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Abstract—It is usually expected that learning performance can be improved by exploiting unlabeled data, particularly when
the number of labeled data is limited. However, it has been reported that, in some cases existing semi-supervised learning
approaches perform even worse than supervised ones which only use labeled data. For this reason, it is desirable to develop safe
semi-supervised learning approaches that will not significantly reduce learning performance when unlabeled data are used. This
paper focuses on improving the safeness of semi-supervised support vector machines (S3VMs). First, the S3VM-us approach
is proposed. It employs a conservative strategy and uses only the unlabeled instances that are very likely to be helpful, while
avoiding the use of highly risky ones. This approach improves safeness but its performance improvement using unlabeled data
is often much smaller than S3VMs. In order to develop a safe and well-performing approach, we examine the fundamental
assumption of S3VMs, i.e., low-density separation. Based on the observation that multiple good candidate low-density separators
may be identified from training data, safe semi-supervised support vector machines (S4VMs) are here proposed. This approach
uses multiple low-density separators to approximate the ground-truth decision boundary and maximizes the improvement in
performance of inductive SVMs for any candidate separator. Under the assumption employed by S3VMs, it is here shown that
S4VMs are provably safe and that the performance improvement using unlabeled data can be maximized. An out-of-sample
extension of S4VMs is also presented. This extension allows S4VMs to make predictions on unseen instances. Our empirical
study on a broad range of data shows that the overall performance of S4VMs is highly competitive with S3VMs, whereas in
contrast to S3VMs which hurt performance significantly in many cases, S4VMs rarely perform worse than inductive SVMs.

Index Terms—Unlabeled data, semi-supervised learning, safe, S3VMs, S4VMs
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1 INTRODUCTION

T RADITIONAL supervised learning often assumes
that large numbers of labeled data are readily

available for training. In many practical applications,
however, the acquisition of class labels is expensive
because the labeling process requires human effort
and expertise. For example, in computer-aided med-
ical diagnosis, large numbers of X-ray images can be
obtained from routine examinations, but it is costly
and difficult for physicians to mark all focuses in all
images. In this case, training with only labeled data
may not lead to a good performance. It is possible
to employ semi-supervised learning [10], [34], [51], [52]
that exploits the wide availability of unlabeled data to
improve performance. During the past decade, semi-
supervised learning has attracted significant attention.
It has been found useful in many applications, includ-
ing text categorization [23], image retrieval [42], bioin-
formatics [24], and natural language processing [19].

Existing semi-supervised approaches can be
roughly grouped into four categories. The first
category is generative methods, e.g., [35], [36]. These
methods extend supervised generative models by
incorporating unlabeled data, and estimate model
parameters and labels using techniques such as the
EM algorithm [17]. The second category is graph-
based methods, e.g., [2], [7], [34], [48], [53]. These
methods encode both the labeled and unlabeled
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instances in a graph and then assign class labels to
the unlabeled data such that their inconsistencies
with both the labeled data and the underlying graph
are minimized. The third category is disagreement-
based methods, e.g., [8], [50]. These methods typically
involve multiple learners and improve them through
the exploitation of disagreement among the learners.
The fourth category is semi-supervised support
vector machines (S3VMs), e.g., [4], [23]. They use
unlabeled data to regularize the decision boundary
so that it can pass through low-density regions [12].

It is generally accepted that by using unlabeled
data, semi-supervised learning can help improve the
performance, particularly when the number of labeled
data is limited. Many empirical studies, however,
show that there are cases in which the use of unla-
beled data decreases the performance [7], [11], [13],
[14], [16], [20], [36], [47], [50]. Such phenomena unde-
niably encumber the deployment of semi-supervised
learning in real applications, especially tasks requiring
high reliability, because users usually require that
new techniques (such as semi-supervised learning)
should perform at least as well as existing techniques
(such as pure supervised learning). For this reason,
it is desirable to have safe semi-supervised learning
approaches which never reduce learning performance
significantly when using unlabeled data. This is a
challenging task, and only a few authors have ex-
plicitly tried to reduce the chance of performance
degeneration [14], [27], even though there are already
many studies on semi-supervised learning. Safe, here
means that the generalization performance is never
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statistically significantly worse than methods using only
labeled data. It is meaningless to talk about a single
trial, because for a single trial, even exploiting more
labeled data might result in a worse performance.

Cozman et al. [16] discussed the reason why unla-
beled data can increase classification error for gen-
erative methods. They conjectured that the perfor-
mance degeneration is caused by incorrect model
assumptions, because fitting unlabeled data based
on an incorrect model assumption will mislead the
learning process. However, it is very difficult to make
a correct model assumption without sufficient domain
knowledge. For graph-based methods, researchers re-
alized that graph construction is the crucial problem.
However, developing a good graph in general situa-
tions remains an open problem. Disagreement-based
methods usually use pseudo-labels of unlabeled data
provided by multiple learners to enhance the labeled
data set. In this way, incorrect pseudo-labels may
disrupt the learning process. One possible solution
is to use data editing techniques to examine data
that may have been pseudo-labeled [27]. However,
such solutions work well only on dense data. This
is because data editing techniques usually rely on the
data neighboring information. With S3VMs, the cor-
rectness of the optimization objective has been studied
on very small data sets [11]. However, there is no
clear solution that can be used to prevent performance
from degeneration when using unlabeled data. There
are also some general discussions on the usefulness
of unlabeled data from a theoretical perspective [1],
[3], [38]. In particular, in [1], the authors showed
that when unlabeled data provide a good regularizer,
a purely inductive supervised SVM on labeled data
using such a regularizer guarantee a good general-
ization. Deriving such a good regularizer, however,
remains an open problem.

Particularly, S3VMs have been widely applied to
many tasks [10], and their representative algorithm,
TSVM [23], has won the Ten-Year Best Paper Award
for machine learning in 2009. Most research efforts
on S3VMs address its complexity [11], [15], [23], [28],
with little effort on its safeness, although many em-
pirical studies have shown that S3VMs also reduce
performance, sometimes even seriously [10], [42], [47].

This paper focuses on improving the safeness of
S3VMs. First, because the main use of unlabeled data
is to determine data distribution, it is here conjectured
that the degradation of the performance degeneration
of S3VMs is caused by unlabeled instances that are
obscure or misleading for the discovery of the un-
derlying distribution. For this reason, the S3VM with
unlabeled data selection (S3VM-us) approach is here
proposed. It uses hierarchical clustering to estimate
the reliability of unlabeled instances and then removes
the ones with the lowest reliability.

Our empirical studies show that S3VM-us improves
the safeness of S3VMs. However, its improvement in

performance using unlabeled data is not as consider-
able as S3VMs. To develop a safe and well-performing
approach, we then examine the fundamental assump-
tion of S3VMs, i.e., low-density separation, and get
another conjecture on the reason of performance de-
generation. Given a few labeled data and many more
unlabeled data, there is usually more than one large-
margin low-density separator. However, it is hard to
determine which one is optimal based on the limited
labeled data. Although these low-density separators
are all consistent with the limited labeled data, they
can be very diverse with respect to the instance space.
In this way, incorrect selection may result in a reduced
performance. Based on this observation, the S4VMs
(Safe S3VMs) approach, the main contribution of this
paper, is proposed. S4VMs use multiple low-density
separators to approximate the ground-truth decision
boundary and maximize the improvement in perfor-
mance against inductive SVMs for any candidate sep-
arator. S4VMs are shown to be safe and to achieve the
maximal performance improvement under the low-
density assumption of S3VMs. An out-of-sample ex-
tension of S4VMs is also presented so that S4VMs can
make predictions on unseen instances. Our empirical
studies performed on a broad range of data sets show
that S4VMs perform highly competitive with S3VMs.
More importantly, unlike S3VMs which significantly
reduce performance in many cases, S4VMs are rarely
inferior to inductive SVMs.

The rest of this paper is organized as follows.
S3VMs are briefly introduced in Section 2. The S3VM-
us and S4VMs are introduced in Sections 3 and 4.
Empirical results are report in Section 5. Conclusions
are presented in Section 6.

2 BRIEF INTRODUCTION TO S3VMS

Inspired by the success of the large-margin princi-
ple [40], S3VMs extend inductive supervised SVMs to
semi-supervised learning. They simultaneously learn
the optimal decision function and the labels of unla-
beled instances such that the decision boundary has
a large margin on both the labeled and unlabeled
data. It was discovered that S3VMs realize the low-
density assumption [12] which states that the decision
boundary will go across low-density regions.

Formally, we consider binary classification here. Let
X be the input space and Y = {±1} be the label space.
Given a set of l labeled instances {xi, yi}li=1 and u
unlabeled instances {xj}l+uj=l+1, S3VMs aim to find a
decision function f : X → {±1} and a label assign-
ment on unlabeled instances y = {yl+1, . . . , yl+u} ∈ B
such that the following functional is minimized,

min
f∈H
y∈B

1

2
‖f‖2H+C1

l∑
i=1

`(yi, f(xi))+C2

l+u∑
j=l+1

`(yj , f(xj)). (1)

Here B is a set of label assignments obtained from
domain knowledge. For example, when the class pro-
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portion of unlabeled data is closely related to that of
labeled data (also refer to as balance constraint [11],
[23]), we can set

B = {y ∈ {±1}u| − β ≤
∑l+u
j=l+1 yj

u
−
∑l
i=1 yi
l

≤ β}

where β is a small constant controlling the incon-
sistency of class proportions. H is the Reproducing
Kernel Hilbert Space (RKHS) induced by a kernel
function κ. `(y, f(x)) = max{0, 1−yf(x)} is the hinge
loss used in SVMs. C1 and C2 are two regulariza-
tion parameters trading off model complexity and
empirical losses on the labeled and unlabeled data,
respectively.

Similar to supervised SVMs, S3VMs favor the deci-
sion boundary having a large margin on all training
data. According to [12], they inherently favor the de-
cision boundary going through low-density regions.
Otherwise a large loss will occur with respect to the
objective of S3VMs [12].

Unlike supervised SVMs where the training la-
bels are complete, S3VMs need to infer the integer-
value labels of the unlabeled instances, resulting in a
difficult mixed-integer programming problem. Great
efforts have been devoted to coping with the high
complexity of S3VMs. Roughly speaking, they can
be grouped into four categories. The first kind of
approaches is based on global combinatorial opti-
mization. Examples include branch-and-bound meth-
ods [4], [11], which solve S3VMs globally and obtain
good performance on small data sets. The second
kind of approaches is based on global heuristic search,
which gradually increases the difficulty of solving the
non-convex part in Eq. 1. Examples include TSVM [23]
which gradually increases the influence of unlabeled
data (i.e., the value of C2), the deterministic annealing
approach [37] which gradually increases the temper-
ature of an entropy function in optimization, and the
continuation method [9] which first introduces a sur-
rogate smooth function and then gradually decreases
the smoothness of the surrogate function to approach
the objective in Eq. 1. The third kind of approaches
is based on convex relaxation, which transforms Eq. 1
into a relaxed convex problem. Examples include the
semi-definite programming (SDP) relaxation [6], [43],
and the minimax relaxation [28], [29], [30] which is
tighter and more scalable than the SDP relaxation. The
fourth kind of approaches is based on efficient non-
convex optimization techniques. Examples include
UniverSVM [15] which employs concave-convex pro-
cedure (CCCP) [44], and meanS3VM [28] which em-
ploys alternating optimization [5].

Because S3VMs involve a complicated optimization
task, most previous efforts were devoted to handling
the high complexity, whereas few literatures have
explicitly studied the safeness of S3VMs.

3 S3VM-US

It is generally accepted that the major utility of un-
labeled data is to disclose useful information about
the underlying data distribution [10]. When some
unlabeled instances are obscure or misleading for
the discovery of the underlying distribution, learning
performance may be reduced by using those data.
Based on this observation, S3VM-us, which tries to
exclude highly risky unlabeled instances, is proposed.

In the following, two simple approaches to ex-
clude highly risky unlabeled instances, i.e., the S3VM-
c and S3VM-p approaches, are first introduced and
by examining the deficiencies of S3VM-c and S3VM-
p, S3VM-us is then presented. For the simplicity
of notations, the training set is denoted as D =
{{xi, yi}li=1, {xj}

l+u
j=l+1}. The predicted labels for x by

inductive SVM (using labeled data only) and S3VM
are denoted as ysvm(x) and ys3vm(x), respectively. The
transpose of a vector is denoted by the superscript ′.

3.1 Two Simple Approaches
3.1.1 S3VM-c
The first simple approach S3VM-c is motivated
by [38]. It suggests that unlabeled data will be help-
ful when the component density sets are discernible,
where component density sets refer to regions of
data distribution with non-zero probability density.
To implement this idea, in S3VM-c, the component
density sets are simulated by clusters obtained with
a clustering algorithm, and the discernibility is simu-
lated by a disagreement between S3VM and inductive
SVM based on bias and confidence. It is noteworthy that
other simulations are also possible. As Algorithm 1
shows, we rely on the prediction of S3VM if S3VM
obtains the same bias but enhances the confidence
of the inductive SVM. Otherwise we will rely on the
prediction of the inductive SVM.

3.1.2 S3VM-p
The second simple approach S3VM-p is motivated
by the confidence estimation in label propagation
methods [48], [53], where the confidence can be nat-
urally regarded as a measurement of the reliability of
unlabeled data.

Formally, to estimate the confidence of unlabeled
data, let yl = [y1, . . . , yl]

′ ∈ {±1}l×1 and Fl = [(yl +
1)/2, (1−yl)/2] ∈ {0, 1}l×2 be the vector- and matrix-
form of labeled data, respectively. Let W = [wij ] ∈
R(l+u)×(l+u) be the similarity matrix of training data,
and Λ = D −W the laplacian matrix of W, where
D is a diagonal matrix with entries di =

∑l+u
j=1 wij ,

i = 1, . . . , l + u. According to [53], the predictions of
unlabeled data Fu are derived as,

Fu = Λ−1u,uWu,lF
l, (2)

where Λu,u refers to a sub-matrix of Λ on the block
of unlabeled data, Wu,l refers to a sub-matrix of W
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Algorithm 1 S3VM-c

Input: ysvm, ys3vm, D, k;
1: Perform clustering (e.g., using k-means) on D. Denote
C1, . . . , Ck as the data indices of each cluster.

2: For each cluster i = 1, . . . , k, calculate the label bias lb
and the confidence cf of SVM and S3VM according to

lb
s(3)vm
i = sgn

(∑
j∈Ci

ys(3)vm (xj)
)

cf
s(3)vm
i =

∣∣∣∑
j∈Ci

ys(3)vm (xj)
∣∣∣ .

3: If lbs3vmi = lbsvmi and cfs3vm
i > cfsvm

i , assign the
unlabeled instances in Ci with the S3VM predictions.
Otherwise assign with the SVM predictions.

Algorithm 2 S3VM-p

Input: ysvm, ys3vm, D, W, ν;
1: Perform label propagation (e.g., using [53]) with sim-

ilarity matrix W. Obtain the predicted label ylp(xj)
and confidence hj−l for each unlabeled instance xj ,
j = l + 1, . . . , l + u.

2: Update h = [h1, . . . , hu] according to

hj−l = ys3vm(xj)y
lp(xj)hj−l, j = l + 1, . . . , l + u.

Denote c as the number of nonnegative elements in h.
3: Sort h in descending order. Pick up the top-min{νu, c}

unlabeled instances and assign with the S3VM predic-
tions. Others are assigned with the SVM predictions.

on the block between labeled and unlabeled data,
and Λ−1u,u refers to the inverse matrix of Λu,u. In
Fu, note that the two entries of each row refer to
the confidence estimations belonging to two different
classes. We then assign each unlabeled instance xj
with the label ylp(xj) = sgn(Fuj−l,1 − Fuj−l,2), and the
confidence hj−l = |Fuj−l,1−Fuj−l,2|, j = l+ 1, . . . , l+u.
As Algorithm 2 shows, after confidence estimation,
similar to S3VM-c, we consider the risk of unlabeled
data by bias and confidence. If S3VM obtains the same
bias of label propagation and the confidence is high,
we use the S3VM prediction. Otherwise we use the
inductive SVM prediction instead.

3.2 S3VM-us

S3VM-c and S3VM-p have not been reported before.
Our empirical studies show that they are capable of
reducing the chances of performance degeneration.
However, they both suffer from some deficiencies.
S3VM-c works in a local manner and the relations
between clusters are never considered. In S3VM-p,
as stated in [41], the confidence estimated with label
propagation methods might be incorrect if the label
initialization is highly imbalanced. Moreover, both
S3VM-c and S3VM-p heavily rely on S3VM predic-
tions. This might be risky when S3VM suffers from a
serious reduced performance.

The examination of the deficiencies of S3VM-c and
S3VM-p suggests us to exploit the relations between

Algorithm 3 S3VM-us

Input: ysvm, ys3vm, D, ε;
1: Let S = {xj |ysvm(xj) 6= ys3vm(xj), j = l + 1, . . . , l +
u} be a set of unlabeled instances that are inconsistent
labeled by SVM and S3VM.

2: Perform hierarchical clustering (e.g., using the single
linkage method [22]) on D. Denote {Zi}l+u−1

i=1 as the
sets of instance indices for the clusters merged during
the hierarchical clustering process.

3: For each xj ∈ S, denote Zpj−l (resp. Znj−l ) as the
first set that contains xj and at least one positive (resp.
negative) labeled example. Denote tj−l as nj−l − pj−l.

4: Let B = {xj ∈ S| |tj−l| ≥ ε|l+u|, j = l+1, . . . , l+u} be
the set of unlabeled instances owning high reliabilities.

5: If
∑

xj∈B
(
ys3vm(xj)−ysvm(xj)

)
tj−l ≥ 0, use the S3VM

prediction for x ∈ B. Otherwise the SVM prediction.
6: For x 6∈ B, assign with the SVM prediction.

clusters and reduce the sensitivity to the label initial-
ization. This motivates our S3VM-us approach.

As Algorithm 3 shows, S3VM-us employs hierar-
chical clustering [22]. It first initializes each single in-
stance as a cluster and then merges two of the clusters
with the shortest distance. This process repeats until
all the instances are merged into one cluster. It is not
hard to validate that hierarchical clustering considers
the between-cluster relations. Moreover, since hierar-
chical clustering is an unsupervised method, it does
not suffer from the label initialization problem.

To estimate the reliability on unlabeled instances,
let pj−l and nj−l denote the lengths of paths from
an unlabeled instance xj to its nearest positive and
negative labeled instances, respectively. The difference
between pi−l and ni−l is simply taken as an estima-
tion of reliability. Intuitively, the larger the difference
between pj−l and nj−l, the higher the reliability on
labeling xj .

Our empirical studies in Section 5 show that
S3VM-us effectively improves the safeness of S3VMs.
However, its improvement in performance is often
marginal when compared with existing S3VMs. To
develop safe and well-performing methods, it might
be insufficient to purely rely on the selection of un-
labeled instances. This motivates us to develop the
S4VM approach presented in the next section.

4 S4VMS

As previously mentioned, the underlying assump-
tion of S3VMs is low-density separation. That is,
the ground-truth is realized by a large-margin low-
density separator. However, as illustrated in Figure 1,
given limited labeled data and many more unla-
beled data, there usually exist multiple large-margin
low-density separators. Although these separators all
coincide well with the labeled data, they could be
quite diverse with respect to the feature space, and
thus an inadequate selection may lead to a serious
performance reduction. This observation incites us the
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Fig. 1. There are multiple large-margin low-density separa-
tors coinciding well with labeled data (cross and triangle).

Algorithm 4 S4VM

Input: D = {{xi, yi}li=1, {xj}l+u
j=l+1};

Output: y.
1: Generate a pool of diverse large-margin low-density

separators {ŷt}Tt=1 for D.
2: Assign the labels y = {yl+1, . . . , yl+u} to unlabeled

instances such that the improvement in performance for
any separator ŷt, t = 1, . . . , T , is maximized.

design of S4VMs. Specifically, S4VMs first generate a
pool of diverse large-margin low-density separators,
and then try to maximize the improvement in perfor-
mance for any separator. The pseudo-code of S4VM
is summarized in Algorithm 4.

In the following, we will first introduce how to
build S4VMs given a pool of diverse large-margin
low-density separators, and then present two different
implementations for generating the pool.

4.1 Building S4VMs from a Pool of Separators

Let y∗ be the ground-truth label assignment and
ysvm be the predictive labels of inductive SVM on
unlabeled instances. For any label assignment of
unlabeled instances y = {yl+1, . . . , yl+u}, denote
gain(y,y∗,ysvm) and loss(y,y∗,ysvm) as the gained
and lost accuracies compared to the inductive SVM.
Our goal is to learn a label assignment y such that the
improved performance against the inductive SVM is
maximized,

maxy∈{±1}u gain(y,y∗,ysvm)−λ loss(y,y∗,ysvm), (3)

where λ is a parameter for trading-off how much
risk the user would like to undertake. In the sequel,
we will denote gain(y, ŷ,ysvm)−λ loss(y, ŷ,ysvm) as
J(y, ŷ,ysvm), for the simplicity of notations.

The difficulty in solving Eq. 3 lies in the fact that the
ground-truth y∗ is unknown. Otherwise it is trivial to
output y = y∗ as the optimal solution. Given a pool
of T low-density separators {ŷt}Tt=1, as employed by
existing S3VMs, here we assume that the ground-truth
y∗ is realized by a low-density separator, i.e., y∗ ∈
M , {ŷt}Tt=1. Without further domain knowledge in
distinguishing these separators, we then maximize the
worst-case improvement over inductive SVM (Eq. 4),
and denote ȳ as the optimal solution.

ȳ = arg maxy∈{±1}u minŷ∈M J(y, ŷ,ysvm). (4)

The following theorem shows that by taking the
low-density assumption as typical S3VMs, i.e., y∗ ∈
{ŷt}Tt=1, S4VMs are provably safe.

Theorem 1: If y∗ ∈ {ŷt}Tt=1 and λ ≥ 1, the accuracy
of ȳ is never worse than that of ysvm.

Proof: Note that ȳ is the optimal solution and
J(ysvm, ŷ,ysvm) is zero for any ŷ, we have

min
ŷ∈M

J(ȳ, ŷ,ysvm) ≥ min
ŷ∈M

J(ysvm, ŷ,ysvm) = 0. (5)

Further note that y∗ ∈M, we have

J(ȳ,y∗,ysvm) ≥ minŷ∈M J(ȳ, ŷ,ysvm). (6)

From Eqs. 5 and 6, J(ȳ,y∗,ysvm) ≥ 0, i.e.,
gain(ȳ,y∗,ysvm) ≥ λ loss(ȳ,y∗,ysvm). Recall that λ ≥
1, we then have gain(ȳ,y∗,ysvm) ≥ loss(ȳ,y∗,ysvm)
and thus the theorem is proved.

According to Theorem 1, it is easy to get the fol-
lowing proposition.

Proposition 1: If y∗ ∈ {ŷt}Tt=1 and λ ≥ 1, the
accuracy of any y satisfying minŷ∈M J(y, ŷ,ysvm)
≥ 0, is never worse than that of ysvm.

Simply outputting the predictive results of the in-
ductive SVM would be also safe but evidently not
useful. Thus, it is important to study the performance
improvement of S4VMs. The following proposition
shows that S4VMs achieve the maximal performance
improvement in the worst cases.

Proposition 2: If y∗ ∈ {ŷt}Tt=1 and λ = 1, the
accuracy of ȳ achieves the maximal performance im-
provement over that of ysvm in the worst cases.

It is noteworthy that S4VMs are somewhat relevant
to ensemble methods [49], and the spirit of S4VMs is
not specific to S3VMs, which may also be extended to
other semi-supervised learning methods.

In the following, we will present the optimization
of Eq. 4 and an out-of-sample extension of S4VMs in
Sections 4.1.1 and 4.1.2, respectively.

4.1.1 Optimization
Note that the gain(y, ŷ,ysvm) and loss(y, ŷ,ysvm) are
linear functions with respect to y, i.e.,

gain(y, ŷ,ysvm) =
∑l+u

j=l+1
I(yj = ŷj)I(ŷj 6= ysvmj )

=
∑l+u

j=l+1

1 + yj ŷj
2

1− ysvmj ŷj

2
,

loss(y, ŷ,ysvm) =
∑l+u

j=l+1
I(yj 6= ŷj)I(ŷj = ysvmj )

=
∑l+u

j=l+1

1− yj ŷj
2

1 + ysvmj ŷj

2
.

Hence, J(y, ŷt,y
svm) is also linear to y and can be

cast as c′ty + dt, where ct = 1
4 [(1 +λ)ŷt + (λ− 1)ysvm]

and dt = 1
4 [−(1 + λ)ŷ′ty

svm + (1− λ)].
By introducing an additional variable τ , the inner

minimization in Eq. 4 can be reformulated as a max-
imization problem, and Eq. 4 becomes,
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maxy maxτ τ (7)
s. t. τ ≤ c′ty + dt,∀t = 1, . . . , T ; y ∈ {±1}u.

Though Eq. 7 is still a difficult mixed-integer linear
programming problem, according to Proposition 1,
optimal solutions are not necessary for achieving safe-
ness. A simple method is then presented. Specifically,
we first relax the integer-form of constraint {±1}u
into its convex hull [−1, 1]u, and obtain the optimal
solution of the resultant convex linear programming
problem. We then project it back to an integer solution
with the minimum distance. If the objective value
of the resultant integer solution is smaller than zero,
ysvm is output as the final solution. It is not hard to
verify that our solution satisfies Proposition 1.

It is notable that prior knowledge on low-density
separators can be easily incorporated into our frame-
work. Specifically, by introducing the dual variables
α = [α1, . . . , αT ]′ ≥ 0 for the constraints in Eq. 7, one
can have the Lagrangian of Eq. 7 as,

L(τ,y,α) = τ −
∑T

t=1
αt(τ − c′ty − dt). (8)

Setting the partial derivation w.r.t. τ to zero, we have,

∂L/∂τ = 1−
∑T

t=1
αt = 0. (9)

With Eq. 9, the inner maximization of Eq. 7 can be
replaced by its dual and Eq. 7 becomes,

maxy∈{±1}u min∑T
t=1 αt=1,α≥0

∑T

t=1
αt(c

′
ty + dt). (10)

Here αt can be interpreted as a probability that ŷt
discloses the ground-truth solution. Hence, if prior
knowledge about the probabilities α is available, one
can readily learn the optimal y with respect to the
target in Eq. 10 using the known α.

4.1.2 Out-of-Sample Extension
Eq. 4 works in the transductive setting [40] which
could not make predictions on unseen instances.
To overcome this, an out-of-sample extension (also
named as induction extension [52]) of S4VMs is pre-
sented.

One common practice to achieve this is to freeze
the transductive setting on the set of both testing
and unlabeled instances [52]. Formally, for any given
testing instance z, let {ŷzt }Tt=1 be the predictive labels
of multiple low-density separators, and ysvm,z be the
predictive label of the inductive SVM. One need to
learn a label assignment for both testing and unla-
beled instances such that the objective of S4VM is
maximized.

maxy∈{±1}u, yz∈{±1}, τ τ (11)
s. t. τ ≤ [ct, c

z]′[y, yz] + dzt ,∀t = 1, . . . , T,

where cz = 1
4 [(1 + λ)ŷzt + (λ − 1)ysvm,z] and dzt =

dt− 1
4 (1+λ)ŷzt y

svm,z. This, however, will be computa-
tionally prohibitive especially when there are a large
number of instances for testing.

To alleviate the computational load, we present an
efficient algorithm for approximate solutions. Specif-
ically, note that when yz is fixed to ysvm,z, Eq. 11
is equivalent to transductive S4VM, i.e., Eq. 7, and
thus the solution of Eq. 7 (denoted by y̌) provides a
quite good approximation to Eq. 11. This observation
motivates us to solve the following much simpler
problem instead of the complicated one in Eq. 11,

maxyz∈{±1}, τ τ (12)
s. t. τ ≤ [ct, c

z]′[y̌, yz] + dzt ,∀t = 1, . . . , T.

It is efficient to derive the optimal solution of Eq. 12.
We just need to enumerate the two possible values of
yz and then pick up the one with the smaller objective
value. As will be validated empirically in Section 5.2,
our approximation is quite effective.

4.2 Generating the Pool of Diverse Separators
Denote h(f, ŷ) as the objective function of S3VMs in
Eq. 1 for the sake of simplicity,

h(f, ŷ)=
1

2
‖f‖2H+C1

l∑
i=1

`(yi, f(xi))+C2

l+u∑
j=l+1

`(ŷj , f(xj)).

To generate a pool of diverse separators {ft}Tt=1 and
their corresponding label assignments {ŷt}Tt=1, in this
paper we consider to minimize the following function,

min
{ft,ŷt∈B}Tt=1

∑T

t=1
h(ft, ŷt) +MΩ({ŷt}Tt=1). (13)

Here Ω refers to a penalty reflecting the diversity of
separators, i.e., the larger the diversity, the smaller
the penalty. M is a large constant (e.g., 105 in our
experiments) enforcing large diversity. It is easy to
realize that minimizing Eq. 13 favors the separators
with large margins as well as large diversities.

We consider the penalty as a sum of pairwise terms,
i.e., Ω({ŷt}Tt=1) =

∑
1≤t6=t̃≤T δ(

ŷ′tŷt̃

u ≥ 1 − ς) where δ
is the indicator function and ς ∈ [0, 1] is a constant
(e.g., 0.5 in our experiments). It is notable that other
penalty quantities can be also applicable.

Recall that f(x) = w′φ(x) + b is a linear model in
S3VMs, where φ(x) is a feature mapping induced by
the kernel κ, i.e., κ(x, x̂) = φ(x)′φ(x̂) and b is a bias
term. Eq. 13 then becomes

min
{wt,bt,ŷt∈B}Tt=1

T∑
t=1

(1

2
‖wt‖2 + C1

l∑
i=1

`(yi,w
′
tφ(xi) + bt)

+C2

l+u∑
j=l+1

`(ŷt,j ,w
′
tφ(xj) + bt)

)
+M

∑
1≤t6=t̃≤T

δ(
ŷ′tŷt̃
u
≥ 1− ς). (14)

To address Eq. 14, in the sequel, two implementations
are presented. One is based on a global simulated an-
nealing search while the other is based on an efficient
sampling strategy.
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Algorithm 5 Solving Eq. 14 by Simulated Annealing

Input: {xi, yi}li=1, {xj}l+u
j=l+1, T ; neighbour({ŷt}Tt=1) returns

{ŷnew
t }Tt=1 where each ŷnew

t has one element different from
ŷt; random() returns a random value in the range (0,1);
Output: {ŷt}Tt=1.

1: Initialize {ŷt}Tt=1 randomly, P ← 1, e ← 1, minP ←
10−8, and emax← 300.

2: ({ŷt}Tt=1, o)← Localsearch({ŷt}Tt=1).
3: ŷbest

t ← ŷt, ∀t = 1, . . . , T .
4: while P > minP do
5: {ŷnew

t }Tt=1 ← neighbour({ŷt}Tt=1).
6: ({ŷnew

t }Tt=1, o
new)← Localsearch({ŷnew

t }Tt=1).
7: if onew < o then
8: o← onew; ŷbest

t ← ŷnew
t , ŷt ← ŷnew

t , ∀t = 1, . . . , T .
9: else if exp(−(onew − o)/P ) > random() then

10: ŷt ← ŷnew
t , ∀t = 1, . . . , T .

11: else
12: e← e+ 1.
13: end if
14: if e = emax then
15: P ← P/2; e← 1.
16: end if
17: end while
18: ŷt ← ŷbest

t , ∀t = 1, . . . , T .

Algorithm 6 Localsearch

Input: {ŷt}Tt=1; (Denote [m] = {1, . . . ,m})
Output: {ŷt}Tt=1 and the objective value o.
1: Fix {ŷt}Tt=1, solve multiple individual SVMs {wt, bt}Tt=1

via SVM solver.
2: Fix {wt, bt}Tt=1, solve {ŷt}Tt=1 according to Steps 3-6.
3: while {ŷt}Tt=1 are not converged do
4: Generate a random permutation of u×T (denoted by

(j, t)’s where j ∈ [u], t ∈ [T ]).
5: For each (j, t), optimize ŷt,j+l ∈ {±1} w.r.t. Eq. 14.
6: end while
7: Output {ŷt}Tt=1 and the objective value o of Eq.14.

It is notable that exhaustively searching all possible
large-margin low-density separators is prohibitive.
Fortunately, according to Theorem 1, generating a
large-margin low-density separator to realize the
ground-truth is only a sufficient rather than necessary
condition to have safe S3VMs. As will be validated in
our empirical studies, even on many cases in which
the ground-truth is not realized by any of the gener-
ated large-margin low-density separators, S4VMs still
work quite well.

4.2.1 Global Simulated Annealing Search
Our first implementation to address Eq. 14 is based
on global search, e.g., simulated annealing (SA)
search [25]. SA is a probabilistic method for approach-
ing global solutions of objective functions which suf-
fer from multiple local minima. Specifically, at each
step, SA replaces the current solution by a random
nearby solution with a probability. The probability
depends on two factors, i.e., the value difference
between their corresponding function targets, and
a global parameter, i.e., the temperature P , which
gradually decreases during the process. When P is

Algorithm 7 Solving Eq. 14 by Representative Sampling

Input: {xi, yi}li=1, {xj}l+u
j=l+1, T , N ;

Output: {ŷt}Tt=1.
1: Randomly sample N number of y’s, i.e., S = {yn}Nn=1.
2: for n = 1 : N do
3: while not converged do
4: Fix yn, solve {wn, bn} via SVM solver.
5: Fix {wn, bn}, update yn according to S3VM’s ob-

jective function via sorting [46].
6: end while
7: end for
8: Perform clustering (e.g., k-means) for S where k = T .
9: For each cluster, output the separator (denoted by ŷ)

with the minimum objective value.

large, the current solution almost changes randomly.
While as P approaches zero, the changes are increas-
ingly “downhill”. In theory, the probability that SA
converges to the global solution approaches to 1 as
SA procedure is continued [26].

To alleviate the low convergence rate of standard
SA, inspired by [37], a deterministic local search
scheme is used. Specifically, when {ŷt}Tt=1 are fixed,
{wt, bt}Tt=1 are solved via multiple individual SVM
subroutines. When {wt, bt}Tt=1 are fixed, {ŷt}Tt=1 are
updated based on local binary search.

Algorithm 5 presents the pseudo-code of our sim-
ulated annealing approach for Eq. 14, where the local
search subroutine is given in Algorithm 6.

4.2.2 Representative Sampling
To further alleviate the computational burden, our
second implementation is based on heuristic represen-
tative sampling. Recall that the goal of Eq. 13 can be
realized by finding multiple large-margin low-density
separators and then keeping only representative ones
with large diversity. This motivates us to have a two-
stage method, a) search for multiple large-margin
low-density separators at first and then b) select the
representative separators. Algorithm 7 presents the
pseudo-code of our second implementation.

As Algorithm 7 shows, multiple candidate large-
margin low-density separators are first obtained
by [46]. A clustering algorithm is then applied to
identify the representative separators. This approach
is simple. As will be validated empirically in Section 5,
it is also efficient and effective.

We call our S4VM using simulated annealing as
S4VMa, and the one using sampling as S4VMs.

5 EMPIRICAL STUDY

In this section, the proposed approaches are evalu-
ated on a broad range of tasks including five semi-
supervised benchmark data sets,1 digit1, USPS, BCI,
g241c, COIL, and fifteen UCI data sets2 and four large
scale data sets, adult, mnist, real-sim, rcv1. The size of

1. http://www.kyb.tuebingen.mpg.de/ssl-book/
2. http://archive.ics.uci.edu/ml/datasets.html

http://www.kyb.tuebingen.mpg.de/ssl-book/
http://archive.ics.uci.edu/ml/datasets.html
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TABLE 1
Characteristics of the data sets.

Data Sets # Dim. # Instance
# positive # negative total

house 16 108 124 232
heart 9 120 150 270
haberman 14 81 225 306
liverDisorders 6 200 145 345
ionosphere 33 225 126 351
bci 117 200 200 400
house-votes 16 267 168 435
vehicle 16 218 217 435
clean1 166 207 269 476
wdbc 14 357 212 569
isolet 51 300 300 600
breastw 9 239 444 683
austra 15 307 383 690
australian 42 383 307 690
diabetes 8 268 500 768
optdigits 42 572 571 1,143
digit1 241 734 766 1,500
usps 241 300 1,200 1,500
coil 241 750 750 1,500
g241c 241 750 750 1,500
mnist4vs9 629 6,824 6,958 13,782
mnist7vs9 631 7,141 6,825 13,966
mnist3vs8 600 7,293 6,958 14,251
mnist1vs7 652 7,877 7,293 15,170
adult 123 7,841 24,720 32,561
real-sim 20,958 22,238 50,071 72,309
rcv1 47,236 365,951 331,690 697,641

data ranges from 232 to more than 600, 000, and the
dimensionality ranges from 6 to more than 40, 000.
mnist has 45 pairs of binary classification problems,
and we focus on its four most difficult pairs [46].
Table 1 summarizes the characteristics of the data sets.

To satisfy the balance constraint required by S3VMs,
for each data set, we randomly select 10 instances
whose class proportion is closely related to the whole
data set, to be served as labeled instances. The re-
maining data are served as the unlabeled instances.
The experiments repeat for 30 times. The average
performance and standard deviation are recorded.

Inductive SVM and S3VM serve as the two baseline
approaches. For small and medium scale data sets,
LIBSVM3 [18] and TSVM4 [23] are employed. For large
scale data sets, due to the high computational load
of LIBSVM and TSVM, efficient LIBLINEAR5[21] and
UniverSVM6 [15] serve as baselines instead. Both the
linear and RBF kernels are used for small and medium
scale data sets, and linear kernel is always used for
large scale data sets.

Three S3VM variants using multiple low-density
separators are also compared. Specifically, S3VMbest

presents the best performance among the multiple
candidate separators (note that this method is im-
practical). S3VMmin selects the low-density separator
with minimum objective value. S3VMcom combines
the candidate separators using uniform weights.

The parameters are set as follows. Following the
setups in [10], the regularization parameter C is fixed

3. http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
4. http://svmlight.joachims.org/
5. http://www.csie.ntu.edu.tw/∼cjlin/linlinear/
6. http://mloss.org/software/view/19/

to 100 and the width of RBF kernel is set to the av-
erage distance between instances for inductive SVM.
The regularization parameters C1, C2 and β in the
balance constraint are fixed to 100, 0.1 and 0.1 for all
S3VMs and S4VMs. For S3VM-c, the cluster number
k is fixed to 50. For S3VM-p, the parameter η is
fixed to 0.1 and the similarity matrix is constructed
via Gaussian distance where the width is set to the
average distance between instances. For S3VM-us, the
parameter ε is fixed to 0.1. For S4VMa, the number of
separators T and the risk parameter λ are both fixed
to 3. For S4VMs, the sampling size N , the number of
separators T , and the risk parameter λ are fixed to 100,
10 and 3, respectively. The linear program in S4VMs
is conducted using the linprog function in MATLAB.

5.1 Comparison Results
Intensive comparison results are shown in Table 2.
Although simulated annealing was used to improve
the efficiency of S3VMs [37], it still involves high com-
putational load. Table 2 only reports the performance
of S4VMa on 11 small UCI data sets.

Table 2 shows that S4VMa performs highly com-
petitive with S3VM. Specifically, S3VM significantly
outperforms inductive SVM on 5 of the 11 cases with
linear kernel, and 7 of the 11 cases with RBF kernel;
while S4VM significantly outperforms inductive SVM
on 7 cases for both the linear and RBF kernels.

More importantly, unlike S3VM which causes sig-
nificant degeneration of the performance on 1 case
with linear kernel and 2 cases with RBF kernel, S4VMa

is never inferior to inductive SVM. The Wilcoxon sign
tests at 95% significance level confirm that S4VMa

is significantly better than inductive SVM with both
linear and RBF kernels, but S3VM does not show such
a significance.

Table 2 also shows the highly competitive perfor-
mance of S4VMs and S3VM-us compared with S3VM.
Specifically, in terms of pairwise comparison, S4VMs

is found to be superior to S3VM on 16 of the 27 cases
with linear kernel, and 11 of the 20 cases with RBF
kernel. S3VM-us is superior to S3VM on 9 and 8 of the
20 cases with linear and RBF kernel, respectively. In
terms of wins, with linear kernel, S3VM outperforms
inductive SVM on 44% (12/27) of the cases; while
S4VMs and S3VM-us outperform inductive SVM on
59% (16/27) and 45% (9/20), respectively. Similar
observations can be found for RBF kernel. On 55%,
55% and 50% of the cases, S3VM, S4VMs and S3VM-
us significantly outperform inductive SVM, which are
also competitive.

Unlike S3VM whose performance is found to de-
crease significantly on 3 cases with linear kernel and
6 cases with RBF kernel, S3VM-us shows decreased
performance on only one case, and S4VMs never show
decreased performance. Both S3VM-c and S3VM-p are
capable of reducing the chance of performance degen-
eration, but they do not perform as well as S3VM-

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://svmlight.joachims.org/
http://www.csie.ntu.edu.tw/~cjlin/linlinear/
http://mloss.org/software/view/19/
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TABLE 2
Comparison of accuracy (mean±std.). Entries of semi-supervised methods (S3VM, S3VM-c, S3VM-p, S3VM-us, S3VMbest

s ,
S3VMmin

s , S3VMcom
s , S4VMa and S4VMs) are bolded/underlined if they are significantly better/worse than SVM (paired

t-tests at 95% significance level). ’-’ marks cases suffering from high computational cost or memory overhead.

Linear SVM S3VM S3VM-c S3VM-p S3VM-us S3VMbest
s S3VMmin

s S3VMcom
s S4VMa S4VMs

austra 69.9 ± 7.6 69.6 ± 10.8 69.7 ± 8.7 70.0 ± 7.6 69.8 ± 7.9 71.7 ± 9.5 70.6 ± 9.7 70.7 ± 9.8 70.7 ± 8.8 70.7 ± 9.5
australian 75.2 ± 8.6 77.4 ± 9.3 75.8 ± 8.7 75.6 ± 8.2 75.1 ± 8.5 80.2 ± 6.7 76.0 ± 10.3 73.5 ± 10.2 - 75.2 ± 8.7
breastw 94.3 ± 2.0 93.3 ± 0.4 94.6 ± 1.2 94.3 ± 1.9 94.3 ± 1.9 95.9 ± 1.7 95.8 ± 1.7 93.9 ± 3.4 94.7 ± 1.8 95.0 ± 2.0
clean1 59.0 ± 6.2 57.6 ± 6.8 59.0 ± 6.4 59.2 ± 6.3 59.1 ± 6.1 64.7 ± 4.2 57.8 ± 4.6 57.5 ± 6.1 - 59.2 ± 5.3
diabetes 65.5 ± 5.0 64.8 ± 8.3 65.9 ± 5.1 65.7 ± 4.9 66.1 ± 5.0 66.2 ± 5.1 65.3 ± 6.0 64.9 ± 5.7 65.5 ± 5.0 65.9 ± 5.4
haberman 63.5 ± 7.6 61.7 ± 5.0 63.9 ± 7.1 63.8 ± 7.4 63.7 ± 6.7 64.4 ± 4.6 62.7 ± 4.3 61.9 ± 6.8 - 63.8 ± 5.7
heart 71.1 ± 6.5 73.1 ± 6.5 71.7 ± 6.6 71.7 ± 6.3 71.6 ± 6.5 72.4 ± 6.4 72.1 ± 6.3 71.9 ± 6.2 71.4 ± 6.7 72.1 ± 6.3
house-votes 87.8 ± 3.3 89.4 ± 4.5 88.7 ± 3.3 88.1 ± 3.1 88.5 ± 3.2 91.9 ± 3.8 90.3 ± 5.4 88.9 ± 4.4 89.0 ± 3.7 89.3 ± 3.9
house 90.1 ± 3.7 91.9 ± 3.2 90.6 ± 3.0 90.4 ± 3.4 91.1 ± 2.6 95.6 ± 2.9 92.6 ± 4.7 90.2 ± 3.7 91.8 ± 3.1 90.7 ± 4.1
ionosphere 74.0 ± 5.7 74.5 ± 4.7 74.8 ± 6.0 73.8 ± 5.6 74.0 ± 5.6 79.8 ± 4.5 75.3 ± 5.2 75.6 ± 5.1 75.6 ± 6.3 76.0 ± 5.6
isolet 92.3 ± 3.3 99.7 ± 0.1 97.2 ± 2.5 93.0 ± 3.0 93.0 ± 3.1 99.6 ± 0.1 99.5 ± 0.1 99.4 ± 0.1 97.7 ± 0.8 98.6 ± 2.7
liverDisorders 54.3 ± 4.6 53.7 ± 4.9 54.0 ± 4.5 54.5 ± 4.5 54.3 ± 4.6 53.6 ± 4.3 53.2 ± 4.5 52.2 ± 6.3 54.4 ± 4.5 53.5 ± 4.3
optdigits 95.4 ± 2.3 99.8 ± 0.0 98.4 ± 1.5 95.8 ± 2.1 97.0 ± 1.2 99.7 ± 0.1 99.7 ± 0.1 95.3 ± 6.9 - 98.4 ± 1.9
vehicle 78.6 ± 6.6 84.5 ± 9.2 82.0 ± 7.3 79.9 ± 6.2 81.6 ± 7.0 84.5 ± 6.6 83.2 ± 8.0 82.4 ± 8.0 81.2 ± 7.2 82.4 ± 7.7
wdbc 85.2 ± 5.7 91.1 ± 2.8 88.3 ± 4.7 85.7 ± 5.5 85.5 ± 5.3 89.5 ± 5.4 89.3 ± 5.4 89.1 ± 5.4 86.2 ± 5.8 89.2 ± 5.5
digit1 76.4 ± 5.4 84.3 ± 1.7 80.4 ± 6.7 78.0 ± 4.8 76.6 ± 5.4 83.2 ± 2.8 81.2 ± 4.3 69.8 ± 5.8 - 76.4 ± 5.4
usps 78.2 ± 4.9 74.5 ± 5.9 78.2 ± 4.9 78.6 ± 4.6 79.1 ± 4.2 82.7 ± 1.7 74.7 ± 6.3 77.6 ± 2.4 - 78.6 ± 4.1
coil 58.1 ± 6.1 57.5 ± 5.5 57.9 ± 5.4 57.8 ± 5.9 58.2 ± 6.1 66.9 ± 4.8 58.8 ± 6.7 56.2 ± 7.0 - 57.9 ± 6.2
bci 54.2 ± 5.6 52.2 ± 3.7 52.8 ± 4. 4 53.9 ± 5.5 54.0 ± 5.5 54.9 ± 4.3 51.8 ± 4.1 51.3 ± 4.5 - 53.5 ± 5.9
g241c 60.0 ± 2.8 83.7 ± 1.3 69.3 ± 4.5 62.2 ± 2.5 61.2 ± 3.0 65.2 ± 3.5 65.0 ± 3.9 49.6 ± 4.5 - 60.4 ± 2.9

adult-a 74.8 ± 2.9 74.4 ± 3.1 - - - 75.2 ± 3.2 74.3 ± 3.1 74.3 ± 3.1 - 74.7 ± 3.1
mnist1vs7 95.0 ± 2.4 94.9 ± 2.4 - - - 96.5 ± 1.9 96.2 ± 2.0 96.2 ± 2.0 - 96.4 ± 2.3
mnist3vs8 81.1 ± 6.8 82.4 ± 6.6 - - - 84.8 ± 7.0 84.2 ± 7.3 84.2 ± 7.3 - 84.0 ± 7.1
mnist4vs9 73.9 ± 5.6 74.7 ± 5.4 - - - 76.7 ± 6.7 75.8 ± 6.9 75.8 ± 6.9 - 75.8 ± 6.7
mnist7vs9 79.2 ± 5.9 80.5 ± 6.2 - - - 83.5 ± 7.5 82.9 ± 7.7 82.9 ± 7.7 - 82.6 ± 7.5
real-sim 73.5 ± 2.8 74.0 ± 4.1 - - - 75.5 ± 4.4 75.3 ± 4.5 75.3 ± 4.5 - 75.6 ± 4.1
rcv1 69.5 ± 5.1 71.4 ± 4.9 - - - 73.6 ± 5.7 73.5 ± 5.8 73.5 ± 5.8 - 73.3 ± 5.7

Win/Tie/Loss against SVM 12 / 12 / 3 11 / 8 / 1 11 / 8 / 1 9 / 11 / 0 22 / 5 / 0 16 / 10 / 1 9 / 14 / 4 7 / 4 / 0 16 / 11 / 0

RBF SVM S3VM S3VM-c S3VM-p S3VM-us S3VMbest
s S3VMmin

s S3VMcom
s S4VMa S4VMs

austra 69.2 ± 7.1 70.4 ± 11.9 69.0 ± 8.5 69.1 ± 7.2 69.1 ± 7.5 76.3 ± 10.1 70.8 ± 12.0 70.1 ± 12.3 69.2 ± 10.5 70.6 ± 8.8
australian 71.4 ± 6.8 77.7 ± 10.5 72.8 ± 7.9 71.9 ± 6.7 71.2 ± 7.2 80.5 ± 6.7 71.1 ± 14.4 71.3 ± 10.6 - 71.2 ± 7.1
breastw 95.0 ± 2.4 93.2 ± 0.4 94.9 ± 2.1 95.0 ± 2.4 95.0 ± 2.4 96.5 ± 0.4 96.4 ± 0.4 96.3 ± 0.7 95.8 ± 1.1 95.9 ± 1.5
clean1 64.3 ± 4.9 60.8 ± 6.9 63.8 ± 5.2 63.9 ± 4.7 64.7 ± 5.0 65.4 ± 4.5 57.9 ± 5.3 60.3 ± 5.9 - 64.4 ± 4.4
diabetes 66.1 ± 4.4 65.1 ± 7.0 66.3 ± 4.2 66.4 ± 4.3 66.4 ± 4.4 66.0 ± 5.7 65.2 ± 5.5 64.8 ± 5.4 65.8 ± 4.2 65.5 ± 5.5
haberman 65.8 ± 5.4 61.0 ± 3.7 65.8 ± 5.2 65.9 ± 5.3 65.7 ± 5.4 65.0 ± 3.1 62.5 ± 3.3 65.4 ± 3.6 - 66.0 ± 4.2
heart 72.2 ± 5.5 73.9 ± 5.1 72.9 ± 5.5 72.6 ± 5.3 72.4 ± 5.9 75.0 ± 5.1 73.4 ± 5.8 73.4 ± 6.1 72.9 ± 5.6 73.5 ± 5.6
house-votes 87.9 ± 2.4 89.1 ± 2.0 88.4 ± 2.2 88.1 ± 2.3 88.5 ± 2.2 89.4 ± 2.2 88.5 ± 2.0 88.5 ± 2.4 89.0 ± 2.3 88.6 ± 2.2
house 89.3 ± 2.3 90.4 ± 1.8 89.7 ± 2.1 89.4 ± 2.2 89.8 ± 2.1 90.6 ± 2.5 89.2 ± 2.4 89.5 ± 2.7 89.7 ± 2.5 89.8 ± 2.4
ionosphere 79.7 ± 5.6 83.4 ± 5.6 80.4 ± 5.4 79.9 ± 5.6 80.0 ± 5.7 87.2 ± 6.5 82.8 ± 6.5 82.0 ± 6.4 83.0 ± 6.0 84.3 ± 6.6
isolet 91.9 ± 3.1 99.7 ± 0.1 96.8 ± 2.6 92.6 ± 2.8 92.6 ± 2.8 99.2 ± 0.3 98.5 ± 0.7 98.6 ± 0.5 97.1 ± 1.5 98.6 ± 0.6
liverDisorders 55.5 ± 4.7 54.1 ± 4.7 54.8 ± 4.5 55.6 ± 4.7 55.4 ± 4.6 55.6 ± 4.7 55.4 ± 4.7 55.1 ± 4.7 55.6 ± 4.7 55.4 ± 4.7
optdigits 94.6 ± 3.2 99.7 ± 0.1 97.3 ± 2.5 95.1 ± 2.8 96.6 ± 1.5 99.8 ± 0.1 99.6 ± 0.9 97.5 ± 2.2 - 98.0 ± 2.0
vehicle 80.3 ± 6.2 84.8 ± 11.5 83.2 ± 8.1 81.1 ± 6.2 82.7 ± 7.2 91.1 ± 5.7 87.5 ± 8.4 84.6 ± 8.7 84.5 ± 8.9 85.0 ± 7.5
wdbc 85.3 ± 5.1 90.7 ± 2.1 88.2 ± 4.6 85.9 ± 4.9 85.6 ± 4.9 91.9 ± 3.7 91.2 ± 3.6 90.8 ± 3.7 89.0 ± 4.0 90.7 ± 4.1
digit1 75.4 ± 8.0 90.1 ± 3.2 80.7 ± 9.2 77.1 ± 7.1 75.9 ± 8.0 91.8 ± 2.0 88.5 ± 1.5 88.5 ± 3.8 - 79.1 ± 5.1
usps 80.0 ± 0.0 67.9 ± 5.9 80.0 ± 0.0 80.0 ± 0.0 80.0 ± 0.0 77.9 ± 4.7 65.9 ± 0.4 78.2 ± 3.9 - 80.0 ± 0.0
coil 62.0 ± 6.4 61.6 ± 6.1 62.5 ± 6.8 61.2 ± 6.4 62.1 ± 6.3 72.5 ± 7.9 64.4 ± 9.8 59.9 ± 8.2 - 61.9 ± 6.4
bci 51.5 ± 2.5 50.0 ± 2.0 50.2 ± 2.4 51.4 ± 2.4 51.4 ± 2.4 52.1 ± 2.1 49.8 ± 1.7 48.9 ± 3.0 - 50.8 ± 2.6
g241c 59.8 ± 2.7 60.8 ± 2.8 60.5 ± 2.9 60.0 ± 2.8 59.9 ± 2.7 63.7 ± 2.6 62.2 ± 3.5 52.1 ± 4.7 - 60.2 ± 2.8

Win/Tie/Loss against SVM 11 / 3 / 6 10 / 8 / 2 9 / 9 / 2 10 / 9 / 1 14 / 6 / 0 9 / 6 / 5 8 / 8 / 4 7 / 4 / 0 11 / 9 / 0

us. S3VMmin
s and S3VMcom

s still show significantly re-
duced performance in many cases. The Wilcoxon sign
tests at 95% significance level validate S4VMs and
S3VM-us to be significantly better than inductive SVM
with both linear and RBF kernels, but other semi-
supervised methods, such as S3VM, S3VM-c, S3VM-p,
S3VMmin

s and S3VMcom
s , do not obtain significance.

Although S3VM-us is found to be safer than S3VM,
it employs a conservative strategy and its improve-
ment is often much smaller than that of S3VM. In con-
trast, S4VMs takes the improvement in performance
into account and performs much better. Specifically,
in terms of average performance, S4VMs is superior
to S3VM-us. It reaches 75.91% vs S3VM-us’s 74.97%
on the 40 cases of S3VM-us reported in Table 2.

The paired t-tests at 95% significance level show that
S4VMs performed significantly better than S3VM-us.
These comparisons confirm that S4VMs is better than
S3VM-us.

The condition of Theorem 1 is already weaker than
the traditional low-density assumption in S3VMs, the
theorem may not always hold in practice. That is, the
ground-truth may not reside among the low-density
separators (cf. the performance of S3VMbest

s ). Even
in such cases, S4VMs still work well. That might
be because i) Theorem 1 only presents a sufficient
rather than necessary condition for safeness, and
ii) the analysis of the diversity among low-density
separators [39], provides an explanation to S4VMs’
superiority to single separator.
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TABLE 3
Comparison of accuracy (mean±std.) with out-of-sample extension.

Data SVM S3VM S3VMmin
s S3VMcom

s S4VMs

Linear/RBF Linear/RBF Linear/RBF Linear/RBF Linear/RBF

austra 69.9 ± 8.6/69.3 ± 8.0 68.2 ± 11.4/70.3 ± 12.4 70.3 ± 10.4/70.1 ± 13.3 69.4 ± 10.3/69.6 ± 12.0 69.6 ± 10.1/70.3 ± 10.1
australian 74.6 ± 9.4/70.4 ± 7.8 77.0 ± 9.5/76.7 ± 11.6 74.9 ± 11.9/71.3 ± 14.4 73.7 ± 10.0/73.4 ± 10.7 74.9 ± 9.3/70.5 ± 8.0
breastw 93.9 ± 2.4/95.0 ± 3.0 93.2 ± 2.0/93.5 ± 1.9 95.7 ± 2.3/96.6 ± 1.6 93.5 ± 4.5/96.5 ± 1.8 94.8 ± 2.7/96.2 ± 2.2
clean1 58.7 ± 6.7/64.8 ± 5.2 56.9 ± 6.0/59.6 ± 7.4 57.9 ± 5.5/60.8 ± 6.4 58.8 ± 7.0/62.4 ± 6.0 58.8 ± 6.7/64.8 ± 5.3
diabetes 66.1 ± 6.0/66.1 ± 5.0 65.1 ± 8.8/65.8 ± 8.6 66.0 ± 7.9/65.6 ± 5.6 66.1 ± 7.8/65.7 ± 5.3 66.3 ± 7.8/65.8 ± 5.2
haberman 63.2 ± 8.4/63.9 ± 7.0 60.0 ± 5.3/59.3 ± 6.3 61.7 ± 4.9/63.3 ± 5.9 62.5 ± 7.7/65.0 ± 6.1 62.9 ± 7.8/64.3 ± 6.3
heart 71.2 ± 7.0/72.4 ± 6.1 73.3 ± 6.6/73.4 ± 5.9 71.3 ± 6.7/73.1 ± 6.0 71.2 ± 6.7/72.8 ± 5.8 71.2 ± 6.7/73.3 ± 5.6
house-votes 87.5 ± 4.5/87.9 ± 3.9 88.3 ± 5.8/89.4 ± 2.9 89.0 ± 5.8/88.5 ± 3.6 88.9 ± 4.9/88.4 ± 3.5 89.0 ± 4.7/88.6 ± 3.5
house 90.5 ± 4.5/88.7 ± 4.1 91.1 ± 4.5/90.6 ± 3.8 92.4 ± 5.4/89.0 ± 4.6 91.6 ± 3.9/89.2 ± 4.4 91.8 ± 4.5/89.5 ± 4.1
ionosphere 75.7 ± 6.2/81.5 ± 5.9 75.3 ± 6.3/83.7 ± 5.7 76.3 ± 7.7/83.5 ± 7.0 78.1 ± 6.9/82.9 ± 6.1 77.5 ± 7.0/85.1 ± 6.1
isolet 92.3 ± 3.8/91.7 ± 3.4 98.8 ± 1.1/99.4 ± 0.6 99.3 ± 0.6/98.3 ± 1.1 98.2 ± 5.7/98.3 ± 1.0 98.8 ± 1.8/98.5 ± 0.9
liverDisorders 54.8 ± 7.1/56.5 ± 6.6 53.3 ± 7.5/55.7 ± 6.8 53.8 ± 7.7/56.6 ± 6.7 52.8 ± 9.7/56.6 ± 6.6 54.2 ± 6.8/56.6 ± 6.7
optdigits 95.3 ± 3.0/94.8 ± 3.3 99.2 ± 0.7/99.7 ± 0.5 99.7 ± 0.3/99.2 ± 1.7 95.3 ± 8.6/97.1 ± 2.7 98.4 ± 1.8/98.3 ± 1.8
vehicle 79.3 ± 5.3/81.3 ± 4.7 83.7 ± 9.2/84.6 ± 10.9 83.1 ± 6.1/84.8 ± 9.0 82.0 ± 6.5/84.4 ± 6.9 81.9 ± 6.1/84.7 ± 6.3
wdbc 84.5 ± 7.4/84.9 ± 6.7 89.7 ± 4.1/90.1 ± 3.5 86.7 ± 6.6/89.1 ± 4.7 86.5 ± 6.6/89.2 ± 4.7 86.6 ± 6.7/88.9 ± 4.9
digit1 75.4 ± 5.3/74.1 ± 7.9 83.8 ± 2.7/89.4 ± 4.0 81.7 ± 4.3/88.2 ± 2.7 74.0 ± 6.0/88.0 ± 5.2 75.4 ± 5.2/77.7 ± 6.5
usps 77.9 ± 5.1/79.8 ± 2.4 74.4 ± 5.4/68.2 ± 7.0 76.1 ± 6.3/68.8 ± 2.6 78.5 ± 5.0/78.7 ± 4.6 78.1 ± 4.5/79.8 ± 2.4
coil 58.2 ± 7.0/62.0 ± 6.2 57.2 ± 4.8/61.4 ± 6.6 56.4 ± 4.7/63.1 ± 10.7 56.3 ± 7.9/60.9 ± 9.0 58.2 ± 7.1/62.0 ± 6.2
bci 53.5 ± 8.6/51.7 ± 5.6 50.5 ± 8.1/51.4 ± 4.4 51.5 ± 7.5/50.7 ± 5.6 50.7 ± 7.0/51.2 ± 5.5 52.8 ± 8.0/51.7 ± 5.8
g241c 58.7 ± 4.0/58.7 ± 3.9 79.9 ± 1.9/63.2 ± 4.4 65.4 ± 4.9/49.5 ± 2.3 54.1 ± 5.1/45.8 ± 14.6 58.7 ± 4.0/58.7 ± 3.9

Win/Tie/Loss against SVM: 15/19/6 13/23/4 13/23/4 16/24/0

5.2 Out-of-Sample Extension

Table 3 shows the performance of S4VMs with out-
of-sample extension on small and medium scale data
sets. For each data set, 75% of instances are used for
training, among which 10 are served as labeled data
and required to be satisfied by the balance constraint.
The remaining instances are used for testing. Experi-
ment repeats for 30 times. The average performance
and standard deviation are recorded.

As can be seen from Table 3 that S4VMs works
quite well with out-of-sample extension. Specifically,
in terms of wins, S4VMs performs the best in compar-
ison with the other three S3VMs. More importantly,
unlike the other S3VMs, such as S3VM, S3VMmin

s

and S3VMcom
s , which show significant performance

reductions in many cases, S4VMs is never inferior
to inductive SVM. The Wilcoxon sign tests at 95%
significance level confirm that S4VMs is significantly
better than inductive SVM with both linear and RBF
kernels, and the other three S3VMs do not achieve
significance.

5.3 Influence of the Number of Labeled Data

Table 4 shows the performance of S4VMs under
different numbers of labeled examples. As can be
seen from Table 4 that S4VMs is found to be highly
competitive with S3VM for each number of labeled
examples. Specifically, in terms of wins, S3VM obtains
significance on 19/20/20 of the 40 cases for 20, 50
and 100 labeled examples, respectively; while S4VMs

outperforms on 20/20/17 cases accordingly. In terms
of pairwise comparison (suppose win, tie and loss
stand for scores of 1, 0 and -1 for each data set), S4VMs

outscores S3VM on 7 data sets, scores the same as
S3VM on 7 data sets, and lower on 6 data sets.

More importantly, in contrast to S3VM that sig-
nificantly reduces performance on 17 cases, S4VMs

only shows decreased performance on 3 cases which
all happen on liverDiscorders with linear kernel. The
might be because, in that setting, even the S3VMbest

s

approach (which always selects the best candidate
separator) cannot achieve a comparable performance
against the inductive SVM (the accuracies of S3VMbest

s

are 56.9, 61.2 and 64.5 for 20, 50 and 100 labeled
examples, which are all significantly inferior to the
inductive SVM). The Wilcoxon sign tests at 95% signif-
icance level confirm that S4VMs is significantly better
than the inductive SVM on each number of label
examples, whereas S3VM does not show significance.

5.4 Influence of the Number of Unlabeled Data
Table 5 shows the performance of S4VMs with dif-
ferent numbers of unlabeled instances. As can be
seen, similar to the cases in Section 5.3, S4VMs still
performs highly competitive with S3VM, both in
terms of the wins as well as the pairwise compar-
ison. Furthermore, unlike S3VM which significantly
hurts performance on 23 cases, S4VMs never shows
decreased performance. The Wilcoxon sign tests at
95% significance level still conform that S4VMs is sig-
nificantly better than inductive SVM on each number
of unlabeled instances, and S3VM does not show such
a significance.

5.5 Influence of the Balance Constraint
One piece of prior knowledge of S3VMs is the balance
constraint. Although the balance constraint is often a
mild assumption, it might still be violated in some
cases. To study the influence of the balance con-
straint, 10 labeled examples whose class proportion
is substantially different from that of remaining unla-
beled data, are randomly selected, and the balance
constraint is still required for S3VMs and S4VM.
Experiments are repeated for 30 times. The average
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TABLE 4
Accuracy of SVM and accuracy improvements of S4VMs and S3VM against SVM on different numbers of labeled data. The

accuracy improvement of algo against SVM is calculated by (accalgo − accsvm). ’lin’ stands for the linear kernel.

Data 20 labeled 50 labeled 100 labeled Win/Tie/Loss

SVM S3VM S4VM SVM S3VM S4VM SVM S3VM S4VM S3VM S4VM
lin/RBF lin/RBF lin/RBF lin/RBF lin/RBF lin/RBF lin/RBF lin/RBF lin/RBF

austra 73.1/75.0 2.3/1.5 0.6/2.8 79.9/77.3 0.4/1.8 0.8/0.7 83.3/78.2 -0.5/0.8 -0.4/0.4 3/3/0 3/3/0
australian 76.6/77.9 0.6/2.8 0.4/0.8 75.2/79.8 -0.1/1.0 1.6/0.9 79.9/80.8 0.6/1.2 1.6/0.7 4/2/0 5/1/0
breastw 95.2/96.0 1.2/0.4 0.5/0.5 94.0/95.2 1.3/0.4 0.5/0.3 94.6/95.0 0.5/0.4 0.3/0.1 4/2/0 6/0/0
clean1 64.1/69.0 -1.0/-2.8 0.9/0.0 69.6/76.3 0.3/-0.4 0.1/-0.3 72.8/83.2 0.4/0.1 0.2/0.1 0/5/1 0/6/0
diabetes 68.7/67.3 0.4/1.1 0.2/0.2 72.8/68.9 -0.5/0.8 0.1/0.2 74.9/69.5 -0.9/0.1 -0.2/0.9 1/4/1 0/6/0
haberman 66.0/65.6 0.0/-1.2 0.3/-0.2 71.3/67.0 -3.9/-1.5 -0.5/-0.2 72.9/68.6 -2.4/-1.0 0.2/-0.4 0/2/4 0/6/0
heart 72.5/73.1 0.9/1.3 1.1/1.0 78.9/75.8 -0.6/0.7 -0.2/0.2 80.8/76.5 0.3/0.2 -0.5/0.0 1/5/0 1/5/0
house-votes 88.7/90.0 1.1/0.8 0.7/0.5 89.6/91.5 1.0/0.6 0.4/0.0 91.0/92.8 0.7/0.3 0.2/0.1 4/2/0 2/4/0
house 92.5/90.3 0.0/1.0 0.8/0.3 95.1/94.0 -0.6/0.4 0.1/0.1 92.7/94.2 0.7/0.4 0.1/0.1 4/1/1 1/5/0
ionosphere 79.4/87.4 1.3/2.1 1.7/3.0 81.7/90.3 -1.5/-0.4 -0.6/0.5 84.2/91.6 -1.8/0.0 -0.2/0.3 1/3/2 4/2/0
isolet 96.5/96.5 3.2/3.1 3.1/2.4 98.7/98.7 1.0/1.0 0.9/0.4 99.2/99.4 0.5/0.4 0.4/0.1 6/0/0 6/0/0
liverDisorders 59.0/59.7 -2.0/-0.2 -2.4/-0.7 63.1/64.3 -1.6/0.0 -1.9/-0.7 66.4/67.1 -0.7/-0.3 -1.9/0.4 0/4/2 0/3/3
optdigits 97.3/97.3 2.5/2.4 1.8/1.8 98.6/98.8 1.1/0.9 0.9/0.6 99.2/99.5 0.5/0.2 0.4/0.2 6/0/0 6/0/0
vehicle 84.9/88.3 4.3/5.1 1.6/3.6 90.4/94.6 1.3/2.4 0.3/1.0 93.5/97.8 0.6/0.7 -0.2/0.1 6/0/0 5/1/0
wdbc 89.8/89.8 4.3/3.7 0.5/1.3 91.8/91.6 1.0/1.4 -0.2/0.4 95.3/93.8 0.4/0.7 -0.4/0.0 5/1/0 3/3/0
digit1 83.4/84.0 2.9/7.1 0.1/4.5 88.7/91.2 1.2/2.9 0.3/0.9 90.9/94.5 2.0/0.9 0.6/0.4 6/0/0 5/1/0
usps 82.3/80.1 -3.4/-2.2 0.0/0.1 85.4/80.7 -1.1/6.3 0.4/6.4 86.9/83.3 -0.2/8.3 0.5/7.4 2/2/2 4/2/0
coil 66.1/68.8 0.8/-2.1 0.1/0.0 74.7/80.2 -0.1/-1.6 0.1/0.3 80.4/87.1 0.6/-0.6 0.2/0.0 0/6/0 0/6/0
bci 56.2/53.8 -1.1/-2.5 -1.1/-0.9 62.4/55.9 -1.9/-2.3 -0.6/0.4 68.5/61.6 0.0/-0.9 2.1/1.0 0/2/4 0/6/0
g241c 65.3/65.3 18.0/1.2 0.3/1.2 70.5/71.6 11.6/1.4 0.3/1.5 73.7/76.8 6.6/0.8 0.4/0.9 6/0/0 6/0/0

Win/Tie/Loss against SVM: 19/17/4 20/19/1 - 20/12/8 20/19/1 - 20/15/5 17/22/1 59/44/17 57/60/3

TABLE 5
Accuracy of SVM and accuracy improvements of S4VMs and S3VM on different numbers of unlabeled data.

Data 40% unlabeled 60% unlabeled 80% unlabeled Win/Tie/Loss

SVM S3VM S4VM SVM S3VM S4VM SVM S3VM S4VM S3VM S4VM
lin/RBF lin/RBF lin/RBF lin/RBF lin/RBF lin/RBF lin/RBF lin/RBF lin/RBF

austra 69.9/69.2 -0.7/2.6 0.7/1.8 70.2/69.3 -0.7/2.0 0.9/1.5 70.0/69.3 0.1/2.0 0.7/0.8 1/5/0 2/4/0
australian 75.0/70.6 2.5/6.6 0.5/1.0 75.3/71.3 2.6/6.7 0.2/0.4 75.3/71.5 2.7/5.9 0.1/0.5 6/0/0 1/5/0
breastw 94.3/95.0 -1.0/-1.7 0.7/1.1 94.3/95.0 -1.1/-1.8 0.9/1.4 94.3/95.0 -1.0/-1.7 0.8/1.1 0/0/6 6/0/0
clean1 59.7/64.2 -1.3/-2.8 0.0/-0.7 59.2/64.0 -1.4/-4.5 -0.2/-0.5 59.0/64.2 -1.7/-3.8 0.2/-0.5 0/2/4 0/6/0
diabetes 66.0/66.1 -1.4/-1.5 0.3/-0.6 65.4/65.9 -1.3/-0.7 0.2/-0.3 65.5/66.0 -1.1/-0.9 0.1/-0.4 0/5/1 0/6/0
haberman 63.6/66.0 -1.1/-4.7 -0.3/0.2 63.7/66.0 -1.9/-4.9 0.3/0.2 63.6/65.9 -2.0/-5.1 0.1/0.0 0/3/3 0/6/0
heart 71.9/73.0 1.0/-0.1 0.1/0.3 72.1/73.1 1.2/0.1 0.4/0.4 71.4/72.5 1.1/0.6 0.8/0.3 0/6/0 0/6/0
house-votes 88.2/88.0 1.4/1.1 1.0/1.1 87.9/87.9 1.2/1.0 1.1/1.0 87.9/87.9 1.0/1.2 1.2/1.0 4/2/0 6/0/0
house 89.4/88.7 0.3/1.1 1.3/0.5 89.8/88.9 0.8/0.4 1.2/0.6 90.0/89.1 1.5/0.9 0.5/0.4 3/3/0 5/1/0
ionosphere 74.9/80.2 -0.5/2.5 1.3/2.7 74.5/79.4 -0.6/4.0 1.4/4.1 73.9/79.4 0.7/3.6 2.1/4.3 3/3/0 4/2/0
isolet 92.1/91.9 5.9/5.9 6.9/5.5 92.2/91.9 6.5/6.6 7.0/6.2 92.3/91.9 6.6/7.0 6.5/6.6 6/0/0 6/0/0
liverDisorders 53.5/54.7 -1.7/-0.9 -0.3/-0.1 54.0/55.0 -1.1/-1.1 -0.6/-0.1 54.4/55.2 -1.2/-1.4 -0.6/-0.2 0/3/3 0/6/0
optdigits 95.4/94.6 3.2/4.0 3.1/3.4 95.3/94.6 3.8/4.5 3.5/3.4 95.3/94.6 4.2/4.9 3.5/3.7 6/0/0 6/0/0
vehicle 78.6/80.0 5.2/3.9 2.0/3.4 78.7/80.2 5.6/5.3 3.0/4.5 78.8/80.3 6.3/4.4 3.4/5.0 6/0/0 6/0/0
wdbc 85.1/85.4 5.5/4.5 2.6/3.7 85.1/85.4 6.1/5.6 3.0/4.6 85.1/85.3 5.4/5.4 3.5/5.0 6/0/0 6/0/0
digit1 76.1/75.3 7.0/11.5 0.1/4.6 76.5/75.6 7.5/13.2 0.3/4.9 76.7/75.7 8.1/13.8 0.2/4.7 6/0/0 3/3/0
usps 78.4/80.3 -4.0/-9.4 0.4/0.3 78.5/80.3 -3.8/-11.8 0.6/0.1 78.1/80.0 -3.6/-12.2 0.4/0.0 0/2/4 0/6/0
coil 57.9/61.9 0.1/-0.5 0.0/0.0 57.8/61.9 -0.1/0.0 0.2/-0.1 57.9/61.9 -0.3/-0.5 0.0/0.0 0/6/0 0/6/0
bci 54.0/51.5 -0.6/-1.1 0.0/-1.0 54.4/51.6 -1.1/-1.2 0.2/0.0 54.0/51.4 -1.5/-1.5 -0.3/-0.4 0/4/2 0/6/0
g241c 60.3/60.1 17.0/0.8 0.1/0.1 60.4/60.2 20.7/0.7 0.1/0.0 60.3/60.1 22.9/0.9 0.0/0.4 6/0/0 1/5/0

Win/Tie/Loss against SVM: 18/14/8 18/22/0 - 17/17/6 16/24/0 - 18/13/9 18/22/0 53/44/23 52/68/0

performance and standard deviation on UCI data sets
with linear kernel are reported in Table 6.

The results show that both the S4VMs and S3VM
perform much worse than those without the violation
of the balance constraint (cf. results in Table 2). More-
over, although S4VMs has already substantially im-
proved the safeness of S3VM, it still shows significant
decrease performance on 2 cases. This suggests that,
in the cases in which the class proportion of unlabeled
instances cannot be estimated using existing labeled
examples, it is still challenging to have safe S3VMs.

5.6 Influence of Parameters

S4VMs has four parameters, i.e., sampling size N ,
cluster number T , risk parameter λ and the kernel

TABLE 6
Comparison of accuracy (mean±std.) when the balance

constraint is violated.

Data SVM S3VM S4VMs

austra 68.1 ± 9.1 64.7 ± 10.9 66.8 ± 10.4
australian 69.7 ± 10.2 70.5 ± 13.1 69.3 ± 9.9
breastw 94.8 ± 3.0 85.6 ± 8.1 91.1 ± 6.5
clean1 57.4 ± 5.3 57.1 ± 4.4 57.4 ± 5.2
diabetes 65.3 ± 6.3 64.4 ± 6.5 64.7 ± 6.3
haberman 63.2 ± 7.2 61.6 ± 5.5 63.8 ± 6.6
heart 71.9 ± 7.7 71.3 ± 8.0 72.1 ± 7.7
house-votes 86.7 ± 4.5 85.4 ± 5.0 87.1 ± 3.7
house 89.2 ± 4.7 85.2 ± 9.3 88.5 ± 7.8
ionosphere 70.9 ± 6.7 71.4 ± 10.0 71.3 ± 8.2
isolet 90.6 ± 4.9 87.3 ± 8.2 92.7 ± 5.9
liverDisorders 56.6 ± 5.3 54.6 ± 5.6 54.8 ± 5.7
optdigits 93.1 ± 4.5 88.2 ± 8.4 93.1 ± 7.8
vehicle 76.4 ± 8.2 79.2 ± 8.9 76.5 ± 9.7
wdbc 81.8 ± 7.5 86.6 ± 5.0 84.2 ± 6.4

S3VMs vs SVM: Win/Tie/Loss 2/7/6 2/11/2
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Fig. 2. Parameter influence with 10 labeled examples.

type to set. In previous empirical studies, N , T and λ
are set as default values, i.e., 100, 10 and 3. Figure 2
further studies the influence of N , T and λ with linear
and RBF kernels on five representative data sets (the
results on other data sets are similar) with 10 labeled
examples by fixing other parameters as default values.

It can be seen that, though the number of labeled
examples is small, the performance of S4VMs is quite
insensitive to the setting of the parameters. One possi-
ble reason is that, rather than simply picking one low-
density separator, S4VMs optimize the assignment of
labels in the worst cases. This property makes S4VMs

even more attractive, especially when the number
of labeled examples is too small to afford a reliable
model selection. Moreover, paired t-tests at 95% sig-
nificance level confirm that S4VMs does not reduce
performance on all the cases in Figure 2(a)-(b) and
Figure 2(c) when λ ≥ 1.

5.7 Running Time

Following the setup in Section 5.2, Figure 3 gives
the training and testing time of S3VM and S4VMs

with linear kernel on UCI data sets. S4VMs runs
approximately 10 times of S3VM. That is because
S4VMs needs to generate T low-density separators,
where T is usually a small constant (such as 10 in our
experiments). It is notable that the implementation of
S4VMs is inherently parallelizable, and thus S4VMs

can be accelerated by parallel implementations or by
using more efficient S3VM solvers.
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Fig. 3. Training and testing time (in seconds) of S3VM and
S4VMs on UCI data sets with linear kernel.

TABLE 7
Accuracy of other S3VMs (mean±std.).

Data SVM LapSVM LDS S4VMs

austra 69.2 ± 7.1 65.1 ± 5.4 73.7 ± 14.8 70.6 ± 8.8
australian 71.4 ± 6.8 73.0 ± 7.7 76.7 ± 12.7 71.2 ± 7.1
breastw 95.0 ± 2.4 93.2 ± 1.9 96.2 ± 0.6 95.9 ± 1.5
clean1 64.9 ± 4.1 51.5 ± 3.9 55.0 ± 6.1 64.4 ± 4.4
diabetes 66.1 ± 4.4 66.7 ± 4.5 64.2 ± 6.9 65.5 ± 5.5
haberman 65.8 ± 5.4 58.0 ± 8.4 64.3 ± 3.0 66.0 ± 4.2
heart 72.2 ± 5.5 74.7 ± 5.5 75.1 ± 7.3 73.5 ± 5.6
house-votes 87.9 ± 2.4 86.8 ± 3.2 89.3 ± 0.8 88.6 ± 2.2
house 89.3 ± 2.3 89.7 ± 1.4 90.2 ± 1.8 89.8 ± 2.4
ionosphere 79.7 ± 5.6 69.2 ± 5.3 89.1 ± 5.5 84.3 ± 6.6
isolet 91.9 ± 3.1 90.1 ± 6.8 99.2 ± 0.1 98.6 ± 0.6
liverDisorders 55.5 ± 4.7 53.0 ± 5.0 52.1 ± 3.9 55.4 ± 4.7
optdigits 94.6 ± 3.2 93.2 ± 4.5 99.5 ± 0.0 98.0 ± 2.0
vehicle 80.3 ± 6.2 78.4 ± 7.7 90.4 ± 12.2 85.0 ± 7.5
wdbc 85.3 ± 5.1 83.2 ± 6.2 92.7 ± 0.5 90.7 ± 4.1

S3VMs vs SVM: Win/Tie/Loss 1/6/8 9/4/2 9/6/0

5.8 Comparison with Other S3VMs
Table 7 shows the accuracy of other S3VM implemen-
tations. Specifically, Laplacian SVM (LapSVM) [2]7

which incorporates manifold assumption into S3VMs,
and Low Density Separation (LDS) [12]8 which first
introduces a graph-based distance for instances and
then optimizes the objective of S3VM with the gra-
dient descent method, are compared with inductive
SVM. The parameters γA, γI of LapSVM are set to
the same as the parameters C1 and C2 in S3VMs
and S4VMs (i.e., 100 and 0.1). The ρ in LDS is set
to 4 which achieves the best performance reported
in the paper. Since LDS is based on RBF kernel,
RBF kernel is used for inductive SVM and LapSVM.
The other parameters are with the default settings
recommended by the paper. As shown in Table 7,
similar to TSVM [23], other S3VM implementations

7. http://manifold.cs.uchicago.edu/manifold regularization/software
8. http://olivier.chapelle.cc/lds/

http://manifold.cs.uchicago.edu/manifold_regularization/software
http://olivier.chapelle.cc/lds/
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like LapSVM and LDS also decrease the performance
significantly in some cases.

6 CONCLUSION
The purpose of this paper is to develop safe semi-
supervised support vector machines (S3VMs) which
never perform significantly inferior to inductive SVMs
that only use labeled data. Based on our prelimi-
nary works in [31], [32], this paper first proposes
the S3VM-us approach. This approach uses only the
unlabeled instances that are very likely to be help-
ful, and thus avoids the use of highly risky unla-
beled instances. Our empirical studies show that this
approach improves safeness but only improves the
performance slightly, usually much less than S3VMs.
To develop a safe and well-performing approach, we
re-examine the fundamental assumption of S3VMs,
i.e., low-density separation. Based on the observation
that multiple low-density separators can be identified
from training data, S4VMs (Safe S3VMs) approach,
the main contribution of this paper, is proposed. This
approach attempts to avoid the risk of using a poor
separator. Under the low-density assumption used by
S3VMs, S4VMs are found to be provably safe and to
achieve the maximum improvement in performance.
An out-of-sample extension of S4VMs is also pre-
sented so that S4VMs can make predictions on unseen
instances. Our empirical studies on a broad range of
data sets show that the overall performance of S4VMs
is highly competitive with S3VMs, but unlike S3VMs
which show significant reduced performance in many
cases, S4VMs are rarely inferior to inductive SVMs.

Our empirical studies in Table 2 reveal that even
when low-density assumption does not hold, S4VMs
still work well. We conjecture that this is because
S4VMs exploit multiple separators rather than relying
on a single separator. In this way, its robustness
benefits from an inherent ensemble learning mecha-
nism [49]. Further study on this issue is an interesting
future work. It is also possible to combine the advan-
tages of S3VM-us and S4VMs to develop approaches
that are even stronger than the current S4VMs. More-
over, extending the spirit of S4VMs to graph-based
semi-supervised methods [2], [33], [45], [53], as well
as connecting the safeness to the generalization are
worth studying in the future.
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