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Abstract—Active learning reduces the labeling cost by iteratively selecting the most valuable data to query their labels. It
has attracted a lot of interests given the abundance of unlabeled data and the high cost of labeling. Most active learning
approaches select either informative or representative unlabeled instances to query their labels, which could significantly limit
their performance. Although several active learning algorithms were proposed to combine the two query selection criteria, they
are usually ad hoc in finding unlabeled instances that are both informative and representative. We address this limitation by
developing a principled approach, termed QUIRE, based on the min-max view of active learning. The proposed approach
provides a systematic way for measuring and combining the informativeness and representativeness of an unlabeled instance.
Further, by incorporating the correlation among labels, we extend the QUIRE approach to multi-label learning by actively querying
instance-label pairs. Extensive experimental results show that the proposed QUIRE approach outperforms several state-of-the-
art active learning approaches in both single-label and multi-label learning.

Index Terms—Active learning, learning with unlabeled data, multi-label learning, informativeness, representativeness

F

1 INTRODUCTION

In many real-world problems, unlabeled data are
often abundant whereas labeled data are scarce. Label
acquisition is usually expensive due to the involve-
ment of human experts, and thus, it is important to
train an accurate prediction model by a small num-
ber of labeled instances. Active learning addresses
this challenge by querying only the most valuable
instances for their class assignments [37].

The key component of an active learning algorithm
lies in the design of an appropriate criterion for
selecting the most valuable instances for querying, a
problem that is often referred to as query selection. Two
types of query selection criteria, i.e., informativeness
and representativeness, are widely used by active learn-
ing algorithms. Informativeness measures the ability
of an instance in reducing the uncertainty of a sta-
tistical model, whereas representativeness measures
whether an instance well represents the overall input
patterns of unlabeled data [37]. Most active learning
algorithms deploy only one of the two criteria for
query selection, which could significantly limit their
performance. In particular, approaches favoring infor-
mative instances usually do not exploit the structure
of unlabeled data, leading to serious sample bias and
consequently undesirable performance; approaches
favoring representative instances may have to query a
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relatively large number of instances before the optimal
decision boundary is found. Although several active
learning methods [47], [11], [27] were developed to
find the instances that are both informative and rep-
resentative, they are mostly ad hoc in measuring the
informativeness and representativeness of an instance,
leading to suboptimal performance.

In this paper, we propose a novel approach for
active learning by QUerying Informative and Repre-
sentative Examples (QUIRE for short). QUIRE is based
on the min-max view of active learning [19], which
provides a systematic way for measuring and com-
bining the two query selection criteria. More specifi-
cally, QUIRE measures both the informativeness and
representativeness of an instance by its prediction
uncertainty: the informativeness of an instance x is
measured by its prediction uncertainty according to
the labeled data, whereas the representativeness of x
is measured by its prediction uncertainty according to
the unlabeled data. By applying similar measures to
both criteria, QUIRE is effective in identifying queries
that are both informative and representative, which is
verified by our empirical study.

The second contribution of this work is to extend
the QUIRE approach to multi-label learning [53], a
setting that is much less studied in active learning.
Unlike single-label learning where one instance is as-
sumed to be associated with only one label, in multi-
label learning, instances can be assigned to multiple
labels simultaneously. Many real-world problems can
be cast into multi-label learning, including image
annotation [4] and text classification [45]. Because
one needs to decide, for each label, its relevance
to an instance, the labeling cost is much higher for
multi-label learning than that for single-label learning,
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and therefore, active query mechanisms are highly
desirable for multi-label learning. We further improve
the QUIRE algorithm by incorporating into the query
selection process the label correlation, which is known
to be crucial for multi-label learning [21], [33].

The rest of this paper is organized as follows: Sec-
tion 2 reviews some related work; Section 3 presents
our proposed approach under the single-label setting,
which is then extended to multi-label learning in
Section 4; experimental results are reported in Section
5; Section 6 concludes this work with future issues.

2 RELATED WORK
Querying the most informative instances is probably
the most popular approach for active learning. Ex-
emplar approaches include query-by-committee [38],
[9], [16], uncertainty sampling [26], [25], [41], [2],
expected error reduction based sampling [35] and
mutual information based sampling [18], [17]. The
main weakness of these approaches lies in the fact that
they are unable to exploit the abundance of unlabeled
data and the query selection is solely determined by
a small number of labeled examples, making it prone
to sample bias.

Another school of active learning is to select the
instances that are most representative to the unlabeled
data. Most approaches in this group aim to exploit
the cluster structure of unlabeled data [30], [10], [8],
usually by a clustering method. The main weakness
of them lies in the fact that their performance heavily
depends on the quality of clustering results [10]. Op-
timal experimental design methods also try to query
representative examples [15], [50], but usually ignore
the information of the queried labels.

Several active learning algorithms tried to combine
the informativeness measure with the representative-
ness measure for finding the optimal query instances.
A representative sampling algorithm [47] is to exploit
the cluster information of unlabeled instances as well
as the classification margin. One limitation of this
approach is that clustering is only performed on the
instances within the classification margin, leaving the
unlabeled instances outside the margin unexploited.
In [11], Donmez et al. extended the active learning
approach in [30] by dynamically balancing the uncer-
tainty and the density of instances for query selection.
This approach is ad hoc in combining the measure of
informativeness and representativeness for query se-
lection, leading to suboptimal performance. Recently,
Wang and Ye [46] derived an empirical upper bound
for active learning risk, and by minimizing this upper
bound, a batch model active learning method was
proposed to select instances that are discriminative
and with similar distribution to the unlabeled data.
However, because the number of instances selected at
each iteration is usually quite small, the distribution
estimated on the very limited amount of data could
be less accurate.

Our work is based on the min-max view of active
learning, which was first proposed in the study of
batch mode active learning [19]. Unlike [19] which
measures the representativeness of an instance by its
similarity to the remaining unlabeled instances, our
proposed measure of representativeness takes into
account the cluster structure of unlabeled instances as
well as the class assignments of the labeled examples,
leading to a better selection of instances for query.

Compared to single-label learning, active learning
under multi-label setting is much less studied. Multi-
label learning, where one instance can be simultane-
ously associated with multiple labels, has attracted
many research interests during the past few years
[48], [40], [31], [53]. The task of multi-label learning
is to learn a mapping from the feature space to the
label space, which consists of the power set of all
labels and could be extremely large. To handle such a
challenging task, it has been shown that it is important
to exploit the correlation between labels [51], [44], [21].

Most active learning algorithms decompose a multi-
label task into a set of binary classification problems.
For example, in [5], [39] and [13], uncertainty are first
measured for each label, and then combined to form
the uncertainty measure for individual instances. In
[29], one SVM classifier is trained for each label, and
the instance leading to the maximum reduction of ex-
pected loss is selected. Similarly, in [49], by introduc-
ing an extra regression model to predict the number
of class labels that will be assigned to each instance,
the expected loss reduction based on independently
trained SVMs is used as the selection criterion. This
work is further improved in [23] by the introduction
of an auxiliary learner. Recently, Li and Guo proposed
to measure the informativeness of an instance by
combining the label cardinality inconsistency and the
separation margin with a tradeoff parameter [28].

While most active learning algorithms are designed
to query all the label assignments of the selected
instances, Qi et al. proposed a two-dimensional ap-
proach in [32] that queries instance-label pairs; in other
words, it selects one label c and an instance x, and
queries the oracle if x should be assigned to label
c. [22] follows this setting, and selects instance-label
pairs based on a label ranking model. Since the strat-
egy of querying instance-label pairs is shown to be
more effective than querying all the label assignments
[32], we adopt the strategy in this study.

The main limitation of existing multi-label active
learning approaches lies in the fact that they are re-
stricted to selecting the most informative instances. In
addition, most of them treat multiple labels indepen-
dently, ignoring the correlations among labels, which
has shown to be crucial to multi-label learning [51],
[53]. We address these limitations by combining label
correlation with the measures of representativeness
and informativeness for query selection.
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(a) data distribution (b) instances queried based
on informativeness

(c) instances queried based on
representativeness

(d) instances queried by our
method

Fig. 1. An illustrative example for selecting informative and representative instances

3 QUIRE FOR SINGLE-LABEL LEARNING

To illustrate the importance of querying instances that
are both informative and representative for active
learning, we first perform a empirical study on a
synthetic data set. Figure 1 (a) shows the synthetic
data set for binary classification, where each class is
represented by a different legend. We examine three
different active learning algorithms by allowing them
to sequentially select 15 data points. Figure 1 (b) and
(c) show the data points selected by an approach
favoring informative instances (i.e., [41]) and by an
approach favoring representative instances (i.e., [10]),
respectively. As indicated by Figure 1 (b), due to
the sample bias, the approach preferring informative
instances tends to choose the data points close to the
horizontal line, leading to incorrect decision bound-
aries. On the other hand, as indicated by Figure 1
(c), the approach preferring representative instances
is able to identify the approximately correct decision
boundary but with a slow convergence because it does
not favor the informative instances. Figure 1 (d) shows
the data points selected by our proposed approach
that favors data points that are both informative and
representative. It is clear that our proposed algorithm
is more efficient in finding the accurate decision
boundary than the other two approaches.

We denote by D = {(x1, y1), (x2, y2), · · · , (xnl
, ynl

),
xnl+1, · · · ,xn} the training data set that consists of nl
labeled instances and nu = n−nl unlabeled instances,
where each instance xi = [xi1, xi2, · · · , xid]> is a vector
of d dimension and yi ∈ {−1,+1} is the class label
of xi. Active learning selects one instance xs from the
pool of unlabeled data to query its label. The goal is to
learn an accurate model by labeling as few unlabeled
instances as possible. For convenience, we divide the
data set D into three parts: the labeled data Dl, the
currently selected instance xs, and the rest of the unla-
beled data Du. We also use Da = Du∪{xs} to represent
all the unlabeled instances. We use y = [yl, ys,yu] for
the label assignment for the entire data set, where yl,
ys and yu are the labels assigned to Dl, xs and Du,
respectively. Finally, we denote by ya = [ys,yu] the
label assignment for all the unlabeled instances.

3.1 The Framework
In order to motivate the proposed approach for active
learning, we first re-examine the margin-based active
learning approach from the viewpoint of min-max by
following the discussion in [19]. Let f∗ be a classifi-
cation model trained by the labeled examples, i.e.,

f∗ = argmin
f∈H

λ

2
|f |2H +

nl∑
i=1

`(yi, f(xi)), (1)

where H is a reproducing kernel Hilbert space en-
dowed with kernel function κ(·, ·) : Rd×Rd → R. `(z)
is the loss function. Given classifier f∗, the margin-
based approach chooses the unlabeled instance closest
to the decision boundary, i.e.,

s∗ = argmin
nl<s≤n

|f∗(xs)|. (2)

Proposition 1 connects the margin based query selec-
tion with the min-max formulation of active learning.

Proposition 1. The criterion in Eq. 2 can be rewritten as

s∗ = argmin
n1<s≤n

L(Dl,xs), (3)

where

L(Dl,xs) = max
ys=±1

min
f∈H

λ

2
|f |2H (4)

+
∑nl

i=1
`(yi, f(xi)) + `(ys, f(xs)).

Proof: Denote by J (f) the object function, i.e.,

J (f) = λ

2
|f |2H +

∑nl

i=1
`(yi, f(xi)),

we have

s∗ = argmin
nl<s≤n

|f∗(xs)|

= argmin
nl<s≤n

min
f∈H;f :J (f)≤J (f∗)

|f(xs)|

= argmin
nl<s≤n

min
f∈H;

|f(xs)|+ CJ (f)

= argmin
nl<s≤n

max
ys=±1

min
f∈H

`(ys, f(xs)) + CJ (f)

= argmin
nl<s≤n

max
ys=±1

min
f∈H

C(
λ

2
|f |2H +

nl∑
i=1

`(yi, f(xi)))

+`(ys, f(xs))
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Let C = 1, we have s∗ = argminn1<s≤n L(Dl,xs)
Further we can write Eq. 3 in a minimax form

s∗ = argmin
nl<s≤n

max
ys=±1

A(Dl,xs),

where

A(Dl,xs) = min
f∈H

λ

2
|f |2H +

nl∑
i=1

`(yi, f(xi)) + `(ys, f(xs)).

In this min-max view of active learning, it guarantees
that the selected instance xs will lead to a small value
for the objective function regardless of its class label
ys. In order to select queries that are both informative
and representative, we extend the evaluation function
L(Dl,xs) to include all the unlabeled data. Hypothet-
ically, if we know the class assignment yu for the
unselected unlabeled instances in Du, the evaluation
function can be modified as

L(Dl,Du,yu,xs) = max
ys=±1

min
f∈H

λ

2
|f |2H +

n∑
i=1

`(yi, f(xi)).

(5)
The problem is that the class assignment yu is un-
known. According to the manifold assumption [3],
we expect that a correct solution for yu should re-
sult in a small value of L(Dl,Du,yu,xs). We there-
fore approximate the solution for yu by minimizing
L(Dl,Du,yu,xs), which leads to the following evalu-
ation function for query selection:

L̂(Dl,Du,xs) = min
yu∈{±1}nu−1

L(Dl,Du,yu,xs) (6)

= min
yu∈{±1}nu−1

max
ys=±1

min
f∈H

λ

2
|f |2H +

n∑
i=1

`(yi, f(xi))

As a result, we will find instance xs that minimizes
the evaluation function L̂(Dl,Du,xs). In the next sub-
section, we will discuss how to efficiently compute
the evaluation function L̂(Dl,Du,xs).

3.2 The Solution
For the computational simplicity, for the rest of
this work, we choose a quadratic loss function, i.e.,
`(y, ŷ) = (y − ŷ)2/2 1. It is straightforward to show

min
f∈H

λ

2
|f |2H +

1

2

n∑
i=1

(yi − f(xi))
2 =

1

2
y>Ly,

where L = (K + λI)−1 and K = [κ(xi,xj)]n×n is
the kernel matrix of size n × n. Thus, the evaluation
function L̂(Dl,Du,xs) is simplified as

L̂(Dl,Du,xs) = min
yu∈{−1,+1}nu−1

max
ys∈{−1,+1}

y>Ly. (7)

Our goal is to efficiently compute the above quan-
tity for each unlabeled instance. For the conve-
nience of presentation, we refer to by subscript u

1. Although quadratic loss may not be ideal for classification, it
does yield competitive classification results when compared to the
other loss functions such as hinge loss [34].

the rows/columns in a matrix M for the unlabeled
instances in Du, by subscript l the rows/columns in
M for labeled instances in Dl, and by subscript s the
row/column in M for the selected instance. We also
refer to by subscript a the rows/columns in M for all
the unlabeled instances (i.e., Du ∪ {xs}). Using these
conventions, we rewrite the objective y>Ly as

y>Ly = ylLl,lyl + Ls,s + yT
uLu,uyu (8)

+2y>u (Lu,lyl + Lu,sys) + 2ysy
>
l Ll,s.

Note that since the above objective function is concave
(linear) in ys and convex (quadratic) in yu, we can
switch the maximization of yu with the minimization
of ys in (7). By relaxing yu to continuous variables,
the solution to minyu y>Ly is given by

ŷu = −L−1u,u(Lu,lyl + Lu,sys), (9)

leading to the following expression for the evaluation
function L̂(Dl,Du,xs):

L̂(Dl,Du,xs) (10)
= Ls,s + yT

l Ll,lyl + max
ys=±1

{2ysLs,lyl

−(Lu,lyl + Lu,sys)
>L−1u,u(Lu,lyl + Lu,sys)}

∝ Ls,s −
det(La,a)

Ls,s
+ 2

∣∣(Ls,l − Ls,uL
−1
u,uLu,l

)
yl

∣∣ ,
where the last step follows the relation

det
([
A11 A12

A21 A22

])
= det(A22)det

(
A11 −A12A

−1
22 A21

)
.

Here we do not require the prediction of unlabeled
data, i.e., yu to be accurate because it is used only as
an intermediate quantity to facilitate the measure of
representativeness for unlabeled instances. It is also
worth to note that although the evaluation function
(10) is derived under the binary classification setting,
it can be easily extended to multi-class learning with
the one-vs-rest scheme. Formally, assume that there
are m classes, then the evaluation function can be
modified as:

L̂(Dl,Du,xs)

= Ls,s + max
j=1···m

{yj
l

>
Ll,ly

j
l + 2Ls,ly

j
l

−(Lu,ly
j
l + Lu,s)

>L−1u,u(Lu,ly
j
l + Lu,s)},

where yj
l is the labels of labeled data on the j-th class.

Remark. The evaluation function L̂(Dl,Du,xs)
essentially consists of two components: Ls,s −
det(La,a)/Ls,s and |(Ls,l − Ls,uL

−1
u,uLu,l)yl|. Minimiz-

ing the first component is equivalent to minimizing
Ls,s because La,a is independent from the selected
instance xs. Since L = (K + λI)−1, we have

Ls,s

=

[
Ks,s − (Ks,l,Ks,u)

(
Kl,l Kl,u

Ku,l Ku,u

)(
Kl,s

Ku,s

)]−1
≈ 1

Ks,s

[
1 +

(Ks,l,Ks,u)

Ks,s

(
Kl,l Kl,u

Ku,l Ku,u

)(
Kl,s

Ku,s

)]
.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. X, XXXX 20XX 5

Therefore, to choose an instance with small Ls,s,
we select the instance with large self-similarity Ks,s.
When self-similarity Ks,s is a constant, this term will
have no effect for query selection.

To analyze the effect of the second component, we
approximate it as:

2
∣∣(Ls,l − Ls,uL

−1
u,uLu,l

)
yl

∣∣ (11)

≈ 2 |Ls,lyl|+ 2
∣∣Ls,uL

−1
u,uLu,lyl

∣∣
≈ 2|Ls,lyl|+ 2|Ls,uŷu|.

The first term in the above approximation measures
the confidence in predicting xs using only labeled
data, which corresponds to the informativeness of xs.
The second term measures the prediction confidence
using only the predicted labels of the unlabeled data,
which can be viewed as the measure of representa-
tiveness. This is because when xs is a representative
instance, it is expected to share a large similarity
with many of the unlabeled instances. As a result,
the prediction for xs by the unlabeled data in Du

is decided by the average of their assigned class
labels ŷu. If we assume that the classes are evenly
distributed over the unlabeled data, we should expect
a low confidence in predicting the class label for
xs by unlabeled data. Note that unlike the existing
work that measures the representativeness only by
the cluster structure of unlabeled data, the proposed
measure of representativeness depends on ŷu, which
essentially combines the cluster structure of unlabeled
data with the class assignments of labeled data. Given
the high dimensional data, there could be many
possible cluster structures that are consistent with
the unlabeled data and it is unclear which one is
consistent with the target classification problem. It
is therefore critical to take into account the label
information when exploiting the cluster structure of
unlabeled data. Here note the approximation in Eq.
11 is derived only for analysis, our algorithm is based
on the minimax principle instead of the combination
of two criteria.

3.3 Efficient Algorithm

Computing the evaluation function L̂(Dl,Du,xs) in
Eq. 10 requires computing L−1u,u for every unlabeled
instance xs, leading to high computational cost when
the number of unlabeled instances is very large. The
theorem below allows us to improve the computation
efficiency dramatically.

Theorem 2. Let

L−1a,a =

(
Ls,s Ls,u

Lu,s Lu,u

)−1
=

(
a −b>
−b D

)
.

We have L−1u,u = D − 1
abb

>.

Proof: Using the matrix inversion lemma, we have

L−1a,a =

(
Ls,s Ls,u

Lu,s Lu,u

)−1
=

(
a −b>
−b D

)
=

(
C−11 − 1

Ls,s
L>u,sC

−1
2

− 1
Ls,s

C−12 Lu,s C−12

)
where C1 = Ls,s − L>u,sL−1u,uLu,s,

C2 = Lu,u −
1

Ls,s
Lu,sL

>
u,s.

With the equation above, we can express a, b and D
in terms of L as follows

1

a
= C1 = Ls,s − LT

u,sL
−1
u,uLu,s

D = C−12 =

(
Lu,u −

1

Ls,s
Lu,sL

>
u,s

)−1
= L−1u,u + L−1u,uLu,s

(
Ls,s − LT

u,sL
−1
u,uLu,s

)−1
LT
u,sL

−1
u,u

= L−1u,u + aL−1u,uLu,sL
T
u,sL

−1
u,u

b =
1

Ls,s
C−12 Lu,s = aL−1u,uLu,s

We complete the proof by combining the above rela-
tionships.

As indicated by Theorem 2, we only need to com-
pute L−1a,a once since La,a is independent from the
selected instance xs. For each xs, its L−1u,u can be com-
puted directly from L−1a,a. The following proposition
allows us to simplify the computation for L−1a,a.

Proposition 3. L−1a,a = (λIa + Ka,a) − Ka,l(λIl +
Kl,l)

−1Kl,a

Proposition 3 follows directly from the inverse of a
block matrix. As indicated by Proposition 3, we only
need to compute (λI+Kl,l)

−1. Given that the number
of labeled examples is relatively small compared to
the size of unlabeled data, the computation of L−1a,a is
in general efficient. Excluding the time for comput-
ing the kernel matrix, the computational complexity
of our algorithm is just O(nu). The pseudo-code of
QUIRE is summarized in Algorithm 1.

4 QUIRE FOR MULTI-LABEL LEARNING

In this section, we extend QUIRE to multi-label learn-
ing. The most common active learning approach for
multi-label learning is to solicit all the label assign-
ments for each selected instance. The alterative ap-
proach is to choose one label c for each selected
instance x, and query the oracle if x is assigned to c,
an approach that is often referred to as instance-label
pair queries. In [32], the authors show that querying
instance-label pairs is more effective because acquir-
ing all the label assignments for the selected instances
suffers from high cost. The observation is particularly
true when the number of labels is large as human
experts can hardly identify all relevant labels for a
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Algorithm 1 The QUIRE Algorithm
Input:
D : a data set of n instances

Initialize:
Dl = ∅; nl = 0 % no labeled data is available

at the very beginning
Du = D; nu = n % the pool of unlabeled data

Calculate K
repeat

Calculate L−1a,a using Proposition 3 and det(La,a)
for s = 1 to nu do

Calculate L−1uu according to Theorem 2
Calculate L̂(Dl,Du,xs) using Eq. 10

end for
Select the xs∗ with the smallest L̂(Dl,Du,xs∗)
Query the label ys∗ for the selected instance xs∗

Dl = Dl ∪ (xs∗ , ys∗); Du = Du \ xs∗

until the number of queries or the required accu-
racy is reached

given instance, but can easily decide whether or not
a label is relevant to the selected instance. As a result,
we adopt the paradigm of querying instance-label
pairs for multi-label active learning.

Let m be the number of labels, and let the label
assignment of each instance xi be denoted by a label
vector yi = [yi1, yi2, · · · , yim]>, where yik = 1 if
instance xi has the k-th label, and yik = −1 otherwise.
Note that the key quantity in the QUIRE algorithm
presented in Section 3 is the matrix L. Following the
same path, to extend QUIRE algorithm to multi-label
setting, we will also define an appropriate matrix L.

We first consider the simple case of active learning
that does not take into account the label correlation.
By learning one classifier for each label independently,
the objective function of the multi-label learning task
with quadratic loss can be formalized as:

min
fk∈H

λ
m∑

k=1

|fk|2H +
n∑

i=1

m∑
k=1

(fk(xi)− yi,k)2 , (12)

where fk is the classification model for the k-th label.
Let Y = [yik]n×m be the ground-truth label matrix,
which is partially known, and F = [fk(xi)]n×m =
(f1, . . . , fm) be the prediction matrix, where fk is the
predictions of all instance for the k-th label. The
optimization problem in Eq. 12 can be rewritten as:

min
F∈Rn×m

λtr
(
F>K−1F

)
+ |F − Y |22, (13)

where tr(·) computes the trace of a matrix, and K is
the kernel matrix.

As stated before, label correlation is critical to multi-
label learning. Particularly, under the active learning
setting, the information embedded in an unknown
label may be inferred from some correlated labels that
have been queried, avoiding the cost of querying from

the oracle. Next, we introduce the label correlation
into Eq. 13. Let R ∈ Rm×m

+ be the label correlation
matrix. A straightforward approach to take into ac-
count the label correlation is to modify Eq. 13 as

min
F∈Rn×m

λtr
(
R−1F>K−1F

)
+ |F − Y |22. (14)

By introducing the function vec(·) to convert a matrix
into a vector, the solution of F in the above optimiza-
tion problem is given by

vec(F ) = [λ(R−1 ⊗K−1) + I]−1vec(Y ), (15)

and accordingly, the optimal value of Eq. 14 is

vec(Y )>(I − [λ(R−1 ⊗K−1) + I]−1)vec(Y ), (16)

where ⊗ is the kronecker product between matrices,
and I is the identity matrix of size nm×nm. To define
matrix L as that for the single-label case, we write Eq.
16 as vec(Y )>Lvec(Y ), such that it has the same form
of Eq. 8 in Section 3, and define L as:

L = I − [λ(R−1 ⊗K−1) + I]−1

= I −
[
(R⊗K)−1(λI + (R⊗K))

]−1
= λ [(R⊗K) + λI]

−1
,

where the last step follows the equation (I+AB)−1 =
I − A(I + BA)−1B. It is noteworthy that L encodes
both the correlation between different instances and
the dependence among difference labels, and is the
basis for our proposed algorithm.

As we note at the beginning of this section, our goal
is to query the most informative and representative
instance-label pairs. Similar to Section 3, we refer to all
labeled, unlabeled, and selected instance-label pairs
(i.e., rows/columns in nm×nm matrix) by subscripts
l, u and s, respectively. Following the same analysis
as in Section 3, we have the solution for Yu, i.e., the
unlabeled instance-label pairs in Y as

vec(Yu) = −L−1u,u(Lu,lvec(Yl) + Lu,sYs). (17)

Thus, similar to Eq. 10 in Section 3, for any instance-
label pair (xa, ya,b), its evaluation function can be
obtained as:

L̂(xa, ya,b) (18)
= Ls,s + vec(Yl)

TLl,lvec(Yl)

+max
ya,b

{2ya,bLs,lvec(Yl)− (Lu,lvec(Yl)

+Lu,sya,b)
TL−1u,u(Lu,lvec(Yl) + Lu,sya,b)}.

Using the evaluation function L̂(xa, ya,b), at each
iteration of active learning, we calculate the value
of L̂(xa, ya,b) for every unlabeled instance-label pair
(xa, ya,b), and choose the one (xa∗ , ya∗,b∗) with mini-
mal value to query, i.e.,

(a∗, b∗) = argmin
a,b

L̂(xa, ya,b). (19)

It is straightforward to verify that all the tricks devel-
oped in Section 3 for speeding up computation can be
directly applied to the multi-label version algorithm.
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Fig. 2. Comparison on classification accuracy

5 EXPERIMENTS

We first present the experiments for single-label tasks,
followed by the experiments for multi-label learning.

5.1 Study on Single-Label Data
5.1.1 Settings
Under the single-label setting, we compare QUIRE
with the following five baseline approaches:
• RANDOM: randomly selecting query instances.
• MARGIN: margin-based active learning [41], an

approach that prefers informative instances.
• CLUSTER: hierarchical-clustering-based active

learning [10], an approach that prefers represen-
tative instances.

• IDE: active learning that selects informative and
diverse examples [19].

• DUAL: a dual strategy that exploits both infor-
mativeness and representativeness.

Note that IDE is designed for batch mode active
learning, we turn it into active learning with selection
of a single instance by setting the parameter k = 1.

Twelve data sets are used in our study and their
characteristics are summarized in Table 1. Digit1 and
g241n are benchmark data for semi-supervised learn-
ing [7]. Austria, isolet, titato, vechicle, and wdbc are UCI
data sets [1]. Letter is a multi-class data set [1], from
which we select five pairs of letters that are relatively
difficult to distinguish, i.e., D vs P, E vs F, I vs J, M
vs N, U vs V, and construct a binary class data set

TABLE 1
Data set information, including the number of

instances and the number of features.

Data # ins. # feature Data # ins. # feature
austra 690 14 wdbc 569 30
digit1 1500 241 letterEvsF 1543 16
g241n 1500 241 letterIvsJ 1502 16
isolet 600 617 letterMvsN 1575 16
titato 958 9 letterDvsP 1608 16
vehicle 435 18 letterUvsV 1577 16

for each pair. Each data set is randomly divided into
two parts of equal size, with one part as the test data
and the other part as the unlabeled data for active
learning. We assume that no labeled data is available
at the very beginning of active learning. For MARGIN,
IDE and DUAL, instances are randomly selected when
no classification model is available, which only takes
place at the beginning. In each iteration, an unlabeled
instance is first selected to solicit its label and the
classification model is then retrained. We evaluate the
classification model by its performance on the holdout
test data. Both classification accuracy and Area Under
ROC curve (AUC) are used for evaluation metrics.
For every data set, we run the experiment ten times,
each with a random partition of the data set. In all the
experiments, a RBF kernel is used and the parameter
λ is set to be 1. LibSVM [6] is used to train a SVM
classifier for all approaches in comparison.
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TABLE 2
Comparison on AUC values (mean ± std). The best performance and its comparable performances based on

paired t-tests at 95% significance level are highlighted in boldface.

Data Algorithms Number of queries (percentage of the unlabeled data)
5% 10% 20% 30% 40% 50% 80%

austra RANDOM .868±.027 .894±.022 .897±.023 .901±.022 .909±.015 .909±.012 .917±.011
MARGIN .751±.137 .838±.119 .885±.043 .909±.010 .911±.012 .914±.009 .915±.008
CLUSTER .877±.045 .888±.029 .894±.015 .896±.015 .903±.014 .907±.015 .913±.011
IDE .858±.101 .885±.058 .902±.012 .912±.008 .913±.009 .914±.007 .916±.007
DUAL .866±.037 .878±.036 .875±.018 .876±.016 .879±.013 .881±.013 .904±.008
QUIRE .887±.014 .901±.010 .906±.016 .912±.009 .914±.009 .915±.007 .916±.007

digit1 RANDOM .945±.009 .969±.006 .979±.005 .984±.003 .985±.003 .988±.003 .991±.002
MARGIN .941±.028 .972±.009 .989±.002 .992±.002 .992±.002 .992±.002 .992±.002
CLUSTER .938±.035 .952±.018 .963±.019 .974±.011 .985±.002 .988±.003 .992±.002
IDE .954±.011 .973±.007 .987±.002 .991±.002 .992±.002 .992±.002 .992±.002
DUAL .929±.014 .953±.009 .975±.004 .982±.005 .985±.003 .987±.003 .991±.002
QUIRE .976±.006 .986±.003 .990±.002 .992±.002 .992±.002 .992±.002 .992±.002

g241n RANDOM .713±.040 .769±.021 .822±.018 .854±.016 .873±.015 .886±.012 .906±.014
MARGIN .700±.057 .751±.048 .830±.022 .864±.019 .896±.012 .911±.008 .918±.008
CLUSTER .720±.038 .770±.024 .815±.018 .835±.021 .860±.022 .880±.013 .909±.009
IDE .727±.030 .786±.029 .840±.017 .866±.016 .883±.013 .899±.011 .916±.010
DUAL .722±.040 .751±.019 .822±.011 .838±.022 .865±.016 .881±.012 .912±.007
QUIRE .757±.035 .825±.019 .857±.020 .884±.013 .900±.009 .912±.006 .920±.009

isolet RANDOM .995±.006 .998±.002 .999±.001 1.00±.000 1.00±.000 1.00±.000 1.00±.000
MARGIN .965±.052 .999±.001 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
CLUSTER .998±.002 .999±.002 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
IDE .998±.003 .999±.002 .999±.001 1.00±.001 1.00±.000 1.00±.000 1.00±.000
DUAL .993±.008 .999±.001 .999±.001 1.00±.000 1.00±.001 1.00±.000 1.00±.000
QUIRE .997±.002 .999±.001 .999±.001 1.00±.000 1.00±.001 1.00±.000 1.00±.000

titato RANDOM .762±.033 .861±.031 .954±.023 .979±.011 .991±.007 .997±.004 1.00±.000
MARGIN .645±.096 .753±.078 .946±.043 .998±.001 1.00±.000 1.00±.000 1.00±.000
CLUSTER .717±.087 .806±.054 .908±.031 .971±.021 .989±.010 .997±.003 1.00±.000
IDE .735±.040 .906±.029 .996±.003 .999±.001 1.00±.001 1.00±.000 1.00±.000
DUAL .708±.069 .782±.064 .900±.027 .981±.012 .995±.006 .999±.001 1.00±.000
QUIRE .736±.037 .861±.025 .991±.004 .999±.001 1.00±.000 1.00±.000 1.00±.000

vehicle RANDOM .818±.064 .864±.039 .925±.032 .949±.026 .968±.016 .975±.013 .989±.006
MARGIN .693±.078 .828±.077 .883±.105 .981±.014 .993±.005 .993±.005 .992±.005
CLUSTER .771±.088 .845±.056 .927±.022 .955±.018 .973±.010 .978±.011 .992±.006
IDE .731±.141 .849±.106 .878±.093 .957±.037 .977±.010 .985±.009 .991±.006
DUAL .680±.074 .706±.114 .817±.061 .875±.035 .908±.035 .947±.035 .980±.016
QUIRE .750±.137 .912±.024 .956±.025 .985±.007 .989±.006 .991±.005 .992±.005

wdbc RANDOM .984±.006 .986±.005 .990±.004 .991±.004 .991±.004 .991±.004 .993±.003
MARGIN .967±.038 .990±.002 .993±.003 .993±.003 .993±.003 .993±.003 .993±.003
CLUSTER .981±.007 .987±.004 .991±.003 .992±.003 .992±.003 .993±.003 .993±.003
IDE .983±.006 .984±.008 .990±.004 .992±.003 .993±.003 .993±.003 .993±.003
DUAL .955±.025 .964±.016 .972±.015 .988±.009 .992±.003 .992±.003 .992±.004
QUIRE .985±.006 .990±.004 .993±.003 .993±.003 .993±.003 .993±.003 .993±.003

letterDvsP RANDOM .990±.004 .995±.002 .997±.002 .998±.001 .998±.001 .998±.001 .999±.001
MARGIN .994±.005 .999±.001 .999±.000 .999±.001 .999±.001 .999±.001 .999±.001
CLUSTER .988±.008 .995±.004 .997±.002 .998±.001 .999±.001 .999±.001 .999±.001
IDE .992±.006 .997±.002 .998±.001 .999±.001 .999±.001 .999±.001 .999±.001
DUAL .978±.005 .986±.001 .988±.004 .990±.004 .996±.001 .998±.001 .999±.001
QUIRE .998±.001 .999±.001 .999±.001 .999±.001 .999±.001 .999±.001 .999±.001

letterEvsF RANDOM .977±.020 .988±.009 .994±.002 .997±.002 .998±.001 .999±.001 1.00±.000
MARGIN .987±.008 .999±.001 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
CLUSTER .975±.016 .991±.003 .997±.004 .999±.001 1.00±.000 1.00±.000 1.00±.000
IDE .977±.014 .995±.003 .999±.000 .999±.000 .999±.000 1.00±.000 1.00±.000
DUAL .976±.011 .993±.003 .996±.002 .996±.002 .996±.002 .998±.001 1.00±.000
QUIRE .988±.009 .999±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000

letterIvsJ RANDOM .943±.025 .966±.017 .980±.004 .983±.005 .985±.005 .987±.004 .990±.004
MARGIN .882±.096 .960±.027 .986±.005 .989±.006 .991±.004 .991±.004 .991±.004
CLUSTER .952±.022 .961±.017 .976±.008 .985±.007 .987±.006 .989±.005 .991±.004
IDE .934±.030 .969±.011 .979±.006 .980±.006 .982±.008 .985±.005 .990±.004
DUAL .819±.120 .897±.058 .934±.030 .954±.017 .959±.014 .953±.015 .988±.004
QUIRE .951±.023 .963±.013 .976±.011 .989±.010 .991±.004 .991±.004 .991±.004

letterMvsN RANDOM .977±.010 .992±.002 .994±.003 .996±.002 .997±.001 .997±.001 .998±.001
MARGIN .964±.040 .991±.014 .999±.000 .999±.000 .999±.000 .999±.000 .999±.000
CLUSTER .971±.017 .986±.009 .994±.003 .997±.002 .998±.001 .998±.001 .999±.000
IDE .969±.017 .988±.007 .997±.002 .998±.001 .998±.001 .998±.001 .999±.000
DUAL .950±.025 .972±.011 .974±.007 .980±.008 .983±.007 .983±.007 .998±.001
QUIRE .986±.007 .996±.003 .998±.001 .999±.000 .999±.000 .999±.000 .999±.000

letterUvsV RANDOM .992±.005 .996±.004 .998±.001 .999±.000 1.00±.000 1.00±.000 1.00±.000
MARGIN .998±.002 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
CLUSTER .990±.008 .996±.009 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
IDE .995±.004 .999±.001 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
DUAL .983±.014 .986±.008 .990±.008 .991±.008 .993±.007 .995±.005 .999±.000
QUIRE .999±.001 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
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TABLE 3
Win/tie/loss counts of QUIRE versus the other methods with varied numbers of queries based on paired t-tests

at 95% significance level.

Algorithms Number of queries (percentage of the unlabeled data)

5% 10% 20% 30% 40% 50% 80% In All
RANDOM 4/8/0 8/4/0 9/3/0 9/2/1 10/2/0 10/2/0 6/6/0 56/27/1
MARGIN 6/6/0 4/7/1 2/8/2 2/8/2 0/11/1 0/11/1 1/11/0 15/62/7
CLUSTER 6/6/0 7/5/0 8/4/0 11/1/0 9/3/0 6/6/0 3/9/0 50/34/0
IDE 6/6/0 6/5/1 6/5/1 8/4/0 8/4/0 8/4/0 2/10/0 44/38/2
DUAL 8/4/0 10/2/0 11/1/0 10/2/0 10/2/0 11/1/0 9/3/0 69/15/0
In All 30/30/0 35/23/2 36/21/3 40/17/3 37/22/1 35/24/1 21/39/0 234/176/10

5.1.2 Comparison with State-of-the-art Methods

Figure 2 shows the classification accuracy of different
active learning approaches with varied numbers of
queries. Table 2 shows the AUC values, with 5%,
10%, 20%, 30%, 40%, 50% and 80% of unlabeled data
used as queries. For each case, the best result and
its comparable performances are highlighted in bold-
face based on paired t-tests at 95% significance level.
Table 3 presents the win/tie/loss counts of QUIRE
versus the other methods based on the same test.

First, we observe that the RANDOM approach
tends to yield decent performance when the number
of queries is very small. But, as the number of queries
increases, this simple approach loses its edge and
often is not as effective as the other active learning
approaches. MARGIN, the most commonly used ap-
proach for active learning, is not performing well at
the beginning of the learning stage. As the number of
queries increases, we observe that MARGIN catches
up with the other approaches and yields decent
performance. This phenomenon can be attributed to
the fact that with only a few training examples, the
learned decision boundary tends to be inaccurate,
and as a result, the unlabeled instances closest to the
decision boundary may not be the most informative
ones. The performance of CLUSTER is mixed. It works
well on some data sets, but performs poorly on the
others. We attribute the inconsistency of CLUSTER to
the fact that cluster structure of unlabeled data may
not be consistent with the target classification model.

The behavior of IDE is similar to that of CLUSTER
in that it achieves good performance on certain data
sets and fails on the others. DUAL does not yield good
performance on most data sets although we have tried
our best efforts to tune the related parameters.

Finally, we observe that for most cases, the QUIRE
approach is able to outperform the baseline methods
significantly, as indicated by Figure 2, Tables 2 and 3.
We attribute the success of QUIRE to the principle of
choosing instances that are both informative and rep-
resentative, and the specially designed computational
framework that appropriately measures and combines
the informativeness and representativeness.

TABLE 4
Average CPU time (in seconds) of each query for

compared methods

Data Algorithms
Margin Cluster IDE DUAL QUIRE

austra 0.0173 0.0072 0.0265 2.0109 0.1880
digit1 0.2018 0.0109 0.0435 9.3486 3.3787
g241n 0.3955 0.0198 0.0725 6.6166 3.3816
isolet 0.0686 0.0059 0.0284 7.9308 0.1445
titato 0.0310 0.0085 0.0335 1.8330 0.8326
vehicle 0.0057 0.0048 0.0176 0.1845 0.0535
wdbc 0.0070 0.0053 0.0224 0.5171 0.1313
DvsP 0.0311 0.0131 0.0405 5.1526 3.7448
EvsF 0.0331 0.0120 0.0395 1.1038 4.2273
IvsJ 0.0470 0.0135 0.0424 1.6074 3.6689
MvsN 0.0417 0.0121 0.0442 4.5766 3.5365
UvsV 0.0275 0.0118 0.0415 4.7951 4.6030
Average 0.0756 0.0104 0.0377 3.8064 2.3242

5.1.3 Comparison on computational cost
We report the average CPU time (in seconds) of each
query for the compared approaches in Table 4. All
the experiments are performed with MATLAB 7.6
on a 3.00GHZ Intel(R) Core(TM)2 DUO PC running
Windows 7 with 4GB main memory. It is not sur-
prising to observe that Margin, Cluster, and IDE are
the most efficient due to the simplicity of the criteria
used for selecting the informative instances. The pro-
posed algorithm QUIRE is significantly more efficient
than DUAL, because of the techniques introduced
to speedup the computation. We finally note that
the high computational cost of QUIRE is due to the
complicated criterion we adopt for instance selection,
which leads to significant advantages in classification
accuracy as shown in the last subsection.

5.2 Study on Multi-Label Data
5.2.1 Settings
Under the multi-label setting, we compare QUIRE
with five multi-label active learning approaches:
• RANDOM: randomly selects instance-label pairs.
• 2DAL: selects instance-label pairs that lead to the

maximum reduction of expected error [32].
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Fig. 3. Comparison on Micro-F1.

• MML: selects instances with the mean max loss
to query its label [29], .

• MMC: selects instances that lead to the maximum
loss reduction with the largest confidence [49].
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• ADAPTIVE: considers both the max-margin pre-
diction uncertainty and the label cardinality in-
consistency when selecting query instances [28].

Experiments are performed on 18 data sets, most of
which are available at MULAN project2. Emotions [42]
consists of 593 songs. The task is to predict the music
emotions of songs. Enron is a subset of the Enron
email corpus [24], including about 1700 emails, where
each email is represented as a 1001-dimensional fea-
ture vector. Image is a data set for natural scene image
classification, and contains 2000 images [52]. Medical
is a data set of clinical text for medical classification.
Scene contains 2407 images with 6 possible labels:
beach, sunset, fall foliage, field, mountain and urban.
Reuters is a data set for text categorization. It is a
processed version of [36] with the method introduced
in [54]. Yeast is a data set for predicting the gene func-
tional classes of the Yeast Saccha-romyces cerevisiae, we
use the version preprocessed by [12], which contains
2417 genes. Yahoo consists of 11 independent data sets,
i.e., Arts, Business, Computers, Education, Entertainment,
Health, Recreation, Reference, Science, Social, and Society.
They are collected from “yahoo.com” domain [45]
for web page categorization. Each of the 11 data
sets contains 5000 documents. 20% to 45% of the
documents have more than one labels.

For each data set, we randomly divide it into two
parts with equal size, one as test set and the other one
as the unlabeled pool for active selection. The random
data partition is repeated for 10 times, and average
results over the 10 repeats are reported. At the very
beginning of active learning, 5% of the unlabeled in-
stances are randomly sampled as initial labeled data.
At each iteration of active learning, QUIRE, Random
and 2DAL query one instance-label pair, while the
other approaches query the entire label vector for an
instance, which is equivalent to m instance-label pairs.
After every 2 × m instance-label pairs are queried,
a new classification model will be trained on the
labeled data and its performance will be evaluated on
the holdout test data. We stop the querying process
when all the instances are fully labeled or the number
of queried instance-label pairs reaches the maximum
value which is set to be 20, 000 in our experiments.

F1-score is used to evaluate the performances of
the approaches in comparison. F1-score combines pre-
cision and recall with equal weights, and can be
averaged over instances or labels. Given the large
difference of the number of positive instances for dif-
ferent labels, it is less appropriate to equally average
over labels. We thus follow [49] to use micro-F1, which
first computes the F1-score for each test example and
then takes average over all the test examples. It is
commonly used in multi-label learning research [23],
[49]. A larger micro-F1 indicates a better performance.

2. http://mulan.sourceforge.net/datasets.html

5.2.2 Comparison with State-of-the-art Methods

Since label correlation matrix is usually not easy to
obtain, we first study the performance of QUIRE by
setting R to the identity matrix. To be fair, one-versus-
rest linear SVM (implemented with LIBLINEAR [14])
is employed as the classification model for evaluating
all the compared approaches. For the MMC approach,
the regression model is also implemented with LI-
BLINEAR. For QUIRE, the parameter λ is selected
via 5-folds cross validation on the initial labeled data
from the candidate values {1, 10, 100}. For the other
approaches, parameters are determined in the same
way if no values suggested in their literatures.

Figures 3 shows the performance on micro-F1 with
the increasing number of instance-label pair queries.
Compared to the baselines, our approach QUIRE
achieves the best performance in most cases. In gen-
eral, we observe that the three methods that use
instance-label pair queries (plotted in solid line) are
more effective than those that query the entire label
vectors for the selected instances (plotted in dashed
line). We also observe that for several datasets, the
random approach can be more effective than the
active learning approaches that solicit all the label
assignments for the selected instances. This observa-
tion is consistent with the results in [32], suggesting
that querying only one chosen label for each selected
instance is a more effective strategy.

5.2.3 Study on the Impact of Label Correlation

The previous experiments show that even with-
out exploiting label correlations, QUIRE can outper-
form state-of-the-art approaches for multi-label active
learning. In this section, we study if the performance
of QUIRE can be further improved by incorporating
the correlation matrix R. Specifically, we employ two
simple methods for computing R, i.e., co-occurrence
and φ-coefficient [43], which are commonly used in
the studies of multi-label learning [43], [21]. Since one-
versus-rest SVM does not exploit label correlations, it
may not be able to clearly show the impact of different
label correlations. We thus employ the ensemble of
classifier chains (ECC) [33] to train the classification
model after each query. ECC is a state-of-the-art multi-
label algorithm, which exploits the correlations by
linking different labels with a chain of classifiers.

Figures 4 shows the micro-F1 of three methods with
increasing number of instance-label pair queries: (1)
QUIRE-I, where R is set to an identity matrix, (2)
QUIRE-C, where R is computed based on the co-
occurrence between labels, and (3) QUIRE-P, where
R is computed based on the φ-coefficient. As shown
in the figure, QUIRE-C and QUIRE-P usually out-
performs QUIRE-I. The advantages of QUIRE-C and
QUIRE-P are particularly obvious when the number
of labels is large except for data set medical, where
QUIRE-I is slightly better than the other two methods,
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Fig. 4. Micro-F1 curve of QUIRE with different label correlation matrices.

possibly due to the relatively poor estimation of label
correlation. When comparing the two different esti-

mation of label correlations, φ-coefficient tends to be
more effective than co-occurrence. We finally note that
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both φ-coefficient and co-occurrence measure the label
correlations using only the statistics collected from the
training data. We thus expect that the performance of
QUIRE can be further improved when the correlation
matrix can be estimated more accurately by exploring
side information such as domain knowledge.

6 CONCLUSION

This paper proposes a new active learning approach,
QUIRE, for both single-label and multi-label learning,
which extends our preliminary research [20]. QUIRE
is designed to find unlabeled data that are both infor-
mative and representative. It is based on the min-max
view of active learning, which provides a systematic
way for measuring and combining the informative-
ness and the representativeness. In the future, we plan
to develop a mechanism which allows dynamic and
adaptive tradeoff between informativeness and rep-
resentativeness. In addition, we plan to design multi-
label active learning methods that can incorporate the
prior knowledge on label correlations.
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