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Relevance feedback is an effective scheme bridging the gap between high-level semantics and low-

level features in content-based image retrieval (Cbir). In contrast to previous methods which

rely on labeled images provided by the user, this paper attempts to enhance the performance
of relevance feedback by exploiting unlabeled images existing in the database. Concretely, this

paper integrates the merits of semi-supervised learning and active learning into the relevance

feedback process. In detail, in each round of relevance feedback, two simple learners are trained
from the labeled data, i.e. images from user query and user feedback. Each learner then labels

some unlabeled images in the database for the other learner. After re-training with the additional

labeled data, the learners classify the images in the database again and then their classifications
are merged. Images judged to be positive with high confidence are returned as the retrieval result,

while those judged with low confidence are put into the pool which is used in the next round of

relevance feedback. Experiments show that using semi-supervised learning and active learning
simultaneously in Cbir is beneficial, and the proposed method achieves better performance than

some existing methods.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—relevance feedback; H.2.8 [Database Management]: Database Applica-

tions—image database; I.2.6 [Artificial Intelligence]: Learning

General Terms: Algorithm, Design, Experimentation

Additional Key Words and Phrases: Content-based image retrieval, relevance feedback, machine

learning, learning with unlabeled data, semi-supervised learning, active learning

1. INTRODUCTION

With the rapid increase in the volume of digital image collections, content-based
image retrieval (Cbir) has attracted a lot of research interest in recent years [Smeul-
ders et al. 2000]. The user could pose an example image, i.e. user query, and ask the
Cbir system to bring out relevant images from the database. A main difficulty here
is the gap between high-level semantics and low-level image features, due to the rich
content but subjective semantics of an image. Relevance feedback has been shown
as a powerful tool for bridging this gap [Rui et al. 1998; Zhou and Huang 2003]. In
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relevance feedback, the user has the option of labeling a few images according to
whether they are relevant to the target or not. The labeled images are then given
to the Cbir system as complementary queries so that more images relevant to the
user query can be retrieved from the database.

In fact, the retrieval engine of a Cbir system can be regarded as a machine
learning process, which attempts to train a learner to classify the images in the
database as two classes, i.e. positive (relevant) or negative (irrelevant). Since the
classification is usually with different confidence, the learner produces a rank of the
images according to how confident it believes the images are relevant to the user
query. The higher the rank, the more relevant the corresponding image. Upon
receiving the user feedback, the machine learning process uses the newly labeled
images along with the original user query to re-train the learner, so that a new rank
can be produced which typically puts more relevant images at higher ranks than
the original one did. It is obvious that the above is a typical supervised learning
process, where only labeled data are used in the training of the learner. In Cbir,
since it is not convenient to ask the user to label many images, the labeled training
examples given by the user query and relevance feedback may be very small.

During the past few years, using unlabeled data to help supervised learning
has become a hot topic in machine learning and data mining. Considering that
in Cbir there are lots of unlabeled images in the database, this paper proposes
to exploit them to enhance the performance of relevance feedback. Based on a
preliminary work [Zhou et al. 2004], the Ssaira (Semi-Supervised Active Image
Retrieval with Asymmetry) method is proposed, which integrates the merits of
semi-supervised learning and active learning into the relevance feedback process.
Here the semi-supervised learning mechanism is used to help complement the small
training set, while the active learning mechanism is used to help enlarge the useful
information conveyed by user feedback. Considering that the training examples are
usually asymmetrical in Cbir, i.e. positive images can be regarded as belonging
to the same target semantic class while negative images usually belong to different
semantic classes, the positive and negative images are processed in different ways,
where virtual negative examples derived by generalizing the real negative ones are
used. Furthermore, since in Cbir the user is interacting with the system in real
time, very simple learners are employed. In other words, the proposed method tries
to tackle the three special issues of relevance feedback [Zhou and Huang 2003], i.e.
small sample, asymmetrical training sample, and real time requirement.

The rest of this paper is organized as follows. Section 2 briefly introduces the
research background of the paper. Section 3 presents the Ssaira method. Section
4 reports on the experiments. Finally, Section 5 concludes and raises several issues
for future work.

2. BACKGROUND

2.1 Relevance Feedback

The concept of relevance feedback was introduced into Cbir from text-based infor-
mation retrieval in the 1990s [Rui et al. 1998] and then became a popular technique
in Cbir. This is not strange because images are more ambiguous than texts, mak-
ing user interaction desirable. With relevance feedback, a user can label a few more
ACM Journal Name, Vol. TBD, No. TBD, month 2006.
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images as new examples for the retrieval engine if he or she is not satisfied with
the current retrieval result. Actually, these new images refine the original query
implicitly, which enables the relevance feedback process to bridge the gap between
high-level image semantics and low-level image features. There is a good recent re-
view on relevance feedback [Zhou and Huang 2003], therefore this subsection only
introduces issues that are highly related to the work of this paper.

From the view of machine learning, the retrieval engine in fact accomplishes a
learning task, that is, classifying the images in the database as positive or negative
images. Here an image is positive if it is relevant to the user query and negative
otherwise. In contrast to typical machine learning settings, this learning task has
some special characteristics [Zhou and Huang 2003], i.e. small sample, asymmetrical
training sample, and real time requirement.

The small sample problem is due to the fact that few users will be so patient to
provide a lot of example images in the relevance feedback process. Indeed, in most
scenarios the number of example images is very small, especially when considering
that there are usually a large number of potential image classes and that the images
are described by a lot of features. Although there are many machine learning algo-
rithms focusing on learning with a finite number of training examples, learning with
an extremely small number of training examples remains a very difficult problem.
This means that most popular machine learning algorithms can hardly be applied
to Cbir directly. In general, there are two ways to tackle the small sample issue.
The first one is to design a smart mechanism that would deal with the limited
number of training examples directly. For example, Ishikawa et al. [1998] tried to
replace the regular inverse by the Moore-Penrose inverse or pseudo-inverse matrix
in computing the sample covariance matrix and its inverse. A better solution pro-
posed by Zhou and Huang [2001] added regularization terms on the diagonal of the
sample covariance matrix before the inversion. The second way for tackling the
small sample issue is to exploit unlabeled images in the database, as is done in this
paper. Some related work on this will be introduced in the next subsection.

The asymmetrical training sample problem is caused by the fact that the Cbir
problem is not a real binary classification problem. Typical machine learning algo-
rithms regard the positive and negative examples interchangeably and assume that
both sets are distributed approximately equally. However, in Cbir although it is
reasonable to assume that all the positive examples belong to the same target class,
it is usually not valid to make the same assumption for the negative ones because
different negative examples may belong to different irrelevant classes and the small
number of negative examples can hardly be representative for all the irrelevant
classes. Therefore, it may be better to process the positive and negative exam-
ples differently. Picard et al. [1996] chose image sets that most efficiently describe
positive examples under the condition that they don’t describe negative examples
well. Nastar et al. [1998] proposed empirical formulae to take into account neg-
ative examples while estimating the distribution of positive examples along each
feature component. Vasconcelos and Lippman [2000] used a Bayesian model where
the classes under which negative examples score well are penalized. Kherfi et al.
[2002] used positive examples in an initial query and then used negative examples
to refine the query by considering the occurrences of features in positive and neg-
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ative examples. Zhou and Huang [2003] assumed that positive examples have a
compact low-dimensional support while negative examples can have any configu-
ration, and therefore they used Bda (Biased Discriminant Analysis) to find the
low-dimensional space in which positive examples cluster while the negative ones
scatter away. Zhang and Zhang [2004] assumed that each negative example rep-
resents a unique potential semantic class and used a kernel density estimator to
determine the statistical distribution of the irrelevant classes. Similarly, this paper
assumes that examples belonging to the same irrelevant class cluster in a certain
space, and therefore, virtual examples derived from the negative example and its
neighbors can be better representatives of the class.

The real time requirement problem is due to the fact that the user usually wishes
to get the retrieval results as soon as possible, and few users will be so patient to
take part in a time-consuming interaction process. A reasonable way to address
the real time issue is to adopt efficient image storage structures, such as the hier-
archical tree structure used in [Chen et al. 2000]. However, using such a structure
may make the learning task more difficult because the structure has to be updated
once new knowledge is discovered through user interaction. Another feasible way is
to use a set of few features that can be evaluated rapidly in processing the queries.
For example, Tieu and Viola [2000] defined a very large set of highly selective
features each of which will respond to only a small percentage of images in the
database, and then a Boosting algorithm was used to quickly select a small number
of features which distinguish the presented images well. This paper chooses a dif-
ferent direction, where very simple online learners are used such that a complicated
time-consuming learning process is avoided.

It is noteworthy that, according to [Zhou and Huang 2003], there are different
styles of relevance feedback implementations based on different user models. This
paper assumes that the user is looking for a class of images instead of a specific im-
age, the user only gives binary feedback for positive and negative examples instead
of giving relevant scores, and the user is eager to get satisfying retrieval results as
soon as possible. But note that the methods and the underlying ideas presented
in the paper are quite general, and they can also be applied to other relevance
feedback styles.

2.2 Learning from Unlabeled Examples

Learning from unlabeled examples has become a hot topic during the past few
years because in many real-world applications labeled training examples are fairly
expensive to obtain while unlabeled examples are abundantly available. There are
two main machine learning paradigms for this purpose: semi-supervised learning
and active learning.

Semi-supervised learning deals with methods for exploiting unlabeled data in
addition to labeled data to improve learning performance. Many current semi-
supervised learning methods use a generative model for the classifier and employ
Expectation-Maximization (EM) [Dempster et al. 1977] to model the label estima-
tion or parameter estimation process. For example, mixture of Gaussians [Shahsha-
hani and Landgrebe 1994], mixture of experts [Miller and Uyar 1997], and näıve
Bayes [Nigam et al. 2000] have been respectively used as the generative model, while
EM is used to combine labeled and unlabeled data for classification. There are also
ACM Journal Name, Vol. TBD, No. TBD, month 2006.
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many other methods such as using transductive inference for support vector ma-
chines to optimize performance on a specific test set [Joachims 1999], constructing
a graph on the examples such that the minimum cut on the graph yields an opti-
mal labeling of the unlabeled examples according to certain optimization functions
[Blum and Chawla 2001], etc.

A prominent achievement in this area has been the co-training paradigm pro-
posed by Blum and Mitchell [1998], which trains two classifiers separately on two
sufficient and redundant views, i.e. two attribute sets each of which is sufficient for
learning and conditionally independent of the other given the class label, and uses
the predictions of each classifier on unlabeled examples to augment the training
set of the other. Dasgupta et al. [2002] have shown that when the requirement of
sufficient and redundant views is met, the co-trained classifiers could make fewer
generalization errors by maximizing their agreement over the unlabeled data. Un-
fortunately, such a requirement can hardly be met in most scenarios. Goldman and
Zhou [2000] proposed an algorithm that does not need two views. This algorithm re-
quires two different supervised learning algorithms that partition the instance space
into a set of equivalence classes, and employs a cross validation technique to deter-
mine how to label the unlabeled examples and how to produce the final hypothesis.
Zhou and Li [2005b] proposed the tri-training algorithm which requires neither two
different views nor two different supervised learning algorithms. Through employ-
ing three classifiers, this algorithm can implicitly measure the labeling confidence
whereas previous algorithms require explicit measurement. Moreover, it could uti-
lize ensemble learning to help improve generalization ability. It is worth noting
that although the requirement of sufficient and redundant views is quite strict, the
co-training paradigm has already been used in many domains such as statistical
parsing and noun phrase identification [Pierce and Cardie 2001; Sarkar 2001; Hwa
et al. 2003; Steedman et al. 2003].

A few approaches have tried to apply semi-supervised learning to Cbir. Wu et
al. [2000] cast Cbir as a transductive learning problem and proposed the D-em
algorithm to solve the problem. On a small subset of Corel which contains 134
images, they reported that their approach had achieved good results, regardless of
what physical and mathematical features had been used. Dong and Bhanu [2003]
proposed a new semi-supervised EM algorithm where the image distribution in
feature space is modelled as a mixture of Gaussian densities. It is noteworthy that
they attempted to utilize meta-knowledge in Cbir, i.e. the previous experience of
each query image with various users, which is quite different from other approaches.
Tian et al. [2004] studied the usefulness of unlabeled data in Cbir and they reported
that if the distribution of the unlabeled data is different from that of the labeled
data, using unlabeled data may degrade the performance. Zhang and Zhang [2004]
used a roulette wheel selection strategy to select unlabeled examples to help improve
the estimation of the distribution of the irrelevant semantic class corresponding to
the labeled negative example, where the unlabeled examples with smaller distances
to the concerned negative example have larger probabilities to be selected. Yao and
Zhang [2005] proposed a method which uses perceived accuracy to help estimate the
real accuracy of the classifiers refined in the semi-supervised learning process, such
that the refinement can be terminated when it causes the deterioration of the real
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accuracy. This method was then applied to aerial imagery object detection, a task
different from but related to Cbir, and resulted in good performance.

Active learning deals with methods that assume the learner has some control
over the input space. In utilizing unlabeled data, it goes a different way from semi-
supervised learning, where an oracle can be queried for labels of specific instances,
with the goal of minimizing the number of queries required. There are two major
schemes, i.e. uncertainty sampling and committee-based sampling. Methods of the
former such as [Lewis and Gale 1994] train a single learner and then query the
unlabeled instances on which the learner is least confident. Methods of the latter
such as [Seung et al. 1992; Abe and Mamitsuka 1998] generate a committee of
several learners and select the unlabeled instances on which the committee members
disagree the most. A recent advance is the co-testing paradigm proposed by Muslea
et al. [2000], which trains two learners separately on two different views as co-
training does, and selects the query based on the degree of disagreement among the
learners.

As early as in 1983, Bookstein [1983] conjectured that having the user label the
top-ranked documents, while desirable from a user interface standpoint, might not
be optimal for learning. But until Lewis and Gale [1994] showed that labeling
documents with a current estimated probability of 0.5 relevance could improve
effectiveness of a text classifier over labeling top-ranked documents, active learning
had not been introduced into information retrieval. As for Cbir, active learning
began to be used only recently. In the SvmActive approach developed by Tong
and Chang [2001], in each round of relevance feedback, a support vector machine
is trained on labeled data and then the user is asked to label the images closest
to the support vector boundary. Cox et al. [2000] used entropy-minimization
in search of the unlabeled images that, once labeled, will minimize the expected
amount of future feedbacks. Note that this method takes feedback in the form of
relative judgements (“image a is more relevant than image b”) instead of binary
feedback for positive and negative. Another work on introducing active learning
to Cbir was done by Zhang and Chen [2002]. Their system randomly chooses a
small number of images to annotate at first. Then, the system starts to repeatedly
select the image with the maximum knowledge gain for the user to annotate, until
the user stops or the database has been fully annotated. Note that this work
focuses on hidden annotation instead of relevance feedback. As Zhang and Chen
[2002] indicated, relevance feedback does not accumulate semantic knowledge while
hidden annotation, on the other hand, tries to accumulate all the knowledge given
by the user.

3. THE PROPOSED METHOD

In Cbir, the user normally poses an example image as the query. From the view of
machine learning, such a user query is a labeled positive example, while the image
database is a collection of unlabeled data1. Let U denote the unlabeled data set
while L denotes the labeled data set, L = P∪N where P and N respectively denote
the sets of labeled positive examples and negative examples. Originally, U is the

1For simplicity of discussion, here it is assumed that the database contains no annotation.
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whole database DB, P is {query}, and N is empty. Let |D| denote the size of a
set D. Then the sizes of the original U , P and N are |DB|, 1, and 0, respectively.

In relevance feedback, the user may label several images according to whether
they are relevant or not to a query, which could be viewed as providing additional
positive or negative examples. Let P∗ and N ∗ denote the new positive and negative
examples, respectively. Since the feedback is usually performed on images in the
database, both P∗ and N ∗ are subsets of DB. Therefore, the relevance feedback
process changes L and U . As for L, its positive subset P is enlarged to be P ∪P∗,
and its negative subset N is enlarged to be N ∪N ∗; but as for U , since some of its
elements have been moved to L, it is shrunk to U − (P∗ ∪N ∗).

In each round of relevance feedback, after obtaining the enlarged P and N , a
traditional Cbir system will re-train a learner which then will give every image
in U a rank expressing how relevant the image is to query. It is obvious that
such a rank could be more accurate than the one generated by the learner trained
with only the original P and N because now the learner is fed with more training
examples. It can be anticipated that if more training examples could be obtained,
the performance could be further improved.

Inspired by the co-training paradigm [Blum and Mitchell 1998], Ssaira attempts
to exploit U to improve the performance of retrieval. Concretely, Ssaira employs
two learners. After obtaining the enlarged P and N , both learners are re-trained
and then each of them gives every image in U a rank. Here the rank is a value be-
tween −1 and +1, where positive/negative means the learner judges the concerned
image to be relevant/irrelevant, and the bigger the absolute value of the rank, the
stronger the confidence of the learner on its judgement. Then, each learner will
choose some unlabeled images to label for the other learner according to the rank
information. After that, both the learners are re-trained with the enlarged labeled
training sets and each of them will produce a new rank for images in U . The new
ranks generated by the learners can be easily combined via summation, which re-
sults in the final rank for every image in U . Then, images with the top resultsize
ranks are returned. Here resultsize specifies how many relevant images are antic-
ipated to be retrieved. This parameter could be omitted so that all the images in
the database are returned according to descending order of the real value of their
ranks. Note that the above process can be repeated many times until the user no
longer provides feedback.

The learners used by Ssaira may be implemented in different ways. In this paper,
in order to avoid a complicated learning process so that the real time requirement
may be met, a very simple model is used, as shown in Eq. 1, where i ∈ {1, 2} is
the index of the learner, x is the image or feature vector2 to be classified, Pi and
Ni are respectively the set of labeled positive and negative examples in the current
training set of Li, Znorm is used to normalize the result to (−1, 1), ε is a small
constant used to avoid a zero denominator, and Simi is the similarity measure
adopted by Li.

2Images can be represented as feature vectors after appropriate feature extraction.
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Li (x,Pi,Ni) =


 ∑

y∈Pi

Simi (x,y)
|Pi|+ ε

−
∑

z∈Ni

Simi (x,z)
|Ni|+ ε


 /Znorm (1)

Here the similarity between the two d-dimensional feature vectors x̂ and ŷ is
measured by the reciprocal of the Minkowski distance, as shown in Eq. 2 where ξ
is a small constant used to avoid a zero denominator.

Simi (x,y) = 1/

((∑d

j=1
|x̂j − ŷj |pi

)1/pi

+ ξ

)
(2)

It is worth noting that the learners should be diverse because if they were iden-
tical, then for either learner, the unlabeled examples labeled by the other learner
may be the same as those labeled by the learner for itself. Thus, the process de-
generates into self-training [Nigam and Ghani 2000] with a single learner. In the
standard setting of co-training, the use of sufficient and redundant views enables
the learners to be different. In the variant of co-training which does not require
sufficient and redundant views [Goldman and Zhou 2000], the diversity among the
learners is achieved by using different supervised learning algorithms that partition
the instance space into a set of equivalence classes. Since Ssaira does not assume
sufficient and redundant views, nor does it employ different supervised learning
algorithms that partition the instance space into a set of equivalence classes, the
diversity of the learners should be sought from other channels.

Here the orders of the Minkowski distance, i.e. pi in Eq. 2, are set to different
values for the two learners. In general, the smaller the order, the more robust
the resulting distance metric to data variations; while the bigger the order, the
more sensitive the resulting distance metric to data variations. Therefore, with
different order settings, L1 and L2 could produce different ranks for the images in
U . Moreover, such a scheme can also offer another advantage, that is, since it is
usually difficult to decide which order of the Minkowski distance is better for the
concerned task, the functions of these learners may be somewhat complementary
in combining the ranks they produce. It is worth mentioning that such a scheme
has been employed in co-training regressors and has achieved success [Zhou and Li
2005a].

Indeed, the learners defined in Eq. 1 are quite trivial, whose performance is
determined by the contents of Pi and Ni. An advantage is that in contrast to
many other complicated learners, updating such trivial learners is very easy, which
enables the relevance feedback process to be efficient, especially when considering
that the learners are to be updated after every round of relevance feedback.

On the other hand, since the learners are not strong, the labels they assign to the
unlabeled examples may be incorrect. For a particular query, usually only a small
number of images in the database are relevant while most images are irrelevant,
therefore the unlabeled images labeled negatively by the learners should be more
reliable. Considering this, Ssaira adopts a very conservative strategy, that is, in
each round of relevance feedback each learner only labels for the other learner its
two most confident negative examples, i.e. images with the smallest rank (near −1).
ACM Journal Name, Vol. TBD, No. TBD, month 2006.
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In fact, in the experiments reported in Section 4, the two most confident negative
examples are always really negative ones while there are cases where the two most
confident positive examples are in fact negative.

In order to improve the reliability further, another conservative mechanism is
employed, that is, the images labeled by the learners won’t be moved from U to L.
In other words, they are only temporarily used as labeled training examples, and
in the next round of relevance feedback they will be regarded as unlabeled data
again. In this way, the influence of the possible mistakes made by the learners can
be limited.

It may be questioned whether the two additional examples can really achieve
positive results because “two” is a very small number. In fact, in Cbir the number
of labeled examples is very limited because few users will be patient to label more
than ten images in each round of relevance feedback. In most scenarios labeling
more than five images in each round will make the user feel uncomfortable, while
the additional two examples can bring about 40% additional examples if the user
labels five images.

In traditional Cbir systems, the pool for the user to give feedback is not distin-
guished from the retrieved images. That is, the system gives the user the retrieval
result, and then the user chooses certain images from the result to label. It is
evident that in this way, the images labeled by the user in the relevance feedback
process may not be the ones that are most helpful in improving the retrieval per-
formance. For example, labeling an image that has already been well learned is
helpless.

Inspired by the co-testing paradigm [Muslea et al. 2000], since Ssaira employs
two learners, it can be anticipated that labeling images on which the learners dis-
agree the most, or both learners are with low confidence, may be of great value.
Therefore, Ssaira puts images with the bottom poolsize absolute ranks (near 0)
into the pool for relevance feedback. Here poolsize specifies how many images can
be put into the pool. This parameter could be omitted so that all the images in
the database are pooled according to ascending order of the absolute value of their
ranks.

Thus, Ssaira does not passively wait for the user to choose images to label.
Instead, it actively prepares a pool of images for the user to provide feedback. A
consequence is that in designing the user interface, the retrieval result should be
separated from the pool for relevance feedback. For example, the user interface of a
prototype system is shown in Fig. 1, where the region above the dark line displays
the retrieved images while the region below the dark line displays the pooled images
for relevance feedback.

As mentioned before, in Cbir the positive examples can be regarded as belong-
ing to the same relevant class, but the negative examples may belong to different
irrelevant classes. Considering that there may exist a large number of potential
irrelevant semantic classes, like the strategy adopted in [Zhang and Zhang 2004],
this paper assumes that each negative example is a representative of a potential
semantic class. Intuitively, examples close to the negative example should have a
strong chance to belong to the same potential semantic class. Moreover, as men-
tioned before, for a particular query usually only a small number of images are
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Fig. 1. User interface of a prototype system

relevant while most images are irrelevant. Therefore, Ssaira attempts to find a
potentially better representative of the semantic class through slightly generalizing
the negative examples. Concretely, the k-nearest neighboring unlabeled examples
are identified for each negative example and then the feature vectors of these k + 1
examples are averaged to derive a virtual example, which is used by the learners in
Ssaira instead of the original negative example. Ideally, the k-nearest neighbor-
ing examples should be identified in an appropriate subspace that can distinguish
the concerned potential semantic class well, which can be implemented by kernel
transformation in principle. However, since it is difficult to determine which kernel
to use, this paper simply identifies the neighbors using the Euclidean distance in
the original feature space.

In summary, the pseudo-code of Ssaira is presented in Table I, where the Abs(a)
function is used to produce the absolute value of a while the Generalize function is
shown in Table II. Note that the function Neighbors(x,Du, k) can be computed
off-line, that is, the neighbors of all the unlabeled examples can be pre-computed.
Moreover, many steps of Ssaira, such as the loop of the 3rd step, can be executed
in one scan of the image database. Therefore, Ssaira can be quite efficient in
processing online queries. It is also worth noting that the labeled images provided
by the user in the relevance feedback process are cumulatively used, which is helpful
in enlarging the training sets of the learners.

It is evident that the Ssaira method addresses the three issues mentioned in
Section 2.1, i.e. small sample size, asymmetrical training sample, and real time
requirement. Concretely, Ssaira combines semi-supervised learning and active
ACM Journal Name, Vol. TBD, No. TBD, month 2006.



Enhancing Relevance Feedback in Image Retrieval Using Unlabeled Data · 11

Table I. Pseudo-code describing the Ssaira method

Ssaira(query, DB, L1, L2, k, poolsize, resultsize)

Input: query: User query

DB: Image database

Li (i ∈ {1..2}): Learners
k: Number of neighbors used in generalizing negative examples

poolsize: Number of images in the pool

resultsize: Number of images to be returned

P ← {query}; N ← ∅; U ← DB

In each round of relevance feedback:
1 Getfeedback(P∗,N ∗)
2 P ← P ∪ P∗; N ← N ∪N ∗; U ← U − (P∗ ∪N ∗)
3 for i ∈ {1..2} do

4 Pi ← P
5 Ni ← N ∪ {arg min

x∈U
L(3−i)(x,P, Generalize(N ,U , k))}

6 for x ∈ U do Rank(x) ← 1
Znorm

∑
i∈{1..2}

Li(x,Pi, Generalize(Ni,U , k))

7 Pool ← ∅; Result ← ∅
8 for i ∈ {1..poolsize} do Pool ← Pool ∪ {arg min

x∈U
Abs(Rank(x))}

9 for i ∈ {1..resultsize} do Result ← Result ∪ {arg max
x∈U

Rank(x)}

Output: Result; Pool

Table II. Pseudo-code describing the Generalize function

Generalize(Dn, Du, k)

Input: Dn: A data set whose elements are to be generalized
Du: A data set in which neighbors are to be identified

k: Number of neighbors used in generalizing

D∗ ← ∅
for x ∈ Dn do

D′ ← Neighbors(x,Du, k) %% D′ stores the k-nearest neighbors of x in Du

D′ ← D′ ∪ {x}
x
′ ← Ave(D′ ) %% x

′
is the average feature vector of the feature vectors in D′

D∗ ← D∗ ∪ {x′}
Output: D∗

learning to exploit unlabeled examples, adopts a special mechanism to generalize the
negative examples, and employs very simple learners that can be updated efficiently.
As for the technique used in exploiting unlabeled data, Ssaira gracefully combines
co-training and co-testing together. However, it is worth noting that the standard
co-training [Blum and Mitchell 1998] and co-testing [Muslea et al. 2000] have a
rigorous requirement of sufficient but redundant views. Unfortunately, in real-
world applications such as Cbir it is not easy to get sufficient but redundant views
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to use. Since the mechanisms employed by Ssaira do not require sufficient but
redundant views, their applicability can be broader.

4. EXPERIMENTS

4.1 Comparison Methods

In the experiments Ssaira is compared with Balas, a semi-supervised learning
method which has been applied to Cbir, recently proposed by Zhang and Zhang
[2004]. This method explicitly addresses the small sample issue and the asymmet-
rical training sample issue by stretching Bayesian learning. Briefly, this method
cumulatively uses labeled examples obtained in all rounds of the relevance feed-
back, and regards some unlabeled examples near the negative examples in a kernel
space as additional negative examples, wishing that the kernel space can somewhat
represent the semantic classes of the negative examples. It estimates the probability
density function (Pdf) of the positive class directly while regarding each negative
example as a representative of a unique potential semantic class and using the ag-
glomeration of all the negative Pdfs as the overall Pdf of negative class. Note that
the Pdfs and the trustworthy degree, which is used to weight the features, have to
be estimated in the process of relevance feedback because the estimation process
relies on the images queried and fed back by the user. Therefore, the running speed
of Balas is slower than that of Ssaira.

Ssaira is also compared with SvmActive, an active learning method which has
been applied to Cbir, proposed by Tong and Chang [2001]. This method exploits
the margin of support vector machines for active learning. Firstly, it trains a
support vector machine on the labeled examples. Then, the unlabeled images which
are close to the support vector boundary are identified and passed to the user for
feedback. Note that in each round of relevance feedback a support vector machine
has to be trained.

The third method used in the comparison is called Naive in this paper, which is
the standard relevant feedback method using the base learner of Ssaira as shown
in Eq. 1. After obtaining the labeled examples provided by the user, it searches the
database to identify the images close to the positive examples while far from the
negative ones according to Euclidean distance. It is evident that this method does
not exploit unlabeled data.

Moreover, two degenerated variants of Ssaira, i.e. Ssira (Semi-Supervised Im-
age Retrieval with Asymmetry) and Aira (Active Image Retrieval with Asymme-
try), are evaluated in the comparison. The Ssira method is almost the same as
Ssaira except that Ssira does not use active learning. Roughly speaking, this
method can be obtained by omitting the 8th step in Table I. The Aira method is
almost the same as Ssaira except that Aira does not use semi-supervised learning.
Roughly speaking, this method can be obtained by replacing the 5th step in Table I
by Ni ← N .

Furthermore, in order to study whether the mechanism used in Ssaira to address
the asymmetrical training sample issue is useful, another series of degenerated vari-
ants are compared, including Ssair, Ssir and Air. The difference between Ssair
and Ssaira is that the former uses the real negative examples directly instead
of using virtual ones derived by generalizing the real negative examples. Roughly
ACM Journal Name, Vol. TBD, No. TBD, month 2006.
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speaking, the Ssair method can be obtained through replacing Generalize(N ,U , k)
by N in the 5th step and replacing Generalize(Ni,U , k) by Ni in the 6th step in
Table I. The difference between Ssir and Ssira and the difference between Air and
Aira are similar to that between Ssair and Ssaira. These degenerated variants
share the same parameters of Ssaira.

In addition, for investigating the influence of the distance metrics used by the two
learners in Ssaira on the retrieval performance, experiments are also performed to
compare different versions of Ssaira which have different distance settings, more
concretely, using different pi values in Eq. 2.

4.2 Evaluation Measures

The evaluation measures used in Cbir have been greatly affected by those used
in text-based information retrieval [Müller et al. 2001]. A straightforward and
popularly used measure is the PR-graph which depicts the relationship between
precision and recall of a specific retrieval system. This measure is used in this
paper. Concretely, for every recall value ranging from 0.0 to 1.0, the corresponding
precision value is computed and then depicted in the PR-graph.

A deficiency with the PR-graph is that it can hardly reflect the changes of the
retrieval performance caused by relevance feedback directly. In other words, in
order to exhibit the changes of the retrieval performance caused by relevance feed-
back, a single PR-graph is not enough. Instead, a series of PR-graphs each graph
corresponding to a round of relevance feedback has to be used. Therefore, another
graphical measure is employed in this paper. Usually, a Cbir system exhibits a
trade-off between precision and recall, to obtain high precision usually means sacri-
ficing recall and vice versa. Considering that in Cbir both the precision and recall
are of importance, here Bep (Break-Event-Point) is introduced into Cbir as an
evaluation measure. By definition, if the precision and recall are tuned to have an
equal value, then this value is called the Bep of the system [Lewis 1992]. The higher
the Bep, the better the performance. Through connecting the Beps after different
rounds of relevance feedback, a BEP-graph is obtained, where the horizontal axis
enumerates the round of relevance feedback while the vertical axis gives the Bep
value.

In addition, a quantitative measure, i.e. effectiveness, is used. This measure
was proposed by Mehtre et al. [1995], and then adopted to quantify the utility of
relevance feedback mechanisms [Ciocca and Schettini 1999]. The definition is given
by Eq. 3, where ηS denotes effectiveness, S denotes the number of relevant images
the user wants to retrieve, and RI

q and RE
q , respectively, denote the set of relevant

images and all images retrieved. The bigger the ηS , the better the performance.

ηS =





∣∣RI
q ∩RE

q

∣∣/|RI
q | if

∣∣RI
q

∣∣ ≤ S

∣∣RI
q ∩RE

q

∣∣/|RE
q | if

∣∣RI
q

∣∣ > S
(3)

4.3 Configurations

One hundred classes of Corel images are used, where each class has 100 images
and therefore there are 10,000 images in total. These images are organized into
two image databases. The first database contains 20 classes of images (denoted
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by C = 20), and therefore its size is 2,000. The second database contains all the
images (denoted by C = 100). Experiments are performed on these two databases,
and therefore the performance of the compared methods on small and big image
databases can be studied.

In the experiments color, texture, and shape features are used to describe the
images. The color features are derived from a histogram computed from the H
and V components in the HSV space, where the H and V components are equally
partitioned into eight and four bins, respectively [Seung et al. 1992]. The texture
features are derived from Gabor wavelet transformation according to [Manjunath
and Ma 1996]. The shape features are the same as those used in [Wang et al. 2002].
These features are empirically biased by multiplying a weight of 0.5 with color fea-
tures, 0.3 with texture features, and 0.2 with shape features, respectively. That is,
the similarities obtained by comparing the color, texture, and shape features, re-
spectively, are weighted-summed to derive the overall similarity. Note that feature
selection methods are usually beneficial to Cbir, but here no feature selection is
executed and just a simple weighted sum scheme is used to play with the features.
This is because the same set of features and weights will be used by all the com-
pared methods and the relative instead of absolute performance of these compared
methods are of concern in the experiments.

As for Ssaira, the parameter k in Table I is set to 10 in the experiments, and
the orders of the Minkowski distance used by the two learners are set to 1 and 2 by
default. As for Balas, the parameter w used in dealing with positive examples is
set to 0.4, the parameter q used in its Sampling process for dealing with negative
examples is set to 5, and the other parameters are set as the same as those set in
[Zhang and Zhang 2004]. As for SvmActive, an Rbf kernel with γ = 1 is used.

For each compared method, after obtaining a query, five rounds of relevance
feedback are performed. In each round the user can label F (= 5, 7, or 9) images
as the feedback. For each query, the process is repeated five times with different
users. Moreover, the whole process is repeated five times with different queries.
The average results are recorded. The experiments are conducted on a Pentium 4
machine with 3.00GHz Cpu and 1GB memory.

4.4 Results

At first, the performance of Ssaira, Balas, SvmActive, and Naive are compared.
The geometrical PR-graphs at the 0th, 3rd, and 5th round of relevance feedbacks
when F = 5, 7, and 9 and C = 20 are shown in Figs. 2 to 4, respectively. The geo-
metrical Bep-graphs are presented in Fig. 5, and the geometrical effectivenesses are
tabulated in Table III where the best performance at each round of relevance feed-
back has been boldfaced. Geometrical means the results obtained after averaging
across all the image classes. Note that the performance at the 0th round corre-
sponds to the performance before starting relevance feedback, that is, the retrieval
performance with only the initial query.

Figs. 2 to 5 and Table III explicitly show that Ssaira is better than Balas,
SvmActive, and Naive when C = 20. It is impressive that at all rounds of relevance
feedback, the geometrical effectiveness of Ssaira is always the best. Note that the
performance of Naive is not bad, which verifies the usefulness of the base learner
used in Ssaira. The performances of Balas and SvmActive are not as excellent
ACM Journal Name, Vol. TBD, No. TBD, month 2006.
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(a) at the 0th round (b) at the 3rd round (c) at the 5th round

Fig. 2. Geometrical PR-graphs of Ssaira, Balas, SvmActive, and Naive at the 0th, 3rd, and 5th

rounds (F = 5, C = 20)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

S
B
S
N

SAIRA
ALAS
VMACTIVE
AIVE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

S
B
S
N

SAIRA
ALAS
VMACTIVE
AIVE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

S
B
S
N

SAIRA
ALAS
VMACTIVE
AIVE

(a) at the 0th round (b) at the 3rd round (c) at the 5th round

Fig. 3. Geometrical PR-graphs of Ssaira, Balas, SvmActive, and Naive at the 0th, 3rd, and 5th
rounds (F = 7, C = 20)
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Fig. 4. Geometrical PR-graphs of Ssaira, Balas, SvmActive, and Naive at the 0th, 3rd, and 5th
rounds (F = 9, C = 20)

as those reported in [Zhang and Zhang 2004; Tong and Chang 2001], which may
be because when only a limited number of images is labeled during the relevance
feedback process, the probability density estimation employed by Balas and the
Svm employed by SvmActive can hardly get sufficient labeled examples to use and
therefore their performance degenerates. At first glance, the figures with different
F values look very similar, which indicates that the relative performances of the
compared methods are quite consistent no matter which F value is taken. Moreover,
the figures suggest that the benefit from increasing the number of feedbacks in each
round is not as apparent as increasing the rounds of feedbacks.

ACM Journal Name, Vol. TBD, No. TBD, month 2006.



16 · Z.-H. Zhou et al.

0 1 2 3 4 5
0.15

0.2

0.25

0.3

0.35

0.4

0.45

Round of relevance feedback

B
E

P
S
B
S
N

SAIRA
ALAS
VMACTIVE
AIVE

0 1 2 3 4 5
0.15

0.2

0.25

0.3

0.35

0.4

0.45

Round of relevance feedback

B
E

P

S              
B
S
N

SAIRA

ALAS

VMACTIVE

AIVE

0 1 2 3 4 5
0.15

0.2

0.25

0.3

0.35

0.4

0.45

Round of relevance feedback

B
E

P

S              
B
S
N

SAIRA

ALAS

VMACTIVE

AIVE

(a) F = 5 (b) F = 7 (c) F = 9

Fig. 5. Geometrical Bep-graphs of Ssaira, Balas, SvmActive, and Naive (C = 20)

Table III. Geometrical effectivenesses of Ssaira (SA), Balas (B), SvmActive (V), and Naive (N)

when C = 20

F = 5 F = 7 F = 9

SA B V N SA B V N SA B V N

η̄0
200(%) 43.8 28.5 38.7 40.2 45.8 25.4 40.8 42.7 47.7 24.4 42.5 44.4

η̄1
200(%) 45.0 28.5 39.6 41.6 49.6 28.0 41.8 44.0 50.3 25.6 43.1 44.5

η̄2
200(%) 46.8 29.9 40.3 43.1 51.1 26.9 42.9 46.4 53.0 26.6 44.6 46.7

η̄3
200(%) 49.7 29.1 40.9 44.2 52.9 26.6 45.4 47.3 54.6 27.8 46.7 47.7

η̄4
200(%) 52.0 28.8 43.9 45.1 54.6 26.0 46.8 47.6 55.9 27.8 48.5 49.2

η̄5
200(%) 53.2 29.7 46.7 45.7 56.1 28.4 47.5 49.3 57.6 29.5 50.5 49.9

The geometrical PR-graphs at the 0th, 3rd, and 5th round of relevance feedbacks
when F = 5, 7, and 9 and C = 100 are shown in Figs. 6 to 8, respectively. The
geometrical Bep-graphs are presented in Fig. 9, and the geometrical effectivenesses
are tabulated in Table IV where the best performance at each round of relevance
feedback has been boldfaced.

Comparing Figs. 2 to 5 and Table III with Figs. 6 to 9 and Table IV shows
that on the bigger image database (C = 100), the performance of all the compared
methods degenerates. For example, the geometrical effectiveness of Ssaira almost
drops by half when the image database changes from C = 20 to C = 100. However,
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Fig. 6. Geometrical PR-graphs of Ssaira, Balas, SvmActive, and Naive at the 0th, 3rd, and 5th

rounds (F = 5, C = 100)
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Fig. 7. Geometrical PR-graphs of Ssaira, Balas, SvmActive, and Naive at the 0th, 3rd, and 5th

rounds (F = 7, C = 100)
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Fig. 8. Geometrical PR-graphs of Ssaira, Balas, SvmActive, and Naive at the 0th, 3rd, and 5th

rounds (F = 9, C = 100)

0 1 2 3 4 5
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Round of relevance feedback

B
E

P

S
B
S
N

SAIRA
ALAS
VMACTIVE
AIVE

0 1 2 3 4 5
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Round of relevance feedback

B
E

P

S
B
S
N

SAIRA
ALAS
VMACTIVE

AIVE

0 1 2 3 4 5
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Round of relevance feedback

B
E

P

S
B
S
N

SAIRA
ALAS
VMACTIVE

AIVE

(a) F = 5 (b) F = 7 (c) F = 9

Fig. 9. Geometrical Bep-graphs of Ssaira, Balas, SvmActive, and Naive (C = 100)

by studying detailed results, it has been found that even when C = 100, the effec-
tiveness of Ssaira on some image classes is not bad, e.g. on flags and music ads
the effectiveness is close to 90.0%. The low geometrical effectiveness may have two
reasons: The first is that with the increasing number of image classes, the retrieval
task becomes more difficult. The second is that some image classes of Corel, e.g.
Africa and christmas, do not really have consistent image content, that is, the im-
ages in these classes are grouped based on semantic rather than low-level features.
Nevertheless, Figs. 6 to 9 and Table IV show that the performance of Ssaira is
still better than that of Balas, Svmactive, and Naive.

The geometrical time costs of Ssaira, Balas, SvmActive, and Naive spent in
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Table IV. Geometrical effectivenesses of Ssaira (SA), Balas (B), SvmActive (V), and Naive (N)

when C = 100

F = 5 F = 7 F = 9

SA B V N SA B V N SA B V N

η̄0
200(%) 19.0 8.6 13.9 15.7 22.1 9.9 16.7 18.6 23.2 10.9 17.6 19.5

η̄1
200(%) 20.0 12.3 14.7 15.3 22.7 13.4 17.3 16.8 23.5 14.6 17.6 17.8

η̄2
200(%) 20.9 14.2 14.0 17.7 24.4 15.1 16.5 20.3 25.2 16.4 17.7 20.9

η̄3
200(%) 22.7 15.2 14.9 19.7 26.0 16.4 17.1 22.3 26.7 18.0 18.2 23.3

η̄4
200(%) 23.5 16.2 16.8 21.2 27.0 17.8 18.0 23.6 27.3 19.2 20.6 24.8

η̄5
200(%) 24.6 17.3 18.1 21.4 27.7 18.5 20.7 24.5 28.6 19.9 23.1 26.3

Table V. Geometrical time costs (seconds) of Ssaira, Balas, SvmActive, and Naive spent in each
round of relevance feedback when C = 100

F = 5 F = 7 F = 9

Ssaira 0.545 0.734 0.820

Balas 1.605 2.048 2.495
SvmActive 0.131 0.196 0.271

Naive 0.107 0.140 0.180

each round of relevance feedback when C = 100 are compared in Table V, where
the smallest time cost under each F value has been boldfaced.

Table V reveals that Naive, the base learner of Ssaira, is the most efficient,
and although Ssaira is not as efficient as SvmActive, it is much more efficient than
Balas. Considering that the retrieval performance of Ssaira is better than Balas,
SvmActive, and Naive, the above presented experiments confirm that Ssaira is the
best among the compared methods.

In order to study whether the semi-supervised learning and active learning mech-
anisms employed by Ssaira are beneficial or not, the Ssaira method is compared
with Ssira and Aira. The geometrical Bep-graphs when C = 20 and 100 are
presented in Figs. 10 and 11, and the geometrical effectivenesses are tabulated in
Tables VI and VII, respectively.

Figs. 10, 11 and Tables VI, VII show that when C = 20, Ssira is better than
Aira, but when C = 100, the performance of Ssira degenerates as the round of
relevance feedback increases. However, it is noteworthy that no matter whether
C = 20 or 100, the performance of Ssaira is always better than that of Ssira and
Aira.

Recall that the semi-supervised learning mechanism of Ssaira picks the most
confident negative examples to use, which implies that Ssira only uses one positive
example, i.e. the initial query. It is evident that when there are lots of negative
classes, using only one positive example is not sufficient to distinguish the positive
class, and therefore the performance of Ssira degenerates. When both the active
learning and semi-supervised learning mechanisms are used, since additional posi-
tive examples can be obtained via active learning, the Ssaira method in fact gets
more positive examples as well as more negative examples to use. Thus, its perfor-
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Fig. 10. Geometrical Bep-graphs of Ssaira, Ssira, and Aira when C = 20

Table VI. Geometrical effectivenesses of Ssaira (SA), Ssira (S), and Aira (A) when C = 20

F = 5 F = 7 F = 9

SA S A SA S A SA S A

η̄0
200(%) 43.8 43.8 40.1 45.8 45.8 42.1 47.7 47.7 43.7

η̄1
200(%) 45.0 44.5 40.8 49.6 47.4 44.9 50.3 48.3 46.3

η̄2
200(%) 46.8 46.6 44.1 51.1 49.1 48.3 53.0 49.0 49.5

η̄3
200(%) 49.7 47.5 46.8 52.9 50.8 50.2 54.6 51.3 51.1

η̄4
200(%) 52.0 48.7 48.3 54.6 51.8 51.9 55.9 53.3 52.0

η̄5
200(%) 53.2 48.7 48.9 56.1 52.7 53.4 57.6 54.3 53.4
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Fig. 11. Geometrical Bep-graphs of Ssaira, Ssira, and Aira when C = 100

Table VII. Geometrical effectivenesses of Ssaira (SA), Ssira (S), and Aira (A) when C = 100

F = 5 F = 7 F = 9

SA S A SA S A SA S A

η̄0
200(%) 19.0 19.0 15.4 22.1 22.1 18.1 23.2 23.2 18.9

η̄1
200(%) 20.0 18.7 16.7 22.7 20.7 19.3 23.5 21.1 19.8

η̄2
200(%) 20.9 18.0 17.8 24.4 20.1 20.7 25.2 20.5 20.9

η̄3
200(%) 22.7 17.5 19.1 26.0 19.9 21.7 26.7 19.9 22.0

η̄4
200(%) 23.5 17.5 19.7 27.0 19.4 22.2 27.3 19.7 22.8

η̄5
200(%) 24.6 17.4 20.6 27.7 19.3 23.0 28.6 19.7 23.5
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mance can be better than that of Ssira and Aira. In other words, the above obser-
vations show that the mechanisms of active learning and semi-supervised learning
should be used simultaneously, especially when handling big image databases.

On the other hand, Tables VI and VII show that in the early rounds of relevance
feedback, semi-supervised learning contributes more to Ssaira while in the later
rounds active learning contributes more. This is not difficult to understand because
in the early rounds most images in the retrieval results have not been learned well,
therefore randomly picking some images to label in the relevance feedback process
is not very different from active feedback. That is, the active learning mechanism is
not very helpful in the early rounds. However, as relevance feedback continues, the
number of well-learned images increases and therefore randomly picking an image
to label is less likely helpful. Thus, the active learning mechanism is more valuable
in the later rounds.

Further, in order to study whether the mechanism of dealing with negative exam-
ples employed by Ssaira is helpful or not, Ssaira is compared with Ssair, Ssira
is compared with Ssir, and Aira is compared with Air. Note that in each pair,
the former method uses this mechanism of dealing with negative examples while
the latter does not. The geometrical Bep-graphs when C = 20 and 100 are plotted
in Figs. 12 and 13, respectively.
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Fig. 12. Geometrical Bep-graphs of Ssaira vs. Ssair, Ssira vs. Ssir, and Aira vs. Air when
C = 20
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Fig. 13. Geometrical Bep-graphs of Ssaira vs. Ssair, Ssira vs. Ssir, and Aira vs. Air when

C = 100
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Figs. 12 and 13 show that using the mechanism of dealing with negative ex-
amples usually does not help, but when C = 100 this mechanism is beneficial to
Ssaira with the increasing of the round of relevance feedback. It is conjectured
that this is because when there are lots of negative classes, the negative examples
are more apt to cluster together, and since Ssaira gets more positive examples as
well as more negative examples to use via the active learning and semi-supervised
learning mechanisms as the round of relevance feedback increases, the identification
of neighboring negative examples for a concerned negative example becomes more
reliable.

For studying the influence of the distance metrics used by the two learners in
Ssaira on retrieval performance, different versions of Ssaira which are facilitated
with different distance settings are evaluated. In detail, Ssaira(1,2), Ssaira(1,3),
and Ssaira(2,3) are compared, where Ssaira(a,b) means that the a-order and b-
order Minkowski distances are used by the two learners, respectively. The geomet-
rical Bep-graphs when C = 20 and 100 are plotted in Figs. 14 and 15, respectively.
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Fig. 14. Geometrical Bep-graphs of Ssaira(1,2), Ssaira(1,3) and Ssaira(2,3) when C = 20
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Fig. 15. Geometrical Bep-graphs of Ssaira(1,2), Ssaira(1,3) and Ssaira(2,3) when C = 100

Figs. 14 and 15 show that the performance of Ssaira(1,3) is close to that of
Ssaira(1,2), but the performance of Ssaira(2,3) is apparently worse. Recall the
property of the order of Minkowski distance, that is, the smaller the order, the more
robust the resulting distance metric to data variations; while the bigger the order,
the more sensitive the resulting distance metric to data variations. It is evident
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that in Cbir, due to the gap between the high-level image semantics and low-level
image features, the distance metric should not be very sensitive to data variations.
Therefore, using the first- and second-order Minkowski distances should be a better
choice for Ssaira, which is confirmed by Figs. 14 and 15.

5. CONCLUSION

The research reported here extends a preliminary paper [Zhou et al. 2004], which
advocates using semi-supervised learning and active learning together to exploit
unlabeled images existing in the database to enhance the performance of relevant
feedback in Cbir. Concretely, this paper attempts to address three special issues
of relevance feedback, i.e. small sample size, asymmetrical training sample, and
real time requirement. Experiments show that the proposed Ssaira method is
superior to some existing methods, and employing semi-supervised learning and
active learning simultaneously is beneficial to the improvement of the retrieval
performance.

Although the utility of Ssaira has been verified by experiments, there is a lack
of theoretical analysis. This might have encumbered the exertion of the full power
of Ssaira. For example, in the current form of Ssaira, in each round of relevance
feedback each learner only labels the two most confident negative images for the
other learner. If theoretical analysis on the relationship between the performance
of the learners and the possible noise in the labeling process is available, it might
be found that letting each learner label more images, including negative as well
as positive images, can be beneficial, which may help improve the performance of
Ssaira. This is an important issue for future work.

Ssaira addresses the asymmetrical training sample problem by generalizing the
negative examples using their neighboring negative examples. Intuitively, negative
examples belonging to the same negative class should distribute closely because
they share some common properties. However, for different negative examples, the
number of neighbors belonging to the same negative classes are usually different.
Therefore, using an adaptive instead of fixed neighborhood area is more desirable.
It is evident that designing better schemes for dealing with asymmetrical training
sample is an important future issue.

Evaluation measures are important in the research of Cbir. This paper uses
PR-graphs and effectiveness to measure retrieval performance. Besides, considering
that PR-graphs can hardly reflect the changes of the retrieval performance caused
by relevance feedback directly, this paper introduces BEP into Cbir and designs
the BEP-graph. Note that some recent research reveals that the size of the relevant
image classes and the number of retrieved images have influence on the evaluation
of precision and recall, and therefore the generality, i.e. the relevant fraction,
should be taken into account [Huijsmans and Sebe 2005]. Using the GRiP or GReP
graphs [Huijsmans and Sebe 2005] to measure the performance of Ssaira and
other methods is an issue left for future work. Moreover, studying the deficiencies
of current evaluation measures and developing other powerful measures for Cbir
are important issues to be investigated in future work.

Note that the performance of semi-supervised learning methods are usually un-
stable because the unlabeled examples may be wrongly labeled during the learning
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process [Nigam et al. 2000; Hwa et al. 2003]. It has been shown that when the model
assumption does not match the ground-truth, unlabeled data can either improve or
degrade the performance, depending on the complexity of the classifier compared
with the size of the labeled training set [Cozman and Cohen 2002; Cohen et al.
2004]. Moreover, if the distribution of the unlabeled data is different from that of
the labeled data, using unlabeled data may degrade the performance [Tian et al.
2004]. Therefore, if some unlabeled data satisfying the model assumption and the
distribution of labeled data can be identified, using them in semi-supervised learn-
ing might be better than simply trying to use all the unlabeled data or randomly
picking some to use, which is another issue to be explored in the future.
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