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“A theory is a rational type of abstract thinking about a phenomenon, or the results of

such thinking.”

From Wikipedia

Notions of Theory in Evolutionary Computation

* Experimentally guided theory: Design an experiment to empirically study a question

* Descriptive theory: Describe/measure/quantify observations

* “Theory”: Unproven claims, e.g., building block hypothesis Critiqued, even wrong

* Theory: Mathematically proven results

[Goldberg, 1989] [Reeves and Rowe, 2002]

What we mean here
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Schema theorem [Holland, 1975]

e To explain how the population of genetic algorithms changes in steps

Study the change of m(H, t) of Simple Genetic Algorithm

[ [m(H, t+1)]] [m(H t)] L (1—(p d“”)) (1 = p,)°E

* Schema H is a template with “#”= “any”, which defines a subspace O1#1#

 m(H,t): number of individuals belonging to schema H in the t-th population

http://www.lamda.nju.edu.cn/qgianc/
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Schema theorem [Holland, 1975]

e To explain how the population of genetic algorithms changes in steps

Study the change of m(H, t) of Simple Genetic Algorithm

] e | e
SN

Average fitness of individuals — Average fitness of Prob. of not disrupting H ~ Prob. of not disrupting H
belonging to H in the pop. individuals in the pop. by one-point crossover by bit-wise mutation
selection recombination mutation

http://www.lamda.nju.edu.cn/qgianc/
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Schema theorem [Holland, 1975]
e To explain how the population of genetic algorithms changes in steps

Study the change of m(H, t) of Simple Genetic Algorithm

Efm(H,t + D] 2 m(H,6)- 22 (1= (pe - 22)) - (1 = py)°®

@ n-—1

Low-order and short schema of above-average fitness is more likely to survive

Limitation: ignoring the constructive effect of the operators; explain the local behaviors only

http://www.lamda.nju.edu.cn/qgianc/
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™ No free lunch theorem [Wolpert and Macready, TEVC 1997]

e To understand the relationship between how well a black-box optimization
algorithm performs and the optimization problem on which it is run

Expected Performance of an algorithm A iterated m times on a cost function f

- / ‘/\ 2
z Z S(dI)P(dY, | f,m, Ay |= z Z D (dy)P(diy | f,m, A)
dy dy

f\m f\m

J

http://www.lamda.nju.edu.cn/qgianc/



No free lunch theorem

f

@

Any two algorithms are equally good across all problems|over the uniform distribution
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L No free lunch theorem [Wolpert and Macready, TEVC 1997]

e To understand the relationship between how well a black-box optimization
algorithm performs and the optimization problem on which it is run

PRICALCAVEWAEDY
o

PRACALICEAPR S
dY

Also hold for supervised learning algorithms [Wolpert, Neural Computation 1996]

Limitation: NOT a uniform prior in practice

http://www.lamda.nju.edu.cn/qgianc/
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Goals of design and analysis of algorithms

* Correctness “Is the solution output by the algorithm always correct?”

* Computational complexity “How many computational resources are required?”

For evolutionary algorithms,

“Does the EA find a global optimum with prob. 1 as #generations

* Convergence e e
goes to infinity?

* Running time complexity “How long does it take to find an (approximate) optimum?”

http://www.lamda.nju.edu.cn/qgianc/
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Does an EA converge to a global optimum? tlir+n P&, eX*)=1
—+00

Sufficient conditions [Rudolph, 1998]:

 Use global reproduction operators (a positive probability to reach any point)

* Preserve the best found solution (elitism)

But life is limited! How fast does it converge?

http://www.lamda.nju.edu.cn/qgianc/



LAVIDA

. . . Learning And Mining from DatA
Running time complexity

http://www.lamda.nju.edu.cn

Objective What we concern:
A ° E[T]
OPT
 P(z<T)
S . .
/) Running time T:
#fitness evaluations until finding desired
solutions for the first time
the process with the highest cost of EA
e.g., model evaluation
R < Training e
0 T #fitness evaluations Testing “

http://www.lamda.nju.edu.cn/qgianc/
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Fitness Level L Wegener (1950-2008) | Drift Analysis X. Yao Switch Analysis
T TU Dortmund, Germany ) SUSTech, China Yu, Qian & Zhou,
[Wegener, 2000] Pioneer of EC Theory [He & Yao, AlI'01] Q8 |EEE Frank Rosenblatt Award '[FEVC’15]

Stefan Droste, Thomas Jansen, Ingo Wegener:

A Rigorous Complexity Analysis of the (1 + 1) Evolutionary Algorithm for Separable Functions with Boolean Inputs.
Evolutionary Computation 6(2): 185-196 (1998)

Zhi-Hua Zhou - Yang Yu - Chao Qian

Evolutionary
Learning
: Frank Neumann - Carsten Witt T of 7 ll:Jl’A\':;“:‘\||” : -
= Bioinspired Computation Rmmized oy . . Of EVOl Utlonary

| in Combinatorial Optimization o pe Ny Y
Search Heuristics < *

Foundations and Recent Develop

Computation

=
7| Algorithmsand Their
2| Complitational Complexity

Anne Auger + Benjomin Doerr
Edaon

N worta sciontitic

[Neumann and Witt, 2010] [Auger and Doerr, 2011] [Zhou, Yu and Qjan, 2019] [Doerr and Neumann, 2020]

http://www.lamda.nju.edu.cn/gianc/
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 Help understand behaviors of EAs

 Guide the design of EAs

* Generate EAs with theoretical guarantees

http://www.lamda.nju.edu.cn/qgianc/
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Mutation and recombination are two characterizing features of EAs

Parent

Parentl

0

1

Example of mutation

)
1E

0

0

1] 1

0

0

0

!

simulates the chromosome exchange phenomena in zoogamy reproductions

Offspring

Example of recombination

Offspringl

1

0

1

1] o]o]o

simulates the gene altering of a chromosome in biological mutation

More complicated

1

1

o[ 1]o]
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Most theoretical studies focused on EAs with mutation, while only a few included
recombination, which is difficult to be analyzed due to the irregular behavior

g D. Goldberg J. Rowe B. Doerr ’ P. S. Oliveto D. Sudholt
UIUC, USA E UOB, UK Q EP, France | UOs, UK m 0P, Germany
Pioneer of EC AE of TCS (N AEof Al AE of TEVC AE of ECJ
building block hypothesis  “building block” fails recombination helpful recombination not work  recombination helpful
@ @ ® L @ >
1989 2002 2008 2014 2017

Mainly focused on single-objective optimization

How about the influence of recombination for(multi-objective opt@?

» Important applications of EAs

» More complex than single-objective optimization

http://www.lamda.nju.edu.cn/qgianc/
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Example illustration: Help understand behaviors of EAs i e dandanpuedu
i time 3 2
Theorem: For GSEMO solving the LOTZ problem p 0(n°) On%)
recombination
Expected running time 0 (n?) > 0(n?)
> problem size n
Our findings:

Recombination can accelerate the filling of the Pareto
front by recombining diverse Pareto optimal solutions

Unique to multi-objective optimization

[Qian et al., Artificial Intelligence 2013, ACM GECCO’11 Best Theory Paper Award] http://www.lamda.nju.edu.cn/qianc/
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Pareto dominance based: NSGA-II, SPEA-II, ...

K. Deb, A. Pratap, S. Agarwal and T. Meyarivan. A fast and elitist
; multiobjective genetic algorithm: NSGA-IIl. I[EEE Transactions on
‘m. Evolutionary Computation, 2002. (Google scholar citations: 45628)

Performance indicator based: SMS-EMOA , HyPE, ....

N. Beume, B. Naujoks and M. Emmerich. SMS-EMOA: Multiobjective
selection based on dominated hypervolume. European Journal of
Operational Research, 2007. (Google scholar citations: 1909)

Decomposition based: MOEA/D, ....

Q. Zhang and H. Li. MOEA/D: A multiobjective evolutionary
algorithm based on decomposition. IEEE Transactions on Evolutionary
Computation, 2007. (Google scholar citations: 7515)

http://www.lamda.nju.edu.cn/qgianc/
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Two key components of MOEAs: solution generation and population update

Solution1l 7
Solution2 —
Solution3 Initial Parent Parent Mutation & Offspring
olution3 L o : . —
population selection solutions ecombination solutions
Stop New Survivor Fitness
criterion population electio gvaluatio

In the area of evolutionary multi-objective optimization, the research focus is mainly
on population update

http://www.lamda.nju.edu.cn/qgianc/
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Population Update of NSGA-II:

Use non-dominated sorting and crowding distance sorting to rank the solutions, and
delete the worst ones

the current . di
non-dominated crowding

population : distance
sorting sorting

B >F2>

the offspring
population

the next
population

http://www.lamda.nju.edu.cn/qgianc/
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Population Update of SMS-EMOA:

Use non-dominated sorting and quality indicators (e.g., hypervolume) to rank the
solutions, and delete the worst solution

the current the next
population non-dominated hypervolume population
sorting loss calculation
B e B I
one
offspring
solution

http://www.lamda.nju.edu.cn/qgianc/
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Population Update of MOEA/D:

| multi-objective problem|

[single—objective sub-problem 1} coe [single-objective sub-problem i] coe

the current

and
neighboring replace the
solutions worse solutions

solution

http://www.lamda.nju.edu.cn/qgianc/
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Example illustration: Guide the design of EAs

The prominent feature in population update of MOEAs: Greedy and deterministic
* the next-generation population is formed by selecting the best-ranked solutions

“One common aspect of these first-generation multi-objective algorithms is that
they did not use any elite-preservation operator, thereby compromising the
performance and was also contrary to Rudolph’s asymptotic convergence proof
which required the preservation of elites from one generation to the next.”

An Interview with Kalyanmoy Deb 2022 ACM Fellow

Is deterministic population update always better?
NO!

http://www.lamda.nju.edu.cn/qgianc/
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Theorem: For SMS-EMOA solving the OneJumpZeroJump problem time

Stochastic

E ted
xpec e. .Q(nk)
running time

exponentially faster

accelerate by 2k/4/ll2> 0(‘“nk ) min{l, M/Zk/4 }) the gap increases

exponentially w.r.t. k

> k

Original population update of SMS-EMOA

non-dominated sorting and
hypervolume loss calculation

e N
unsel- N
ected
random ([T SEEEERaS=-=m--m--m--m--m--—-- o \
lselection |sefe-|| ! LA '-;
_________ |________:>_ __Cl'_e_d___E%____F __@_m:-
z k
AN Vavdusiand) < }
non-dominated sorting and
L hypervolume loss calculation

Stochastic population update

[Bian, Zhou, Li and Qian, [JCAI 2023]

http://www.lamda.nju.edu.cn/qgianc/
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Pareto front

The OnelumpZeroJump problem:

25e /Il
) , e ; / _______ \
k+|x|;, if|lx|i<n—korx=1 20 ‘o .
fl(x)=<n_ X else o i i i .o o.
\ b =Rt P ° °
< L .
(k + |x|o, iflx|lo<n—korx=0" ;li:i ; . ’ .
f2(x) =+ S i . e o
n = |x|o, else g | | e .
= 10, : .'._‘_ ______________________ °
=
- e ® ° Deterministic Large
: 3¢ opulation [
Characterize a class of problems where some T, * g uppdate .. jJump
adjacent Pareto optimal solutions in the objective o2 . . . *
0 5 10 15 20

space locate far away in the decision space Number of 1-bits

Illustration of function values
whenn =20andk =5

[Bian, Zhou, Li and Qian, [JCAI 2023] http://www.lamda.nju.edu.cn/gianc/
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Pareto front
The OneJumpZeroJump problem: 25! l . ol
‘ . i EAL _______ AAE i
k+|x|;, iflx]li<n—korx=1" 20 | o o RE
EICI A olse o i e ot
\ v ERSll L %e e |
‘ : _an S 197 : o !
k+|x|g, if|lxlo<n—korx=20 > | | o f||
f2(x) =1 S i et *e !
n = |x|o, else g | | e o | o S|
s 10! R ad 1
2ol G, ||
e ® Stochastic ® o |l Small
: s[4 . population e b A
Characterize a class of problems where some . odate ., jumps
adjacent Pareto optimal solutions in the objective o2 . P . °
0 5 10 15 20

space locate far away in the decision space Number of 1-bits

Illustration of function values
whenn =20andk =5

[Bian, Zhou, Li and Qian, [JCAI 2023] http://www.lamda.nju.edu.cn/gianc/
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Introducing randomness into population update can make MOEAs go across inferior regions
between different Pareto optimal solutions more easily

» Deterministic Solution Space

e prefers non-dominated solutions

e if the points in the Pareto front are far away in

the solution space, easy to get trapped
[ |

large gap
% Stochastic May hold more generally

* allows dominated solutions to participate
in the evolutionary process v-J'\,'

_ _ _ small gap
* may follow an easier path in the solution space

to find points in the Pareto front W : Pareto optimal solutions

[Bian, Zhou, Li and Qian, [JCAI 2023] http://www.lamda.nju.edu.cn/gianc/
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Encourage the exploration of developing new MOEAs in the area

For example [Liang, Li and Lehre, arXiv’'23]: NSGA-II vs. Non-elitist MOEA (NE-MOEA)

0.75 1
4200 A
0.70 4
4000 A
o~ ™~ 0.65 A
2 2
£ 3800 5
2 Q9
.8 .8 0.60 4
3600 A s
O NE-MOEA archive - sl g . g 0.557 o
NE-MOEA population i
3400 - ; .
+ NSGA-Il archive 0504 + NSGA-I archive . Al
NSGA-II population NSGA-Il population i
3200 3400 3600 3800 4000 0.55 0.60 0.65 0.70 0.75
Objective 1 Objective 1
On knapsack with 100 items On NK-Landscape withn = 200 and k = 10

[Bian, Zhou, Li and Qian, [JCAI 2023] http://www.lamda.nju.edu.cn/gianc/



Example illustration: Generate EAs with theoretical guarantees

There are many applications of selecting a good subset from a ground set

observation variables

x1
X2
X3
x4
x5
x6
x7
xB

x10
x11
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x14

A _
[ |
- e |
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predictor variable

Feature selection

o

a subset of observation variables

SN

n —
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There are many applications of selecting a good subset from a ground set

Sparse regression Influence maximization Document summarization Sensor placement

Document Summary

o i |
o 1 e%0 [on ] =l
; 2 8 @ — ol
a N s %a0, — O’WJ\OX’&, FL|?5§23
I a L] 8 a N I % \ Dggé )
i ;l -] a® : — — % %% T ga8 L
i g ® %% 0, Ny - > 3 o
: ?!i?{ﬁﬁ% 'gl“;,, o ;: 0 1:“_ I — - % ﬂ:{f—%f H@E
-£2 4 ﬂ; 28 @ . 8 o — — '
J %’ﬁaﬁl { :?Hn :“!?!‘!‘ s 50, G e omo

max f(S)
Ground set V =@
S| < b

Subset Selection: Given all items V = {v,, ..., v,}, an objective function f: 2V S R
and a budget b, to select a subset S € V such that

maxscy f(S) s.t. |S|<bh NP-hard

http://www.lamda.nju.edu.cn/qgianc/



LAIViDA

. . . . Learning And Mining from DatA
Example illustration: Generate EAs with theoretical guarantees http://wowwamda.nju.edu.cn
Introduce the Pareto optimization algorithm for subset selection (POSS)
Constrained Transformation Bi-objective
maxsey fS) st ISI<b [y mingey (~£(S)ISD
Algorithm 14.2 POSS Algorithm o ) ) ) n -
Input: V = {v1,v2,...,v,}; objective function f : {0,1}" — R; budget b € [n] Initialization: pUt the SpeC|a| solution 0" into the 7
P ter: ber T of iterations; isolation function I : {0,1}" — R .
Output: solution s € {0.1)" with Js]s £b - population P
P : . . .
| folc:tsz o and P= (o], Reproduction: pick a solution randomly from P, | MOEA
= fet =10; /’ and mutate it to generate a new one
3: whilet < T do
4:  select a solution s from P uniformly at random; . . . . .
5:  apply bit-wise mutation on s to generate s': Evaluation & selection: if the new solution is not
6: ifz € PsuchthatI(z) =1(s')and z - s’ then . e .
7 Q={zeP|I(2)=I(a)ns 2} / dominated, put it into P and delete bad solutions _
8  P=(P\Qu{s')
9: endif @
10: t=t+1 . .
11: end while Output: select the best feasible solution
12: return arg maxgecp,s|, <6 f1(8)

[Qian, Yu and Zhou, NIPS 2015] http://www.lamda.nju.edu.cn/gianc/
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POSS can achieve the optimal polynomial-time approximation guarantee . siterations

Theorem. For subset selection with

I1(-) = 0, i.e., a constant function, can fin

where Ypin = MiNg;|5),=p-1Vs,b-

Proved to be the optimal polynomial-time approximation [Harshaw et al., ICML 19]

Good reported results

monotonelobjective functions, POSS

WOI’I s with |s|; < b and

VSCTCV: f(S) <f(T)

Dataset1 | v
Dataset2 | v
Experiments Data set3 | v
Dataset4 | v
Dataset5 | v

/
with|E[T] < 2eb?n|and

f(s) = (1 — e Ymin) . QPT,

Performance on other data?

teed
Data set 6 ?
Data set 7 ? Saf |
Dataset8 | ? ale:
Data set 9 ? i
Remark: Theoretical guarantee
Dataset10 | ? implies worst-case performance

[Qian, Yu and Zhou, NIPS 2015]

http://www.lamda.nju.edu.cn/qgianc/



LAIViDA

Learning And Mining from DatA

Example illustration: Generate EAs with theoretical guarantees http://wowwamda.nju.edu.cn

[Chao Qian. Can Evolutionary Clustering Have Theoretical Guarantees?

|
IEEE Transactions on Evolutionary Computation, in press] Yes!

Theorem 1. For|k-center clustering| the GSEMO achieves a|2-approximation|ratio in polynomial
running time.

1
1—€

Theorem 2. Forldiscrete k-median clustering) the GSEMO achieves a (3 + i)-approximation

ratio in polynomial running time.

1+€
(1—€)?

2
Theorem 3. For|k-means clusteringl the GSEMO achieves a (3 + %) -approximation |ratio in

polynomial running time.

Theorem 4. For|S-fair discrete k-median clustering, the GSEMO achieves a|(84,7)-bicriteria
approximation ratio in polynomial running time.

http://www.lamda.nju.edu.cn/qgianc/
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Approximation ratio under noise

Theorem. For|subset selection under multiplicative noise|with the assumption Eq. (17.29), with
probability at least (1/2)(1 — (12nb?log 2b)/1?%), PONSS with 8 > € and T = 2elnb?log 2b finds a
solution s with |s|{ < b and f(s) = E(l —e 7). 0PT.

f(§) 1-—¢€ . , Significantly better approximation ratio
S o
oPT = T4et ™) ! A

PONSS

PONSS: 0(1)

G reedy [Horel and Singer, NIPS’16]
’ Greedy: O(1/b
"\ A Y. Singer f(S) 1 1—¢€ b y ( / )
i > ) e'y)

> 1—( > b
B Gordon McKay OPT 1 + 2€b 1+e
w Prof., Harvard (1 — e)y constant y and €

EAs achieve better approximation guarantees than conventional algorithms

[Qian, Shi, Yu, Tang and Zhou, NIPS 2017] http://www.lamda.nju.edu.cn/gianc/
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 Help understand behaviors of EAs

 Guide the design of EAs

* Generate EAs with theoretical guarantees

http://www.lamda.nju.edu.cn/qgianc/
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Why do theory? oy
=
T ¢
Estimate the running time complexity by experiments
Why do theory? Because
* Absolute guarantee about the correctness
* Proofs (automatically) give insight in how things work
Solution Space
large gap -
iy . M : Pareto optimal solutions
AN
small gap

http://www.lamda.nju.edu.cn/qgianc/
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-',9

Estimate the running time complexity by experiments

Why do theory? Because

* Absolute guarantee about the correctness
* Proofs (automatically) give insight in how things work

 Many results (e.g., on an algorithm/problem class) can be obtained only by theory

Theorem. For|subset selection with monotone objective functions) POSS with E[T] < 2eb*nandI(-) = 0, i.e., a
constant function, can find a solution s with |s|; < b and f(s) = (1 — e7¥Ymin) . OPT, where yj, = ming, s, =p—1Vsp-

Hold for any application of subset selection, any problem size n, and any budget b

http://www.lamda.nju.edu.cn/qgianc/
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Limitations: Very difficult to obtain!

Theory and experiments are complementary

* Difficult to obtain theory, do experiments

* Even there is theory, experiments are still needed

E.g., we derive the expected running time O (n?) by theoretical analysis

But how about the coefficient? Do experiments

http://www.lamda.nju.edu.cn/qgianc/
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Limitations: Very difficult to obtain!

Theory and experiments are complementary

* Difficult to obtain theory, do experiments

* Even there is theory, experiments are still needed

E.g., POSS can achieve the optimal polynomial-time approximation guarantee

Theorem. For subset selection with monotone objective functions, POSS with E[T] < 2eb?n and
I1(-) = 0, i.e., a constant function, can find a solution s with |s|; < b and f(s) = (1 — e”Ymin) . OPT,

where Yin = MiNg;|s),=p-1Vs,b- .
Not bad in the worst case

http://www.lamda.nju.edu.cn/qgianc/
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E.g., POSS can achieve the optimal polynomial-time approximation guarantee

Theorem. For subset selection with monotone objective functions, POSS with E[T] < 2eb?n and
I1(-) = 0, i.e., a constant function, can find a solution s with |s|; < b and f(s) = (1 — ¢ Ymin) . OPT,
where Ymin = mins:|s|1=b—1ys,b'

Do experiments

Not bad in the worst case

Data set OPT POSS FR FoBa OMP RFE MCP
housing 743720297 | J74374£.0297 | .7429+.0300e  74231+.0301e  .7415+£.0300e  .7388+.0304e | .7354£.0297e
eunite2001 | .84844.0132 | .8482+.0132 | .8348+.0143e  .8442+.0144e  .83491.0150e  .8424+.0153e | .8320%.0150e
svmguide3 | .2705£.0255 | .2701£.0257 | .26154.0260e  .2601+.0279e  .2557+.0270e  .2136£.0325e | .2397+.0237e
ionosphere | .59954.0326 | .5990+£.0329 | .59204.0352e¢  .5929+.0346e .59211.0353e  .58324.0415e | .5740+£.0348e
sonar - 53651+.0410 | 5171+£.0440e 5138+.0432e¢  .51124.0425e¢  .43211+.0636e | .44961.0482e
triazines - A4301+.0603 | .4150+£.0592¢  41071.0600e  .40731+.0591e  .3615+.0712e | .37931.0584e
c0112000 - 0627+.0076 | .0624+.0076e  .06194+.0075e¢  .06194+.0075e¢  .0363+.0141e | .05701.0075e
mushrooms - 99124.0020 | .9909+.0021e  .99094.0022¢  .99094.0022¢ .6813+.1294e | .86521.0474e
cleanl - 4368+.0300 | .4169+£.0299¢  41454.0309¢ .41324.0315e¢ .15961.0562¢ | .35631.0364e
wSa - .3376+.0267 | .3319+.0247e  .33414.0258e¢  .33131.0246e  .33424+.0276e | .26941.0385e
gisette - .72651+.0098 | .7001£.0116e .67471+.0145e¢ .67311+.0134e  .5360+.0318e | .57094.0123e
farm-ads - A4217+£.0100 | .4196+.010le  4170+.0113e¢  .41704+.0113e - 3771£.0110e
POSS: win/tie/loss - 12/0/0 12/0/0 [2/0/0 11/0/0 12/0/0

e denotes that POSS is significantly better by the t-test with confidence level 0.05

Very good
in normal cases

[Qian, Yu and Zhou, NIPS 2015]

http://www.lamda.nju.edu.cn/qgianc/
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e Schema theorem

e No free lunch theorem

* Convergence
* Running time complexity
* How theory can help us?

e  Why do theory?

* Theory vs. Experiments

http://www.lamda.nju.edu.cn/gianc/
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Theoretical analysis of evolutionary algorithms is very difficult

Evolvability Journal of the ACM., Vol. 56, No. 1, Article 3,

L. Valiant Publication date: January 20009. e EAs: h Igh |y ran dO m iZEd
- ’;‘l TU.I'iIlg Award Abslf‘zlcl. Li\.'ing organism‘s I'lenclio‘n ‘i.n Elbccordz‘u'lccwwilh cqmpkx lmfchunixmsllml opcrzuvc. in»dil'vl'cr?m )
s WP . ways depending on conditions. Darwin’s theory of evolution suggests that such mechanisms evolved an d com Iex
L \.v;f- = 1n 2010 through variation guided by natural selection. However/Jthere has existed no theorylthat would explain p
quantitatively which mechanisms can so evolve in realistic population sizes within realistic time
II . . 4 4 3 . L] H
there has existed no theory that would explain quantitatively which Problems: complicated

mechanisms can so evolve in realistic population sizes within realistic time ...”

Mathematical knowledge:
* Probability Theory, Randomized Algorithms, Stochastic Processes

Smart: Good but not necessary! Concentration!

http://www.lamda.nju.edu.cn/qgianc/
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2 Zhou - Yang Yu - Chao Qian

Evolutlonary o
Learnlng - FrankNeumann Editors
Advances

’ Frank Neumann - Carsten Witt T' °f g:JJ ;ﬁ;,ﬁ:;"”” : <

é !Biocinspti’l:ed Co'mlpouta.tio.n f Rundomlzed R, Of EVOI Ut I Q n a ry

5 in Combinatorial Optimization Search HeUﬂShCS ,_‘;::; CO m p Utatl On

| Algorithms@and Their Foundotions and Recent Developments

>| Compuitational Complexity

Anne Auger * Benjomin Doerr
Edaon

B worta scientific

[Neumann and Witt, 2010] [Auger and Doerr, 2011] [Zhou, Yu and Qian, 2019] [Doerr and Neumann, 2020]

Theoretical analysis of MOEAs may be the hottest topic in the next few years

Do useful theory!

http://www.lamda.nju.edu.cn/gianc/
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Thank you!

http://www.lamda.nju.edu.cn/qgianc/



