IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS — PART B 1

Exploratory Undersampling for
Class-Imbalance Learning

Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhousenior Member, IEEE

Abstract—Under-sampling is a popular method in deal- will be wrongly classified in this case. In problems where
ing with class-imbalance problems, which uses only athe imbalance level is huge, class-imbalance must be
subset of the majority class and thus is very efficient. carefully handled to build a good classifier.

The.main deficiency is that many majority class examplgs Class-imbalance is also closely related to cost-

are ignored. We propose two algorithms to overcome this oo iy learning, another important issue in machine

deficiency. EasyEnsemble samples several subsets from . . o S . .
learning. Misclassifying a minority class instance is

the majority class, trains a learner using each of them, and ; ) > >
combines the outputs of those learnerBalanceCascade  Usually more serious than misclassifying a majority class

trains the learners sequentially, where in each step the One. For example, approving a fraudulent credit card
majority class examples which are correctly classified by application is more costly than declining a credible
the current trained learners are removed from further one. Breiman et al. [7] pointed out that training set
consideration. Experimental results show that both meth- gjze, class priors, cost of errors in different classes, and
ods have higher AUC, F-measure and G-mean valuesplacement of decision boundaries are all closely con-
than many existing class-imbalance leaming methods. o taq |n fact, many existing methods for dealing with
Moreover, they have approximately the same training time class-imbalance rely on connections among these four
as that of under-sampling when the same number of weak . .
classifiers are used, which is significantly faster than other compoqents. Sampllng meth0d$ handle Clas,’s"m,balance
methods. by varying the minority and majority class sizes in the
training set. Cost-sensitive learning deals with class-
imbalance by incurring different costs for the two classes
and is considered as an important class of methods to
handle class-imbalance [37]. More details about class-
. INTRODUCTION imbalance learning methods are presented in Section I
N many real-world problems, the data sets are typi- In this paper we examine only binary classification
cally imbalanced, i.e., some classes have much m@®blems by ensembling classifiers built from multiple
instances than others. The level of imbalance (ratimder-sampled training sets. Under-sampling is an effi-
of size of the majority class to minority class) cawient method for class-imbalance learning. This method
be as huge ad0® [41]. It is noteworthy that class- uses a subset of the majority class to train the classifier.
imbalance is emerging as an important issue in designiBghce many majority class examples are ignored, the
classifiers [11], [23], [37]. training set becomes more balanced and the training
Imbalance has a serious impact on the performansecess becomes faster. However, the main drawback
of classifiers. Learning algorithms that do not considef under-sampling is that potentially useful information
class-imbalance tend to be overwhelmed by the majortgntained in these ignored examples is neglected. The
class and ignore the minority class [10]. For example, intuition of our proposed methods is then to wisely ex-
a problem with imbalance level 99, a learning algorithiplore these ignored data, while keeping the fast training
that minimizes error rate could decide to classify adpeed of under-sampling.
examples as the majority class in order to achieve a lowWe propose two ways to use these data. One straight-
error rate of 1%. However, all minority class example®rward way is to sample several subsets independently
_ , , from N (the majority class), use these subsets to train
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AUC, F-measure and G-mean values than many existiwigh higher misclassification cost in the boosting pro-
class-imbalance learning methods. cess. In [30] the initial weights of high cost exam-

The rest of this paper is organized as follows. Seples were increased. It was reported that, however,
tion Il reviews related methods. Section Il presenthie weight differences between examples in different
EasyEnsemble andBalanceCascade . Section IV classes disappear quickly when the boosting process
reports the experiments. Finally, Section V concludgsoceeds [33]. Thus, many algorithms raised high cost
this paper. examples’ weights in every iteration of the boosting
process, for example, AsymBoost [33], AdaCost [17],
CSB [31], DataBoost [21], AdaUBoost [24], just to name
a few. Another way to adapt a boosting algorithm to

As mentioned in the previous section, many existingbst-sensitive problems is to change the weights of the
class-imbalance learning methods manipulate the followeak classifiers in forming the final ensemble classifier,
ing four components: training set size, class prior, costich as BMPM [22] and LAC [41]. Unlike the heuristic
matrix, and placement of decision boundary. Here wgethods mentioned above, Asymmetric Boosting [28]
pay special attention to two classes of methods that alieectly minimized a cost-sensitive loss function in the
most widely used: sampling and cost-sensitive learningtatistical interpretation of boosting.

For other methods, we refer the readers to [37] for agMOTEBoost [12] is designed for class-imbalance
more complete and detailed review. learning, which is very similar to AsymBoost. Both
Sampling is a class of methods that alters the size @thods alter the distribution for the minority class and
training sets. Under-sampling and over-sampling changfjority class in separate ways. The only difference
the training sets by sampling a smaller majority training how these distributions are altered. AsymBoost di-
set and repeating instances in the minority training seéctly updates instance weights for the majority class
respectively [15]. The level of imbalance is reducegnd minority class differently in each iteration, while
in both methods, with the hope that a more balanceMOTEBoost alters distribution by first updating in-
training set can give better results. Both sampling metfmnce weights for majority class and minority class

ods are easy to implement and have been showndgually and then using SMOTE to get new minority class
be helpful in imbalanced problems [37], [47]. Undermstances.

sampling requires shorter training time, at the cost OfChan and Stolfo [8] introduced an approach to explore

ignoring potentially useful data. Over-sampling increas?ﬁajority class examples. They split the majority class

the training set size, and thus requires longer trainifng  <overal non-overlapping subsets, with each subset
time. Furthermore, it tends to lead to overfitting Sincﬁaving approximately the same number of examples
it repeats minority class examples [9], [15]. Besidesy the minority class. One classifier was trained from

the basic under-sampling and over-sampling methods, ., of these subsets and the minority class. The final
there are also methods that sample in more complg¥ssifier ensembled these classifiers using stacking [40].
ways. SMOTE [9] added new synthetic minority clasg,yever, when a data set is highly imbalanced, this

examples by randomly interpolating pairs of closeghyinach requires a much longer training time than

neighbors in the minority class. The one-sided selectighyer sampling. Also, since the minority class examples
procedures [25] tried to find a representative subset é’rfe used by every classifier, stacking these classifiers
majority class examples by only removing ‘borderlingy iy have a high probability of suffering from overfitting

and ‘noisy’ majority examples. Some other method§nen, the number of minority class examples is limited.
combine different sampling strategies to achieve further

improvement [1]. Also, researchers have studied the

effect of varying the level of imbalance and how to find

the best ratio when a C4.5 tree classifier was used [38]. !ll. EASYENSEMBLE& BALANCECASCADE
Cost-sensitive learning [14], [16] is another important

class of class-imbalance learning methods. AlthoughAs was shown by [15], under-sampling is an effi-

many learning algorithms have been adapted to ament strategy to deal with class-imbalance. However,

commodate class-imbalance and cost-sensitive problethg, drawback of under-sampling is that it throws away

variants of AdaBoost appear to be the most popularany potentially useful data. In this section, we pro-

ones. Many cost-sensitive boosting algorithms have bgewse two strategies to explore the majority class exam-

proposed [31]. A common strategy of these varianpdes ignored by under-samplingasyEnsemble and

was to intentionally increase the weights of examplé&alanceCascade

Il. RELATED WORK
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A. EasyEnsemble [35], [36], [42] combine different ensemble strategies
Given the minority training seP and the majority © achieve_ stronger g_enera_llization._MultiBoqsting [35],

training setA’, the under-sampling method randomiy36] combines boosting with bagging/wagging [2] by

samples a subsat’ from \V, where|\”'| < |\’ Usually using boosted ensembles as base learners. Stochastic

we chooseA’| = |P|, and therefore have\”| < | V] Gradient Boosting [19] and Cocktail Ensemble [42] also
for highly imbalanced problems. combine different ensemble strategies. It is evident that

EasyEnsemble is probably the most straightforwardE@SyEnsemble has benefited from the combination of
way to further exploit the majority class examples igt_)oostmg and a bagging-like strategy with balanced class

nored by under-sampling, i.e. examplesARN A7, In distribution.
this method, we independently sample several subset§0th EasyEnsemble and Balanced Random Forests

Ni,Na,.... Ny from N. For each subsef; (1 < Uy to use balanced bootstrap samples, however, the
i < T), a classifierH; is trained usingV; and all of former uses the samples to generate boosted ensembles
P, All generated classifiers are combined for the fin4fhile the latter uses the samples to train decision trees
decision. AdaBoost [29] is used to train the classifié@ndomly. Costing [43] also uses multiple samples of the
H;. The pseudo-code fdEasyEnsemble is shown in ©riginal training set. Costing was initially proposed as a

Algorithm 1. cost-sensitive learning method, whiteasyEnsemble
is proposed to deal with class-imbalance directly. Be-
Algorithm 1 The EasyEnsemble algorithm. sides, the working style oEasyEnsemble is quite

1. {Input: A set of minority class exampleB, a set of different from Costing. For example, the Costing method

majority class examples/, |P| < |\, the number of samplgs the exam'ple's with pro_bability_ in pro_por_tion
subsetsT to sample fromA/, and s;, the number of to their costs (Rejection Sampling). Since this is a

iterations to train an AdaBoost ensemidie} probability-based sampling method, no positive exam-
2210 ple will definitely appear in all the samples (in fact,
3: repeat the probability of a positive example appearing in all
4 e+l the samples is small). While iEasyEnsemble , all
5 Randomly sample a subs&f; from V, [Ni| = [P|. 0 yositive examples will definitely appear in all the
6: LearnH; usingP andN;. H; is an AdaBoost ensemble . . .
with s; weak classifiers; ; and corresponding weights_sgmples' When thg 'S|ze of mln(')rlty. class is very small,
a;.;. The ensemble’s threshold 65, i.e. it is important to utilize every minority class example.
HL(I) = sgn (Z;;l ai7jhi7j(x) — 07> .
7. until i =T B. BalanceCascade
8: Output: An ensemble: ) )
H(z) = sen (ZL S aishi (@) - ST 9i> . EasyEnsembIe_ is an un_superwsed strategy
to explore N since it uses independent random

sampling with replacement. Our second algorithm,

The idea behindasyEnsemble is simple. Similar BalanceCascade , explores NV in a supervised
to the balanced Random Forests [1B3syEnsemble  manner. The idea is as follows. Afteil; is trained,
generates” balanced sub-problems. The output of thi#é an examplexr; € N is correctly classified to be in
ith sub-problem is AdaBoost classifiéf;, an ensemble the majority class by, it is reasonable to conjecture
with s; weak classifiers(h; ;}. An alternative view of that z; is somewhat redundant in, given that we
h;; is to treat it as a feature that is extracted by thaready havefd;. Thus, we can remove some correctly
ensemble learning method and can only take binatiassified majority class examples frotW. As in
values [41]. H;, in this viewpoint, is simply a linear EasyEnsemble , we use AdaBoost in this method.
classifier built on these features. Features extracted frdime pseudo-code oBalanceCascade is described
different subsetsV; thus contain information of differentin Algorithm 2.
aspects of the original majority training s&f. Finally, This method is calleBalanceCascade since it
instead of counting votes froiH;};—;._7, we collect is somewhat similar to the cascade classifier in [34].
all the featuresh; ; (i = 1,2,...,T, j = 1,2,...,s;), The majority training set\ is shrunk after everyHd;
and form an ensemble classifier from them. is trained, and every nodH; is dealing with a balanced

The output ofEasyEnsemble is a single ensem- sub-problem |(\V;| = |P]|). However, the final classifier
ble, but it looks like an ‘ensemble of ensembles’. fis different. A cascade classifier is the conjunction of all
is known that, Boosting mainly reduces bias whil¢H;},—1 7, i.e. H(z) predicts positive if and only if all
Bagging mainly reduces variance. Several works [19;(x) (i = 1,2,...,T) predict positive. Viola and Jones
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Algorithm 2 The BalanceCascade algorithm. Chan) is closely related toEasyEnsemble and
1: {Input: A set of minority class exampleB, a set of BalanceCascade . It splits the majority class into
majority class examples/, [P| < |V, the number of several non-overlapping subsets, with each subset having
subsetsT’ to sample from)V, and s;, the number of qinjjar size to the the minority class. Classifiers trained
iterations to train an AdaBoost ensembiie} f h . | b d th L |
B ST 1 e the false nodtive rate (e TOM €2CN Majority class subset and the minority class
221 =0, f = "/ixp fis positiv (the 5re combined by stacking. The differences between
€han and the proposed methods are obvious:Ghan

error rate of misclassifying a majority class example t
the minority class) thati; should achieve. e
uses all majority class examples, whdasyEnsemble

j re?iiti 1 and BalanceCascade use only part of them. When

5. Randomly sample a subsaf, from A, |N;| = |P|. a data set is highly imbalance@han requires a much

6: LearnH; usingP and\;. H; is an AdaBoost ensemblelonger training time than the proposed methods. How-
with s; weak classifiers; ; and corresponding weightsever, the experimental results reveal that it is not nec-
a; j. The ensemble’s threshold 6 i.e. essary to use all majority class examples to achieve
Hi(z) = sgn (251, aijhij(x) — 9¢> . good performances. (ZJhan uses stacking to combine

7:  Adjust 6; such thatH,'s false positive rate ig. classifiers trained from each subset. As stated above,

8: Remove from\ all examples that are correctly classisince the minority class is used repeatedly, stacking is

. unf[ii?d‘ by;[i. likely to suffer from overfitting when the number of

: 1=

minority class examples is limited.
. Both EasyEnsemble and BalanceCascade are

H(z) = sen (Zj:l Y5t @ighis (@) = Eiy Hi) ' very efficien{. Their training time is roughly the same as
that of under-sampling when the same number of weak
classifiers are used. Detailed analysis of training time and
[34] used the cascade classifier mainly to achieve fasthpirical running time are presented in section IV-C.
testing speed. While iBalanceCascade , sequential
dependency between classifiers is mainly exploited for IV. EXPERIMENTS
reducing the redundant information in the majority class.
This sampling strategy leads to a restricted sample sp@ce
for the following under-sampling process, to explore as It is now well-known that error rate is not an appropri-
much useful information as possible. ate evaluation criterion when there are class-imbalance

BalanceCascade is similar to EasyEnsemble  or unequal costs. In this paper, we use F-measure, G-
in their structures. The main difference between themean, and AUC (Area Under the ROC Curve) [4]
is the line IlI-B and 1lI-B of Algorithm 2. Line 1llI-B as performance evaluation measures. F-measure and G-
removes the true majority class examples frdfp and mean are functions of the confusion matrix as shown
line 1lI-B specifies how many majority class example# Table |. F-measure and G-mean are then defined as
can be removed. At the beginning of tiieth iteration, follows. Here, we take minority class as positive class.
N has been shrunk —1 times, and therefore its current

10: Output: A single ensemble:

Evaluation Criteria

size is|N| - fT=! = |P|. Thus, afterH7 is trained and False Positive Rate (fpr) = 5

. . . . FP+4+TN
N is shrunk again, the size oY is smaller than/P|. True Positive Rate (Accy) = TPFJ;N
We can stop the training process at this time. True Negative Rate (Acc_) = 7T§?FP

There are other ways to combine weak classifiers in G—mean = +/Accy x Acc_
EasyEnsemble and BalanceCascade . A popular Precision = Ll
one is stacking [40]. It takes the outputs of other classi- Recall = 2L~ = Accy
fiers as input to train a generalizer. However, Ting [32] F—measure = 2% Tg:if;is%fce;ﬁll
stated that, the use of class probabilities is crucial for 1)

the successful application of stacked generalization inAUC has proved to be a reliable performance measure
classification tasks. Furthermore, since minority clagsr imbalanced and cost-sensitive problems [18]. Given
examples are used to train each weak classifier, stackiandpinary classification problem, an ROC curve depicts
these classifiers is likely to suffer from overfitting whethe performance of a method using tlfier{pr) pairs, as
the number of minority class examples is limited. Tdlustrated in Figure 1fpr is the false positive rate of the
verify this, stacking is compared with the ensemblgassifier, andpr is the true positive rate4cc,). AUC
strategy used in the proposed methods in section IV-Es the area below the curve (shaded region in Fig. 1). It
Chan and Stolfo's method [8] (abbreviated aimtegrates performance of the classification method over
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TABLE |
CONFUSION MATRIX.

Predicted Positive Class Predicted Negative Class
TP (True Positives) FN (False Negatives)
FP (False Positives) TN (True Negatives)

Actual Positive Class
Actual Negative Class

all possible values ofpr and is proved to be a reliable For every data set, we perform a 10-fold stratified
performance measure for imbalanced and cost-sensitivess validation. Within each fold, the classification
problems [18]. method is repeated 10 times considering that the sam-
pling of subsets introduces randomness. The AUC, F-
measure and G-mean of this cross validation process are
averaged from these 10 runs. The whole cross validation
process is repeated for 5 times, and the final values from
this method are the averages of these 5 cross validation

o
©

o
o

A

True Positive Rate
o
P

runs.
02 We compared the performance of 15 methods, includ-
0 ‘ ‘ : ing:
0 0.1 0.4 0.7 1
False Positive Rate « CART. Classification and regression trees [7]. It

uses the entire data sé? @nd.\) to train a single
classifier.

Bagging (abbreviated aBagg): Bagging [5] uses
the entire data sef{ and\V). CART is used to train
weak classifiers. The number of iterations is 40.
AdaBoost (abbreviated asda). AdaBoost uses the
entire data set® and ). CART is used to train
weak classifiers. The number of iterations is 40.

« AsymBoost (abbreviated assym). AsymBoost is a
typical cost-sensitive variant of AdaBobstet r =
IN'|/|P| be the imbalance level. At each iteration,
the weight of every positive example is multiplied
by ¥/r, whereT is the number of iterations [33].
AsymBoost uses the entire data sé and N).
CART is used to train weak classifiers. The number
of iterations is 40.

« SMOTEBoost (abbreviated &MB. SMOTE adds

Fig. 1. Example of an ROC curve.

In our experiments, for ensemble classifiers in the *
form H(z) = sgn(>. L, a;hi(z) — 6), we alter the value
of 6 from —co to co. In this way we get a full range of
(for,tpr) pairs and build an ROC curve from these data. *
We then use the Algorithm 3 in [18] to calculate the
AUC score. Details of AUC can be found in [18].

B. Experimental Settings

We tested the proposed methods on 16 UCI data
sets [3]. Information about these data sets is summarized
in Table II.

TABLE I
BASIC INFORMATION OF DATA SETS SizelS NUMBER OF
EXAMPLES. TargetiS USED AS MINORITY CLASS AND ALL

OTHERS ARE USED AS MAJORITY CLASSIN Attribute, B: BINARY,
N: NOMINAL, C: CONTINUOUS. #min/#majIS THE SIZE OF
MINORITY AND MAJORITY CLASS, AND RatioIs THE SIZE OF
MAJORITY CLASS DIVIDED BY THAT OF MINORITY CLASS.

synthetic minority class examples [9]. For data
sets having nominal attributes, we use SMOTE-NC.
Details for implementing SMOTE and SMOTE-NC

can be found in [9]. SMOTEBoost uses SMOTE to

[Dataset | Size | Atribute | Target | #min/#maj | Ratio | get new minority class examples in each iteration.
abalone 4177 7 IN,7C Ring=7 [ 391/3786 [ 9.7 CART is used to train weak classifiers. The number
balance 625 4C Balance 49/576 11.8 fi . . h iahb
car 1728 6N acce 384/1344 | 3.5 o] |terat|ons_ is 40. Thé nearest neighbor parameter
ﬁm; 13%763 381,;‘1N2§C c:ass g 33%;;;;10 g-g of SMOTE is 5. The amount of new data generated

aperman s class . . : . . -

housing 506 | 1B,12C | [20,23] | 106/400 | 3.8 using SMOT'_E in each iteration i|. _

:onosphere 233%)0 igg b:d 7%3%2?1 21483 o Under-sampling + AdaBoost (abbreviated as
etter . / . .
mf-morph | 2000 |  6C class 10 | 200/1800 | 9.0 Under). A subset N is sampled (without
mr:‘-zernike 2000 47C cliass 10 200//1800 9.0 replacement) fror\/, |N’| = |P|. Then, AdaBoost
phoneme 5404 5C class 1 1586/3818| 2.4 . . i ge . /

pima 768 80 oass 1 | 2685500 | 1.9 is used to ftrain a classifier using and N, .
satimage | 6435 36C class 4 | 626/5809 | 9.3 since the problem is balanced after under-sampling.
vehicle 846 18C opel 212/634 3.0

wdbc 569 30C malignant | 212/357 17

wpbc 198 33C recur 471151 | 3.2 11t is also equivalent to the CSB2 algorithm in [31].
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CART is used to train weak classifiers. The number classifier using®’ and . The number of iterations

of iterations is 40. is 40.

« Over-sampling + AdaBoost (abbreviated@ser ). « Balanced Random Forests (abbreviated Bi&F).
A new minority training set is sampled (with re- Balanced Random Forests is different from Random
placement) from the original minority clas®’| = Forests in that it uses balanced bootstrap samples

|IN|. Then, AdaBoost is used to train a classifier of training data. It is different from under-sampling
using P’ and N. CART is used to train weak + Random Forests, because the latter preprocesses

classifiers. The number of iterations is 40. the training data and then learns a Random Forests

« SMOTE + AdaBoost (abbreviated aSMOTIE classifier. Here, we use RandomTree in WEKA
In our experiments, we first generaf® using to train weak classifiers, which is the same weak
SMOTE, a set of synthetic minority class examples classifier learning method used by RandomForest
with |P’| = |P|. We sample a new majority training in WEKA. The number of iterations is 40.

set N/ with |[N'| = 2|P| when |[N| > 2|P|, and  The settings of CART are the same. In CART, pruning
let NV = N otherwise. Then we use AdaBoost tgs used, and impure nodes must have at least 10 examples
train a classifier withP, P, and V. CART is used to be split. CART andAda are baseline methods. All

to train weak classifiers. The number of iterationgther classifiers have 40 weak classifiers Qnan, the

is 40. The settings of SMOTE are the same &gnount of classifiers is also 40 since the imbalance levels
SMOTEBoost § = 5). of data sets in Table Il are all lower than 40.

o Chan & Stolfo's method + AdaBoost. (abbrevi-
ated asChan). It splits A into [|N]/|P|] non- Analysis of Training Time
overlapping subsets. An AdaBoost classifier was
trained from each of these subsets ghdFisher
Discriminant Analysis [20] is used as the stackin
method. CART is used to train weak classifier
AdaBoost classifiers are trained for0|P|/|N]|]
iterations when||N|/|P|] < 40, otherwise, only
one iteration is allowed.

« BalanceCascade (abbreviated asCascade).
CART is used to train weak classifiers. Number OL
subsetd” = 4, number of rounds in each AdaBoost
ensembles; = 10.

, . examples.
« EasyEnsemble (abbreviated agasy). CART is - : ,
used to train weak classifiers. Number of subse SFrom the descriptions in section IV-BJnder uses

T — 4 number of rounds in each AdaBoost e smallest numbee(P|) of examples and is the fastest
ens;mbl,a ~ 10 among all methods. The proposed metho@agcade
. Random Iz:c:rest.s (abbreviated #&F). Random andEasy ) andChan use the same number of weak clas-

- ifiers asUnder , and use the same number of examples
Forests [6] uses bootstrap samples of training data N .
[6] b P N Under to train every weak classifierThese methods

to generate random trees and then form an ense?ﬁ— ire additional time t mple or split subsets\af
ble. Here, we use RandomForest in WEKA [39]|,_TJqu € a th'o t‘f" e 1o S? 'Ele oT;p f# s€ q
in which a random tree is a variant of REPTree, owveven s ime 1S Neglgible. us, the propose

using random feature selection in the tree inductiorﬂethodS an€han have approximately the same training

process, and not pruneRF uses the entire data Se{lme asUnder . Note that, the imbalance level of data
(P and/’\/) The number of iterations is 40 sets used in the experiment happens to be lower than

« Under-sampling + Random Forests (abbreviated : 9 so the Tr’(r:nber gf wezkEcIass:f:ersGrmn %an ?ﬁ
Under-RF ). A subset N’ is sampled (without € same witi.ascade andkasy . However, when the

replacement) from\V, |A”| = [P|. Then, Random glata set is highly imbalanced (say the imbalance level

Forests is used to train a classifier usi@ndA” is 1000), Chan will require extremely more training
The number of iterations is 40 " time than the proposed methods. FurthermBiagsy has

» Over-sampling + Random Forests (abbreviated gsantﬁgt'al rcomputat:]orl;al a;(dvar;ta(;lgi(i] smrce” elach Under=
Over-RF ). A new minority training set is sampledSa pling process can be execute paratlet.

(with replacement) from the Origina_l minority Cla_551 2Although different subsets of are used in the training process,
|P'| = |N|. Then, Random Forests is used to traintae number of active training examples is alway®| at all times.

Random Forests serieRK, Under-RF , Over-RF
nd BRF use random decision trees, which train much
ster than CART. Moreover, they are implemented in
Java code, while the other methods are in Matlab code.
Therefore, it is not fair to compare the running time of
them directly. Here, we only analyze the training time
of CART based methods.
Since all methods use the same weak learner and have
e same amount of weak classifiers, the training time of
hese methods mainly depends on the number of training
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TABLE Il
RUNNING TIMES (IN SECONDS. THE ROWAVG SHOWS THE AVERAGE RUNNING TIME OF EACH METHOD

[ [ CART  Bagg Ada Asym SMB Under Over SMOTE Chan Easy Calsc

abalone 0.21 8.39 18.06 18.04 35.51 3.47 39.11 7.78 4.83 3.72 6.22
balance 0.03 0.96 2.16 2.20 2.72 0.53 3.41 0.99 0.97 0.65 0.85
car 0.09 2.50 6.42 5.71 9.70 3.18 9.10 5.14 4.20 3.10 4.79
cmc 0.25 6.64 8.64 9.01 11.54 4.42 11.44 7.85 6.06 4.51 7.33
haberman 0.03 0.71 1.35 1.15 1.32 0.84 1.26 1.11 1.26 0.80 0.86
ionosphere| 0.09 2.11 2.30 2.19 2,77 1.75 2.30 2.87 2.46 1.70 2.83
letter 0.41 19.70  153.47 138.11 1120.99 3.92 549.73 9.72 5.19 3.87 5.62
phoneme 0.34 9.72 23.20 22.87 150.09 12.03 38.78 30.18 16.67 11.64 20.12
pima 0.07 2.51 3.42 3.58 4.91 2.51 3.97 4.22 4.24 2.37 2.38
sat 0.78 27.74 54.83 53.29 102.84 9.62 116.83 21.24 11.66 10.08 13.96
wdbc 0.06 2.05 2.53 2.42 3.44 1.70 2.62 3.03 2.47 1.93 2.63
wpbc 0.06 1.97 2.04 1.85 2.26 1.00 2.29 2.01 1.17 1.27 1.50
vehicle 0.13 4.54 5.82 5.67 7.63 2.90 6.58 5.90 4.28 3.17 3.69
housing 0.08 2.17 2.66 2.92 3.84 1.32 3.35 2.42 1.89 1.15 0.77
mf-morph 0.06 2.06 5.69 5.78 11.62 1.08 11.22 2.34 1.60 1.17 2.57
mf-zernike | 0.50 17.47 24.74 23.28 35.65 5.01 37.47 10.26 5.39 4.91 11.81
avg. 0.20 6.95 19.83 18.63 94.18 3.45 52.47 7.31 4.65 3.50 5.50

Both Ada and Asym use|P| + |N| examples. Since 10 ‘hard’ tasks, on which the AUC values éfda are
|IN| > |P|, these methods are slower thadnder . When lower than 0.95. The AUC results are shown separately
the imbalance level is high, these methods have muchTable IV and \2. The results oft-test (significance
longer training time than that d&dnder and the proposed level 0.05) of AUC are also shown separately in the
methods. upper and lower triangles in Table VI. The average F-

In our experimentsSMOTHuses eithed|P| or 2|P|+ measure of the compared methods are summarized in
|IN| examples.SMBuses2|P| + |[N| examples. And Table VIl and VIII, and the-test result is shown in Table
both of them require to compute the distance betweX The average G-mean of the compared methods are
minority class examples. Thus they are much slower thanmmarized in Table X and Xl, and thetest result is
Under and the proposed methods. shown in Table XII.

Over uses2|N| examples, which has the largest The results show that on ‘easy’ tasks, all class-
training setSMBandOver are the most expensive onesimbalance learning methods have lower AUC and F-
For data sets with a large number of examples, emeasure thalda, except thatAsym has similar AUC
letter, the time to train a over-sampled or SMOTEBoosind F-measure to it. While on ‘hard’ tasks, class-

classifier is too long to be practical. imbalance learning methods generally have higher AUC
CART uses|P| + |[N| examples. CART trains only and F-measure thaida, including SMOTE Chan,
one classifier, so it indicates the time baseline. Cascade andEasy. We argue that for tasks on which

Running times of these methods are recorded in Taldedinary methods can achieve high AUC (exg0.95),
[ll, on a computer with a 3.0GHz Intel Xeon CPU. Itlass-imbalance learning is generally not helpful with
shows thatChan, Easy and Cascade are as efficient AUC and F-measure. Howevdtasy andCascade can
asUnder . The most expensive ones &8&BandOver, be used to reduce the training time, while their average

followed by Ada and Asym, and then bySMOTE AUC are close to that oAda and Asym.
We are more interested in the results on ‘hard’ tasks,
D. Results and Analyses where class-imbalance learning really helps. Compared

The average AUC of the compared methods are SuWI_th the results on ‘easy’ tasks, they reveal more proper-

marized in Table IV and Table V. Ocar, ionosphere fi&s of class-imbalance learning and the proposed meth-

) .~ ods.
letter, phoneme;at andwdbg Ada achieves very hlgh Under is not performing well with AUC and F-
AUC values, which are all greater than 0.95. Applymgneasure. its AUC and F-measure are lower that

class-imbalance learning methods on these data setsnla Asvm on all ‘easy’ tasks. and lower than man
not necessarily beneficial. On the other 10 data se?% y y ' y

Ada’s AUC values are not high and these data se her class-imbalance learning methods on ‘hard’ tasks.

. ur conjecture is that this is due to the information
seem suffer from class-imbalance problem. Therefore,

we divide the 16 data sets into two groups. The flrSt3Note that the performance @ver and SMBon the data sets in

group contains 6 ‘easy’ tasks, on which the AUC ValuQﬁe former group has not been obtained due to its large training time
of Ada are greater than 0.95. The second group contaitists. CART gives discrete outputs, so its AUC is not available.
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TABLE IV
AUC OF THE COMPARED METHODSPART 1). THIS TABLE SHOWS RESULTS FOR DATA SETS ON WHICHADABOOST SAUC IS HIGHER
THAN 0.95. FOR EACH METHOD AND EACH DATA SET, THE AVERAGE AUC IS FOLLOWED BY A STANDARD DEVIATION. THE COLUMN
AVG SHOWS THE AVERAGEAUC OF EACH METHOD.

AUC car ionosphere letter phoneme sat wdbc avg.
Bagg | .995+.000 .962+.004 .997£.001 .955+£.001 .946+.001 .987+.001 .974 % .020
Ada | .998 £.000 .978 £.003 1.000£.000 .965+.000 .953+.001 .994+.001 .981+.018
Asym | 998 £.000 .979£.002 1.000£.000 .965+£.001 .953+£.001 .994+.000 .982+.018
Under | .989+.001 .973+.002 1.000+.000 .953+.001 .9414+.001 .9934.001 .9754.021
SMOTE | .995+.000 .978 £.002 1.000 £.000 .964 +.000 .946 +£.001 .994+.001 .979+.019
Chan | .996 £.000 .979 £.002 1.000 £.000 .960 £.000 .955+£.000 .993+£.000 .980+.018
Cascade| .996+.000 .976+.002 1.000+£.000 .962+.000 .9494+.001 .994+.000 .979+.019
Easy | .994 +£.000 .974+.002 1.000£.000 .958 £.000 .947+.000 .993+.000 .978+.020
RF | .784£.003 .981+£.004 1.000=£.000 .965+£.001 .961+.002 .991+.000 .947+.074
BRF | .7494+.004 .9694.003  .999 £.000 .960 4+.001 .9524.001 .990 £.001 .937 £ .085
Under-RF | .786 +.001 .976 +.002 1.000 +.000 .952 4+ .001 .953+.000 .991+.001 .943 +.072
Over-RF | .785+.002 .981+.001 1.000+£.000 .964+.001 .962+.001 .9914+.001 .9474.074
TABLE V
AUC OF THE COMPARED METHODS(PART 2). THIS TABLE SHOWS RESULTS FOR DATA SETS ON WHICADABOOST s AUC IS LOWER
THAN 0.95.
AUC abalone balance cmc haberman housing
Bagg | .824 4+.002 .4394+.018 .7054.004 .669 4+ .014  .825 4 .011
Ada | .811+.001 .616£.009 .675+.008 .641+.015 .815+.010
Asym | .812+.003 .619+.012 .675+.010 .639+.015 .815+.010
SMB | .818 £.002 .599 £.010 .687 +.011 .646 +.006 .824 + .014
Under | .830+.002 .617+.011 .671+.007 .646+.010 .805 =+ .007
Over | .817+.002 .540+.010 .675+.008 .637+.017 .8214.010
SMOTE | .831+£.001 .617+.015 .680+.008 .647+.017 .816+.008
Chan| .850£.001 .652+.011 .696+.006 .638+.008 .811+.010
Cascade| .828 +.002 .637+.011 .686+.007 .653+.012 .808 4+ .008
Easy | .847£.002 .633£.008 .704+.008 .668+.011 .825+.008
RF | .827+£.004 .435+.029 .669+.007 .645+.021 .828+.015
BRF | .853 £.001 .558 £.013 .683£.003 .677+.013 .798 £.018
Under-RF | .842+.002 .593+.014 .676+.002 .6434+.009 .820 % .010
Over-RF | .823+.001 .458+.014 .660+.005 .641+.014 .826 +.014
AUC mf-morph mf-zernike pima vehicle wpbc avg.
Bagg | .887+.004 .855+.002 .821+.003 .8594.003 .688 £.009 .757 £ .129
Ada | .888 £.002 .795+.003 .788+£.006 .854+.003 .716+.009 .760+.088
Asym | .888 +£.001 .801£.005 .788+.005 .853+.002 .721+.012 .761+.088
SMB | .897+£.002 .788+£.007 .790+.003 .864+.003 .720+.013 .763 £ .092
Under | 916 +£.001 .881+.003 .789+.002 .846+.003 .694+.010 .769 4+ .100
Over | .889+.002 .779+.007 .7914+.004 .8554+.003 .711+.010 .751+.103
SMOTE | .912+.001 .862+.004 .792+.003 .858+.004 .709+.004 .7724.097
Chan| .912+.002 .903+.002 .786+.007 .856+.002 .706=+.009 .781+.097
Cascade| .905+ .001 .891+.001 .799+.005 .856+.002 .7124+.011 .778 +.093
Easy | .918 £.002 .904 £.001 .809 £.004 .859+£.004 .707+£.009 .787+.096
RF | .880 +£.007 .840£.008 .821 +.004 .869+.008 .677+.030 .749+.133
BRF | .901+.002 .866+.009 .8094.003 .8504.002 .646 +.014 .764 £ .109
Under-RF | .9194+.003 .889+.002 .8184+.004 .8554.002 .661+.008 .772+.110
Over-RF | .881+.004 .854+.003 .819+.004 .866+.003 .670+.010 .750 =+ .130
TABLE VI

SUMMARY OF ¢t-TEST OFAUC WITH SIGNIFICANCE LEVEL AT 0.05. THE UPPER TRIANGLE SHOWS THE RESULT OB ‘EASY’ TASKS
AND THE LOWER TRIANGLE SHOWS THE RESULT OHLO ‘HARD’ TASKS. EACH TABULAR SHOWS THE AMOUNT OF WIN-TIE-LOSE OF A
METHOD IN A ROW COMPARING WITH THE METHOD IN A COLUMN.

Bagg Ada Asym SMB Under Over SMOTE Chan Cascade Easy RF BRF Under-RF Over-RF
Bagg - 0-0-6 0-0-6 NA 3-0-3 NA 0-2-4 0-0-6 0-0-6 1-1-4 1-0-5 1-0-5 2-0-4 1-0-5
Ada | 2-1-7 - 0-5-1 NA 6-0-0 NA 4-2-0 4-0-2 5-1-0 5-1-0  3-2-1 5-1-0 5-1-0 3-1-2
Asym | 2-1-7 1-9-0 - NA 6-0-0 NA 4-2-0 4-1-1 5-1-0 5-1-0  3-2-1 6-0-0 6-0-0 3-1-2
SMB | 4-1-5 5-3-2 5-3-2 - NA NA NA NA NA NA NA NA NA NA
Under | 5-0-5  3-4-3 3-3-4 4-2-4 - NA 0-0-6 1-1-4 0-0-6 0-2-4 2-0-4  4-0-2 3-1-2 2-0-4
Over | 2-1-7 3-5-2 4-4-2 0-5-5 4-2-4 - NA NA NA NA NA NA NA NA
SMOTE 5-1-4 6-4-0 6-4-0 3-5-2 4-4-2 5-5-0 - 3-1-2 2-1-3 4-1-1 2-2-2 5-0-1 5-0-1 2-1-3
Chan 5-1-4 5-4-1 6-2-2 5-0-5 6-2-2 5-3-2 4-5-1 - 3-0-3 4-1-1 2-1-3 5-1-0 5-0-1 2-1-3
Cascade | 5-1-4 7-2-1 8-1-1 5-3-2 7-2-1 7-2-1 4-3-3 2-3-5 - 6-0-0 2-0-4 5-0-1 4-1-1 2-0-4
Easy | 54-1 9-1-0 8-2-0 7-2-1 9-1-0 8-2-0 8-2-0 6-2-2 8-2-0 - 2-0-4  4-0-2 4-0-2 2-0-4
RF 1-5-4 5-2-3 5-1-4 3-3-4 3-3-4 5-1-4 3-3-4 3-2-5 3-2-5 2-2-6 - 5-1-0 4-2-0 1-3-2
BRF 5-0-5 6-0-4 6-0-4 5-1-4 5-1-4 7-0-3 3-2-5 3-0-7 3-2-5 2-1-7 6-0-4 - 1-2-3 0-1-5
Under-RF | 4-0-6 5-3-2 5-3-2 4-3-3 6-1-3 5-4-1 4-4-2 4-1-5 4-1-5 1-1-8 5-3-2 6-1-3 - 0-2-4
Over-RF 2-3-5 5-1-4 5-1-4 3-3-4 3-1-6 5-1-4 3-1-6 3-1-6 3-0-7 2-1-7 1-7-2 4-0-6 2-3-5 —
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TABLE VII
F-MEASURE OF THE COMPARED METHODS ONEASY’ TASKS (PART 1).

F Measure car ionosphere letter phoneme sat wdbc avg.
CART | .857+£.011 .831+.024 .945+.005 .773+.007 .546 +.014 .895+.004 .808 £ .128
Bagg | .933+.004 .883+.005 .962+.003 .834+.002 .641+.007 .938+.004 .865%+.109
Ada | .967£.002 907 £.004 .988 4+.002 .850+ .002 .664+.006 .956 +.003 .889 4 .110
Asym | .966 £.002 .910£.004 .987+.001 .852+.002 .668+.004 .956+.003 .890+.109
Under | .884+.001 .900+.004 .903+.002 .8194+.001 .5464+.002 .9524.002 .834 £ .134
SMOTE | .930+£.004 .907+.003 .954+.002 .847+.002 .610+.003 .957 4+ .003 .867 %+ .121
Chan | .916 £.003 .910£.006 .905+.001 .837+.002 .607+.001 .954+.002 .855%+.116
Cascade| .917+.002 .905+.003 .976+.002 .839+.002 .619+.002 .957+.002 .869+.120
Easy | .880£.002 .9014+.005 .9104.002 .821+.002 .554+.001 .951+.004 .836+.132
RF | .307£.013 .906 £.005 .979+.003 .850+.004 .666=+.008 .954+.002 .777+.234
BRF | .5214+.001 .8874.004 .889+.016 .821+.003 .553 £.001 .945+.005 .769 +.168
Under-RF | .513+.001 .895+.005 .895+.003 .8134.001 .557 4+.001 .948 £.002 .770£.171
Over-RF | .518 £.001 .904+.004 .986+.001 .851+.002 .689+.004 .955+.003 .817+.164
TABLE VI
F-MEASURE OF THE COMPARED METHODS ONHARD' TASKS (PART 2).
F Measure abalone balance cmc haberman housing
CART | .232+£.018 .000+£.000 .356+.009 .335+.046 .420+.031
Bagg | .170 +.010 .000 +.000 .362 4 .011 .3344+.030 .419 4+.029
Ada | .210 £.008 .000£.000 .388+£.009 .348+£.022 .475+.022
Asym | .222 £+.006 .000£.001 .400+.011 .360+.020 .485+.015
SMB | .286 £.008 .001 +.001 .3934+.013 .377+.024 .530+.016
Under | .367+£.001 .1754.009 .429 4+ .007 .442 £+ .017 .529 £ .006
Over | .195+.005 .000+.000 .383+.011 .338+.024 .470+.016
SMOTE | .379+.005 .1494+.011 .421+.007 .4054+.016 .532+.017
Chan | .400 £.002 .156 £.005 .437+.007 .380+.018 .523+.010
Cascade| .384 £.002 .194+.011 .436+.009 .438+.014 .529+.008
Easy | .382+.003 .184 4+.007 .454+.008 .466 +.013  .543 £ .007
RF | .189 £.015 .000 £.000 .347+.017 .321+.027 .445+.035
BRF | .382+.002 .167+.006 .4414+.004 .4684+.015 .5154.018
Under-RF | .3754+.002 .168 +.007 .4354.003 .445+.011 .537 £ .006
Over-RF | .253+.004 .000+.000 .408+.008 .348+.015 .490 &+ .025
F Measure| mf-morph mf-zernike pima vehicle wpbc avg.
CART | .2514+.022 .2164+.015 .584+.029 .523+.019 .373+.023 .329+.158
Bagg | .263+.016 .183+.014 .6444.007 .526 +.011 .4104.019 .331 4 .177
Ada | .321+.014 .188+.017 .611+£.007 .545+.010 .432+.014 .352+.173
Asym | .3444+.015 .1914+.010 .6134+.011 .561 +.008 .444 4+ .015 .362 4+ .175
SMB | .351£.013 .295+.018 .641+£.006 .606+.012 .452+.011 .393+.175
Under | .5794+.004 .538+.004 .644 +.002 .623 +.005 .449 4+ .008 .477 £ .132
Over | .3194+.012 .166 +.011 .609 +.009 .539 4 .017 .4274+.010 .345+.175
SMOTE | .560 £.005 .538 £.007 .627+.004 .615+.006 .459+.009 .468+.134
Chan | .635+.001 .577+.002 .618+.006 .608+.003 .448+.018 .478+.140
Cascade| .596 +.006 .549+.004 .649 +.007 .623+.012 .4544.007 .485+ .128
Easy | .624 +£.002 .564 £.002 .660 £.005 .638 £.007 .452+.014 .497 +.136
RF | .261 +.023 .1444+.034 .6414+.013 .5444+.024 .3934+.027 .328 £ .181
BRF | .627+.003 .500+.013 .663 4+.005 .633 4+.007 .401 £ .006 .480 £ .140
Under-RF | .6024+.004 .530 +.004 .668 +.006 .633 £.007 .419 £.008 .481 +£.140
Over-RF | .349 +.014 .292+ .012 .656+.005 .564 +.015 .3974+.019 .376+ .171
TABLE IX

SUMMARY OF t-TEST OFF-MEASURE WITH SIGNIFICANCE LEVEL AT0.05. THE UPPER TRIANGLE SHOWS THE RESULT OB ‘EASY’
TASKS AND THE LOWER TRIANGLE SHOWS THE RESULT OA0 ‘HARD’ TASKS. EACH TABULAR SHOWS THE AMOUNT OF WIN-TIE-LOSE
OF A METHOD IN A ROW COMPARING WITH THE METHOD IN A COLUMN.

Cart Bagg Ada Asym SMB Under Over SMOTE Chan Cascade Easy RF BRF Under-RF Over-RF
CART - 0-0-6 0-0-6 0-0-6 NA 1-1-4 NA 0-0-6 1-0-5 0-0-6 1-1-4 1-0-5 2-1-3 2-1-3 1-0-5
Bagg 2-6-2 - 0-0-6 0-0-6 NA 4-0-2 NA 3-0-3 3-0-3 2-0-4 4-0-2 1-0-5 4-1-1 4-0-2 1-0-5
Ada 6-2-2 7-2-1 - 0-4-2 NA 6-0-0 NA 4-2-0 4-2-0 5-1-0 6-0-0 2-4-0 6-0-0 6-0-0 3-2-1
Asym 5-4-1 7-2-1 5-5-0 - NA 6-0-0 NA 4-2-0 5-1-0 5-1-0 6-0-0 2-4-0 6-0-0 6-0-0 3-2-1
SMB 9-1-0 8-2-0 8-2-0 7-3-0 - NA NA NA NA NA NA NA NA NA NA
Under | 10-0-0 9-1-0 10-0-0 9-1-0 7-3-0 - NA 0-0-6 0-1-5 0-0-6 1-2-3 1-2-3 3-2-1 5-0-1 1-0-5
Over 4-4-2 5-3-2 0-6-4 0-2-8 0-1-9 0-0-10 - NA NA NA NA NA NA NA NA
SMOTE 10-0-0 9-0-1 10-0-0 9-1-0 7-2-1 1-3-6 10-0-0 - 5-1-0 2-2-2 6-0-0 2-2-2 6-0-0 6-0-0 1-2-3
Chan 10-0-0 9-0-1 9-1-0 9-1-0 5-4-1 4-1-5 10-0-0 4-2-4 - 1-2-3 4-1-1 1-2-3 6-0-0 6-0-0 2-1-3
Cascade | 10-0-0 9-1-0 10-0-0 9-1-0 8-2-0 5-5-0 10-0-0 8-2-0 4-3-3 - 6-0-0 1-2-3 6-0-0 6-0-0 2-1-3
Easy 10-0-0 10-0-0 10-0-0 9-1-0 9-1-0 9-1-0 10-0-0 8-2-0 6-1-3 7-2-1 - 1-2-3 3-3-0 4-1-1 1-0-5
RF 1-7-2 3-6-1 1-2-7 1-2-7 0-2-8 0-1-9 1-5-4 1-0-9 1-0-9 0-1-9 0-0-10 - 5-0-1 5-0-1 0-3-3
BRF | 10-0-0 9-1-0 9-0-1 9-0-1 8-0-2 6-1-3 9-0-1 6-1-3 4-2-4 4-1-5 0-5-5 9-1-0 - 2-2-2 1-0-5
Under-RF | 10-0-0 9-1-0 9-0-1 9-0-1 8-1-1 6-2-2 9-1-0 6-2-2 5-1-4 5-1-4 1-0-9 10-0-0  3-3-4 - 0-0-6
Over-RF | 7-3-0 7-3-0 7-2-1 5-3-2 2-3-5 1-0-9 7-2-1 1-0-9 1-0-9 1-0-9 0-0-10 8-2-0 0-1-9 0-1-9 -
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TABLE X
G-MEAN OF THE COMPARED METHODS ON EASY’ TASKS (PART 1). THE ROWAVG SHOWS THE AVERAGEG-MEAN OF EACH METHOD.

G-mean car ionosphere letter phoneme sat wdbc avg.
CART | 910+ .011 .867+.021 .9684+.003 .836+.006 .716+.009 .918 £.004 .869 + .080
Bagg | .964+.002 .906+.003 .972+.002 .880+.001 .729+.005 .950+.003 .900 % .083
Ada | .980+.001 .920+.003 .989 4+.002 .8904+.001 .754+.005 .963 £.003 .916 £ .080
Asym | .981+.001 .9224+.003 .988+.001 .892+.002 .761+.003 .963 +.002 .918 £+ .078
Under | .956+.001 .918 +.003 .9944+.000 .889+.001 .8714.002 .963 +.001 .932 £ .043
SMOTE | .969 +£.002 .922+.002 .995+.001 .899+.001 .8624+.003 .964 4+ .003 .935 4 .046
Chan | .970+.001 .923+.005 .992+.001 .897+.001 .881+.001 .9624.002 .937 +.040
Cascade| .969+.001 .921+.002 .996+.001 .897+.001 .867+.002 .967+.002 .936 +.045
Easy | .958 +.001 .919+.003 .9954+.000 .892+.001 .876+.001 .962+.003 .934 +.042
RF | .4524+.013 .918 £.005 .9804.002 .892+.003 .7444+.006 .962+.003 .825+.183
BRF | .693+.001 .9114+.004 .989+.002 .893+.002 .8814.001 .957 +.004 .887 £ .095
Under-RF | .687 +.001 .916£.003 .9934+.001 .887+.001 .883+.000 .960+.002 .888 +.098
Over-RF | .690+£.001 .918+.002 .987+.001 .897+.001 .7824+.003 .963+.003 .873+.104
TABLE XI
G-MEAN OF THE COMPARED METHODS ON HARD' TASKS (PART 2).
G-mean abalone balance cmc haberman housing
CART | .453+.021 .000+£.000 .5254+.008 .483+.045 .586 %+ .026
Bagg | .337 +.011 .000 & .000 .509 +.010 .476 +.036  .553 &+ .032
Ada | .396 +.008 .001 £.002 .561+.007 .502+.025 .615+.017
Asym | 412+ .007 .002+.004 .577+.010 .515+4.023 .627+.011
SMB | .511+£.010 .002+£.004 .560+.011 .536+.022 .686 + .013
Under | .765+.003 .560+.020 .623 +£.007 .592+.018 .7254.005
Over | .372+£.005 .000+£.000 .555+.009 .491+.028 .607 +.010
SMOTE | .742+.006 .4654.027 .605+.006 .562+.016 .710+.014
Chan | .778 £.001 .465+.011 .622+.006 .536 £.020 .698 £ .007
Cascade| .755+.001 .595+.021 .628+.008 .591+.013 .721+.007
Easy | .785+.004 .577+£.015 .646 +.007 .615+.012 .739 &+ .006
RF | .363£.016 .000£.000 .516+.015 .476+.028 .580+.031
BRF | .790+.003 .548 +.012 .6344+.004 .6184+.014 .718 +.018
Under-RF | .778 +.002 .548 £.015 .627+.003 .593 £.011 .735 =+ .005
Over-RF | .457+.004 .000+.000 .587+.006 .504+.016 .638=+.019
G-mean| mf-morph mf-zernike pima vehicle wpbc avg.
CART | 4734+.022 .4284+.020 .673+.024 .658+.013 .513+.032 .479+.178
Bagg | .483+.016 .378 £.021 .7204.006 .642+.008 .5104.032 .461 + .187
Ada | .560 £.012 .386 £.020 .694+.006 .664+.008 .537+.025 .492+.189
Asym | .594 +.014 .392+£.013 .696 £.009 .679+£.007 .549+.028 .504 £.193
SMB | .605+.013 .524+.019 .719+.006 .728 £.009 .584 +.021 .545+.196
Under | .873+.003 .848+.004 .7194+.001 .768+.004 .6174.008 .709 4+ .102
Over | .559 +.012 .358 +.015 .692 4+ .007 .657 +.013 .527 4+ .013 .482 4 .191
SMOTE | .841 +.006 .813+.007 .708 £.003 .743+.005 .610+.009 .680+ .111
Chan | .920+.001 .854+.002 .700+.005 .738+.004 .585+.021 .690+.134
Cascade| .874+.006 .8204+.003 .725+.005 .7604.011 .623+.007 .709 4 .092
Easy | .914+.001 .869+.003 .734+.004 .781+.005 .623+.014 .728 £+.107
RF | 4794 .022 .326 £.049 .717+.010 .659+.018 .477+.019 .459+.190
BRF | .918 £.002 .8314.007 .735+.004 .7804.007 .567£.007 .7144+.114
Under-RF | .888 +.005 .844 +.002 .740+.005 .779+.006 .588+.011 .712+.111
Over-RF | .597+.013 .519+.016 .7314+.004 .6894+.013 .494+ .022 .522+ .193
TABLE Xl

SUMMARY OF t-TEST OFG-MEAN WITH SIGNIFICANCE LEVEL AT 0.05. THE UPPER TRIANGLE SHOWS THE RESULT OB ‘EASY’ TASKS
AND THE LOWER TRIANGLE SHOWS THE RESULT OHLO ‘HARD’ TASKS. EACH TABULAR SHOWS THE AMOUNT OF WIN-TIE-LOSE OF A
METHOD IN A ROW COMPARING WITH THE METHOD IN A COLUMN.

CART Bagg Ada Asym SMB Under Over SMOTE Chan Cascade Easy RF BRF Under-RF Over-RF
CART - 0-0-6 0-0-6 0-0-6 NA 0-0-6 NA 0-0-6 0-0-6 0-0-6 0-0-6 1-0-5 1-0-5 1-0-5 1-0-5
Bagg 1-7-2 - 0-0-6 0-0-6 NA 1-0-5 NA 0-0-6 0-0-6 0-0-6 1-0-5 1-0-5 1-1-4 1-0-5 1-0-5
Ada 5-3-2 7-2-1 - 0-3-3 NA 2-2-2 NA 1-2-3 1-2-3 1-1-4 1-2-3 3-3-0 3-1-2 4-0-2 3-1-2
Asym 6-2-2 7-2-1 6-4-0 - NA 3-1-2 NA 1-1-4 1-2-3 1-1-4 2-2-2 3-3-0 3-1-2 4-0-2 3-1-2
SMB 9-1-0 8-2-0 8-2-0 8-1-1 - NA NA NA NA NA NA NA NA NA NA
Under | 10-0-0 9-1-0 10-0-0 10-0-0 9-1-0 - NA 1-2-3 1-1-4 1-0-5 0-3-3 3-2-1 4-0-2 5-0-1 3-2-1
Over 3-5-2 5-3-2 0-5-5 0-2-8 0-2-8 0-0-10 - NA NA NA NA NA NA NA NA
SMOTE 10-0-0 9-0-1 10-0-0 10-0-0 9-0-1 0-1-9 10-0-0 - 3-2-1 1-3-2 2-3-1 5-1-0 5-0-1 5-0-1 5-1-0
Chan 10-0-0 9-0-1 10-0-0 10-0-0 7-2-1 3-1-6 10-0-0 4-1-5 - 1-3-2 4-1-1 4-2-0 5-1-0 4-1-1 4-2-0
Cascade | 10-0-0 9-1-0 10-0-0 10-0-0 10-0-0 2-5-3 10-0-0 10-0-0 7-0-3 - 4-1-1 5-1-0 5-0-1 5-0-1 5-1-0
Easy 10-0-0 10-0-0 10-0-0 10-0-0 10-0-0 9-1-0 10-0-0 10-0-0 9-0-1 8-2-0 - 3-3-0 3-1-2 4-1-1 3-2-1
RF 1-6-3 2-6-2 1-2-7 1-1-8 0-2-8 0-1-9 1-5-4 1-0-9 1-0-9 0-0-10 0-0-10 - 2-1-3 1-2-3 0-2-4
BRF | 10-0-0 10-0-0 10-0-0 9-1-0 9-1-0 6-2-2 10-0-0 9-0-1 7-1-2 6-2-2 2-3-5 10-0-0 - 2-1-3 2-1-3
Under-RF | 10-0-0 10-0-0 10-0-0 10-0-0 9-1-0 5-3-2 10-0-0 9-0-1 6-2-2 6-2-2 1-1-8 10-0-0 3-3-4 - 2-2-2
Over-RF | 6-4-0 8-2-0 7-2-1 6-3-1 2-2-6 1-0-9 7-2-1 1-0-9 1-0-9 1-0-9 0-0-10 8-2-0 0-1-9 0-0-10 -




IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS — PART B 11

contained in the majority class which is ignored bwglone. Focusing on more informative examples may be
Under . Both our proposed methods can improve upgrarticularly helpful in this case. Als&ascade is more
Under , no matter on ‘easy’ tasks or ‘hard’ tasks. Thisuitable for highly imbalanced problems. For example,
result supports our argument thaasy and Cascade in the face detection problem described in [41], there are
can effectively explore the majority class examples. 5000 positive examples and 2284 million negative ones.

Chan uses all the majority class examples, and Tthe independent random sampling strategy Eafsy
generally has higher AUC and F-measure tharmder . requiresT, the number of subsets, to be very large in
But the results show that on ‘hard’ tasks, its AUC, Ferder to catch all the information i. Furthermore,
measure and G-mean are comparable to or slightly lonthe number of subsets is hard to decide since no prior
thanCascade , and they are lower thaBasy on most information is available. Thugkasy is computationally
of the data sets. This implies that using all majority clagsfeasible for this problem. But fa€ascade , it is much
examples is not necessary. In particular, when the datasier to set the iteration number since it is reasonable
set is highly imbalancedChan will consume a lot of to setfp rate around 0.5. S@; = 20 is sufficient for the
time. face detection problem, sindeg, (2.284 x 10 /5000) ~

Both Easy andCascade attain higher average AUC, 19 (assuming a false positive rate of 0.5).
F-measure and G-mean than almost all the other methods
on ‘hard’ tasks, except thafascade is comparable E. Analysis of the Ensemble Strategy
to Chan with AUC and F-measure, and slightly worse
thanBRF andUnder-RF with G-mean. ButChan has
much lower G-mean, andBRF & Under-RF have
much lower AUC and F-measure than many other cla
imbalance learning methods. While botbasy and
Cascade are very robust with different performanc
measures.

Easy andCascade can not only improve the AUC

As stated above, since minority class examples are
used to train each weak classifier in the proposed
method, stacking these classifiers may cause overfitting
I¥hen the number of minority class examples is limited.
To verify this, the 16 data sets in Table Il were used
%o compare stacking with the ensemble strategy used in
Easy andCascade .
. The AUC values are summarized in Table XIII.
imilar to the experiments in the previous subsection,
the 16 data sets are divided into groups based on the
?rformance of AdaBoost. WheDascade is used on
asy’ tasks, stacking is inferior to the original ensemble
. strategy on 3 out of 6 data sets, while it is superior on
. Th_e results on “hard’ tasks show th@ascade is only c?nye data set. However, the difference betr:Neen the
mfgno_r to Easy. The way Cascade explpres the two strategies is small. The same observation holds for
majority class examples might be responsible for thff’asy. On ‘*hard’ tasks, the performance Glascade

obseryation. InCascade, the majority t_raining set O.f dominates that of stacking on all data sets. AsHasy
Hiy is produced byr;. Such a supervised, cascading, . o ;o only one data set on which stacking is bet-

way of sampling might suffer from overfitting. In Otherter. Generally speaking, there are significant differences

words, the correct!y predicted majority class exampl%%tween the performance of stacking and the current
that_ have been filtered out may be useful [27]. IQn emble strategy used in our proposed methods.
particular, some examples that are deemed redundant a herefore, stacking is not very suitable for the case

:jls%a:jrdedf;nrearrl:]er r?rl]mrdsxmfrt]y Ibe T}el\?fulljm ﬁodr?e I?@ en minority class examples are used in each weak
ounds, after some other examples have been discarGqlyifiar 1n such a case, stacking may cause overfitting.

Note that there are also S|tuat|oTs in \,/’vhtﬁlascade IS This is probably a major reason f@han to be inferior
preferred. From the results on “easy” tasks we can s

e
thatCascade has higher AUC, F-measure and G-meat% Easy.
than Easy on almost all data sets. This suggests that .
Cascade can focus on more useful data. In additior’,:' Additional Remarks

note thatCascade is more favorable thaBasy ondata  We have the following remarks regarding the results in
setbalanceandwpbc Both of these data sets have a ve)UC, F-measure and G-mean on both ‘easy’ and ‘hard’
small minority class. In fact, if the number of exampletasks:

in a class is very small, there is a significant chance thate The proposed methods€EasyEnsemble and
the examples will scatter around broadly. It is difficult ~ BalanceCascade are more robust than many

to get a representative subset by using under-sampling other class-imbalance learning methods. When

approximately the same training time ldader , and are
faster than other methods. Considering both classificati
performance and training time, they are better than
other compared methods.
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TABLE Xl

COMPARISON OFSTACKING WITH ENSEMBLE STRATEGY IN BALANCECASCADEAND EASYENSEMBLE THIS TABLE SHOWSAUC'S OF

THE COMPARED METHODS THE FIRST GROUP DATA SETS ISEASY' TASKS, AND THE SECOND GROUP ISHARD’ TASKS. THE ROW avgl.

SHOWS THE AVERAGEAUC OF EACH METHOD ON‘EASY’ TASKS. THE ROWavg2.SHOWS THE AVERAGEAUC ON ‘HARD’ TASKS. THE
ROW avg.SHOWS THE OVERALL AVERAGEAUC. TABULAR IN BOLD DENOTES THE SUPERIOR ENSEMBLE STRATEGY BETWEEN THE
ORIGINAL ONE AND STACKING.

Data Set BalanceCascade EasyEnsemble
original [ stacking original [ stacking
car 0.996 + 0.000 0.997+£ 0.000 | 0.994 £ 0.000 0.995+ 0.000
letter 1.000 £ 0.000 | 1.000 £ 0.000 | 1.000 4 0.000 | 1.000 =4 0.000
ionosphere| 0.976 +0.002 | 0.976 +0.002 | 0.974 £ 0.002 | 0.974 &+ 0.002
phoneme 0.962+ 0.000 | 0.960 + 0.000 0.958+ 0.000 | 0.957 &£ 0.000
sat 0.949+ 0.001 | 0.944 +0.001 | 0.947+0.000 | 0.946 4 0.001
wdbc 0.994+ 0.000 | 0.992 + 0.001 0.993+ 0.000 | 0.992 + 0.001
avgl. 0.979+ 0.018 | 0.978 £0.019 0.978+ 0.018 | 0.977 £0.019
abalone 0.828+ 0.002 | 0.802 + 0.002 0.847+0.002 | 0.844 £ 0.002
balance 0.637+0.011 | 0.631 +0.008 | 0.633 +£0.008 | 0.640+ 0.012
cmc 0.686+ 0.007 | 0.679 + 0.006 0.704+ 0.008 | 0.698 £ 0.009
haberman | 0.653+0.012 | 0.637 £ 0.013 0.668+ 0.011 | 0.647 £0.011
housing 0.809+ 0.008 | 0.800 +0.009 | 0.827+0.005 | 0.811 £ 0.013
mf-morph 0.904+ 0.002 | 0.903 £ 0.002 0.917+ 0.001 | 0.916 £ 0.002
mf-zernike | 0.8904+ 0.002 | 0.864 £ 0.003 0.904+ 0.002 | 0.901 £ 0.001
pima 0.799+ 0.005 | 0.792 + 0.005 0.809+ 0.004 | 0.802 + 0.004
vehicle 0.856+ 0.002 | 0.848 £+ 0.002 0.860+ 0.001 | 0.857 £ 0.004
wpbc 0.7124+0.011 | 0.707 +0.009 | 0.707+0.009 | 0.705 £ 0.012
avg2. 0.778+0.089 | 0.766 +0.087 | 0.788+0.092 | 0.782 £ 0.092
[Cavg. [ 0.853£0.119 | 0.846 £ 0.122 | 0.859+ 0.116 | 0.855 £ 0.119 |

class-imbalance is not harmful, they don't caussample multiple subsets of the majority class, train an
serious degeneration of performance. When classsemble from each of these subsets, and combine all
imbalance is indeed harmful, they are better thameak classifiers in these ensembles into a final output.
almost all other methods we have compared withBoth algorithms make better use of the majority class
« Class-imbalance is not harmful for some tasks artldan under-sampling, since multiple subsets contain more
applying class-imbalance learning methods in sudhformation than a single one. The main difference is that
cases may lead to performance degeneration. A cddasyEnsemble samples independent subsets, while
uses trained classifiers to guide
learning methods should only be applied to taskke sampling process for subsequent classifiers. Both
which suffer from class imbalance. For this purposejgorithms have approximately the same training time as
we need to develop some methods to judge whethbat of under-sampling when the same number of weak
a task suffers from class imbalance or not, befordassifiers are used.

sequence of this observation is that, class-imbalarBalanceCascade

applying class-imbalance learning methods to it.

Empirical results suggest that for problems on which

« We observed that, on tasks which do not suffesrdinary methods achieve high AUC (ex.0.95), class-
from class-imbalance, AdaBoost and Bagging cambalance learning is not helpful. However, the pro-
improve the performance of decision trees signiposed methods can be used to reduce training time. For
icantly; while on tasks which suffer from classproblems where class-imbalance learning methods really
imbalance, they could not help and sometimes evaelp, both EasyEnsemble and BalanceCascade
deteriorate the performance. This might give usave higher AUC, F-measure and G-mean than almost alll
some clues on judging whether a task suffers froother compared methods and the former is superior than

class imbalance or not, which will be studied in théhe latter. However, sincBalanceCascade

future.

V. CONCLUSION

BalanceCascade

for class-imbalance learning. Both

removes

correctly classified majority class examples in each it-
eration, it will be more efficient on highly imbalanced
data sets. In addition, the comparisonGiian and our

This paper extends our preliminary work [26proposed methods reveals that, it is not necessary to use
which proposed two algorithmEasyEnsemble and all examples in the majority class.

In the current version of the proposed methods, we use

algorithms are designed to utilize the majority clagbe «;; returned by the weak learner directly. Further
examples ignored by under-sampling, while at the sanmeprovements are possible by learning;, as shown
time keeping its fast training speed. Both algorithmis [22], [41]. Note that bothEasyEnsemble and
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BalanceCascade

are ensemble methods. So, whil§12]

they provide strong generalization ability, they also in-

herit the weaknesses of ensemble methods. An apparent

13

N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer,
“SMOTEBOoost: Improving prediction of the minority class in
boosting,” in Proceedings of the 7th European Conference on
Principles and Practice of Knowledge Discovery in Databases

weakness is the lack of comprehensibility. Even when the  cavtat-Dubrovnik, Croatia, 2003, pp. 107-119.

base classifiers are comprehensible symbolic learndts] C. Chen, A. Liaw, and L. Breiman, “Using random forest to
ensembles are still black-boxes. There are some research 'earn imbalanced data,” Deptarment of Statistics, UC Berkeley,
on this problem [44]-[46] and it is possible to use tho e,
research outputs to enhance the comprehensibility of
EasyEnsemble andBalanceCascade

[15]
ACKNOWLEDGMENT

The authors want to thank the anonymous reviewy
ers and the associate editor for helpful comments
and suggestions. This research was partially sup-
ported by the National Science Foundation of Chirfd’]
(60635030, 60721002), the Jiangsu Science Founda-
tion (BK2008018) and the National High Technol-
ogy Research and Development Program of Chilig]

(2007AA01Z169).

(1]

(2]

(3]

[19]

[20]
REFERENCES

[21]
G. Batista, R. C. Prati, and M. C. Monard, “A study of the
behavior of several methods for balancing machine learning
training data,”ACM SIGKDD Explorationsvol. 6, no. 1, pp.
20-29, 2004. [22]
E. Bauer and R. Kohavi, “An empirical comparison of voting
classification algorithms: Bagging, boosting, and variaria*
chine Learning vol. 36, no. 1-2, pp. 105-139, 1999.
C. Blake, E. Keogh, and C. J. Merz, *“UCI
repository of machine learning databases[23]
[http://lwww.ics.uci.edutmlearn/MLRepository.html],
Department of Information and Computer Science, Universi{p4]
of California, Irvine, CA.

[4] A. P. Bradley, “The use of the area under the ROC curve

in the evaluation of machine learning algorithm®attern

Recognition vol. 30, no. 6, pp. 1145-1159, 1997. [25]
[5] L. Breiman, “Bagging predictors,Machine Learningvol. 24,
pp. 123-140, 1996.
[6] ——, “Random forest,”"Machine Learningvol. 45, pp. 5-32,
2001. [26]

(7]
(8]

(9]

[10]

[11]

L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Tree<CRC Press, 1984.

P. K. Chan and S. J. Stolfo, “Toward scalable learning with
non-uniform class and cost distributions: A case study in cred27]
card fraud detection,” ifProceedings of the 4th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, New York, NY, 1998, pp. 164-168. [28]
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling techniquedur-

nal of Artificial Intelligence Researchvol. 16, pp. 321-357, [29]
2002.

N. V. Chawla, N. Japkowicz, and A. Kolcz, “Editorial: Special
issue on learning from imbalanced data se&CM SIGKDD
Explorations vol. 6, no. 1, pp. 1-6, 2004.

N. V. Chawla, N. Japkowicz, and A. Kotcz, Ed$CML'2003
Workshop on Learning from Imbalanced Data $S&@803.

[30]

Tech. Rep. 666, 2004.

P. Domingos, “MetaCost: A general method for making classi-
fiers cost-sensitive,” irProceedings of the 5th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, San Diego, CA, 1999, pp. 155-164.

C. Drummond and R. C. Holte, “C4.5, class imbalance, and
cost sensitivity: Why under-sampling beats over-sampling,” in
Working Notes of the ICML'03 Workshop on Learning from
Imbalanced Data Set&Vashington, DC, 2003.

C. Elkan, “The foundations of cost-senstive learning,Firo-
ceedings of the 17th International Joint Conference on Artificial
Intelligence Seattle, WA, 2001, pp. 973-978.

W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan, “AdaCost:
Misclassification cost-sensitive boosting,”Rmoceedings of the
16th International Confernece on Machine Learningled,
Slovenia, 1999, pp. 97-105.

T. Fawcett, “ROC graphs: Notes and practical considerations
for researchers,” HP Labs, Tech. Rep. HPL-2003-4, 2003.

J. H. Friedman, “Stochastic gradient boostinG@mputational
Statistics and Data Analysisol. 38, no. 4, pp. 367-378, 2002.
K. Fukunaga,Introduction to Statistical Pattern Recognition
Academic Press, 1990.

H. Guo and H. L. Viktor, “Learning from imbalanced data
sets with boosting and data generation: The DataBoost-IM
approach,”ACM SIGKDD Explorationsvol. 6, no. 1, pp. 30—
39, 2004.

K. Huang, H. Yang, I. King, and M. R. Lyu, “Learning classi-
fiers from imbalanced data based on biased minimax probability
machine,” in Proceedings of IEEE Computer Society Confer-
ence on Computer Vision and Pattern RecognitMashington,
DC, 2004, pp. 558-563.

N. Japkowicz, Ed.AAAI'’2000 Workshop on Learning from
Imbalanced Data Set000.

G. J. Karakoulas and J. Shawe-Taylor, “Optimizing classifiers
for imbalanced training sets,” iAdvances in Neural Informa-
tion Processing Systems.1Cambridge, MA: MIT Press, 1999,
pp. 253-259.

M. Kubat and S. Matwin, “Addressing the curse of imbalanced
training sets: One-sided selection,” Rroceedings of the 14th
International Conference on Machine Learnjrigashville, TN,
1997, pp. 179-186.

X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory under-sampling
for class-imbalance learning,” iRroceedings of the 6th IEEE
International Conference on Data Miningdiong Kong, 2006,
pp. 965-969.

F.-Z. Marcos, “On the usefulness of almost-redundant infor-
mation for pattern recognition,” isummer School on Neural
Networks 2004, pp. 357-364.

H. Masnadi-Shirazi and N. Vasconcelos, “Asymmetric boost-
ing,” in Proceedings of the 24th International Confernece on
Machine Learning Corvallis, OR, 2007.

R. E. Schapire, “A brief introduction to Boosting,” ifroceed-
ings of the 16th International Joint Conference on Atrtificial
Intelligence Stockholm, Sweden, 1999, pp. 1401-1406.

R. E. Schapire, Y. Singer, and A. Singhal, “Boosting and
rocchio applied to text filtering,” ifProceedings of the 4th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining 1998, pp. 215-223.



IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS — PART B 14

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

K. M. Ting, “An empirical study of MetaCost using boosting Xu-Ying Liu received her BSc and MSc de-
algorithms,” in Proceedings of the 11th European Conferenc gree in computer science from Nanjing Univer-
on Machine LearningBarcelona, Spain, 2000, pp. 413-425. sity of Aeronautics and Astronautics, China in
K. M. Ting and I. H. Witten, “Issues in stacked generalization, 2003 and Nanjing University, China in 2006,
Journal of Artificial Intelligence Researchiol. 10, pp. 271-289, respectively. Currently she is a PhD candidate
1999. in Nanjing University and is a member of the
P. Viola and M. Jones, “Fast and robust classification usir LAMDA Group. Her research interests are in
asymmetric AdaBoost and a detector cascadeAdwances in 'I‘\- machine learning and data mining, especially
Neural Information Processing Systems, 14 G. Dietterich, [ in cost-sensitive and class imbalance learning.
S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT
Press, 2002, pp. 1311-1318.

——, “Robust real-time face detectionfiternational Journal

of Computer Visionvol. 57, no. 2, pp. 137-154, 2004.

G. I. Webb, “MultiBoosting: A technique for combining boost-
ing and wagging,”"Machine Learning vol. 40, pp. 159-196,
2000.

G. |. Webb and Z. Zheng, “Multistrategy ensemble learning: Re
ducing error by combining ensemble learning techniqu&gE
Transactions on Knowledge and Data Engineeringl. 16,
no. 8, pp. 980-991, 2004.

G. M. Weiss, “Mining with rarity: A unifying framework,ACM
SIGKDD Explorationsvol. 6, no. 1, pp. 7-19, 2004.

G. M. Weiss and F. Provost, “Learning when training dat
are costly: The effect of class distributions on tree induction,”
Journal of Artificial Intelligence Researchiol. 19, pp. 315-354,
2003.

I. H. Witten and E. FrankData Mining: Practical machine
learning tools and technigues Morgan Kaufmann, 2005.

D. H. Wolpert, “Stacked generalizationNeural Networks
vol. 5, no. 2, pp. 241-260, 1992.

J. Wu, S. C. Brubaker, M. D. Mullin, and J. M. Rehg, “Fast
asymmetric learning for cascade face detectidBEE Trans-
actions on Pattern Analysis and Machine Intelligencel. 30,
no. 3, pp. 369-382, 2008.

Y. Yu, Z.-H. Zhou, and K. M. Ting., “Cocktail ensemble
for regression,” inProceedings of the 7th IEEE International
Conference on Data MiningdOmeha, NE, 2007, pp. 721-726.
B. Zadrozny, J. Langford, and N. Abe, “Cost-sensitive learnin

Jianxin Wu received the BS degree and MSc
degree in computer science, both from Nan-
jing University, China. He is currently a PhD
candidate in Georgia Institute of Technology
under the supervision of Dr. James M. Rehg.
His research interests are computer vision,
machine learning, and robotics.

Zhi-Hua Zhou (S'00-M'01-SM’06) received
the BSc, MSc and PhD degrees in computer
science from Nanjing University, China, in
1996, 1998 and 2000, respectively, all with the
highest honors.

He joined the Department of Computer Sci-
ence & Technology at Nanjing University as
an assistant professor in 2001, and is currently
Cheung Kong Professor and Director of the
MDA group. His research interests are in artificial intelligence,

by cost-proportionate example weighting,” Proceedings of achine learning, data mining, pattern recognition, information re-

the 3rd IEEE International Conference on Data Minjrigel- trieval, evolutionary computation, and neural computation. In these
bourne, FL, 2003, pp. 435-442. areas he has published over 60 papers in leading international journals

Z.-H. Zhou and Y. Jiang, “Medical diagnosis with C4.5 rule’ conference proceedmgs. . . . .
preceded by artificial neural network ensembkEEE Trans- Dr. Zhou has won various awards/honors including the National Sci-
actions on Information Technology in Biomedigirel. 7, no. 1, ence & Techr)ology A\_/vard for Young S_ch_olarg of China (2006), the
pp. 37—42, 2003. Award of National Science Fund for Distinguished Young Scholars
—_ “NeC4.5: Neural ensemble based C4BEEE Transac- of Chl_na (2003), the Na_tlonal Excellent Doctoral Dissertation Award
tions on Knowledge and Data Engineeringl. 16, no. 6, pp. of Chlnq (2003), thg Mlcro§oft Young Professprshlp Award (2006),
770773, 2004. etc. He is an Associate Editor ¢EEE Transactions on Knowledge

Z.-H. Zhou, Y. Jiang, and S.-F. Chen, “Extracting symbolic rule nd Data EngineeringAssociate Editor-in-Chief o€hinese Science

from trained neural network ensembled! Communications ulletin, and on the editorial boards dArtificial Intelligence in
vol. 16, no. 1, pp. 3-15, 2003. Medicine Intelligent Data Analysisknowledge and Information Sys-

ms Science in Chingetc. He is/was a PAKDD Steering Committee
ember, Program Committee Chair/Co-Chair of PAKDD'07 and
RICAI'08, Vice Chair/Area Chair of ICDM'06, ICDM’'08, etc.,
rogram Committee member of various international conferences
including AAAI, ICML, ECML, SIGKDD, ICML, ACM Multimedia,
etc., and General Chair/Co-Chair or Program Committee Chair/Co-
Chair of a dozen of native conferences. He is a senior member
of China Computer Federation (CCF), the Vice Chair of the CCF
Artificial Intelligence & Pattern Recognition Society, an Executive
Committee member of Chinese Association of Atrtificial Intelligence
(CAAl), the Chair of the CAAI Machine Learning Society, and
the Chair of the IEEE Computer Society Nanjing Chapter. He is
a member of AAAlI and ACM, and a senior member of IEEE and
IEEE Computer Society.

Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neuralte
networks with methods addressing the class imbalance pr
lem,” IEEE Transactions on Knowledge and Data Engineerin
vol. 18, no. 1, pp. 63-77, 2006.



