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Abstract—Timing optimization during the global placement
of integrated circuits has been a significant focus for decades,
yet it remains a complex, unresolved issue. Recent analytical
methods typically use pin-level timing information to adjust net
weights, which is fast and simple but neglects the path-based
nature of the timing graph. The existing path-based methods,
however, cannot balance the accuracy and efficiency due to the
exponential growth of number of critical paths. In this work,
we propose a GPU-accelerated timing-driven global placement
framework, integrating accurate path-level information into the
efficient DREAMPlace infrastructure. It optimizes the fine-grained
pin-to-pin attraction objective and is facilitated by efficient critical
path extraction. We also design a quadratic distance loss function
specifically to align with the RC timing model. Experimental
results demonstrate that our method significantly outperforms
the current leading timing-driven placers, achieving an average
improvement of 40.5% in total negative slack (TNS) and 8.3%
in worst negative slack (WNS), as well as an improvement in
half-perimeter wirelength (HPWL).

I. INTRODUCTION

In the field of very-large-scale integration (VLSI) design,
the placement process is critical as it forms the bridge be-
tween logical design and physical layout [8], [28]. Traditional
placement methods, while focusing on minimizing wirelength
and reducing routing congestion, only implicitly address timing
metrics [3], which may fail to satisfy the strict timing require-
ments of modern, large-scale chip designs. Direct optimiza-
tion of timing is essential but typically demands considerable
computational resources and turn-around time, emphasizing the
need for more efficient timing-driven placement methods to
improve design cycles and ensure timing closure.

Modern placement algorithms often consist of three main
stages: global placement, legalization, and detailed place-
ment [23]. Global placement distributes cells across the target
layout, balancing the wirelength and density. The coarse result
is then refined by legalization and fine-tuned by detailed
placement. Among these three stages, global placement plays
a crucial role in determining the overall distribution of cells,
significantly influencing the quality of the final placement,
including timing. As a result, timing-driven placement (TDP)
for global placement has been extensively studied, focusing
on optimizing key timing metrics such as total negative slack
(TNS) and worst negative slack (WNS).

Such TDP techniques basically have three components: foun-
dational placement algorithms, timing analysis, and interfaces
between them [26]. The first component utilizes traditional

global placement engines, which primarily focus on optimizing
the trade-offs between wirelength and density. The second com-
ponent involves either internal or external timing engines that
assess the current layout of the placement to provide essential
timing data, such as critical path delays or pin slacks. The
third component translates timing metrics into certain weights
or constraints to drive the foundational placement engines.
Depending on the method of handling timing information, TDP
techniques can be broadly categorized into two types: net-based
and path-based approaches.

Net-based methods use timing analysis to adjust net
weights [2], [5], [9], [10], [25] or net constraints [11], [16],
[22] either dynamically or statically, indirectly guiding the
placement to focus on critical nets. Since traditional place-
ment algorithms primarily focus on minimizing wirelength,
which inherently involves net considerations, only minimal
modifications are required to adapt these for a timing-driven
approach. Recently, Liao et al. upgraded the advanced nonlinear
placer, DREAMPlace [20], to its timing-driven version 4.0 [18].
This new version dynamically adjusts net weights, utilizing
a momentum-guided mechanism that interacts with a timing
analysis engine, enhancing its focus on timing optimization.

Path-based methods [7], [15], [27] directly address paths
extracted from the timing graph, typically formulated as a
mathematical programming problem. These methods maintain
an accurate view of timing during the optimization [4], thereby
often ensuring high-quality results. However, they frequently
encounter scalability issues as the number of paths grows ex-
ponentially with the increase of design size [18]. Recently, Guo
and Lin introduced a novel differentiable-timing-driven place-
ment framework [12], which incorporates a GPU-accelerated,
differentiable timing engine into DREAMPlace, enabling ef-
ficient path-based analysis. This approach not only achieves
state-of-the-art performance but also operates at competitive
speeds, addressing traditional scalability challenges effectively.

Despite significant advancements, the timing-driven place-
ment problem remains largely unsolved. Net-based approaches
often suffer from an indirect optimization objective and under-
utilized timing information. For path-based methods, although
Guo and Lin [12] have somewhat addressed the scalability
issue, their approach potentially compromises accuracy by
smoothing timing metrics. In this work, we introduce a timing-
driven global placement framework that incorporates a fine-



grained pin-to-pin attraction quadratic distance loss, directly
targeting timing metrics. This is complemented by a path-level
timing analysis module that extracts critical paths efficiently.
We outline the key contributions as follows:

• We develop a GPU-accelerated, timing-driven placement
flow that optimizes pin-to-pin attraction on critical paths,
based on the leading placer DREAMPlace 4.0 [18].
Our code is available at https://github.com/lamda-bbo/
Efficient-TDP.

• We introduce an efficient critical path extraction method
that captures comprehensive timing information, enabling
timing optimization at a high speed—achieving a 6×
speed improvement over the default timer [14].

• We design a quadratic Euclidean distance loss for pin-to-
pin attraction, which is closely aligned with timing metrics
and significantly contributes to the superior performance,
showing 50% (30%) improvements on TNS (WNS) com-
pared to other distance metrics.

• Experimental results on the ICCAD2015 contest bench-
mark suites [17] show that we can achieve about
60% (30%) improvements on TNS (WNS), compared
to DREAMPlace 4.0 [18] and about 50% (10%) im-
provements on TNS (WNS), compared to Guo and Lin’s
work [12].

The rest of the paper is organized as follows: Section II
gives the preliminaries for timing-driven global placement.
Section III presents details of our proposed timing-driven
placement flow. Section IV provides empirical studies and
discussions. Section V concludes this paper.

II. PRELIMINARIES

A. Nonlinear Global Placement

Global placement is a critical phase in physical design,
aiming to determine the locations of millions of cells within a
specified chip layout. The goal of optimization is to minimize
the wirelength connecting all relevant components while adher-
ing to density constraints. To facilitate efficient optimization,
the constrained problem is transformed into an unconstrained
nonlinear optimization problem:

min
x,y

∑
e∈E

WLe(x,y) + λ ·D(x,y), (1)

where x, y are the cell locations, E represents the set of all
nets, WL is typically a smoothed half-perimeter wirelength
(HPWL) function (e.g., weighted-average method [13]), D is a
density metric, and λ is the density penalty factor.

B. Static Timing Analysis

Static timing analysis (STA) [24] evaluates circuit timing by
modeling it as a directed acyclic graph, where edges represent
timing arcs that indicate signal propagation directions. In this
graph, a timing path starts from a source and ends at a sink, with
the arrival time Arr propagated forward and the required arrival
time Req backward along the path. The difference between
these times at any point t defines the slack:

Slack(t) = Req(t)−Arr(t). (2)

A negative slack at an endpoint indicates a timing violation,
necessitating further optimization. To quantify these violations,
the metrics worst negative slack (WNS) and total negative
slack (TNS) are used. WNS identifies the largest magnitude
of violation, while TNS sums all the negative slacks:

WNS = mint∈V Slack(t), (3)

TNS =
∑

t∈V
Slack(t), (4)

where V represents the set of all violated endpoints. If V = ∅,
both WNS and TNS are zero, indicating that all timing con-
straints are met.

C. Timing-Driven Placement by Net Weighting

With WNS and TNS defined to measure the timing per-
formance, vanilla nonlinear placement may be inefficient in
optimizing these metrics, because wirelength does not directly
target timing metrics. An intuitive idea is dynamically adjusting
weight of nets using timing information. Among timing-driven
placers, DREAMPlace 4.0 [18] is the state-of-the-art open-
source implementation. Built upon DREAMPlace [20], version
4.0 makes the most of the GPU acceleration framework and
integrates the popular open-source timer OpenTimer [14] for
STA, further extracting timing information for net weighting.
The nonlinear placement objective (1) is thus formulated as:

min
x,y

∑
e∈E

we ·WLe(x,y) + λ ·D(x,y), (5)

where we is the weight assigned to net e. Nets that are timing
critical are assigned larger weights.

III. OUR ALGORITHM

In this section, we propose a GPU-accelerated timing-driven
global placement framework shown in Fig. 1. We introduce
a fine-grained pin-to-pin attraction objective, which directly
targets timing metrics, facilitated by an efficient critical path
extraction method and a quadratic Euclidean distance loss.

A. Fine-Grained Weighting Scheme

As described in Sec.II-C, traditional net weighting methods
aim to enhance the timing performance by assigning additional
weights to critical nets. However, given the complexity of
modern designs, which often feature large fan-out nets and
shared data paths, this approach has notable shortcomings.
Specifically, it may apply unnecessary weights to non-critical
pin pairs and overlook the effects of path-sharing, which disable
efficient optimization of timing performance.

To address these issues, we propose incorporating pin-to-pin
attraction as a fine-grained objective, replacing the traditional
method of applying extra net weights for timing optimization.
The revised objective function is presented as follows:

min
x,y

∑
e∈E

WLe(x,y) + λ ·D(x,y) + β · PP (x,y), (6)

https://github.com/lamda-bbo/Efficient-TDP
https://github.com/lamda-bbo/Efficient-TDP
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Fig. 1. Our timing-driven placement flow enabling GPU-acceleration. Gradi-
ents in orange are propagated on GPU.

where β represents the penalty multiplier, and PP denotes the
pin-to-pin attraction loss.

Pin-to-pin attraction describes an attractive force that brings
pins on critical path closer together, thereby reducing wire
delay and improving timing performance. Fig. 2 compares the
traditional net weighting scheme with the pin-to-pin attraction
model for a three-pin net. We illustrate this with an example
comprising three timing paths, indicated by green, yellow, and
blue arrows. Traditionally, net weighting for timing optimiza-
tion typically involves assigning a substantial weight to both
pins B and C, based on the worst pin slack within the net (i.e.,
pin C in this case). But the weight is unnecessary for pin B, as
positive slacks are disregarded in timing metrics. Furthermore,
this heavy weighting could compromise the wirelength of other
nets, potentially creating new critical paths. Additionally, pin
C’s slack is determined by the worst slack of the paths it
belongs to, calculated as min(-400,-500), which ignores
the effects of path-sharing due to the nature of pin-level timing
analysis. In contrast, the pin-to-pin attraction method assigns
weights selectively to critical pin pairs based on their individ-
ual slacks, offering a more refined control that benefits both
overall timing and wirelength. What’s more, we can analyse
critical paths one by one, thus define the pin C’s slack as
sum(-400,-500), taking path-sharing into consideration.

Although a similar concept of ‘pin-to-pin attraction’ has
been previously described as ‘virtual path’ in the literature [6],
[21], the advantages of fine-grained weighting and path-sharing
cannot be realized without extracting critical timing paths effi-
ciently. This enables proper weights assigned to those critical
pin pairs. This vital aspect has been insufficiently explored in
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Fig. 2. Illustration of traditional net weighting and pin-to-pin attraction.

prior studies due to its complexity and the potential for an
exponential increase in the number of paths as chip scale grows.

B. Critical Path Extraction

To address the necessity of efficiently extracting path-level
timing information, we integrate OpenTimer [14], a leading
timing engine widely adopted by open-source projects and
adapted from DREAMPlace 4.0 [18]. OpenTimer provides an
advanced feature, report_timing(n), which identifies the
worst n endpoints based on slack and retrieves the n worst
critical paths for each, resulting in n2 paths from which the
top n worst paths are selected. While report_timing(n)
is effective for identifying critical paths when n is small
(e.g., 1), allowing quick and detailed analysis of specific paths,
its efficiency decreases as n increases due to the quadratic
growth in analyzed paths. Additionally, the extracted paths tend
to concentrate on a few critical endpoints, which does not align
well with the TNS metric that requires summing negative slacks
across all endpoints.

To address the afore-mentioned problem, we present the
report_timing_endpoint(n,k) method for critical
path extraction. Here n represents the number of most critical
endpoints we want to investigate and k means the number of
critical paths we extract for each endpoint. The method returns
n × k paths that ensure each mentioned endpoint is properly
covered, thus comprehensively reflecting the timing issue of the
entire chip and directly targeting the TNS metric.

Table I details the timing analysis for the superblue1
case [17] using different methods. Initially, we identify a
total of 26,300 failing endpoints. Employing OpenTimer’s
report_timing(26300), we find that out of these paths,
only 6 unique endpoints and 748 unique pin pairs are extracted,
which significantly deviates from the TNS metric’s require-
ments that each failing endpoint’s slack should be considered.
Even increasing the path count to 26300 × 10, the extracted
unique endpoints and pin pairs still fall short of the neces-
sary criteria for a comprehensive TNS evaluation. In contrast,
our method, report_timing_endpoint(26300,1), ef-
ficiently covers all endpoints and includes a broader range of



TABLE I
TIMING STATISTICS COMPARISON AMONG VARIOUS CRITICAL PATH EXTRACTION METHODS.

Command Complexity Number of Paths Number of Endpoints Number of Pin Pairs Time (sec)

report_timing(26300) O(n2) 26300 6 748 41.64
report_timing(263000) O(n2) 263000 20 2538 146.70
report_timing_endpoint(26300,1) O(n× k) 26300 26300 62811 7.00
report_timing_endpoint(26300,10) O(n× k) 135705* 26300 93740 21.46

* The number here is less than 263000, as not all endpoints can extract 10 critical paths.
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Fig. 3. Visualization of a specific critical path optimized using different
distance losses. The slack of each path is given on the top of each figure.

pin pairs. Increasing the number of paths per endpoint to 10
triples the time while only increasing the number of pin pairs
by 1.5 times, indicating that the former setting is sufficient
for effective optimization. Further empirical evaluations and
discussions are available in Table III and Sec. IV-B.

C. Quadratic Euclidean Distance Loss

To achieve effective optimization, it is desirable to design
a loss function that aligns well with the final timing metrics.
In practice, the RC delay model is fairly sufficient and widely
adopted. Given the distributed RC network of a net, the delay
from the net source s to sink t can be calculated as follows:

Delays→t = Rs→tCt, (7)

where Rs→t represents the equivalent resistance from s to t,
and Ct represents the capacitance at node t. For net delay, R
and C here are both linear to wirelength, making the delay
quadratic in length. Thus, we choose the square of the pin-to-
pin Euclidean distance – quadratic loss as the objective:

Q(i, j) = (xi − xj)
2 + (yi − yj)

2, (8)

where Q(i, j) represents the pin-to-pin loss of pin i and j.
Fig. 3 demonstrates the effectiveness of our quadratic loss

design, comparing it to HPWL loss and Euclidean distance
loss using the superblue16 case [17]. We first identify the
most critical path using report_timing(1) from the coarse
placement before timing optimization, as shown in Fig. 3(a).
Fig. 3(b) and (c) show the corresponding path optimized to

convergence by HPWL loss and linear Euclidean distance
loss, respectively. Both paths and slacks appear similar in
these two figures due to the nearly linear relationship both
loss functions have with distance. Such linear loss fails to
differentiate effectively between longer and shorter wires, with
gradients indicating direction but not magnitude. Consequently,
many cells may cluster together, while some wire segments
become excessively long, as shown in Fig. 3(b) and (c). In
contrast, Fig. 3(d), which utilizes a quadratic distance loss,
demonstrates improved path slack despite an increase in total
wirelength. This improvement is attributed to the quadratic loss
fostering a more uniform distribution of cells and maintaining
more consistent wire segment lengths. It also implies that
there are fewer excessively long wire segments, which typically
necessitate the insertion of buffers that can escalate area, power,
and thermal concerns, underscoring the utility in modern chip
design [1]. As this study focuses on academic cases which are
not suited for post-CTS evaluations, optimizing area, power,
and thermal is identified as a crucial future work.

D. Workflow Summary

We detail the overall process for timing optimization as
a summary. Initially, vanilla DREAMPlace [20] is run to
distribute the cells within the layout. Subsequently, we per-
form a path-level timing analysis every m rounds to extract
critical paths and update the pin-to-pin loss. This involves
report_timing_endpoint(n,1), where n denotes the
number of all failing endpoints, to collect data on critical paths.
As we traverse these paths, each pin pair (i, j) involved is added
to a maintained set P , unless it has already been included. To
address the path-sharing effect, the weight w(i,j) of each pin
pair is dynamically updated as follows:

w(i,j) =

{
w0, if (i, j) /∈ P ,

w(i,j) + w1 · (slack/WNS), otherwise,
(9)

where w0 and w1 are hyperparameters, and slack indicates the
negative slack of the respective critical path. The pin-to-pin
attraction loss PP (x,y) of the layout is then computed as:

PP (x,y) =
∑

(i,j)∈P

w(i,j) ·Q(i, j), (10)

with Q(i, j) and w(i,j) defined in Eqs. 8 and 9, respectively.
After defining the loss function properly, we implement the
CUDA kernel of PP loss for GPU-acceleration.



TABLE II
COMPARING TNS (×105 ps), WNS (×103 ps), AND HPWL (×106) ACROSS DIFFERENT STATE-OF-THE-ART TIMING-DRIVEN PLACEMENT METHODS.

THE BEST RESULTS ARE IN BOLD, AND THE RUNNER-UPS ARE COLORED BROWN.

Benchmark DREAMPlace* [20] DREAMPlace 4.0* [18] Differentiable-TDP† [12] Distribution-TDP§ [19] Efficient-TDP (ours)
TNS WNS HPWL TNS WNS HPWL TNS WNS HPWL TNS WNS HPWL TNS WNS HPWL

superblue1 -262.44 -18.87 422.0 -85.03 -14.10 443.1 -74.85 -10.77 432.8 -42.10 -9.26 - -17.44 -7.75 418.8
superblue3 -76.64 -27.65 478.2 -54.74 -16.43 482.4 -39.43 -12.37 478.4 -26.59 -12.19 - -20.40 -11.82 462.5
superblue4 -290.88 -22.04 312.0 -144.38 -12.78 335.9 -82.92 -8.49 312.2 -123.28 -8.86 - -82.88 -9.17 317.7
superblue5 -157.82 -48.92 488.3 -95.78 -26.76 556.2 -108.08 -25.21 488.7 -70.35 -31.64 - -62.18 -24.65 484.2
superblue7 -141.55 -19.75 604.3 -63.86 -15.22 604.0 -46.43 -15.22 602.1 -95.89 -17.24 - -43.52 -15.22 597.5
superblue10 -731.94 -26.10 935.9 -768.75 -31.88 1036.7 -558.05 -21.97 934.4 -691.10 -25.86 - -558.14 -23.08 911.6
superblue16 -453.57 -17.71 435.8 -124.18 -12.11 448.1 -87.03 -10.85 485.1 -55.99 -12.21 - -22.90 -8.63 471.6
superblue18 -96.76 -20.29 243.0 -47.25 -11.87 253.6 -19.31 -7.99 243.6 -19.23 -5.25 - -16.16 -6.92 234.4

Average Ratio 6.90 2.07 1.004 2.75 1.40 1.06 2.00 1.09 1.02 1.68 1.11 - 1.00 1.00 1.00

* For DREAMPlace [20] and DREAMPlace 4.0 [18], we replicate the layout DEFs using the default configurations.
† For Differentiable-TDP [12], we acquire the DEFs from its authors to evaluate.
§ For Distribution-TDP [19], we borrow their results as our evaluation script is identical. The HPWL values are not provided.

TABLE III
ABLATION STUDY COMPARING TNS (×105 ps) AND WNS (×103 ps) ACROSS VARIOUS SETTINGS. THE BEST RESULTS ARE IN BOLD, AND THE

RUNNER-UPS ARE COLORED BROWN.

Benchmark w/ HPWL Loss w/ Linear Loss w/ rpt_timing(n*10) w/ rpt_timing_ept(n,10) w/o Path Extraction Our Method
TNS WNS TNS WNS TNS WNS TNS WNS TNS WNS TNS WNS

superblue1 -74.70 -13.85 -76.66 -11.94 -80.61 -9.84 -12.69 -8.79 -19.27 -14.43 -17.44 -7.75
superblue3 -47.42 -15.81 -47.29 -13.00 -37.10 -11.71 -20.93 -11.91 -20.11 -16.47 -20.40 -11.82
superblue4 -155.23 -16.35 -153.76 -14.32 -139.05 -9.15 -86.49 -8.75 -102.39 -10.23 -82.88 -9.17
superblue5 -93.21 -26.37 -91.96 -28.23 -123.13 -27.28 -58.78 -25.58 -51.61 -34.57 -62.18 -24.65
superblue7 -68.68 -16.19 -59.47 -15.22 -47.70 -15.22 -35.14 -19.57 -34.96 -15.22 -43.52 -15.22
superblue10 -657.95 -23.39 -707.27 -27.67 -629.28 -24.50 -570.37 -23.23 -515.80 -21.94 -558.14 -23.08
superblue16 -61.96 -9.93 -63.69 -13.81 -30.87 -9.11 -25.17 -12.57 -24.44 -9.90 -22.90 -8.63
superblue18 -51.62 -13.18 -48.21 -13.70 -34.69 -7.40 -15.19 -7.20 -15.38 -7.64 -16.16 -6.92

Average Ratio 2.33 1.39 2.31 1.39 1.97 1.07 0.95 1.12 0.99 1.25 1.00 1.00

IV. EXPERIMENTAL RESULTS

We have developed our timing-driven global placer based
on the open-source placer DREAMPlace 4.0 released version1.
We assess the efficacy of our placer using the well-established
benchmark suite from the ICCAD 2015 contest [17]. All the
evaluations are conducted on a Linux server equipped with a
52-core Intel Xeon CPU at 2.60 GHz, an NVIDIA RTX 2080S
GPU, and 128GB of RAM. The hyperparameters are set as
follows: β = 2.5 × 10−5, m = 15, w0 = 10, and w1 = 0.2.
The updating rule for the Lagrange multiplier λ is adopted from
DREAMPlace. Timing optimization commences at the 500th
iteration, a stage where cell distribution has typically stabilized,
in line with the configurations specified in DREAMPlace 4.0.

A. Main Results

Table II presents a comprehensive comparison of TNS, WNS,
and HPWL metrics between our timing-driven placer and four
baseline methods. All DEF results are assessed using the
official evaluation kit from the ICCAD 2015 contest to ensure
fair comparison. Our approach significantly outperforms the
state-of-the-art timing-driven placers, notably Differentiable-
TDP [12] and Distribution-TDP [19]. Specifically, our method
achieves the best TNS results in seven out of eight test cases,
showing an average improvement of 50.0% over Differentiable-
TDP and 40.5% over Distribution-TDP. Our placer also shows
a consistent 8.3% improvement in WNS compared to these

1https://github.com/limbo018/DREAMPlace/releases/tag/4.0.0

two leading placers. Furthermore, when compared to DREAM-
Place [20], including its version 4.0 [18], our results consis-
tently outperform theirs in all eight cases for TNS and WNS. It
is surprising that our method surpasses baselines, including the
original DREAMPlace, in terms of HPWL in six out of eight
cases. This improvement can be attributed to our targeted pin-
to-pin attraction strategy, which minimizes the impact on non-
critical pins and effectively preserves wirelength quality, unlike
DREAMPlace 4.0 which applies weights to numerous nets.
What’s more, additional timing-driven optimization iterations
may further optimize HPWL against density, compared to
DREAMPlace with an earlier convergence.

B. Ablation Study

Table III summarizes the ablation study. The first two
columns, ‘w/ HPWL Loss’ and ‘w/ Linear Loss,’ replace the
quadratic distance loss with HPWL and linear Euclidean losses,
respectively. They both fall short of the quadratic loss, consis-
tent with the discussion in Sec. III-C. Nevertheless, they deliver
a 15% improvement in TNS over DREAMPlace 4.0 [18],
demonstrating the effectiveness of our pin-to-pin attraction
modeling and critical path extraction. Furthermore, the superior
performance of quadratic loss compared to HPWL/Euclidean
loss suggests an advantage over Electrostatics-TDP [21], which
relies on HPWL/Euclidean loss for its virtual path modeling.
However, the differences in frameworks and datasets make
direct comparisons with [21] impossible.



TABLE IV
COMPARISON ON RUNTIME (sec) WITH DREAMPLACE [20] AND

DREAMPLACE 4.0 [18]. THE BEST RESULTS ARE IN BOLD, AND THE
RUNNER-UPS ARE COLORED BROWN.

Benchmark DREAMPlace DREAMPlace 4.0 Our Method

superblue1 122.95 615.61 531.28
superblue3 125.34 798.10 699.86
superblue4 80.88 372.28 591.33
superblue5 147.35 660.42 714.27
superblue7 190.32 926.91 799.40
superblue10 252.49 1163.32 1113.07
superblue16 62.61 442.99 409.06
superblue18 56.89 368.06 301.42

Average Ratio 0.20 1.04 1.00
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Fig. 4. Runtime breakdown comparison between DREAMPlace 4.0 and
our method for case superblue1. The time spent by each component is
normalized by 615 seconds, the total runtime of DREAMPlace 4.0.

The third column, ‘w/ rpt_timing(n*10),’ uses OpenTimer’s
original report_timing(n*10) function for critical path
extraction, where n is the number of failing endpoints. As
shown in Table I, this approach provides insufficient coverage
for comprehensive timing analysis, resulting in worse TNS
performance. It also requires approximately 10× more com-
putation time compared to our path extraction method which
uses report_timing_endpoint(n,1).

The fourth column, ‘w/ rpt_timing_ept(n,10),’ extracts 10
critical paths (instead of one) per failing endpoint with
report_timing_endpoint(n,10). This adjustment im-
proves TNS by incorporating more detailed timing information
but slightly degrades WNS and increases computation time.

The fifth column, ‘w/o Path Extraction,’ replaces our path-
level timing analysis with the pin-level timing information and
momentum-based weighting scheme proposed by DREAM-
Place 4.0 [18]. While this method achieves competitive TNS
results, it performs worse in WNS, likely because pin-level
analysis fails to consider path-sharing effects, overlooking some
critical paths that significantly influence timing.

C. Runtime Analysis and Additional Results

Table IV compares runtime among DREAMPlace [20],
DREAMPlace 4.0 [18], and our method across eight designs.
DREAMPlace achieves the best runtime in all cases, as it
focuses on wirelength without a timing engine which is time
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Fig. 5. Optimization iterations for case superblue1. The blue curve is
DREAMPlace 4.0, and the yellow one is our method. Timing optimization
of both methods starts from the 500th iteration. TNS and WNS values are
converted to their absolute values in the figure for better illustration.

consuming. Our method surpasses DREAMPlace 4.0 in most
cases thanks to our efficient timing analysis and weighting
scheme, as illustrated in Fig. 4. For case superblue1, we
break down the runtime into key components and normalize
each against DREAMPlace 4.0’s total runtime for clarity. The
reductions in our runtime primarily result from our efficient
critical path extraction and pin pair weighting techniques.

Fig. 5 depicts the HPWL, overflow, TNS, and WNS through-
out a placement run, comparing our method with DREAMPlace
4.0 [18]. The two curves align until the 500th iteration, at
which point timing optimization commences. In the HPWL and
Overflow sub-figures, the application of substantial net weights
by DREAMPlace 4.0 leads to poorer HPWL performance and
a slower convergence rate. Furthermore, our method rapidly
enhances TNS and WNS performance, and maintains stability
until the optimization fully converges, thereby demonstrating
the efficacy of our timing objective design.

V. CONCLUSION

In this work, we introduce a GPU-accelerated, timing-driven
global placement framework that integrates a pin-to-pin at-
traction objective within the popular open-source DREAM-
Place framework. We develop a novel critical path extraction
method for rapid, precise timing analysis and design a quadratic
distance loss function to closely align with the specific tim-
ing metrics, thereby enhancing our framework’s performance.
Experimentation on the ICCAD2015 benchmark suite shows
substantial improvements over leading timing-driven placers.
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