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Abstract—Most traditional face recognition systems attempt to achieve a low recognition error rate, implicitly assuming that the losses
of all misclassifications are the same. In this paper, we argue that this is far from a reasonable setting because in almost all application
scenarios of face recognition, different kinds of mistakes will lead to different losses. For example, it will be troublesome if a door-locker
based on a face recognition system misclassified a family member as a stranger such that s/he were not allowed to enter the house; but
it will be a much more serious disaster if a stranger were misclassified as a family member and allowed to enter the house. We propose
a framework which formulates face recognition problem as a multi-class cost-sensitive learning task, and develop two theoretically
sound methods for this task. Experimental results demonstrate the effectiveness and efficiency of the proposed methods.

Index Terms—Face recognition, cost-sensitive face recognition, cost-sensitive learning, multi-class cost-sensitive learning.
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1 INTRODUCTION

FACE recognition has attracted much research effort
for many years. Many successful face recognition

systems have been developed, such as [2], [3], [19],
[23], and Zhao et al. [25] provided a good survey. The
operation of face recognition systems can be divided into
two modes, i.e., verification mode and identification mode.
In the verification mode, the system validates whether
the individual is the identity s/he claims to be; in the
identification mode, the system recognizes the individ-
ual by searching the database to find who the individual
is or s/he does not belong to the database [11]. In this
paper, we concern about identification. To the best of
our knowledge, most of those face recognition systems
attempt to achieve a low recognition error rate.

Pursuing a minimum error rate always implies that the
system assumes that any misclassification will cause the
same amount of loss since it simply tries to minimize
the number of mistakes. Although this assumption is
widely taken, we argue that it is not really reasonable
because for most real-world applications, different kinds
of mistakes generally lead to different amount of losses.
For example, consider a door-locker based on a face
recognition system for a certain group (e.g., family mem-
bers or employees of a company), the possible mistakes in
predicting a probe face image include:

1) False acceptance, i.e., mis-recognizing an impostor
as a gallery subject;

2) False rejection, i.e., mis-recognizing a gallery sub-
ject as an impostor;

3) False identification, i.e., mis-recognizing between
two gallery subjects.
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In traditional face recognition systems, these errors are
treated equally. It is evident, however, that these errors
will cause different amount of losses. When the second
error occurs, a gallery subject is mistakenly rejected,
which is troublesome; but if compared with the first
error, the second one is less serious since it would be
a disaster if an impostor is mistakenly allowed to enter
the house. The third error also causes some trouble
since members in the house might have different private
rooms or the company wants to record the staff atten-
dant, yet such an error is obviously much less serious
than the first and the second ones.

There are many other applications where the severity
of different kinds of errors varies. For example, a sales-
man at a shop may want to increase her/is chances of
identifying old customers even at the cost of misclassi-
fying some new customers as old ones. Thus, the false
acceptance (mis-recognizing a new customer as an old
one) may not be as serious as the false rejection (missing
an old customer) or even the false identification (mis-
recognizing two old customers).

It is clear that these three kinds of errors are quite
different and simply taking error rate as the measure
of the performance may not be a good choice. In the
following, without loss of generality, we assume that the
false rejection is more serious than false identification,
and the false acceptance is the most serious error. Other
situations will be considered in our experiments later.

In the machine learning and data mining communi-
ties, a kind of classification problems called cost-sensitive
learning has been studied for years [1], [5], [7], [13],
[26]. In such settings, ‘cost’ information is introduced
to measure the severity of misclassification and different
costs reflect different amount of losses. The purpose of
cost-sensitive learning is to minimize total cost rather
than total error. There are two kinds of cost-sensitive
problems, i.e., problems with class-dependent cost [5], [7],
[13], [26] or example-dependent cost [1]. In the former
kind of problems, the cost is determined by error type;
that is, misclassifying any example of the i-th class into
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the j-th class will always have the same cost, while
misclassifying an example into different classes may lead
to different costs. In the latter kind of problems, the cost
is determined by the example, while different examples
will have different costs even when the error types are
the same.

Inspired by cost-sensitive learning, in this paper, we
formulate the face recognition problem as a multi-class
cost-sensitive learning task. For convenience of discus-
sion, we consider a situation that, accepting any im-
postor will result in the same loss, and misclassifying a
gallery subject as another gallery subject or an impostor
will result in different amount of losses. So, our problem
is a class-dependent cost-sensitive problem. In contrast
to conventional face recognition systems which try to
minimize the total error rate, we try to minimize the
total cost, aiming to prevent disasters caused by mistakes
with high costs. Note that in our concerned setting, the
costs of different kinds of misclassifications are given by
the user according to their requirement. For example, if
the user believes that letting an impostor in will cause
a disaster ten times more severe than blocking a legal
person, s/he would set the cost for the former as ten
times as that of the latter.

Some previous biometric studies considered the dif-
ference between false acceptance and false rejection,
e.g. [11], [14], and used the receiver operating charac-
teristic (ROC) curve to select a proper threshold for
classification. These methods can be viewed as implic-
itly using cost information since the threshold depends
on the cost. To the best of our knowledge, our work
is the first attempt on explicitly formulating the face
recognition problem as a cost-sensitive learning prob-
lem and trying to minimize the total cost directly. This
formulation is more natural and solid. Moreover, those
ROC-based methods focused on binary classification
problems, while face recognition is inherently a multi-
class problem while extending ROC methods to multi-
class is non-trivial [12].

In this paper, we propose two new cost-sensitive meth-
ods, mcKLR and mckNN, for face identification prob-
lems. mcKLR is an inductive learning method derived
from Bayes decision theory, while mckNN is a cost-
sensitive version of k-nearest neighbor classifier. Both
methods handle multi-class cost-sensitive classification
problems. mckNN is particularly suitable for situations
where group members vary frequently, while mcKLR is
more suitable for situations with stable group members.
Experimental results on AR and FERET databases vali-
date the effectiveness and efficiency of our methods.

The rest of this paper is organized as follows. In
Section 2 we formulate the cost-sensitive face recognition
problem. In Section 3 we briefly introduce some existing
multi-class cost-sensitive learning methods. Then we
propose the mcKLR and mckNN methods in Section 4
and report on our experiments in Section 5. In Section 6
we discuss how to construct the cost matrix effectively
from the interaction with users. Finally, we conclude the

paper in Section 7.

2 PROBLEM FORMULATION

Denote a face image by x and y for its label. Con-
sidering that there are M gallery subjects, denoted by
y = G1, · · · , GM and many impostors, denoted by a
meta-class y = I . Traditional face recognition systems try
to generate a hypothesis φ(x) minimizing the expected
error rate: Err = Ex,y

(
I(φ(x) 6= y)

)
, where I is indicator

function which takes 1 when φ(x) 6= y and 0 otherwise.
Thus, these systems implicitly assume that the costs
of all kinds of mistakes are the same. As mentioned
before, however, such assumption is often not reasonable
and different mistakes are generally associated with
different costs. As analyzed above, our problem is class-
dependent cost-sensitive and we can categorize the costs
into three types:

1) Cost of false acceptance, CIG;
2) Cost of false rejection, CGI ;
3) Cost of false identification, CGG.

According to our discussion above about the severity
of differen types of errors, it is evident that CIG, CGI

and CGG are unequal. Given a cost setting according to
the user’s intention, according to [7], we can reassign
CIG = CIG/CGG, CGI = CGI/CGG and CGG = 1 with
optimal solution unchanged. Here, for the ease of un-
derstanding, we still preserve the original formulation.
We can construct a cost matrix C as shown in Table 1,
where Cij indicates the cost of misclassifying a face
image of the i-th person as the j-th person. The diagonal
elements of C are all zero since there is no loss for correct
recognition. Usually it is easy for users to specify which
kind of mistake is with a higher cost and which is with
a lower cost. Thus, we assume that the cost matrix is
given by users and we will focus on how to make the
face recognition system behave well given a cost matrix.
At the end of the paper we will try to determine the cost
matrix by interacting with users.

It is clear that our concerned problem is an (M+1)-class
cost-sensitive learning problem and the hypothesis φ(x)
should minimize the expected cost: Cost = Ex,y(Cyφ(x)).
Since Ex,y(Cyφ(x)) = Ex

(
Ey|x(Cyφ(x)|x)

)
, minimizing

Ex,y(Cyφ(x)) is equivalent to minimizing Ey|x(Cyφ(x)|x)
on every x. Hence we can define the expected loss of
predicting x by φ(x) as: loss

(
x, φ(x)

)
= Ey|x(Cyφ(x)|x).

For our problem, we have

loss
(
x, φ(x)

)
=





M∑
m=1
m6=τ

P(Gm|x)CGG + P(I|x)CIG if φ(x) = Gτ

M∑
m=1

P(Gm|x)CGI if φ(x) = I

(1)
where we denote P(y = Gm|x) and P(y = I|x) as
P(Gm|x) and P(I|x) for simplicity. Therefore, in order
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TABLE 1
The cost matrix
G1 · · · GM I

G1 0 · · · CGG CGI

· · · · · · · · · · · · · · ·
GM CGG · · · 0 CGI

I CIG · · · CIG 0

to minimize the total cost, the optimal prediction of x
should be

φ∗(x) = arg min
φ(x)∈{G1,··· ,GM ,I}

loss
(
x, φ(x)

)
(2)

Multi-class cost-sensitive learning algorithms try to
solve this minimization problem. In the next section
we will briefly introduce some existing multi-class cost-
sensitive methods.

3 MULTI-CLASS COST-SENSITIVE LEARNING

3.1 Rescaling

Rescaling [7], [26] is a general approach that can be used
to make cost-blind learning algorithms cost-sensitive.
The principle is to enable the influences of the higher-
cost classes to be larger than that of the lower-cost
classes. The rescaling approach can be realized in many
ways, such as assigning training examples of different
classes with different weights [7], [22], sampling the
classes according to their costs [6], [7], [17], or moving
the decision threshold [5], [7]. The rescaling approach is
effective in dealing with binary-class problems.

Zhou and Liu [26] analyzed the reason why the
traditional rescaling approach is often not effective on
multi-class problems and revealed that it is helpful only
when all the classes can be consistently rescaled simul-
taneously. Based on the analysis, a new approach was
proposed, which should be the choice if the user wants
to use rescaling for multi-class cost-sensitive learning.
For an (M+1)-class problem, if each class can be assigned
with an optimal weight wm (1 ≤ m ≤ M + 1, wm > 0),
it is desired that the weights satisfy wi/wj = Cij/Cji for
every two classes i and j. It implies the following

(
M+1

2

)
number of constraints must be satisfied, which is called
as the consistency condition [26]:

w1
w2

= C12
C21

, w1
w3

= C13
C31

, · · · , w1
w(M+1)

= C1(M+1)

C(M+1)1

w2
w3

= C23
C32

, · · · , w2
w(M+1)

= C2(M+1)

C(M+1)2

· · · · · · · · ·
wM

w(M+1)
= CM(M+1)

C(M+1)M

In order to perform rescaling simultaneously, w =
(w1, w2, · · · , wM+1)T must be the non-trivial solution of
a linear equation system with the coefficient matrix:




C21 −C12 0 · · · 0
C31 0 −C13 · · · 0
· · · · · · · · · · · · 0

C(M+1)1 0 0 · · · −C1(M+1)

0 C32 −C23 · · · 0
· · · · · · · · · · · · 0
0 C(M+1)2 0 · · · −C2(M+1)

0 0 0 · · · −CM(M+1)




(3)

It is equivalent to requiring the coefficient matrix (3) to
have a rank smaller than (M + 1). Otherwise, rescaling
may not be effective on multi-class problems. In our cost-
sensitive face recognition task, the coefficient matrix’s
rank is M . Therefore, theoretically we can use rescaling
to solve this problem.

MetaCost [5] is popularly used to make cost-blind
learning algorithms cost-sensitive. Actually this is also
a rescaling method which relabels training examples to
minimize Bayesian risk by threshold moving; in other
words, this method works by rescaling data based on the
posterior probability and the cost setting. As MetaCost
directly modifies the labels rather than assigning weights
to examples, the consistency problem mentioned above
does not exist; however, from empirical study, Ting [21]
indicated that the internal cost-sensitive classifier em-
ployed by MetaCost to relabel the training examples may
outperform the final model without additional compu-
tation, and therefore he did not recommend MetaCost.

Our experimental results reveal that the rescaling
methods do not work well on our cost-sensitive face
recognition task and the reason will be discussed in
Section 5.

3.2 Multi-Class Cost-Sensitive SVM (mcSVM)

Support vector machine (SVM) has been successfully
applied to face recognition [10], [15]. Since SVM was
originally designed for binary classification and our cost-
sensitive face recognition task is a multi-class prob-
lem, multi-class extensions are needed. The one-vs-one
and one-vs-all are two popular strategies to handle the
gap between multi-class problems and binary classifiers
by decomposing a multi-class problem into a series
of binary-class problems. These approaches, however,
may fail under various circumstances [13], [15]. Lee et
al. [13] derived a multi-class cost-sensitive SVM, i.e.,
mcSVM. In this method, for an (M+1)-class classifi-
cation problem, the example x’s label y is extended
to an (M+1)-dimensional label vector, denoted by y,
where y takes 1 for the y-th element and −1/M for
the others. For instance, if the i-th example falls into
the 1st class, then yi = (1,−1/M, · · · ,−1/M)T . Accord-
ingly, an (M+1)-tuple of separating functions f(x) =(
f1(x), · · · , fM+1(x)

)T is defined, where fm(x) =
hm(x) + bm, hm ∈ HK and bm ∈ R. HK is a reproducing
kernel Hilbert space (RKHS) with the reproducing kernel
function K(·, ·), where f(x) is with the sum-to-zero
constraint

∑M+1
m=1 fm(x) = 0 for any x.
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Define the loss function for mcSVM as L
(
x,f(x),y

)
=

Cy·
(
f(x)−y

)
+

, where Cy· is the y-th row of the cost ma-
trix C and

(
f(x)−y

)
+

is the generalized hinge loss func-

tion,
(
(f1(x)− y1)+, · · · , (fM+1(x)− y(M+1))+

)T . Lee et
al. [13] proved that the minimizer of expected risk
Ex,y

(
L(x,f(x),y)

)
under the sum-to-zero constraint is

f∗(x) =
(
f∗1 (x), · · · , f∗M+1(x)

)T with

f∗τ (x) =

{
1 if τ = arg min

m=1,··· ,M+1
loss(x,m)

−1/M otherwise.
(4)

Here loss(x,m) =
∑M+1

m′=1 P(m′|x)Cm′m as defined in
Section 2. It means that the best predicted label of
the new example x under Bayes decision rule is the
subscript of the maximum of separating functions, i.e.,

φ(x) = arg max
m

fm(x) = arg min
m=1,··· ,M+1

loss(x,m) (5)

For finite case D = {(xi, yi)}|D|i=1, the expected risk is
replaced by the empirical risk. Considering structural
risk, the optimization objective can be written as:

1
|D|

|D|∑

i=1

Cyi·
(
f(xi)− yi

)
+

+
1
2
λ

M+1∑
m=1

‖fm‖2HK
(6)

Actually, when M = 1, the generalized hinge loss
function reduces to the binary hinge loss and if all
the misclassification cost is 1, mcSVM reduces to the
traditional binary cost-blind SVM.

4 OUR METHODS

4.1 Multi-Class Cost-Sensitive KLR (mcKLR)

4.1.1 Derivation

We can define a meta-class G as y = G ⇐⇒ ∃m y = Gm

and P(G|x) = P(
⋃M

m=1 Gm|x) =
∑M

m=1 P(Gm|x). Then
from Eq. 1 we have

loss(x, Gτ ) =
M∑

m=1
m6=τ

P(Gm|x)CGG + P(I|x)CIG

= (P(G|x)− P(Gτ |x))CGG + P(I|x)CIG

= P(G|x)CGG + P(I|x)CIG − P(Gτ |x)CGG

(7)

As x can be labeled as either G or I , we have P(G|x) +
P(I|x) = 1. So Eq. 7 becomes

loss(x, Gτ )
=

(
1− P(I|x)

)
CGG + P(I|x)CIG − P(Gτ |x)CGG

= CGG + P(I|x)(CIG − CGG)− P(Gτ |x)CGG

(8)

and

loss(x, I) =
M∑

m=1

P(Gm|x)CGI = P(G|x)CGI (9)

To minimize the loss, we should choose the minimum
from the M + 1 items below:





CGG + P(I|x)(CIG − CGG)− P(G1|x)CGG

...
CGG + P(I|x)(CIG − CGG)− P(GM |x)CGG

P(G|x)CGI

(10)

Subtract CGG+P(I|x)(CIG−CGG) from every item, then
the last item becomes

P(G|x)CGI − CGG − P(I|x)(CIG − CGG)
=

(
1− P(I|x)

)
CGI − CGG − P(I|x)(CIG − CGG)

= −P(I|x)(CGI + CIG − CGG) + (CGI − CGG)
(11)

So we have an equivalent problem of choosing the
minimum from:




−P(G1|x)CGG

...
−P(GM |x)CGG

−P(I|x)(CGI + CIG − CGG) + (CGI − CGG)

(12)

Divide −CGG from every item and denote

β =
CGI + CIG − CGG

CGG
(13)

and
∆ =

CGI − CGG

CGG
(14)

Then the problem becomes choosing the maximum from




P(G1|x)
...
P(GM |x)
βP(I|x)−∆

(15)

4.1.2 Optimization
By using logistic regression [27], we define an M -tuple
of separating functions f(x) =

(
f1(x), · · · , fM (x)

)T and
the loss function L

(
x,f(x), y

)
as

L
(
x,f(x), y

)
=

M∑
τ=1

(
− ln

efτ (x)

1 +
∑M

m=1 efm(x)

)
I(y = Gτ )

+
(
− ln

1

1 +
∑M

m=1 efm(x)

)
I(y = I)

(16)

On the (x, y) space with pdf p(x, y), the optimal separat-
ing function f∗(x) is the minimizer of the expectation of
L. Since Ex,y(L) = Ex

(
Ey|x(L|x)

)
, to minimize Ex,y(L)

we can minimize Ey|x(L|x) on every x, where

Ey|x(L|x) =
M∑

τ=1

(
− ln

efτ (x)

1 +
∑M

m=1 efm(x)

)
P(Gτ |x)

+
(
− ln

1

1 +
∑M

m=1 efm(x)

)
P(I|x)

(17)
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Set the partial derivative with respect to every fτ to
zero and we get the minimizer

f∗τ (x) = ln
P(Gτ |x)
P(I|x)

, (18)

for τ = 1, · · · ,M . Through f∗1 , · · · , f∗M we construct a
new function f∗I :

f∗I (x) = ln
βP(I|x)−∆

P(I|x)

= ln

(
β −∆

(
1 +

M∑
τ=1

ef∗τ (x)

)) (19)

Thus, choosing the maximum from {f∗1 (x), · · · , f∗M (x),
f∗I (x)} is equivalent to choosing the maximum from
Eq. 15. That is, the optimal predicted label of x under
the Bayes decision rule is

φ(x) =
{

Gτ if f∗τ is the maximum
I if f∗I is the maximum (20)

For finite case D = {(xi, yi)}|D|i=1, the expectation of loss
is replaced by empirical risk

L(D) =
|D|∑

i=1

(
M∑

τ=1

(
− ln

efτ (xi)

1 +
∑M

m=1 efm(xi)

)
I(yi = Gτ )

+
(
− ln

1

1 +
∑M

m=1 efm(xi)

)
I(yi = I)

)
. (21)

As did in mcSVM, assume fm(x) = hm(x) + bm, hm ∈
HK and bm ∈ R. The optimization objective can be
expressed as

L(D) +
1
2
λ

M∑
m=1

‖fm‖2HK
(22)

Note that the optimization problem is similar to the
optimization form of multi-class kernel logistic regres-
sion (KLR) [8], [27]. Therefore, we can use the similar
optimization technique of KLR to handle our problem
and we call our method mcKLR.

We can see that all the information about the misclas-
sification costs, i.e., CGG, CGI and CIG, is embedded into
β and ∆. In the training process, we only need to find the
optimal f∗τ (x) (1 ≤ τ ≤ M), since f∗I (x) is dependent on
them. Therefore, no cost information is needed, which
means the training process is independent from the
cost setting. Cost-sensitivity is achieved by f∗I (x) alone,
which is constructed from f∗τ (x), β and ∆ in the test
process, as shown in Eq. 19. Therefore, if the cost setting
(i.e., CIG : CGI : CGG) changes, we only need to adjust
the prediction process rather than retraining the whole
system. This is very efficient since the predictions of
mcKLR can be updated according to the changing cost
matrix on-line. Moreover, mcKLR can output all possible
predictions corresponding to different β and ∆ settings
almost all at once with negligible time consumption. We
will discuss this further in Section 6.

4.2 Multi-Class Cost-Sensitive k-Nearest Neighbor
(mckNN)
k-nearest neighbor (kNN) is possibly one of the simplest
machine learning algorithms. For any new instance, its
label is decided by majority voting among the labels
of its nearest k neighbors in the training set. There
is no explicit training process and all computation is
deferred to the prediction step. Therefore, kNN is a lazy
learning method. Different distance types can be used to
determine the k nearest neighbors of the unseen instance,
such as Euclidian distance and Mahalanobis distance.

Similar to mcKLR, here we propose a cost-sensitive
kNN, denoted by mckNN. According to the statistical
information gained from those neighboring instances,
Bayes decision theory is utilized to determine the label
of the test instance.

First, for a test instance x, its k nearest neighbors in
the training set, x1, · · · ,xk, are identified. Then, labels of
the k nearest neighbors are regarded as new features for
x. Denote the new features for x as z = {y1, y2, · · · , yk}.
Thus, the posterior probability of x having the label y
can be expressed as P(y|z) = P(y|y1, y2, · · · , yk). Assume
that the k nearest neighbors of x are conditionally inde-
pendent; in other words, the i-th nearest neighbor of x is
independent with the previous (i−1) nearest neighbors.
Then, we have

P(y1, y2, · · · , yk|y) = P(y1|y)P(y2|y) · · ·P(yk|y) (23)

where the likelihood, P(yi|y) (i = 1, · · · , k), implies the
probability of that the instance with label yi is one of
the k nearest neighbors of the instance with label y.
This assumption is mainly used for the computational
simplicity and otherwise we will suffer from combi-
natorial explosion. In our experiments it can be found
that the assumption on the conditional independence
is reasonable under most circumstances. Based on the
assumption of Eq. 23, the posterior probability P(y|z)
can be expressed by Bayes rule as

P(y|z) =
P(y)P(z|y)

P(z)
=

P(y)P(y1|y) · · ·P(yk|y)
P(z)

(24)

Here P(yi|y) (i = 1, · · · , k) and P(y) can be estimated
from the training set. Assume that there are s instances
in the training set with label y, denoted as xy

1, · · · ,xy
s ,

and in the k nearest neighbors of each xy
t (1 ≤ t ≤ s)

there are kt instances with label yi. We have

P(yi|y) =
∑s

t=1 kt

k × s
(25)

and the prior probability P(y) can be estimated from the
proportion of the training samples with label y among
all the training samples as

P(y) =
|Dy|
|D| (26)

where Dy is the subset of samples with label y.
In contrast to traditional kNN which uses only the

information of training set in prediction, we can compute
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P(yi|yj) for each label pair (yi, yj) and P(yi) for each
label yi before prediction. With this information, almost
no additional computation is needed if compared with
traditional kNN in the test process.

Having P(yi|y) beforehand we can get the posterior
probability P(y|z) for a new instance as in Eq. 24. In the
cost-sensitive formulation, similar to Eq. 1, we have the
cost of predicting x as φ(x):

loss
(
x, φ(x)

)
=




M∑
m=1
m6=τ

P(Gm|z)CGG + P(I|z)CIG if φ(x) = Gτ

M∑
m=1

P(Gm|z)CGI if φ(x) = I

(27)

Replacing P(Gm|z) and P(I|z) with the expression in
Eq. 24, we have

loss
(
x, φ(x)

)
=

1
P(z)

×




M∑
m=1
m6=τ

P(Gm)
k∏

i=1

P(yi|Gm)CGG + P(I)
k∏

i=1

P(yi|I)CIG

if φ(x) = Gτ
M∑

m=1
P(Gm)

k∏
i=1

P(yi|Gm)CGI if φ(x) = O

(28)

For each x, 1/P(z) is constant and can be omitted.
P(Gm), P(I), P(yi|Gm) and P(yi|I) are all estimated from
the training set by Eq. 25 and 26 beforehand. Then, we
can get the optimal prediction of x as

φ∗(x) = arg min
φ(x)∈{G1,··· ,GM ,I}

loss
(
x, φ(x)

)
(29)

Notice that since we compute Eqs. 25 and 26 in the
training process, the cost of computing Eq. 28 is negli-
gible compared with that of finding the k nearest neigh-
bors of x. Therefore, the time complexity of mckNN is
almost as the same as kNN.

mcKLR and mckNN are adapted for different appli-
cations. For situations where the group members vary
frequently, such as enrolling new members or cancelling
old members, mckNN may be a good choice. To handle
the change of the group members, mckNN only need to
add the corresponding information of the new member
or delete the corresponding information of the old mem-
ber. While for mcKLR, we have to retrain the model. For
situations with stable group members, mcKLR should be
preferred since it is often more effective and efficient in
prediction than mckNN. Our experiments will demon-
strate those properties.

It is worth noting that our focus in this paper is on
face recognition and in most real face recognition appli-
cations, CIG, CGI and CGG can be treated approximately
as the same for all gallery subjects and impostors. So, in
this paper we only consider such case. However, with
slight modifications in our derivation from the Bayes

decision rules, both mcKLR and mckNN can be extended
to the general case where the costs of misclassifying any
pair of subjects may be different. Note the property that
the training process is independent from the cost setting
still remains for the general case.

5 EXPERIMENTS

5.1 Configuration
5.1.1 Face Databases
In our experiments, AR [18] and FERET [20] face
databases are used.
• AR: 126 subjects, each with 26 face images from 2

sessions. The images include frontal view faces with
different facial expressions, illumination conditions
and occlusions. Since our main purpose is to study
cost-sensitive face recognition and no specific steps
are taken to handle occlusions, the images without
occlusions are used. Every image is cropped by a
165 × 120 rectangular mask and scaled so that the
distances between the two eyes are almost the same
for all images. Then the images are grayed and
histogram equalized.

• FERET: 1,199 subjects, with a total of 14,051 images.
The images contain variations in lighting, facial
expressions, pose angles, etc. We choose images of
frontal view with different expressions and illumi-
nation for our experiment. The preprocessing on
FERET images is similar to that on AR except that
the mask is 75× 65.

The training sets and test sets each includes NG images
per randomly selected M subjects that are treated as
gallery subjects, and NI images from the remaining
subjects as impostor images. Such random selection is re-
peated for 10 times and the average results are recorded.

5.1.2 Features
Four different kinds of features are extracted from the
face images, by using Principle Component Analysis
(PCA) [23], Locality Preserving Projections (LPP) [9],
Linear Discriminate Analysis (LDA) [3] and Local Binary
Pattern (LBP) [2], respectively.
• PCA: Aims at identifying a lower-dimensional space

maximizing the variance among the data.
• LPP: Aims at finding a linear transformation pre-

serving local structure information of original data.
• LDA: Aims at identifying a lower-dimensional space

minimizing the inter-class similarity while maximiz-
ing the intra-class similarity simultaneously. It is the
only supervised feature extraction method among
those four methods.

• LBP: Uses the concatenated LBP feature distribu-
tions extracted from face image regions as the face
descriptor. It works effectively on recognizing faces
with different occlusions, poses and expressions [2].
For AR, we divide every image into 5×5 blocks with
33 × 24 pixels. For FERET, we divide every image
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into 5 × 5 blocks with 15 × 13 pixels. For AR and
FERET, we use LBPu2

8,2. The subscript (8, 2) means
sampling 8 points on neighbor region which is a
circle with radius of 2 and the superscript u2 means
using uniform patterns.

5.1.3 Classifiers
We study three cost-blind methods, including kNN,
multi-class cost-blind support vector machine (mb-
SVM) [13] and multi-class cost-bind kernel logistic re-
gression (mbKLR) [27], and three cost-sensitive methods,
including mcSVM [13] and our methods mckNN and
mcKLR.
• kNN: The training set is used as the gallery set.

Every time we identify 3 nearest neighbors for the
probe image, i.e., k = 3, and then majority voting is
used for the prediction.

• mbSVM: mbSVM is the cost-blind version of
mcSVM which regards all kinds of costs as the
same. RBF kernel is used as the kernel func-
tion. The same kernel setting is employed in
mbKLR/mcSVM/mcKLR. Five-fold cross validation
is used for selecting the RBF kernel’s width from e−3

to e3 and regulation coefficient from e−10 to e0.
• mbKLR: mbKLR is the cost-blind version of mcKLR

which regards all kinds of costs as the same.
• mckNN: In the training process, we learn the condi-

tional probability P(yi|yj) from the training set for
each label pair of (yi, yj) and the prior probability
P(yi) for each label. In the test process, we identify
k = 3 nearest neighbors for the probe image and use
Eq. 29 to predict the probe’s label.

• mcSVM: The algorithm proposed in [13] is adopted.
• mcKLR: The training process of mcKLR is as the

same as mbKLR, while the cost is considered in
making prediction for probe images.

We also compare our methods with Rescaling and
MetaCost [5] by using mbKLR as the elementary cost-
blind method. The results are not presented here since
Rescaling and MetaCost simply predict every image as
impostor and are thus useless. We believe that the reason
of their failure is caused by the imbalance between
impostors and gallery subjects. Liu and Zhou [16] have
studied this problem and indicated that if class imbal-
ance and unequal costs occur simultaneously, to rescale
the classes in proportion to the cost ratio is no more
optimal. Determining the optimal rescaling ratio in this
case, however, is still an open problem.

We also compare our methods with two methods
derived from the traditional ROC curve based methods:
• VF (verification mode): The test subject needs to

claim an identity first. Then the system decides
whether the test subject is the one s/he claims to
be. The system can adjust the threshold according to
the false accept rate (FAR). This method is intrusive.
To make it non-intrusive, we try two strategies to
avoid the requirement for the test subject to claim

an identity. The first one, denoted by VFram, is to
randomly assign a gallery subject to the test subject.
The other one, denoted by VFave, is to assign a
certain gallery subject to the test subject. In our
experiments, we try through all the gallery subjects
and report the averaged results. Note that M binary
classifiers are needed.

• WL (‘watch list’ mode): First, the system decides
whether the test subject is among the gallery sub-
jects. If yes, the system then identifies the test subject
among the gallery subjects, which is a traditional
multi-class classification problem. Similarly, the sys-
tem can adjust the threshold according to the FAR
in the first step. Note that one binary classifier and
one M -class classifier are needed.

5.2 Results
5.2.1 Fixed Influential Factors
First, we fix all the influential factors as shown in Table 2.

TABLE 2
Experimental settings

Database M NG NI CIG : CGI : CGG

AR 10 7 300 20:2:1
FERET 20 3 300 20:2:1

We compare the total cost, total error rate (err), error
rate of false acceptance (errIG) and error rate of false
rejection (errGI ) of cost-blind methods, kNN, mbSVM,
mbKLR and cost-sensitive methods, mckNN, mcSVM,
mcKLR. The results are shown in Table 3.

From Table 3 we can find that the cost-sensitive meth-
ods have much smaller total cost than their cost-blind
counterparts. It is evident that the cost-sensitive methods
achieve this by preventing high-cost errors (errIG) while
slightly increasing low-cost errors (errGI ). mcKLR has
the lowest total cost on all databases with all features
except on FERET with LDA, where mckNN is the best.

The above results have demonstrated that the cost-
sensitive methods will yield less costs compared to cost-
blind methods. So, in the following experiments we
will not include the results of cost-blind methods for
convenience.

Then we compare cost-sensitive method with ROC-
based methods, i.e., WL and VF. The binary and M -
class classifier used are binary and M -class cost-blind
KLR, respectively. The compared cost-sensitive method
is mcKLR. Since CIG > CGI , we vary the acceptance
threshold from 0.05 to 0.5 with 0.05 as interval. The
results are shown in Fig. 1.

From the figures we can see mcKLR is better than WL
and VF (both VFram and VFave) under all thresholds. It is
reasonable since our method directly optimizes the total
cost, while WL and VF embed the cost information im-
plicitly via the acceptance threshold, yet the relationship
between the acceptance threshold and the performance
is not clear. Note that in this paper, we argue that the face
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TABLE 3
Comparison on total cost (cost), total error rate (err), high-cost error rate (errIG) and low-cost error rate (errGI ) on the
AR and FERET databases. (The better performance between any cost-sensitive method and its cost-blind counterpart is underlined, while

the best performance among all methods is bolded.)

Database AR FERET
Feature kNN mckNN mbSVM mcSVM mbKLR mcKLR kNN mckNN mbSVM mcSVM mbKLR mcKLR

cost 198.1 144.5 105.7 100.6 91.8 60.6 207.9 136.6 191.2 107.5 96.2 59.8
errIG(%) 1.57 0.40 0.23 0.03 0.70 0.07 2.03 0.43 1.93 0.20 1.03 0.07

PCA errGI (%) 72.71 84.86 65.43 70.29 35.14 40.14 70.33 91.17 62.67 79.50 28.33 46.50
err(%) 15.65 16.84 12.59 13.38 7.38 7.76 13.83 15.89 12.06 13.44 5.64 7.81
cost 271.2 163.0 100.1 97.8 91.0 79.4 164.4 115.0 112.4 110.3 106.4 104.4
errIG(%) 2.67 0.67 0.13 0.10 0.20 0.07 1.13 0.00 0.20 0.20 0.13 0.00

LPP errGI (%) 78.43 87.14 65.43 65.29 56.00 53.00 79.33 95.50 83.67 81.83 82.00 87.00
err(%) 17.38 17.30 12.62 12.54 10.92 10.41 14.50 16.03 14.11 13.83 13.78 14.50
cost 75.3 75.3 129.5 111.7 71.7 64.0 80.6 78.8 200.3 199.2 94.6 84.6
errIG(%) 0.17 0.17 0.97 0.90 0.03 0.03 0.23 0.03 2.13 1.70 0.10 0.07

LDA errGI (%) 46.57 46.57 50.71 40.57 49.29 43.71 55.50 64.00 60.17 81.00 73.83 67.17
err(%) 8.97 8.97 10.51 8.65 9.54 8.51 9.44 10.69 11.83 14.92 12.39 11.25
cost 290.4 153.4 116.4 113.0 101.2 99.8 237.2 129.8 117.9 116.3 88.0 85.5
errIG(%) 3.53 0.97 0.33 0.07 0.17 0.07 2.73 0.37 0.20 0.20 0.17 0.00

LBP errGI (%) 53.00 65.71 68.29 76.57 64.00 67.43 60.17 89.50 88.17 86.33 64.83 71.17
err(%) 14.03 14.14 13.41 15.03 12.68 13.19 12.58 15.33 14.89 14.75 11.00 11.89

recognition task is inherently a cost-sensitive task since
different misclassifications will cause different amount
of losses. This decides that the total cost should be used
as the evaluation criterion. Although WL or VF can play
well with their own criteria, those criteria are not right
in our concerned problem and it is meaningless to us to
get better values on WL or VF criteria.

5.2.2 Varying Influential Factors
Then, we study the performance of the compared cost-
sensitive methods with different numbers of gallery
subjects, i.e., with varying M . For AR, M varies from
5 to 30 with 5 as interval. For FERET, M varies from 10
to 80 with 10 as interval. The results are shown in Fig. 2.
The results of mcSVM on FERET when M ≥ 40 are not
shown because its efficiency is very poor and we did not
get results even after waiting for a whole week. On all
databases and under all kinds of features except LDA,
the performance of mcKLR is always the best. Using the
LDA features, mckNN is also a good choice.

Note that the cost ratios given by the user reflect
the desirable tradeoff between different kinds of errors
according to her/is intention. For example, if the user
thought that one false acceptance is more serious than
49 false rejections, s/he could set CIG : CGI = 50 : 1;
while if s/he thought that one false acceptance is just
more serious than 9 false rejections, s/he could set CIG :
CGI = 10 : 1. It is interesting to compare the methods
with different cost ratios to see whether they can adapt to
different scenarios well. Here, we split CIG : CGI : CGG

into 2 parts: CIG/CGI and CGI/CGG. CGG is always set
as 1. First, we fix CGI/CGG = 2 and select CIG/CGI

from {0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20}. Note that here we
consider both the conditions CIG > CGI and CIG < CGI ,
which cover the two kinds of applications discussed
in Section 1. Then, we fix CIG/CGI = 10 and select
CGI/CGG from {0.1, 0.2, 0.5, 1, 2, 5, 10}. The results
are shown in Fig. 3 and Fig. 4, respectively. The cost
ratio axes in Figs. 3 and 4 are in log-scale for a better

plot. With the cost ratio changes, mcKLR is the best
choice on most cases and with the LDA feature, mckNN
is also a good choice. Note that in the experiments
studying the varying CIG/CGI , although CIG increases
exponentially, the total costs of mckNN and mcKLR do
not increase exponentially. This owes to that mckNN and
mcKLR control the total cost via reducing the high-cost
misclassification.

We also study the influence of the number of nearest
neighbors, i.e., k, in kNN and mckNN. The results are
shown in Fig. 5. For most experiment settings, mckNN
is better than kNN and is also more robust to the setting
of k. On experiments using LDA feature, the advantage
of mckNN over kNN is not obvious. A possible reason
may be that LDA is a supervised feature extraction
method aiming to find a subspace with the maximal
discriminative ability, and such a process does not take
the cost information into consideration and is optimal
for the cost-blind methods. How to include the cost
information into LDA is an interesting future work.

Overall, the above experiments show that mcKLR
achieves the best performance on almost all databases
using all kinds of features, under all numbers of gallery
subjects and all cost ratios. It is clear that from the view
of recognition result, mcKLR is the best choice among
the compared methods.

It is interesting to notice that Lee et al. [13] has proved
that when the optimal solution is obtained, the objective
function of mcSVM is equivalent to Bayes decision rule
with unequal costs. In our experiments, however, we
find that mcSVM rarely performs better than mcKLR.
The reason may be that the objective function of mcKLR
was directly derived from Bayes decision rule with
unequal costs. On the contrary, the inferior of mckNN
compared with mcKLR may be caused by the inferior of
kNN, which can be observed in the experiments.

We also compare the computational costs of kNN,
mckNN, mcSVM and mcKLR. We record the average
training and test time costs of different classifiers in
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Fig. 1. Comparison of mcKLR and WL/VF with varying threshold. The “database: feature” under each figure indicates
the database and feature used in the experiments.
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Fig. 2. Comparison with different number of gallery subjects. The “database: feature” under each figure indicates the
database and feature used in the experiments.

Table 4. PCA feature is used here. The experiments are
conducted on a PC with CPU 2.66GHz(×64) and 4GB
memory. We can see that the test time cost of mcKLR
is almost as the same as that of mcSVM, but its training
time cost is much smaller than that of mcSVM, especially
on the larger database, FERET. There is no training
process for kNN and the training process of mckNN is
much more efficient compared with mcSVM and mcKLR.
The test time of mckNN and kNN, just as the analysis
in Section 4.2, is similar.

6 LEARNING THE COST MATRIX
The misclassification costs in face recognition reflect the
belief/demand of the user on how severe one type
of mistake against another type of mistake. Even for
the same data, different users may have different be-
lief/demand. Therefore, in above discussion we assume

TABLE 4
Comparison of the training/test time costs (in seconds) of

different classifiers with PCA features.

kNN mckNN mcSVM mcKLR

train – 0.220 167.297 30.587
AR test 0.882 0.895 0.036 0.048

train – 0.049 1194.880 46.693
FERET test 0.251 0.263 0.025 0.028

that the cost matrix is given by the user. For some
cases where the cost can be measured by money or time
consuming, it is easy for the user to provide clear cost
ratios for the system specifically. However, in many cases
this is not so easy. The first reason is that although the
user may know that false acceptance is much more seri-
ous than other types of misclassification, s/he probably
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Fig. 3. Comparison with different settings of CIG/CGI . The “database: feature” under each figure indicates the
database and feature used in the experiments.

0.1 0.2 0.5 1 2 5 10
0

200

400

600

800

 C
GI

 / C
GG

co
st

 

 

mc kNN
mcSVM
mcKLR

0.1 0.2 0.5 1 2 5 10
0

200

400

600

800

1000

 C
GI

 / C
GG

co
st

 

 

mc kNN
mcSVM
mcKLR

0.1 0.2 0.5 1 2 5 10
0

200

400

600

800

 C
GI

 / C
GG

co
st

 

 

mc kNN
mcSVM
mcKLR

0.1 0.2 0.5 1 2 5 10
0

200

400

600

800

 C
GI

 / C
GG

co
st

 

 

mc kNN
mcSVM
mcKLR

AR: PCA AR: LPP AR: LDA AR: LBP

0.1 0.2 0.5 1 2 5 10
0

200

400

600

800

 C
GI

 / C
GG

co
st

 

 

mc kNN
mcSVM
mcKLR

0.1 0.2 0.5 1 2 5 10
0

200

400

600

 C
GI

 / C
GG

co
st

 

 

mc kNN
mcSVM
mcKLR

0.1 0.2 0.5 1 2 5 10
0

200

400

600

800

1000

 C
GI

 / C
GG

co
st

 

 

mc kNN
mcSVM
mcKLR

0.1 0.2 0.5 1 2 5 10
0

200

400

600

800

 C
GI

 / C
GG

co
st

 

 

mc kNN
mcSVM
mcKLR

FERET: PCA FERET: LPP FERET: LDA FERET: LBP

Fig. 4. Comparison with different settings of CGI/CGG. The “database: feature” under each figure indicates the
database and feature used in the experiments.

could not provide a clear measurement on how serious
errIG is, compared with errGI and errGG. For example,
the difference between CIG : CGI : CGG = 20 : 2 : 1
and CIG : CGI : CGG = 200 : 2 : 1 may be not very
different in the mind of the user although the learning
results would be very different. The second reason is
that learning from a cost ratio other than the given
cost ratio may maximize classifier utility [4]. Therefore,
refining the cost matrix given by users or learning a
cost matrix via the interaction with users is desired for
a cost-sensitive system. However, this remains an open
problem in the study of cost-sensitive learning.

Cross-validation is widely used for parameter tuning
and if we regard the cost ratios as parameters, it can
be used for selecting a proper cost setting. Generally, to
get the result (false acceptance/rejection/identification

ratio) under one possible parameter setting, one classifier
needs to be trained. For example, if we vary CIG/CGI

among {0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20} and CGI/CGG

among {0.1, 0.2, 0.5, 1, 2, 5, 10}, 9 × 7 = 63 classifiers
are needed. So, a direct application of cross validation is
quite inefficient.

In this paper, we provide an attempt to learning the
cost matrix in an efficient way, where only one classifier
is needed to be trained for obtaining results for all pa-
rameter settings. Notice in mckNN, the training process
of learning the conditional and prior probabilities is in-
dependent with the cost matrix. In the test process, firstly
the k nearest neighbors of a probe image are identified
and then the label of the probe image is decided using
the neighbor information and the cost ratios. The com-
putation cost of the second step is negligible if compared
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Fig. 5. Comparison of kNN and mckNN with different settings of k. The “database: feature” under each figure indicates
the database and feature used in the experiments.

with that of the first step. Therefore, we can get all
the results (errIG, errGI and errGG) under different cost
settings simultaneously by training only one classifier.
mcKLR has similar properties. The training process is
independent with cost ratio and in the test process, after
getting the posterior probability, the cost ratio is used to
adjust the prediction. Therefore, we can get all the results
under different cost settings simultaneously.

After obtaining the results under different cost settings
on the validation sets, the user can pick a result which
is believed to be the best suited to her/is intention, and
then the corresponding cost setting will be used for the
training process.

In the following 5-fold cross-validation experiments,
we vary CIG/CGI among {0.05, 0.1, 0.2, 0.5, 1, 2, 5,
10, 20} and CGI/CGG among {0.1, 0.2, 0.5, 1, 2, 5, 10}.
The results of mckNN and mcKLR on AR database
using PCA feature are shown in Fig. 6. The results are
obtained as the average on the 5 validation sets. The
x-axis and y-axis (both in log-scale) correspond to the
cost ratio CIG/CGI and CGI/CGG, respectively. The z-
axis is the error rate. We only show errGI and errIG

for simplicity. After observing the results, the user may
be able to decide which kind of tradeoff between the
misclassifications is suited to her/is intention.

7 CONCLUSION

This paper extends our preliminary research [24] which
argues that simply pursuing a low error rate in face
recognition is not as reasonable as it might have been ex-
pected before, because different kinds of mistakes gener-
ally lead to different amount of losses. We formulate face
recognition as a multi-class cost-sensitive learning task
and under such formulation, we try to minimize the total
cost rather than the total error rate. To the best of our

knowledge, this is the first study on cost-sensitive face
recognition. We propose two simple methods, mckNN
and mcKLR. The former is suitable for situations where
the group members vary frequently while the latter is
more suitable for situations with stable group members.
Compared with ROC-based methods which embed the
cost information implicitly via adapting the acceptance
threshold, our methods optimize the total cost directly
and thus obtain better performance. Experiments show
that cost-sensitive methods is always better than their
cost-blind counterparts on all databases with any fea-
tures, while the mcKLR method usually achieves the best
performance. In addition, rather than simply waiting the
user to give the cost matrix, in this paper we also present
a study on learning the cost matrix via interaction with
the user.
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