARTRE, SELF1 and SELF2, are developed and

compared in this section.

ARTRE is a co-training style algorithm. Since the experimental data sets are with no sufficient

and redundant views, here an artificial redundant view is generated by deriving new attributes

from the original ones. Let x(1) and x(2) denote the same example in the original view and

the artificial view, respectively. For data sets with only one attribute (e.g., SinC), the redundant

attribute x(2) is derived by 1−x(1); for data sets with d > 1 attributes, a matrix Ad×d is employed

to help generate the artificial attributes in the way of x(2) = Ax(1). Elements of A are filled

by -1, 0, or 1, randomly. In each iteration, each kNN regressor chooses the unlabeled example

that maximizes the value of δxu in Eq. 1 to label for the other regressor. Euclidean distance and

k = 3 are used. The final prediction is made by averaging the regression estimates of these two

refined regressors.

SELF1 is a self-training style algorithm. This algorithm uses one kNN regressor and in each

iteration, it chooses the unlabeled example which maximizes the value of δxu in Eq. 1 to label

for itself. The k value and distance metric used by SELF1 are set to the same as these used by

the first regressor of COREG, that is, k = 3 and D = Euclidean.

SELF2 is another self-training style algorithm. This algorithm uses two kNN regressors each

employs self-training for its own refinement. The parameter setting of SELF2 is the same as that

of COREG, i.e., D1 = Euclidean, D2 = Mahalanobis, and k1 = k2 = 3. Note that SELF2 is

almost the same as COREG except that each regressor labels the unlabeled examples for itself

instead of its peer regressor.

The maximum number of iterations T and the pool size s are set to 100 for ARTRE, SELF1

and SELF2, just as the same as that used for COREG.

Additionally, a kNN regressor using only the labeled data is evaluated as the baseline for the

comparison, which is denoted by LABELED. The k value is set to 3. Note that the reported result

of LABELED is the best result of such a kNN regressor which uses either Euclidean distance or
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Mahalanobis distance.

Table VI reports on the results under different label rates, where the MSE of LABELED are

tabulated in the third column, while the ratios of the final MSE of the other algorithms over the

MSE of LABELED are tabulated in the fourth to the seventh columns. The lowest MSE ratio,

i.e. the best performance among the compared semi-supervised algorithms, under each label rate

has been boldfaced. Pairwise t-tests with significance level 0.05 are executed. Due to the page

length, here we only present the p-values of comparing other methods against LABELED, as

shown in Table VII, where the table entries with significant improvements are boldfaced.

First, let’s look into the comparison between COREG, ARTRE and SELF1. Table VI shows

that COREG is better than LABELED on all the data sets except on Plane under 10% label rate.

By contrast, ARTRE is worse than LABELED on four data sets under every label rate, and SELF1

is worse than LABELED on five data sets under every label rate. Moreover, COREG achieves the

lowest average MSE ratio under all label rates, while both the average MSE ratios of ARTRE

and SELF1 are much higher than that of COREG. Pairwise t-tests with 0.05 significance level

reveal that the final regression estimates of COREG are always significantly better than that of

SELF1, almost always significantly better than that of LABELED except on Plane under 10%

label rate, and almost always significantly better than that of ARTRE except that on Friedman

#1 ARTRE is better under 30% and 50% label rates and there is no significant difference under

10% label rate. It is evident that COREG is significantly better than both ARTRE and SELF1.

Second, let’s look into the comparison between COREG and SELF2. Table VI shows that

COREG is only worse than LABELED on Plane under 10% label rate, but SELF2 is worse than

LABELED on Plane under all label rates. Moreover, on the 30 times (10 data sets × 3 label rates)

of comparisons, COREG achieves the lowest MSE ratio for 20 times, while SELF2 only achieves

the lowest MSE ratio for 9 times. These observations tell that COREG works better than SELF2.

However, the average MSE ratio of SELF2 is close to that of COREG, and pairwise t-tests with

0.05 significance level disclose that COREG only significantly outperforms SEFL2 on 7 times of

comparisons among the total 30 times of comparisons, i.e., on Plane under 10% label rate, on

2-d Mexican Hat, Plane and SinC under 30% label rate, and on 2-d Mexican Hat, Gabor and

Plane under 50% label rate. So, the superiority of COREG to SELF2 is not so large as to ARTRE

and SELF1. Remind that the only difference between SELF2 and COREG is that in COREG the

two kNN regressors label examples for each other while in SELF2 the regressors label examples
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TABLE VI

THE MSE OF LABELED AND THE RATIOS OF OTHER ALGORITHMS OVER LABELED ON SYNTHETIC DATA SETS

Label Rate Data Sets LABELED COREG ARTRE SELF1 SELF2

2d Mexican Hat 2.98E-05 0.653 0.739 0.844 0.661

3d Mexican Hat 3.56E-03 0.878 0.918 0.943 0.868

Friedman #1 4.65E-03 0.958 0.954 1.036 0.959

Friedman #2 2.43E-03 0.915 2.658 1.031 0.916

Friedman #3 1.27E-02 0.968 1.349 1.015 0.963

10% Gabor 1.69E-03 0.816 0.944 0.949 0.827

Multi 2.89E-03 0.931 1.091 1.032 0.928

Plane 9.41E-02 1.010 1.065 1.079 1.037

Polynomial 2.29E-05 0.607 0.662 0.749 0.596

SinC 2.09E-05 0.551 0.707 0.715 0.555

avg. N/A 0.829 1.109 0.939 0.831

2d Mexican Hat 3.26E-06 0.801 0.889 0.922 0.812

3d Mexican Hat 1.09E-03 0.883 0.968 0.994 0.889

Friedman #1 2.85E-03 0.966 0.910 1.013 0.965

Friedman #2 1.29E-03 0.942 2.231 1.017 0.944

Friedman #3 8.36E-03 0.978 1.379 1.016 0.976

30% Gabor 4.83E-04 0.845 0.971 0.980 0.852

Multi 1.64E-03 0.948 1.031 1.019 0.947

Plane 9.61E-02 0.997 1.027 1.032 1.007

Polynomial 2.37E-06 0.728 0.794 0.849 0.732

SinC 2.26E-06 0.737 0.840 0.886 0.747

avg. N/A 0.882 1.104 0.973 0.887

2d Mexican Hat 1.20E-06 0.860 0.932 0.943 0.866

3d Mexican Hat 6.39E-04 0.902 0.973 0.993 0.907

Friedman #1 2.25E-03 0.975 0.893 1.008 0.962

Friedman #2 9.60E-04 0.957 2.060 1.009 0.956

Friedman #3 6.86E-03 0.980 1.383 1.010 0.980

50% Gabor 2.76E-04 0.882 0.975 0.994 0.890

Multi 1.28E-03 0.957 1.014 1.013 0.957

Plane 9.41E-02 0.996 1.023 1.017 1.000

Polynomial 7.66E-07 0.812 0.875 0.929 0.814

SinC 8.18E-07 0.802 0.891 0.919 0.808

avg. N/A 0.912 1.102 0.983 0.914
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TABLE VII

THE p-VALUES OF PAIRWISE t-TESTS BETWEEN THE COMPARED METHODS AND LABELED ON SYNTHETIC DATA SETS

Label Rate Data Set COREG ARTRE SELF1 SELF2

2d Mexican Hat 8.87E-35 2.08E-26 5.43E-09 1.92E-33

3d Mexican Hat 2.31E-05 2.21E-03 4.63E-02 1.14E-05

Friedman #1 5.50E-08 5.50E-10 1.02E-05 1.57E-07

Friedman #2 6.14E-14 7.51E-82 1.88E-03 4.18E-14

10% Friedman #3 3.48E-02 6.16E-47 3.31E-01 1.79E-02

Gabor 1.27E-04 1.88E-01 2.79E-01 5.62E-04

Multi 4.03E-09 3.68E-12 2.19E-03 1.74E-10

Plane 2.63E-01 1.57E-09 1.18E-11 4.59E-04

Polynomial 6.65E-21 3.33E-20 1.44E-09 6.32E-22

SinC 7.29E-42 8.31E-22 8.35E-21 1.75E-41

2d Mexican Hat 2.14E-28 1.28E-10 9.85E-07 5.27E-26

3d Mexican Hat 2.24E-08 1.32E-01 8.06E-01 1.19E-07

Friedman #1 2.01E-09 2.67E-31 1.63E-02 2.17E-09

Friedman #2 7.98E-11 3.49E-87 2.82E-02 8.50E-11

30% Friedman #3 1.45E-01 2.69E-46 2.94E-01 1.13E-01

Gabor 6.51E-14 1.29E-01 3.38E-01 1.32E-12

Multi 6.28E-10 6.14E-05 1.30E-02 3.54E-10

Plane 6.56E-01 1.10E-03 9.47E-05 3.72E-01

Polynomial 8.63E-21 1.07E-13 1.55E-08 7.93E-21

SinC 1.11E-28 1.76E-15 7.75E-08 7.00E-28

2d Mexican Hat 6.73E-21 2.94E-07 6.70E-06 6.70E-20

3d Mexican Hat 2.07E-07 1.18E-01 7.37E-01 3.23E-07

Friedman #1 7.02E-06 2.25E-37 1.56E-01 2.27E-06

Friedman #2 1.72E-11 5.07E-83 1.82E-01 1.62E-11

50% Friedman #3 1.76E-01 6.31E-47 4.64E-01 1.68E-01

Gabor 2.83E-12 1.06E-01 7.38E-01 8.39E-10

Multi 1.08E-08 4.71E-02 8.11E-02 6.78E-09

Plane 5.78E-01 2.01E-03 1.77E-02 9.74E-01

Polynomial 1.61E-14 7.19E-09 5.59E-03 7.85E-14

SinC 5.10E-23 4.61E-09 1.52E-05 6.42E-22

for themselves. Thus, the above results suggest that although letting the two regressors to label

examples for each other is helpful, using two kNN regressors with different distance metrics

and using Eq. 1 to select unlabeled examples contribute more to the performance of COREG.
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Note that with the increasing of the label rate, the reduction of MSE endowed by exploiting

unlabeled examples seems decreasing. This is not strange since it can be perceived from the

performance of LABELED that the initial regressors become stronger when more labeled training

examples are available, and therefore are more difficult to be improved.

C. Experiments on Using kNN Regressors on Real-World Data Sets

Further, we use the real-world data sets shown in Table III to evaluate COREG and the other

three semi-supervised learning algorithms described in Section V-B.2, i.e. ARTRE, SELF1 and

SELF2. LABELED is still used as the baseline for comparison. All the experimental settings are

as the same as that used in Section V-B.2.

Table VIII reports on the results under different label rates, where the MSE of LABELED are

tabulated in the third column, while the ratios of the final MSE of the other algorithms over the

MSE of LABELED are shown in the fourth to the seventh columns. The lowest MSE ratio under

each label rate, i.e. the best performance of the compared semi-supervised algorithms, has been

boldfaced. Pairwise t-tests with significance level 0.05 are executed. Due to the page length,

here we only present the p-values of comparing other methods against LABELED, as shown in

Table IX, where the table entries with significant improvements are boldfaced.

First, let’s look into the comparison between COREG, ARTRE and SELF1. Table VIII shows

that COREG always achieves better performance than LABELED. By contrast, ARTRE is always

worse than LABELED on kin8nm 2000 and SELF1 is always worse than LABELED. Moreover,

the average MSE ratio of COREG is smaller than 1.0 under all label rates, while both the average

MSE ratios of ARTRE and SELF1 are bigger than 1.0.

Second, let’s look into the comparison between COREG and SELF2. Table VIII shows that

COREG is always better than LABELED but SELF2 is worse than LABELED on no2 under 10%

label rate. The average MSE ratio of COREG is smaller than that of SELF2. Moreover, on the

15 times (5 data sets × 3 label rates) of comparisons, COREG achieves the lowest MSE ratio

for 8 times, while SELF2 only achieves the lowest MSE ratio for 2 times.

Pairwise t-tests with significance level 0.05 indicate that COREG always significantly outper-

forms LABELED and SELF1; it is significantly better than ARTRE on kin8nm 2000 and pollen

under all label rates and on no under 10% and 30% label rates; it is significantly better than
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TABLE VIII

THE MSE OF LABELED AND THE RATIOS OF OTHER ALGORITHMS OVER LABELED ON REAL-WORLD DATA SETS

Label Rate Data Set LABELED COREG ARTRE SELF1 SELF2

chscase.census6 2.97E-02 0.950 0.949 1.041 0.974

kin8nm 2000 2.08E-02 0.963 1.213 1.028 0.964

10% no2 1.45E-01 0.950 0.982 1.109 1.017

pollen 1.11E-01 0.912 0.954 1.008 0.924

puma8NH 2000 4.04E-02 0.966 0.910 1.021 0.965

avg. N/A 0.976 1.010 1.032 0.995

chscase.census6 2.92E-02 0.948 0.926 1.039 0.960

kin8nm 2000 1.59E-02 0.966 1.299 1.018 0.966

30% no2 1.37E-01 0.936 0.948 1.027 0.951

pollen 1.10E-01 0.914 0.949 1.012 0.918

puma8NH 2000 3.56E-02 0.970 0.877 1.009 0.972

avg. N/A 0.968 1.008 1.016 0.975

chscase.census6 2.84E-02 0.950 0.930 1.031 0.956

kin8nm 2000 1.41E-02 0.978 1.327 1.017 0.974

50% no2 1.35E-01 0.930 0.933 1.002 0.936

pollen 1.10E-01 0.911 0.944 1.008 0.914

puma8NH 2000 3.34E-02 0.974 0.869 1.004 0.975

avg. N/A 0.963 1.009 1.008 0.964

SELF2 on chscase.census6 under all label rates and on no2 and pollen under 10% and 30% label

rates. The above observations tell that COREG is superior to the compared algorithms.

Since experiments on real-world data sets may exhibit the performance of the compared

algorithms on real-world tasks better than experiments on synthetic data sets, we study further

the MSE of different algorithms at different iterations, as shown in Figs. 1 to 3. In these figures,

besides the compared algorithms, the MSE of the two kNN regressors used in COREG are also

depicted. Note that in each figure, every curve contains 101 points corresponding to the 100

learning iterations in addition to the initial condition, where only 11 of them are explicitly

depicted for better presentation.

Figs. 1 to 3 show that the MSE of COREG usually keeps on decreasing as the learning

process proceeds, which suggests that COREG improves its regression estimates by exploiting

unlabeled examples. SELF1 is obviously incompetent. After using unlabeled data, the perfor-
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TABLE IX

THE p-VALUES OF PAIRWISE t-TESTS BETWEEN THE COMPARED METHODS AND LABELED ON REAL-WORLD DATA SETS

Label Rate Data Set COREG ARTRE SELF1 SELF2

chscase census6 9.86E-04 1.44E-03 2.04E-02 8.73E-02

kin8nm 2000 4.05E-05 3.39E-40 2.86E-03 6.83E-05

10% no2 1.21E-06 9.15E-02 1.16E-13 1.06E-01

pollen 2.37E-42 4.31E-21 8.23E-02 4.79E-37

puma8NH 2000 5.19E-06 9.64E-24 7.00E-03 2.26E-06

chscase census6 2.35E-04 2.44E-07 8.45E-03 5.21E-03

kin8nm 2000 1.05E-05 2.62E-51 1.71E-02 1.33E-05

30% no2 6.10E-12 9.54E-09 7.44E-03 1.01E-07

pollen 6.83E-46 2.24E-27 1.81E-03 2.38E-44

puma8NH 2000 2.06E-05 4.43E-39 2.33E-01 7.87E-05

chscase census6 3.02E-04 6.60E-08 2.72E-02 1.03E-03

kin8nm 2000 3.48E-03 4.28E-58 3.23E-02 4.29E-04
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Fig. 1. Comparison on MSE at different iterations when the label rate is 10%
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Fig. 2. Comparison on MSE at different iterations when the label rate is 30%
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Fig. 3. Comparison on MSE at different iterations when the label rate is 50%

mance of ARTRE is often degraded. In fact, the low MSE ratios of ARTRE on four data sets
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in Table VIII owe to that its initial regression estimates on these data sets are better than

that of LABELED. For example, ARTRE achieves the lowest MSE ratio among the compared

algorithms on chscase.census6 and puma8NH 2000, but its performance actually degenerates on

puma8NH 2000 under all label rates and on chscase.census6 under 10% and 30% label rates

after it exploits the unlabeled data. Similarly, although the final MSE of SELF2 is almost always

better than LABELED, the performance of SELF2 actually degenerates on chscase.census6, no2

and pollen under 10% label rate, on chscase.census6 and pollen under 30% label rate, and on

pollen under 50% label rate. The above observations confirm that the performance of COREG is

superior to the compared algorithms.

D. Experiments on Using Other Regressors

As mentioned before, COREG can be easily used with other kinds of regressors. After em-

ploying two kNN regressors to select and label the unlabeled examples, the predictions can be

made by other kinds of regressors trained from the two augmented labeled training sets instead

of the kNN regressors.

We run experiments on the ten synthetic data sets under 10% label rate, and the results are

shown in Table X. We have tried two widely used regressors, i.e. linear regressor and support

vector regressor. Besides COREG, the compared algorithms in Section V-B.2 are also evaluated.

Here the parameter settings are as the same as that used in Section V-B.2. Pairwise t-tests with

significance level 0.05 are executed. Due to the page length, here we only present the p-values

of comparing other methods against LABELED, as shown in Table XI, where the table entries

with significant improvements are boldfaced.

It can be observed from Table X that COREG always achieve better regression estimates than

LABELED except on Polynomial when linear regressors are used. COREG almost always achieves

the lowest MSE ratio expect on Gabor and Polynomial when linear regressors are used, and on

Friedman #1,#2 when support vector regressor are used. Moreover, the average MSE error ratio

of COREG is lower than that of ARTRE, SELF1 and SELF2. These observations tell that COREG

is superior to the compared algorithms no matter whether linear regressors or support vector

regressors are used.

However, Table X shows that when linear regressors are used, the improvements from exploit-

ing unlabeled data are not significant except for COREG on Plane; while when support vector
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TABLE X

THE MSE OF LABELED AND THE RATIOS OF OTHER ALGORITHMS OVER LABELED UNDER 10% LABEL RATE

Linear Regressor Support Vector Regressor
Data set

LABELED COREG ARTRE SELF1 SELF2 LABELED COREG ARTRE SELF1 SELF2

2d Mexican Hat 1.23E-01 0.999 0.999 1.000 0.999 1.52E-01 0.959 1.005 0.976 0.985

3d Mexican Hat 1.33E-02 0.998 1.000 1.000 0.999 1.36E-02 0.993 0.997 0.996 0.995

Friedman #1 8.35E-03 0.995 0.998 0.999 0.998 8.60E-03 0.996 0.985 0.991 0.988

Friedman #2 6.27E-03 0.998 2.105 0.999 0.998 6.31E-03 0.998 1.103 0.998 0.996

Friedman #3 1.85E-02 0.998 1.270 1.000 0.999 2.48E-02 0.933 0.913 0.971 0.966

Gabor 2.77E-02 0.997 0.995 0.997 0.996 3.04E-02 0.969 0.990 0.991 0.984

Multi 3.38E-03 0.993 1.016 1.005 1.004 3.41E-03 0.988 1.033 1.015 1.013

Plane 7.34E-02 0.977 1.018 1.016 1.014 7.80E-02 0.937 0.984 0.982 0.981

Polynomial 8.82E-03 1.011 0.997 1.003 0.999 1.06E-02 0.946 0.981 0.965 0.958

SinC 2.25E-02 0.996 0.999 0.998 0.997 2.66E-02 0.977 1.001 0.982 0.978

avg. N/A 0.996 1.140 1.002 1.000 N/A 0.969 0.999 0.987 0.985

TABLE XI

THE p-VALUES OF PAIRWISE t-TESTS BETWEEN THE COMPARED METHODS AND LABELED ON SYNTHETIC DATA SETS

UNDER 10% LABEL RATE

Linear Regressor Support Vector Regressor
Data set

COREG ARTRE SELF1 SELF2 COREG ARTRE SELF1 SELF2

2d Mexican Hat 3.72E-01 3.57E-01 2.47E-01 4.12E-01 1.75E-13 6.57E-01 3.76E-05 2.27E-03

3d Mexican Hat 8.50E-01 9.73E-01 9.98E-01 9.41E-01 5.39E-01 7.72E-01 7.62E-01 6.92E-01

Friedman #1 3.17E-01 7.21E-01 8.63E-01 7.47E-01 5.09E-01 1.41E-02 1.19E-01 5.66E-02

Friedman #2 5.50E-01 1.33E-104 7.91E-01 5.32E-01 6.67E-01 8.13E-28 6.52E-01 3.55E-01

Friedman #3 6.81E-01 1.56E-48 9.60E-01 8.32E-01 2.58E-09 5.00E-15 1.20E-02 3.25E-03

Gabor 5.38E-01 3.20E-01 6.21E-01 4.19E-01 2.62E-05 2.38E-01 2.65E-01 3.34E-02

Multi 1.53E-01 2.51E-03 3.69E-01 4.72E-01 8.36E-03 1.80E-06 1.04E-02 1.84E-02

Plane 5.59E-05 1.53E-02 2.28E-02 4.52E-02 5.67E-21 5.38E-02 2.13E-02 1.90E-02

Polynomial 1.70E-02 6.29E-01 5.29E-01 9.12E-01 7.94E-09 1.47E-01 1.60E-03 2.68E-05

SinC 5.10E-01 8.18E-01 9.98E-01 6.25E-01 1.73E-02 9.90E-01 9.34E-02 2.55E-02

regressors are used, the improvements from exploiting unlabeled data are not significant on 3d

Mexican Hat, Friedman #1 and Friedman #2 except for ARTRE on Friedman #1. We have also
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conducted experiments under 30% and 50% label rates, and found that although COREG can

still benefit from exploiting the unlabeled examples, the improvements are not significant. The

compared algorithms could not work well either.

In fact, if we compare Tables X and VI, we can find that when linear regressors or support

vector regressors are used, the gains from exploiting unlabeled data are not as apparent as

what have been achieved when kNN regressors are used. We think this owes to two reasons.

First, linear regressors and support vector regressors exploit global information for regression

estimates. When there are lots of labeled training examples, exploiting a limited number of

unlabeled examples would not significantly change the global information, and therefore the

regression estimates could not be apparently improved. By contrast, kNN regressors exploit

local information, which could benefit much from the additional labeled training examples since

in many local areas the examples become more dense. Second, remind that the key assumption

in semi-supervised regression is the “manifold assumption”, i.e. the local “smoothness” in the

feature space. The extension to linear regressors and support vector regressors described in this

section is quite naive since it still uses kNN regressors to select and label the unlabeled examples.

It is likely that the “smoothness” induced by kNN regressors is somewhat different from what

is suitable for linear regressors and support vector regressors. In other words, if we use linear

regressors or support vector regressors themselves to accomplish the process of selecting and

labelling the unlabeled examples, better performance might be achieved by exploiting unlabeled

examples, which is a future extension of COREG.

E. Summary of Experimental Results

Overall, the experimental results reported in this section show that:

• The COREG algorithm can effectively exploit unlabeled examples to help improve regression

estimates. In most cases its improvement is larger than the compared algorithms. In partic-

ular, when using fixed k value but different distance metrics, the improvement of COREG

is always the biggest among all the compared algorithms. Moreover, the final regression

estimates of COREG is usually the best.

• According to the improvements brought by exploiting unlabeled examples, the three con-

figurations of COREG in descending order are: Using fixed k value but different distance

metrics, using fixed distance metric but different k values, and using different k values and
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different distance metrics. In order to exert the advantages of using different metrics and

different k values simultaneously, a careful study on the cooperation of metrics and k values

should be performed.

• The ARTRE algorithm which implements co-training through artificially deriving the second

view from the original attributes often degrades the performance after exploiting unlabeled

examples. The fact that COREG is usually superior to ARTRE suggests that exploiting

different distance metrics and/or different k values is better than exploiting artificial view

when co-training style algorithms are applied to regression problems which lack sufficient

and redundant views.

• The SELF1 algorithm which implements single-learner self-training never achieves better

regression estimates than COREG. This suggests that the co-training style used in COREG

is better than the standard self-training style for exploiting the unlabeled data in regression

problems.

• The SELF2 algorithm which combines two self-trained regressors for final prediction could

be helpful on many regression data sets, although inferior to COREG. Note that the only

difference between SELF2 and COREG is that in COREG the two kNN regressors label

examples for each other while in SELF2 they label examples for themselves. This suggests

that although letting the two regressors to label examples for each other is also helpful, the

more important mechanisms in COREG are to use two diverse kNN regressors and to pick

the unlabeled example which makes the regressor most consistent with the labeled example

set to label.

• When the number of labeled training examples increases, the gains through exploiting

unlabeled examples usually decrease since the regressors trained on the labeled training

examples become stronger, which are more difficult to be improved.

• COREG can be extended to use other kinds of regressors. In order to get more gains from

unlabeled examples, it may be better to involve the regressors in the prediction process as

well as in the process of selecting and labelling unlabeled examples.

VI. CONCLUSION

Previous research on semi-supervised learning mainly focuses on semi-supervised classifica-

tion. This paper extends our previous work [50] which describes one of the early efforts on
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semi-supervised regression. In particular, this paper proposes a co-training style semi-supervised

regression algorithm COREG. This algorithm employs two different k-nearest neighbor regressors.

In every learning iteration, each regressor labels the unlabeled example which can be most

confidently labeled for the other regressor, where the labeling confidence is estimated through

considering the consistency of the regressor with the labeled example set. The final prediction is

made by averaging the predictions of both the refined kNN regressors. Analysis and experiments

show that COREG can effectively exploit unlabeled data to improve the regression estimates.

This paper uses kNN regressor as the base learner, but the key idea of COREG, i.e. regarding

the labeling of the unlabeled example which makes the regressor most consistent with the

labeled example set as with the most confidence, can also be used with other base learners.

A straightforward extension of COREG has been studied in this paper. In order to get more

gains from unlabeled data, it may be better to involve the base learner in both the process

of prediction and the process of selecting and labelling unlabeled examples. Designing semi-

supervised regression algorithms along with this way is an interesting issue to be explored in

the future.

Currently there are many semi-supervised classification algorithms. Studying the relationship

between semi-supervised classification and semi-supervised regression, and developing other

kinds of semi-supervised regression algorithms, are also interesting issues to be investigated in

the future.

It has been reported that exploiting unlabeled examples is not always beneficial and sometimes

the performance may be degenerated [28], [35], which has also been observed in our experiments.

Although some explanations owing the deterioration to invalid model assumption [13], [28], [35]

or inconsistent data distribution [39], at present there is no solid theory guiding the exploitation

of unlabeled examples. Trying to establish such a theoretical framework is a great challenge of

semi-supervised learning.
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