

SCHOOL OF ARTIFICIAL INTELLIGENCE, NANJING UNIVERSITY

Evolutionary Learning From Theory to Practice

Chao Qian

School of Artificial Intelligence Nanjing University, China

Black-box Optimization

Example: Hyper-parameter Optimization in Machine Learning

Neural architecture search

- Hyper-parameters to be optimized: module type, module connections, module hyper-parameters, ...
 Thousands of hyper-parameters
- Objective: maximize accuracy
 Objective evaluation requires neural network training and testing, which may cost at least several hours
 Black-box Expensive
- Objective: minimize computational cost
 Non-unique

Macro Placement: An important task in chip floorplanning, which tries to determine the positions of all macros with the aim of optimizing PPA (power, performance, area)

- Black-box: the evaluation of placement requires routing and simulation (commercial software)
- Expensive: routing and simulation are time-consuming
- Multi-objective: wirelength, congestion, timing, power, ...
- High-dimensional: thousands of macros

Example: 华为揭榜挂帅难题

华为"揭榜挂帅"难题存在大量复杂黑箱优化

Example: Comprehending the Origin and Evolution of Life

A high-dimensional black-box optimization problem

Evolutionary algorithms (EAs) are a kind of randomized heuristic optimization algorithms, inspired by nature evolution (*reproduction with variation* + *nature selection*)

In 1950, Turing described how evolution might be used for his optimization:

building intelligent machine

"Structure of the child machine = Hereditary material

Changes of the child machine = Mutations

Judgment of the experimenter = Natural selection"

[A. M. Turing. Computing machinery and intelligence. Mind 49: 433-460, 1950.]

Evolutionary algorithms (EAs) are a kind of randomized heuristic optimization algorithms, inspired by nature evolution (*reproduction with variation* + *nature selection*)

Many variants: genetic algorithm, evolutionary strategy, genetic programming, ...

particle swarm optimization

ant colony optimization

EAs also include some heuristics inspired from nature phenomena

:

 $\operatorname{arg\,max}_{\boldsymbol{s}} f(\boldsymbol{s})$

 $\operatorname{arg\,max}_{\boldsymbol{s}} f(\boldsymbol{s})$

 $\operatorname{arg\,max}_{\boldsymbol{s}} f(\boldsymbol{s})$

:

Evolutionary Algorithms

Thus, EAs can be applied to solve complicated optimization problems

- non-differentiable, non-continuous
- without explicit objective formulation
- multiple objective functions

black-box

The general structure of EAs

Thus, EAs can be applied to solve complicated optimization problems

- non-differentiable, non-continuous
- without explicit objective formulation
- multiple objective functions

Multi-objective EAs (MOEAs)

e.g., NSGA-II [Deb et al., TEC'02] Google scholar: 52081

Evolutionary selective ensemble

achieves smaller error by using fewer learners [Zhou et al., AlJ'02]

Evolutionary neural architecture search

STUDY	Params.	C10+	C100+	REACHABLE?
MAXOUT (GOODFELLOW ET AL., 2013)	_	90.7%	61.4%	No
NETWORK IN NETWORK (LIN ET AL., 2013)	-	91.2%	-	No
ALL-CNN (Springenberg et al., 2014)	1.3 M	92.8%	66.3%	YES
DEEPLY SUPERVISED (LEE ET AL., 2015)	-	92.0%	65.4%	No
HIGHWAY (SRIVASTAVA ET AL., 2015)	2.3 M	92.3%	67.6%	No
RESNET (HE ET AL., 2016)	1.7 M	93.4%	$72.8\%^{\dagger}$	YES
Evolution (ours)	5.4 M 40.4 M	94.6%	77.0%	N/A
WIDE RESNET 28-10 (ZAGORUYKO & KOMODAKIS, 2016)	36.5 M	96.0%	80.0%	YES
WIDE RESNET 40-10+D/O (ZAGORUYKO & KOMODAKIS, 2016)	50.7 M	96.2%	81.7%	No
DENSENET (HUANG ET AL., 2016A)	25.6 M	96.7%	82.8%	No

achieves competitive performance to the hand-designed models [Google, ICML'17]

Evolutionary multitask learning

Model	imagenet2012	cifar100	cifar10	achieves competitive results
ViT L/16 fine-tuning (Dosovitskiy et al., 2021)	85.30	93.25	99.15	on 69 public image
μ 2Net after 5 task iterations	86.38	94.75	99.35	classification tasks
μ 2Net after 10 task iterations	86.66	94.67	99.38	[Gesmundo & Dean, 2022]
μ 2Net cont. after adding VTAB-full tasks	86.74	94.67	99.41	
μ 2Net cont. after adding VDD tasks	86.74	94.74	99.43	better
μ 2Net cont. after adding all 69 tasks	86.74	94.95	99.49	SOTA: 99.40% [Touvron et al., ICCV'21]

High-speed train head design

Series N700

save 19% energy

Technological overview of the next generation Shinkansen high-speed train Series N700

M. Ueno¹, S. Usui¹, H. Tanaka¹, A. Watanabe²

¹Central Japan Railway Company, Tokyo, Japan, ²West Japan Railway Company, Osaka, Japan

waves and other issues related to environmental compatibility such as external noise. To combat this, an aero double-wing-type has been adopted for nose shape (Fig. 3). This nose shape, which boasts the most appropriate aerodynamic performance, has been newly developed for railway rolling stock using the latest analytical technique (i.e. genetic algorithms) used to develop the main wings of airplanes. The shape resembles a bird in flight, suggesting a feeling of boldness and speed.

On the Tokaido Shinkansen line, Series N700 cars save 19% energy than Series 700 cars, despite a 30% increase in the output of their traction equipment for higher-speed operation (Fig. 4).

This is a result of adopting the aerodynamically excellent nose shape, reduced running

Antenna design

38% efficiency

93% efficiency

Computer-Automated Evolution of an X-Band Antenna for NASA's **Space Technology 5 Mission**

Gregory. S. Hornby Gregory.S.Hornby@nasa.gov University Affiliated Research Center, NASA Ames Research Park, UC Santa Cruz at Moffett Field, California, 94035

Iason D. Lohn

Iason.Lohn@sv.cmu.edu

Carnegie Mellon University, NASA Ames Research Park and Moffett Field, California 94035

this, different combinations of the two evolved antennas and the QHA were tried on the ST5 mock-up and measured in an anechoic chamber. With two QHAs 38% efficiency was achieved, using a QHA with an evolved antenna resulted in 80% efficiency, and using two evolved antennas resulted in 93% efficiency. Here "efficiency" means how

The Nobel Prize in Chemistry 2018

C Nobel Media AB Photo: A Mahmoud Frances H. Arnold Prize share: 1/2

© Nobel Media AB Photo: A Mahmoud George P. Smith Sir Gregory P. Winter Prize share: 1/4

The Nobel Prize in Chemistry 2018 was divided, one half awarded to Frances H. Arnold "for the directed evolution of enzymes", the other half jointly to George P. Smith and Sir Gregory P. Winter "for the phage display of peptides and antibodies."

Mahmoud

Prize share: 1/4

Protein design

"Evolution—the adaption of species to different environments" —has created an enormous diversity of life. Frances Arnold has used the same principles – genetic change and selection – to develop proteins that solve humankind's chemical problems. In *1993, Arnold conducted the first directed evolution of enzymes,* which are proteins that catalyze chemical reactions. The uses of her results include more environmentally friendly manufacturing of chemical substances, such as pharmaceuticals, and the production of renewable fuels."

Evolutionary algorithms have yielded encouraging empirical outcomes, but

Macro placement [Google, Nature'21]

"... it is very slow and difficult to parallelize, thereby failing to scale to the increasingly large and complex circuits of the 1990s and beyond."

How to improve the efficiency?

Especially for highdimensional and expensive scenarios

Origin and evolution of life [Fan et al., Science'20]

Geologic time (Ma

Bivalve

Cephalopo

Graptolit

Evolutionary Learning (EL)

Integration of evolutionary algorithms and machine learning to better solve complex black-box optimization problems

- Learn surrogate models to help the optimization, e.g., preselection, Bayesian optimization
- Learn effective search subspaces
- Learn components (e.g., reproduction and selection operators) of EAs
- Learn to (dynamically) configure hyper-parameters of EAs
- Learn to select a proper EA
- Learn a universal EA

Evolutionary Learning

Evolutionary Learning (EL)

Integration of evolutionary algorithms and machine learning to better solve complex black-box optimization problems

The theoretical foundation of EAs is underdeveloped

L. Valiant Turing Award in 2010 Evolvability

Journal of the ACM, Vol. 56, No. 1, Article 3,

Publication date: January 2009.

Abstract. Living organisms function in accordance with complex mechanisms that operate in different ways depending on conditions. Darwin's theory of evolution suggests that such mechanisms evolved through variation guided by natural selection. However, there has existed no theory that would explain quantitatively which mechanisms can so evolve in realistic population sizes within realistic time

"there has existed no theory that would explain quantitatively which mechanisms can so evolve in realistic population sizes within realistic time ..."

- EAs: Highly randomized and complex
- Problems: Complex

Theoretical analysis is very difficult

Build theoretical foundation of EAs

> Theoretical analysis tools, influence analysis of major factors of EAs

Develop better EL algorithms

> Efficient EL, dynamic algorithm configuration, universal EL

Apply EL to solve complex optimization in learning, industry, and science

> Subset selection, electronic design automation, origin and evolution of life

Running Time Complexity

Model an EA process as a Markov chain

[Yu, <u>Qian</u> and Zhou, IEEE Trans. Evolutionary Computation 2015]

Model an EA process as a Markov chain

The generation of the next population only depends on the current population

$$\overline{\nabla}$$

Markov property $P(\xi_{t+1} | \xi_t, \dots, \xi_0) = P(\xi_{t+1} | \xi_t)$

[Yu, Qian and Zhou, IEEE Trans. Evolutionary Computation 2015]

[Yu, <u>Qian</u> and Zhou, IEEE Trans. Evolutionary Computation 2015]

[Yu, Qian and Zhou, IEEE Trans. Evolutionary Computation 2015]

Hard to be analyzed directly Expected running time ξ_5 ξ_2 ξ_3 ξ_0 ξ_1 Target chain ξ ξ4 $\mathbb{E}[\tau]$ П ρ_2 ρ_3 ρ_1 + | + ho_4 +One-step time difference ρ_0 + : Total time difference ╋ Expected running time ξ_2' ξ'_3 ξ'_4 ξ_5' ξ_0' ξ_1' Reference chain ξ' $\mathbb{E}[\tau']$ Easier to be analyzed

How to estimate one-step time difference ρ_t ?

[Yu, Qian and Zhou, IEEE Trans. Evolutionary Computation 2015]

How to estimate one-step time difference ρ_t ? ξ_1 ξ_2 ξ_3 Target chain ξ ξ_0 ξ^3 ξ_1 ξ_2 ξ_3 ξ_0 Intermediate ξ^2 mapping ϕ ξ_0 ξ_1 ζ2 chains ξ^1 ξ'_0 ξ_0 φ 51 ξ'_0 φ ξ'_0 2 Reference اح 52 53 50 51 chain ς

[Yu, Qian and Zhou, IEEE Trans. Evolutionary Computation 2015]

Learning And Mining from DatA http://www.lamda.nju.edu.cn

Switch Analysis

[Yu, Qian and Zhou, IEEE Trans. Evolutionary Computation 2015]

Switch Analysis

[Yu, Qian and Zhou, IEEE Trans. Evolutionary Computation 2015]

Switch Analysis

[Yu, Qian and Zhou, IEEE Trans. Evolutionary Computation 2015]

Application of Switch Analysis

Example: Analyze GSEMO solving the mCOCZ problem

GSEMO:

- 1. $s \coloneqq$ randomly selected from $\{0,1\}^n$; $P \coloneqq \{s\}$
- 2. Repeat until some termination criterion is met
- 3. Choose *s* from *P* uniformly at random
- 4. apply bit-wise mutation on s to generate s'
- 5. if $\nexists z \in P$ such that z > s'
- 6. $P := (P \{ \mathbf{z} \in P | \mathbf{s}' \ge \mathbf{z} \}) \cup \{ \mathbf{s}' \}$

Influence Analysis of Recombination Operator

Mutation and recombination are two characterizing features of EAs

simulates the chromosome exchange phenomena in zoogamy reproductions

Influence Analysis of Recombination Operator

Our result:

Recombination can accelerate the filling of the Pareto front by recombining diverse Pareto optimal solutions

Unique to multi-objective optimization

[Qian et al., Artificial Intelligence 2013, ACM GECCO'11 Best Theory Paper Award]

Influence Analysis of Population Update

The prominent feature in population update of MOEAs: greedy and deterministic

- the next-generation population is formed by selecting the best-ranked solutions
- e.g., NSGA-II (Google scholar: 52081), SPEA-II (Google scholar: 10384), SMS-EMOA (Google scholar: 2145), MOEA/D (Google scholar: 9166), ...

Our result:

By introducing randomness into population update, MOEAs can go across inferior regions around Pareto optimal solutions more easily

Example: SMS-EMOA solving the OneJumpZeroJump problem

[Bian, Zhou, Li, and <u>Qian</u>, IJCAI 2023; Extended to Artificial Intelligence]

Our result:

By introducing randomness into population update, MOEAs can go across inferior regions around Pareto optimal solutions more easily

Solution Space

- Challenge the common practice of MOEAs, i.e., deterministic population update
- Encourage the exploration of developing new MOEAs in the area

For example, [Liang, Li and Lehre, GECCO'23]:

[Bian, Zhou, Li, and <u>Qian</u>, IJCAI 2023; Extended to Artificial Intelligence]

For details

Zhi-Hua Zhou, Yang Yu, Chao Qian

Evolutionary Learning: Advances in Theories and Algorithms

- Presents theoretical results for evolutionary learning
- Provides general theoretical tools for analysing evolutionary algorithms
- Proposes evolutionary learning algorithms with provable theoretical guarantees

Build theoretical foundation of EAs

> Theoretical analysis tools, influence analysis of major factors of EAs

Develop better EL algorithms

> Efficient EL, dynamic algorithm configuration, universal EL

Apply EL to solve complex optimization in learning, industry, and science

> Subset selection, electronic design automation, origin and evolution of life

The black-box optimization problems can be high-dimensional

Neural architecture search

Thousands of hyper-parameters

Macro placement

Thousands of macros

Origin and evolution of life

Thousands of species

How to develop efficient EL for high-dimensional black-box optimization?

Current approaches usually solve high-dimensional BBO in a low-dimensional subspace:

- 1. Obtain a low-dimensional subspace
- 2. Optimize in the low-dimensional subspace
- 3. Project the low-dimensional solution back to the high-dimensional space
- Decomposition: f can be decomposed into the sum of low-dimensional functions
 [Kandasamy et al., ICML'15; Rolland et al., AISTATS'18]
- **Embedding**: only a few dimensions affect *f* significantly

[Wang et al., JAIR'16; Letham et al., NeurIPS'20]

Variable selection: only a few axis-aligned dimensions affect f significantly
 [Li et al., IJCAI'17]

Variable selection: Simpler than embedding and can reduce the runtime

Dropout [Li et al., IJCAI'17] select d variables randomly and optimize the selected variables

- Select *d* variables randomly
- Optimize the selected variables
- Use "fill-in" strategy to obtain the unselected variables

Can be combined with any BBO algorithm

[Song, Xue, Huang, and Qian, NeurIPS 2022 Spotlight]

MCTS based Variable Selection

Theorem:
$$\forall \delta \in (0, 1)$$
, let $\beta_t = 2 \log\left(\frac{4\pi_t}{\delta}\right) + 2d_t \log(d_t t^2 br \sqrt{\log(\frac{4Da}{\delta})})$ and $L = b \sqrt{\log\frac{4Da}{\delta}}$,
and $\{\pi_t\}_{t\geq 1}$ satisfies $\sum_{t\geq 1} \pi_t^{-1} = 1$ and $\pi_t > 0$. Let $\beta_T^* = \max_{1\leq i\leq T} \beta_t$. At iteration T ,
 $R_T \leq \sqrt{C_1 T \beta_T^* \gamma_T} + 2\alpha_{max} + 2\sum_{t=1}^T \sum_{i\in [D]\setminus\mathbb{M}_t} \alpha_i^* Lr$ Regret from unselected variables
Cumulative regret $R_T = \sum_{t=1}^T (f(x^*) - f(x^t))$ α_i^* : Importance of x_i

If important variables are selected, the cumulative regret can be reduced

MCTS based Variable Selection

Experiments by combining with Bayesian optimization

Application to neural architecture search

Compared to state-of-the-art methods, MCTS-VS reduces runtime significantly

[Song, Xue, Huang, and <u>Qian</u>, NeurIPS 2022 Spotlight]

Leverage MCTS to divide search spaces

- Use K-Means to divide the samples in a node into two clusters
- Use a binary classifier to separate the two clusters and divide the space into two nodes
- The left and right child nodes have higher and lower potential, respectively

SEARCH SPACE PRE-LERANING

OPTIMIZATION INITIALIZATION

Potential of node *m*:
$$p_m = \gamma^{t-1} \frac{\sum_{i \leq K} w_i \overline{y}_{i,m}}{\sum_{i \leq K} w_i} + \overline{y}_{T,m}$$
 Utilize data of source tasks

 $\overline{y}_{i,m}$: average objective values of the samples of the *i*-th source task in node *m*

 $\overline{y}_{T,m}$: average objective values of the samples of the target task in node m

Potential of node *m*:
$$p_m = \gamma^{t-1} \frac{\sum_{i \leq K} w_i \overline{y}_{i,m}}{\sum_{i \leq K} w_i} + \overline{y}_{T,m}$$
 Utilize data of source tasks

 $\overline{y}_{i,m}$: average objective values of the samples of the *i*-th source task in node *m*

 $\overline{y}_{T,m}$: average objective values of the samples of the target task in node m

Reflect the similarity between the *i*-th source task and the target task

 γ : decay factor The influence of source tasks decays during the optimization process

[Wang, Xue, Song, Huang, and <u>Qian</u>, NeurIPS 2024 Spotlight]

Leverage MCTS to divide search spaces

- Use K-Means to divide the samples in a node into two clusters
- Use a binary classifier to separate the two clusters and divide the space into two nodes
- The left and right child nodes have higher and lower potential, respectively

SEARCH SPACE PRE-LERANING

Potential of node *m*:
$$p_m = \gamma^{t-1} \frac{\sum_{i \leq K} w_i \overline{y}_{i,m}}{\sum_{i \leq K} w_i} + \overline{y}_{T,m}$$
 Utilize data of source tasks
Node selection: $ucb_m = \frac{p_m}{n} + 2C_p \sqrt{2\log(n_p)/n_m}$ Select the node *m* with higher UCB from ROOT

[Wang, Xue, Song, Huang, and <u>Qian</u>, NeurIPS 2024 Spotlight]

 n_m

Similar/Mixed transfer: learning from the data of similar (or similar and dissimilar) tasks

MCTS-transfer achieves the best average rank in high-dimensional real-world problems

Expensive Black-box Optimization

The black-box optimization problems can be expensive

Neural architecture search

Only a very limited number of evaluations (e.g., 10) are allowed

Macro placement

modules

Objective evaluation requires neural network training and testing, which may cost at least several hours

Objective evaluation requires routing and simulation, which are time-consuming

How to develop efficient EL for expensive black-box optimization?

Offline optimization: Generate good solutions only using a given static data set

Current approaches:

- Forward approach $(x \rightarrow y, \text{ surrogate model})$ [Chen et al., NeurIPS'22; Kim et al., NeurIPS'23]
- Backward approach $(y \rightarrow x, \text{generative model})$

[Kumar & Levine, NeurIPS'20; Krishnamoorthy et al., ICML'23]

No iterative online evaluation!

Offline Optimization

Forward approaches (mainstream):

• Train a surrogate model \hat{f}_{θ} to predict the function values via regression:

$$\theta^* = \operatorname{argmin}_{\theta} \frac{1}{N} \sum_{i=1}^{N} (\hat{f}_{\theta}(x_i) - y_i)^2$$

• Obtain the final solution that maximizes the model output via gradient ascent:

 $x_{t+1} = x_t + \eta \nabla_x \hat{f}_{\theta}(x)|_{x=x_t}$

Prior works try to eliminate OOD prediction error via regularization or ensemble learning

[Trabucco et al., ICML'21; Chen et al., NeurIPS'22; Yuan et al., NeurIPS'23; Dao et al., ICML'24]

Primary goal of offline optimization:

 to select promising designs, rather than to predict their scores precisely

OOD error in order-preserving is more important than OOD prediction error

We propose a novel framework for offline optimization based on learning to rank

- Utilize data augmentation to construct training data for the ranking framework
- Train the surrogate model with ranking loss
- Search for the final solutions using gradient ascent under output adaptation

Offline Optimization by Learning to Rank

Theorem 1 (Equivalence of Optima for Order-Preserving Surrogates). Let \hat{f}_{θ} be a surrogate model and f the ground-truth function. A function $h : \mathbb{R} \to \mathbb{R}$ is order-preserving, if $\forall y_1, y_2 \in \mathbb{R}$, $y_1 < y_2$ iff $h(y_1) < h(y_2)$. If there exists an order-preserving h such that $\hat{f}_{\theta}(\mathbf{x}) = h(f(\mathbf{x})) \forall \mathbf{x}$, then finding the maximum of f is equivalent to finding that of \hat{f}_{θ} , i.e., $\arg \max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) = \arg \max_{\mathbf{x} \in \mathcal{X}} \hat{f}_{\theta}(\mathbf{x})$.

• Identify the importance of the order-preserving surrogate models for offline optimization

Theorem 2 (Generalization Error Bound for LTR (Lan et al., 2009)). Let ϕ be an increasing and strictly positive transformation function (e.g., $\phi(z) = \exp(z)$). Assume that: 1) $\forall \mathbf{x} \in \mathcal{X}$, $\|\mathbf{x}\| \leq M$; 2) the ranking model f to be learned is from the linear function class $\mathcal{F} = \{\mathbf{x} \to \mathbf{w}^\top \mathbf{x} \mid \|\mathbf{w}\| \leq B\}$. Then with probability $1 - \delta$, the following inequality holds: $\mathcal{O}(1/\sqrt{n})$ $\sup_{f \in \mathcal{F}} \left(R_{l_{\mathcal{A}}}(f) - \hat{R}_{l_{\mathcal{A}}}(f; \mathcal{D}_R) \right) \leq \left(4BM \cdot C_{\mathcal{A}}(\phi)N(\phi)/\sqrt{n} + \sqrt{2\ln(2/\delta)/n}, \right)$ where: 1) \mathcal{A} stands for a specific LTR algorithm; 2) $N(\phi) = \sup_{z \in [-BM, BM]} \phi'(z)$, which is an algorithm-independent factor measuring the smoothness of ϕ ; 3) $C_{\mathcal{A}}(\phi)$ is an algorithm-dependent factor, e.g., $C_{RankCosine}(\phi) = \sqrt{m}/(2\phi(-BM))$.

• The i.i.d. generalization error bound has a convergence rate of $\mathcal{O}(1/\sqrt{n})$ where *n* is the number of training data

A special case where pairwise ranking loss is more robust than MSE in OOD regions:

- Assume the training data suffers from heavy-tailed noise
- Assume the model to be learned is a linear model

[Tan, Xue, Lyu, Shang, Wang, Wang, Fu, and <u>Qian</u>, ICLR 2025 Under Review]

Experiment on Design-Bench [Trabucco et al., ICML'22] :

Method	Ant	D'Kitty	Superconductor	TF-Bind-8	TF-Bind-10	Mean Rank	
$\mathcal{D}(best)$	0.565	0.884	0.400	0.439	0.467	/	
BO-qEI	0.812 ± 0.000	0.896 ± 0.000	0.382 ± 0.013	0.802 ± 0.081	0.628 ± 0.036	18.0 / 22	
CMA-ES	1.712 ± 0.754	0.725 ± 0.002	0.463 ± 0.042	0.944 ± 0.017	0.641 ± 0.036	11.4 / 22	
REINFORCE	0.248 ± 0.039	0.541 ± 0.196	0.478 ± 0.017	0.935 ± 0.049	0.673 ± 0.074	14.0 / 22	
Grad. Ascent	0.273 ± 0.023	0.853 ± 0.018	0.510 ± 0.028	0.969 ± 0.021	0.646 ± 0.037	11.6 / 22	
Grad. Ascent Mean	0.306 ± 0.053	0.875 ± 0.024	0.508 ± 0.019	0.985 ± 0.008	0.633 ± 0.030	11.2 / 22	
Grad. Ascent Min	0.282 ± 0.033	0.884 ± 0.018	0.514 ± 0.020	0.979 ± 0.014	0.632 ± 0.027	11.5 / 22	
CbAS	0.846 ± 0.032	0.896 ± 0.009	0.421 ± 0.049	0.921 ± 0.046	0.630 ± 0.039	15.5 / 22	
MINs	0.906 ± 0.024	0.939 ± 0.007	0.464 ± 0.023	0.910 ± 0.051	0.633 ± 0.034	13.0 / 22	
DDOM	0.908 ± 0.024	0.930 ± 0.005	0.452 ± 0.028	0.913 ± 0.047	0.616 ± 0.018	14.6 / 22	The state indicates a large harmonic $\Gamma(0)$
BONET	0.921 ± 0.031	0.949 ± 0.016	0.390 ± 0.022	0.798 ± 0.123	0.575 ± 0.039	15.1 / 22	The third method: only ranks 5.9
GTG	0.855 ± 0.044	0.942 ± 0.017	0.480 ± 0.055	0.910 ± 0.040	0.619 ± 0.029	13.9 / 22	t an avarage
COMs	0.916 ± 0.026	0.949 ± 0.016	0.460 ± 0.040	0.953 ± 0.038	0.644 ± 0.052	9.5 / 22	on average
RoMA	0.430 ± 0.048	0.767 ± 0.031	0.494 ± 0.025	0.665 ± 0.000	0.553 ± 0.000	18.3 / 22	
IOM	0.889 ± 0.034	0.928 ± 0.008	0.491 ± 0.034	0.925 ± 0.054	0.628 ± 0.036	_ 13.1/22	
BDI	0.963 ± 0.000	0.941 ± 0.000	0.508 ± 0.013	0.973 ± 0.000	0.658 ± 0.000	5.9 / 22	
ICT	0.915 ± 0.024	0.947 ± 0.009	0.494 ± 0.026	0.897 ± 0.050	0.659 ± 0.024	9.4 / 22	Our mathed aquipped with two
Tri-Mentoring	0.891 ± 0.011	0.947 ± 0.005	0.503 ± 0.013	0.956 ± 0.000	0.662 ± 0.012	7.7 / 22	Our method equipped with two
PGS	0.715 ± 0.046	0.954 ± 0.022	0.444 ± 0.020	0.889 ± 0.061	0.634 ± 0.040	13.2 / 22	ranking losses outportforms other
FGM	0.923 ± 0.023	0.944 ± 0.014	0.481 ± 0.024	0.811 ± 0.079	0.611 ± 0.008	13.2 / 22	ranking losses outperforms other
Match-OPT	0.933 ± 0.016	0.952 ± 0.008	0.504 ± 0.021	0.824 ± 0.067	0.655 ± 0.050	8.0 / 22	20 mothods with avorage ranks
RaM-RankCosine (Ours)	0.940 ± 0.028	0.951 ± 0.017	0.514 ± 0.026	$\boldsymbol{0.982 \pm 0.012}$	0.675 ± 0.049	2.7 / 22	20 methous with average ranks
RaM-ListNet (Ours)	0.949 ± 0.025	0.962 ± 0.015	0.517 ± 0.029	0.981 ± 0.012	0.670 ± 0.035	2.2 / 22	of 2.7 and 2.2

[Tan, Xue, Lyu, Shang, Wang, Wang, Fu, and <u>Qian</u>, ICLR 2025 Under Review]

Method	Type	Ant D'Kitty		Superconductor		TF-Bind-8		TF-Bind-10			
		Score	Gain	Score	Gain	Score	Gain	Score	Gain	Score	Gain
BO-qEI	MSE ListNet	$\begin{array}{c} 0.812 \pm 0.000 \\ 0.812 \pm 0.000 \end{array}$	+0.0%	$\begin{array}{c c} 0.896 \pm 0.000 \\ 0.896 \pm 0.000 \end{array}$	+0.0%	$ \begin{vmatrix} 0.382 \pm 0.013 \\ 0.509 \pm 0.013 \end{vmatrix} $	+33.2%	$ \begin{vmatrix} 0.802 \pm 0.081 \\ 0.912 \pm 0.032 \end{vmatrix} $	+13.7%	$ \begin{vmatrix} 0.628 \pm 0.036 \\ 0.653 \pm 0.056 \end{vmatrix} $	+4.0%
CMA-ES	MSE ListNet	$\begin{array}{c} 1.712 \pm 0.705 \\ 1.923 \pm 0.773 \end{array}$	+12.3%	$\begin{array}{c} 0.722 \pm 0.001 \\ 0.723 \pm 0.002 \end{array}$	+0.1%	$ \begin{vmatrix} 0.463 \pm 0.042 \\ 0.486 \pm 0.020 \end{vmatrix} $	+5.0%	$\begin{array}{c c} 0.944 \pm 0.017 \\ 0.960 \pm 0.008 \end{array}$	+1.7%	$\begin{array}{c c} 0.641 \pm 0.036 \\ 0.661 \pm 0.044 \end{array}$	+3.1%
REINFORCE	MSE ListNet	$ \begin{vmatrix} 0.248 \pm 0.039 \\ 0.318 \pm 0.056 \end{vmatrix} $	+28.2%	$\begin{array}{c c} 0.344 \pm 0.091 \\ 0.359 \pm 0.139 \end{array}$	+4.3%	$ \begin{vmatrix} 0.478 \pm 0.017 \\ 0.501 \pm 0.013 \end{vmatrix} $	+4.8%	$ \begin{vmatrix} 0.935 \pm 0.049 \\ 0.935 \pm 0.049 \end{vmatrix} $	+0.0%	$\begin{array}{c c} 0.673 \pm 0.074 \\ 0.673 \pm 0.074 \end{array}$	+0.0%
Grad. Ascent	MSE ListNet	$ \begin{array}{c} 0.273 \pm 0.022 \\ 0.280 \pm 0.021 \end{array} $	+2.6%	$\begin{array}{c} 0.853 \pm 0.017 \\ 0.890 \pm 0.019 \end{array}$	+4.3%	$\begin{vmatrix} 0.510 \pm 0.028 \\ 0.521 \pm 0.012 \end{vmatrix}$	+2.0%	$\begin{array}{c} 0.969 \pm 0.020 \\ 0.985 \pm 0.011 \end{array}$	+1.7%	$\begin{array}{c} 0.646 \pm 0.037 \\ 0.660 \pm 0.049 \end{array}$	+2.2%
CbAS	MSE ListNet	$\begin{array}{c} 0.846 \pm 0.030 \\ 0.854 \pm 0.037 \end{array}$	+ 0.9%	$\begin{array}{c} 0.896 \pm 0.009 \\ 0.898 \pm 0.009 \end{array}$	+0.2%	$\begin{vmatrix} 0.421 \pm 0.046 \\ 0.425 \pm 0.036 \end{vmatrix}$	+1.0%	$\begin{vmatrix} 0.921 \pm 0.046 \\ 0.956 \pm 0.033 \end{vmatrix}$	+3.8%	$\begin{vmatrix} 0.630 \pm 0.039 \\ 0.642 \pm 0.034 \end{vmatrix}$	+1.9%
MINs	MSE ListNet	$\begin{array}{c} 0.906 \pm 0.024 \\ 0.911 \pm 0.025 \end{array}$	+0.5%	$\begin{array}{c} 0.939 \pm 0.007 \\ 0.941 \pm 0.009 \end{array}$	+0.2%	$ \begin{vmatrix} 0.464 \pm 0.023 \\ 0.477 \pm 0.019 \end{vmatrix} $	+2.8%	$\begin{vmatrix} 0.910 \pm 0.051 \\ 0.910 \pm 0.029 \end{vmatrix}$	+0.0%	$\begin{vmatrix} 0.633 \pm 0.032 \\ 0.638 \pm 0.037 \end{vmatrix}$	+0.8%
Tri-Mentoring	MSE ListNet	$\begin{array}{c} 0.891 \pm 0.011 \\ 0.915 \pm 0.024 \end{array}$	+2.7%	$\begin{array}{c} 0.947 \pm 0.005 \\ 0.943 \pm 0.004 \end{array}$	-0.4%	$\begin{array}{c} 0.503 \pm 0.013 \\ 0.503 \pm 0.010 \end{array}$	+0.0%	$\begin{array}{c c} 0.956 \pm 0.000 \\ 0.971 \pm 0.005 \end{array}$	+1.7%	$\begin{array}{c c} 0.662 \pm 0.012 \\ 0.710 \pm 0.020 \end{array}$	+7.3%
PGS	MSE ListNet	$\begin{array}{c} 0.715 \pm 0.046 \\ 0.723 \pm 0.032 \end{array}$	+1.1%	$\begin{array}{c} 0.954 \pm 0.022 \\ 0.962 \pm 0.018 \end{array}$	+0.8%	$\begin{vmatrix} 0.444 \pm 0.020 \\ 0.452 \pm 0.042 \end{vmatrix}$	+1.8%	$\begin{array}{c c} 0.889 \pm 0.061 \\ 0.886 \pm 0.003 \end{array}$	-0.3%	$\begin{array}{c c} 0.634 \pm 0.040 \\ 0.643 \pm 0.030 \end{array}$	+1.4%
Match-OPT	MSE ListNet	$\begin{array}{c} 0.933 \pm 0.016 \\ 0.936 \pm 0.027 \end{array}$	+0.3%	$\begin{array}{c c} 0.952 \pm 0.008 \\ 0.956 \pm 0.018 \end{array}$	+0.4%	$ \begin{vmatrix} 0.504 \pm 0.021 \\ 0.513 \pm 0.011 \end{vmatrix} $	+1.8%	$ \begin{vmatrix} 0.824 \pm 0.067 \\ 0.829 \pm 0.009 \end{vmatrix} $	+0.6%	$\begin{array}{c} 0.655 \pm 0.050 \\ 0.659 \pm 0.037 \end{array}$	+0.6%

The gains are always positive except two cases, clearly demonstrating the versatility of ranking loss

[Tan, Xue, Lyu, Shang, Wang, Wang, Fu, and <u>Qian</u>, ICLR 2025 Under Review]

Offline optimization: Generate good solutions only using a given static data set

Current approaches:

• Forward approach ($x \rightarrow y$, surrogate model)

[Chen et al., NeurIPS'22; Kim et al., NeurIPS'23]

• Backward approach $(y \rightarrow x, \text{generative model})$

[Kumar & Levine, NeurIPS'20; Krishnamoorthy et al., ICML'23]

No iterative online evaluation!

However, current approaches only consider single-objective scenario, while many real-world applications have **multiple objectives**

Offline Multi-objective Optimization

Various benchmark tasks

Task Name	Dataset size	Dimensions	# Objectives	Search space
Synthetic Function	60000	2-30	2-3	Continuous
MO-NAS	9735	6	3	Categorical
MO-Swimmer	8571	9734	2	Continuous
MO-Hopper	4500	10184	2	Continuous
MO-TSP	60000	500	2	Permutation
MO-CVRP	60000	100	2	Permutation
MO-KP	60000	200	2	Permutation
Molecule	49001	32	3	Continuous
Regex	42048	4	2	Sequence
RFP	4937	4	2	Sequence
Real-world Application	60000	3-6	2-6	Continuous & Mixed

Extensive analysis

Methods	Synthetic	MO-NAS	MORL	MOCO	Sci-Design	RE	Average Rank
$\mathcal{D}(\text{best})$	12.17 ± 0.27	12.11 ± 0.05	9.00 ± 0.50	$\textbf{2.00} \pm \textbf{0.14}$	8.38 ± 0.38	13.13 ± 0.07	10.03 ± 0.07
End-to-End	6.91 ± 0.03	8.37 ± 0.05	7.50 ± 2.00	6.75 ± 0.46	6.75 ± 1.12	7.50 ± 0.57	7.32 ± 0.01
End-to-End + GradNorm	8.25 ± 0.56	7.71 ± 0.08	$\underline{4.50 \pm 1.00}$	7.61 ± 0.18	8.62 ± 0.50	10.53 ± 0.07	8.34 ± 0.01
End-to-End + PcGrad	7.88 ± 0.06	7.18 ± 0.39	10.50 ± 1.50	6.07 ± 0.64	8.69 ± 2.69	8.23 ± 0.17	7.51 ± 0.14
Multi-Head	6.38 ± 0.50	5.37 ± 0.37	6.25 ± 2.25	8.29 ± 0.21	9.19 ± 0.44	8.33 ± 0.40	7.00 ± 0.38
Multi-Head + GradNorm	7.78 ± 0.53	10.20 ± 0.04	11.00 ± 3.00	9.98 ± 0.30	9.06 ± 1.19	10.63 ± 0.17	9.63 ± 0.04
Multi-Head + PcGrad	8.61 ± 0.14	6.92 ± 0.55	10.50 ± 3.50	8.21 ± 0.36	9.38 ± 0.50	8.50 ± 0.17	8.09 ± 0.20
Multiple Models	$\textbf{4.05} \pm \textbf{0.11}$	$\underline{4.93\pm0.28}$	9.75 ± 0.75	6.34 ± 0.27	$\underline{5.62\pm0.75}$	$\underline{4.50\pm0.10}$	5.02 ± 0.03
Multiple Models + COMs	9.81 ± 0.31	5.92 ± 0.34	7.00 ± 2.00	6.36 ± 0.50	8.38 ± 2.00	10.50 ± 0.50	8.09 ± 0.32
Multiple Models + RoMA	8.95 ± 0.05	5.00 ± 0.00	4.75 ± 2.25	8.14 ± 0.21	8.00 ± 1.38	6.30 ± 0.10	7.07 ± 0.02
Multiple Models + IOM	$\underline{6.11 \pm 0.36}$	$\textbf{4.34} \pm \textbf{0.34}$	$\textbf{3.75} \pm \textbf{2.75}$	4.25 ± 0.04	7.19 ± 0.44	$\textbf{3.23} \pm \textbf{0.03}$	$\textbf{4.61} \pm \textbf{0.05}$
Multiple Models + ICT	9.11 ± 0.27	11.92 ± 0.29	4.75 ± 0.25	9.89 ± 0.46	8.62 ± 0.75	8.43 ± 0.30	9.64 ± 0.11
Multiple Models + Tri-Mentoring	7.83 ± 0.05	11.37 ± 0.47	5.25 ± 2.75	9.50 ± 0.00	9.38 ± 1.00	6.73 ± 0.20	8.77 ± 0.21
MOBO	9.09 ± 0.47	7.18 ± 0.55	10.50 ± 0.00	13.69 ± 0.08	$\textbf{5.44} \pm \textbf{0.56}$	6.11 ± 0.29	8.64 ± 0.37
MOBO-ParEGO	10.27 ± 0.23	11.47 ± 0.32	N/A	13.62 ± 0.04	9.44 ± 0.44	12.71 ± 0.33	11.68 ± 0.20
MOBO-JES	$ 12.48 \pm 0.05$	16.00 ± 0.00	N/A	$\underline{3.00\pm0.00}$	7.50 ± 6.50	8.04 ± 0.37	10.30 ± 0.44

Evolutionary algorithms often have **multiple heterogeneous hyper-parameters**, whose configuration can influence the performance largely

Can we adjust multiple hyper-parameters of EAs automatically and dynamically?

Dynamic Algorithm Configuration

0	Frank Hutter Professor of Computer Science, <u>University of Freiburg</u> , German	ny	关注 关注	引用次数	总计	查看全部 2019 年至今
Ja .	在 cs.uni-freiburg.de 的电子邮件经过验证 - <u>首页</u> AutoML Meta-Learning Neural Architecture Search Deep	Learning Machine Learning		引用 h 指数 i10 指数	70943 86 194	62579 75 182
标题		引用)	欠数 年份			19000
Decoupled weight I Loshchilov, F Hutter arXiv preprint arXiv:17	decay regularization 11.05101	11	8607 2017		ъH	9500
Sgdr: Stochastic g I Loshchilov, F Hutter arXiv preprint arXiv:16	radient descent with warm restarts 08.03983	;	7829 2016	2017 2018 2010	2020 2021 2022 20	4750
Sequential model-	based optimization for general algorithm configuration	:	3149 2011	2017 2018 2019	2020 2021 2022 20	2024

Automated Dynamic Algorithm Configuration

Steven Adriaensen ADRIAENS@CS.UNI-FREIBURG.DE André Biedenkapp Gresa Shala Noor Awad University of Freiburg, Machine Learning Lab

BIEDENKA@CS.UNI-FREIBURG.DE SHALAG@CS.UNI-FREIBURG.DE AWAD@CS.UNI-FREIBURG.DE

Theresa Eimer EIMER@TNT.UNI-HANNOVER.DE Marius Lindauer LINDAUER@TNT.UNI-HANNOVER.DE Leibniz University Hannover, Institute for Information Processing

Frank Hutter FH@CS.UNI-FREIBURG.DE University of Freiburg, Machine Learning Lab & Bosch Center for Artificial Intelligence

7.2 Limitations and Further Research

While these case studies and other previous applications provide a "proof of concept" for automated DAC, we point out that much remains to be done to unlock its full potential, and we hope that this work may serve as a stepping stone for further exploring this promising line of research. In what remains, we will discuss some of the limitations of contemporary work and provide specific directions for future research.

Jointly configuring many parameters: While static approaches are capable of jointly configuring hundreds of parameters, the configuration space in contemporary DAC is typically much smaller, often considering only a single parameter. While the configuration space is smaller, the candidate solution space (i.e., the dynamic configuration policy space) grows exponentially with the number of reconfiguration points, in the worst case, and is thus typically drastically larger than static configuration policy spaces. Although modern techniques from reinforcement learning scale much better than ever before, we still know too little about the internal structure of DAC problems to handle this exploding space of possible policies. For example, not much is known regarding interaction effects of parameters in the DAC setting. If there should be only a few interaction effects between parameters as in static AC (Hutter et al., 2014; Wang et al., 2016), learning several independent policies might be a way forward.

Open problem: How to adjust multiple heterogeneous hyper-parameters simultaneously?

Open problem: How to adjust multiple heterogeneous hyper-parameters simultaneously?

Open problem: How to adjust multiple heterogeneous hyper-parameters simultaneously?

[Xue, Xu, Yuan, Li, Qian, et al. NeurIPS 2022 Spotlight]

Application of Multi-Agent DAC to MOEA/D

Table 2: IGD values obtained by MOEA/D, DQN, MA-UCB and MA-DAC on different problems. Each result consists of the mean and standard deviation of 30 runs. The best mean value on each problem is highlighted in **bold**. The symbols '+', '-' and ' \approx ' indicate that the result is significantly superior to, inferior to, and almost equivalent to MA-DAC, respectively, according to the Wilcoxon rank-sum test with confidence level 0.05.

Problem	M	MOEA/D	DQN	MA-UCB	MA-DAC
DTLZ2	3	4.605E-02 (3.54E-04) -	4.628E-02 (2.96E-04) -	4.671E-02 (3.70E-04) -	3.807E-02 (5.05E-04)
	5	3.006E-01 (1.55E-03) -	3.016E-01 (1.34E-03) -	3.041E-01 (1.69E-03) -	2.442E-01 (1.26E-02)
	7	4.455E-01 (1.41E-02) -	4.671E-01 (1.15E-02) -	4.826E-01 (9.59E-03) -	3.944E-01 (1.17E-02)
WFG4	3	5.761E-02 (5.41E-04) -	6.920E-02 (1.20E-03) -	7.165E-02 (1.83E-03) -	5.200E-02 (1.19E-03)
	5	3.442E-01 (1.21E-02) -	2.810E-01 (6.86E-03) -	2.859E-01 (6.77E-03) -	1.868E-01 (2.81E-03)
	7	4.529E-01 (1.79E-02) -	3.725E-01 (1.14E-02) -	3.868E-01 (1.54E-02) -	3.033E-01 (3.66E-03)
WFG6	3	6.938E-02 (5.50E-03) -	6.834E-02 (1.78E-02) -	6.601E-02 (1.00E-02) -	4.831E-02 (8.95E-03)
	5	3.518E-01 (2.82E-03) -	3.160E-01 (2.40E-02) -	3.359E-01 (1.47E-02) -	1.942E-01 (6.90E-03)
	7	4.869E-01 (3.03E-02) -	4.322E-01 (2.95E-02) -	4.389E-01 (3.41E-02) -	3.112E-01 (4.93E-03)
Train: +/	–/≈	0/9/0	0/9/0	0/9/0	
DTLZ4	3	6.231E-02 (8.85E-02) ≈	5.590E-02 (5.77E-03) -	6.011E-02 (5.08E-03) -	6.700E-02 (6.14E-02)
	5	3.133E-01 (4.45E-02) ≈	3.457E-01 (1.61E-02) -	3.492E-01 (1.69E-02) -	2.995E-01 (2.10E-02)
	7	4.374E-01 (2.57E-02) −	4.552E-01 (1.47E-02) -	4.756E-01 (2.01E-02) -	4.182E-01 (1.21E-02)
WFG5	3	6.327E-02 (1.10E-03) -	6.212E-02 (5.54E-04) -	6.118E-02 (7.03E-04) -	4.730E-02 (7.89E-04)
	5	3.350E-01 (9.77E-03) -	3.077E-01 (6.36E-03) -	3.036E-01 (8.83E-03) -	1.811E-01 (3.02E-03)
	7	4.101E-01 (2.08E-02) -	4.996E-01 (1.32E-02) -	5.024E-01 (1.38E-02) -	3.206E-01 (8.04E-03)
WFG7	3	5.811E-02 (6.31E-04) -	5.930E-02 (7.32E-04) -	6.014E-02 (7.11E-04) -	4.066E-02 (5.31E-04)
	5	3.572E-01 (5.47E-03) -	2.993E-01 (1.43E-02) -	3.207E-01 (1.71E-02) -	1.858E-01 (2.12E-03)
	7	5.236E-01 (2.19E-02) -	4.576E-01 (2.38E-02) -	4.879E-01 (2.75E-02) -	3.258E-01 (1.25E-02)
WFG8	3	8.646E-02 (3.44E-03) -	9.280E-02 (1.06E-03) -	9.612E-02 (1.48E-03) -	7.901E-02 (1.19E-03)
	5	4.258E-01 (8.42E-03) -	3.969E-01 (1.26E-02) -	3.956E-01 (1.32E-02) -	2.479E-01 (7.20E-03)
	7	5.816E-01 (1.30E-02) -	5.575E-01 (1.39E-02) -	5.642E-01 (1.38E-02) -	4.127E-01 (5.93E-03)
WFG9	3	5.817E-02 (1.24E-03) -	5.628E-02 (7.29E-04) -	7.953E-02 (2.45E-02) -	4.159E-02 (6.10E-04)
	5	3.633E-01 (1.20E-02) -	3.258E-01 (1.61E-02) -	3.396E-01 (1.55E-02) -	1.832E-01 (7.10E-03)
	7	5.538E-01 (2.63E-02) -	5.115E-01 (2.15E-02) -	5.227E-01 (1.79E-02) -	3.278E-01 (7.21E-03)
Teat 1/	101	0/12/2	0/15/0	0/15/0	

Task: Adjust four hyper-parameters of MOEA/D (a popular MOEA) dynamically

Train on DTLZ2, WFG4, and WFG6 with *m* objectives, and test on the other problems with *m* objectives

Significantly better on almost all the 24 problems

Good generalization ability

[Xue, Xu, Yuan, Li, Qian, et al. NeurIPS 2022 Spotlight]

BBO: Optimize an objective function f(x), with the only permission of querying f(x)

End-to-end learning for BBO: Utilize data from the task distribution $P(\mathcal{F})$ to pre-train a model M, which performs like an algorithm to optimize unseen objective functions

ullet

۲

•

[Google, NeurIPS'22] makes the first attempt on learning end-to-end black-box optimizers

acc 0.6 Ir=1e-4 acc 0.7 Convert the metadata (description of the Outputs: problem and algorithm) into text Convert the historical optimization trajectory **OptFormer** of classical algorithms into text opt="SGD", opt "Adam". 1 1r=1e-4 acc Train the OPTFormer to learn the converted trajectories from datasets Inputs: Trial 1 Trial t Metadata Inference $\pi(x_t|m, h_{t-1}) = \prod_{i=1}^{d} p_{\theta}(x_t^d|m, h_{t-1}, x_t^{(1:d-1)})$ Training $\mathcal{L}(\theta; m, h) = \sum \log P_{\theta}(h^{(n)}|m, h^{(1:n-1)})$

Imitate the behavior of algorithms with an identifier of algorithm

Cannot select proper algorithms automatically

Source task: $f_i \sim P(\mathcal{F})$

Behavior algorithm: $\mathcal{A}_j, j = 1, \cdots K$

Offline dataset: $\mathcal{D}_{i,j} = \left\{ \boldsymbol{h}_T^{i,j,m} \right\}_{m=1}^M$

$$\begin{array}{c}
 & f_1 \\
 & f_N \\
 & f_N
\end{array}$$

Collected by executing a behavior BBO algorithm \mathcal{A}_j on f_i

Augment histories by regret-to-go (RTG)

$$R_t = \sum_{t'=t+1}^{T} (y^* - y_{t'})$$

$$h_{T} = \{x_{1}, y_{1}, x_{2}, y_{2} \dots, x_{T}, y_{T}\} \{\mathcal{D}_{i,j}\}$$

$$R_{t} = \sum_{t'=t+1}^{T} (y^{*} - y_{t'})$$

$$\widehat{h}_{T} = \{x_{0}, y_{0}, R_{0}, x_{1}, y_{1}, \dots, x_{T}, y_{T}, R_{T}\} \{\widehat{\mathcal{D}}_{i,j}\}$$

[Song, Gao, Xue, Wu, Li, Hao, Zhang, and Qian. CoRR abs/2402.17423]

(b) Training and Inference

$$\mathcal{L}_{RIBBO}(\theta) = -E_{\hat{h}_T \sim \mathcal{D}_{i,j}} \left[\sum_{t=1}^T \log M_{\theta}(x_t | \hat{h}_{t-1}) \right]$$

Augmented Histories

$$R_t = \sum_{t'=t+1}^{T} (y^* - y_{t'})$$

Bring identifiability of algorithms and help generate user-desired algorithms automatically

Naïve RTG update strategy for inference $R_t = R_{t-1} - (y^* - y_t)$ Fall below 0

Hindsight Regret Relabeling (HRR) for inference

Algorithm 1 Model Inference with HRR

Input: trained model \mathcal{M}_{θ} , budget T, optimum value y^* **Process**:

- 1: Initialize context $\hat{h}_0 = \{(x_0, y_0, R_0)\}$, where x_0 and y_0 are placeholders for padding and $R_0 = 0$;
- 2: for t = 1, 2, ..., T do
- 3: Generate the next query point $\boldsymbol{x}_t \sim \mathcal{M}_{\boldsymbol{\theta}}(\boldsymbol{\cdot}|\hat{\boldsymbol{h}}_{t-1});$
- 4: Evaluate \boldsymbol{x}_t to obtain $y_t = f(\boldsymbol{x}_t)$;
- 5: Calculate the instantaneous regret $r = y^* y_t$;
- 6: Relabel $R_i \leftarrow R_i + r$, for each $(\boldsymbol{x}_i, y_i, R_i)$ in \boldsymbol{h}_{t-1} ;
- 7: $\hat{h}_t = \hat{h}_{t-1} \cup \{(x_t, y_t, 0)\};$

The immediate RTG is set as 0 to generate the most advantageous solutions

Previous RTG tokens are updated by adding the current regret

8: end for

$$R_{i} = \sum_{t'=i+1}^{t} (y^{*} - y_{t'}) \qquad R_{t} = \sum_{t'=i+1}^{T} (y^{*} - y_{t'}) = 0 \qquad R_{i} = \sum_{t'=i+1}^{T} (y^{*} - y_{t'})$$

[Song, Gao, Xue, Wu, Li, Hao, Zhang, and Qian. CoRR abs/2402.17423]

http://www.lamda.nju.edu.cn/qianc/

Behavior algorithms

- Heuristic search, e.g., random search, shuffled grid search, hill climbing
- Evolutionary algorithms, e.g., regularized evolution, eagle strategy, CMA-ES
- Bayesian optimization, e.g., GP-EI

Benchmarks

- BBOB functions [Elhara et al., 2019]
- HPO [Arango et al., 2021]
- Robot control problems [Wang et al., 2018]

A series of transformation are used to construct training and test data sets for BBOB and robot control problems, and a training and test split is provided by the authors for HPO

Experimental Results

RIBBO outperforms the behavior algorithms and baselines

[Song, Gao, Xue, Wu, Li, Hao, Zhang, and <u>Qian</u>. CoRR abs/2402.17423]

http://www.lamda.nju.edu.cn/qianc/

Cross-distribution generalization

RIBBO can generalize to unseen function distributions

train on 4 other function distributions and test on GriewankRosenbrock, which has different properties

Influence of initial RTG token

By incorporating RTG tokens into the optimization histories, RIBBO can automatically generate user-desired optimization trajectories

Build theoretical foundation of EAs

> Theoretical analysis tools, influence analysis of major factors of EAs

Develop better EL algorithms

> Efficient EL, dynamic algorithm configuration, universal EL

Apply EL to solve complex optimization in learning, industry, and science

> Subset selection, electronic design automation, origin and evolution of life

There are many applications of selecting a good subset from a ground set

О	bse	rva	tio	n v	ari	abl	es		predictor variable	a suk	oset	t of	ob	ser	vat	tior	n va	riabl
	<u> </u>			<u>ا</u>			_				/	*	1	1	×			
	Corr	Dis	IR			AIC	BIC	RE			Corr.	Dis.	LR			AIC.	BIC	RF.
×1	0.28	0.46	1			0.22	0.63	1		×1	0.28	0.46	1			0.22	0.63	1
x2	0.31	0.59	0.64			0.58	0.56	1		×2	0.31	0.59	0.64			0.58	0.56	1
v3	0.11	0.02	0.53			0.43	0.01	1	Sparco rograccion	×3	0.11	0.02	0.53			0.43	0.01	1
~4	0.11	0.02	0.64			0.45	0.01	1	Sparse regression	×4	0.1	0.1	0.64			0.73	0.92	1
~~+ ~5	0.02	0.15	0.33			0.56	0.32	0.78		x5	0.02	0.15	0.33			0.56	0.36 0	.78
<u>ve</u>	0.02	0.13	0.00			0.30	0.00	0.70		×6	0.36	0.02	0.01			0.32	0.02 0	.22
x0 v7	0.30	0.02	0.01			0.32	0.02	0.22		x7	0.2	0.2	0.21			0.21	0.02 0	.11
	0.2	0.2	0.21			0.21	0.02	0.11		×B	0.1	0.03	0.32			0.33	0.51 0	.44
x0 0	0.22	0.03	0.32			0.33	0.51	0.44	V	x9	0.32	0.1	0.2			0.06	0.66	0
X9 /10	0.32	0.1	0.02			0.06	0.00	0 22		×10	0.24	0	0.02			0.6	0.03 0	.33
44	0.24	0.45	0.02			0.0	0.03	0.33		×11	0.12	0.45	0.44			0.64	0.45	1
×11	0.12	0.45	0.44			0.64	0.45	1		×12	0.36	0.58	0.12			0.73	0.58 0	.67
42	0.36	0.58	0.12			0.73	0.58	0.67		×13	0.2	0.02	0.24			0.34	0.02 0	.89
x13	0.2	0.02	0.24			0.34	0.02	0.89		×14	0.24	0.92	0.33			0.24	0.93.0	56
x14	0.24	0.92	0.33			0.24	0.93	0.56		×14	0.24	0.02	0.00				0.00 0	

http://wwv	v.lamda.nju.ed	lu.cn/gianc/
1 1 1		

Application I: Subset Selection

There are many applications of selecting a good subset from a ground set

Influence maximization

There are many applications of selecting a good subset from a ground set

Subset Selection: Given all items $V = \{v_1, ..., v_n\}$, an objective function $f: 2^V \to \mathbb{R}$ and a budget b, to select a subset $S \subseteq V$ such that

$$\max_{S \subseteq V} f(S)$$
 s.t. $|S| \le b$ NP-hard

Application I: Subset Selection

• denotes that POSS is significantly better by the *t*-test with confidence level 0.05

EA can achieve the optimal polynomial-time approximation guarantee

Theorem 1. For subset selection with monotone objective functions, POSS with $\mathbb{E}[T] \leq 2eb^2n$ and $I(\cdot) = 0$, i.e., a constant function, can find a solution s with $|s|_1 \leq b$ and $f(s) \geq (1 - e^{-\gamma \min}) \cdot \text{OPT}$, where $\gamma_{\min} = \min_{s:|s|_1 = b - 1} \gamma_{s,b}$. Proved to be the optimal polynomial-time approximation [Harshaw et al., ICML'19]

Under noise, EA achieves better guarantees than conventional algorithms

Theorem 2. For subset selection under multiplicative noise with the assumption Eq. (17.29), with probability at least $(1/2)(1 - (12nb^2 \log 2b)/l^{2\delta})$, PONSS with $\theta \ge \epsilon$ and $T = 2elnb^2 \log 2b$ finds a solution s with $|s|_1 \le b$ and $f(s) \ge \frac{1-\epsilon}{1+\epsilon}(1-e^{-\gamma}) \cdot \text{OPT}$.

[Qian, Yu and Zhou, NeurIPS 2015; Qian, et al. NeurIPS 2017]

http://www.lamda.nju.edu.cn/qianc/

approximation ratio

Function design and verification: Design the RTL and verify the functions. (Document -> RTL)

Logic synthesis: Mapping the RTL design into netlist. (RTL -> Netlist)

Physical design: Design the physical layout according to netlist by EDA tools. (Netlist -> GDS)

Chip manufacturing: Fabricate the chip from GDS layout by photolithography. (GDS -> Product)

Application II: Electronic Design Automation

Figures are from http://www.or.uni-bonn.de/~vygen/files/buda.pdf

Macro Placement: an important task in chip floorplanning, which tries to determine the positions of all macros with the aim of optimizing PPA (power, performance, area)

- Black-box: the evaluation of placement requires routing and simulation (commercial software)
- Expensive: routing and simulation are time-consuming
- Multi-objective: wirelength, congestion, timing, power, ...
- High-dimensional: thousands of macros

Wirelength comparison with state-of-the-art methods

Table 1: <u>HPWL values ($\times 10^5$)</u> obtained by ten compared methods on seven chips. Each result consists of the mean and standard deviation of five runs. The best (smallest) mean value on each chip is bolded. The symbols '+', '-' and ' \approx ' indicate the number of chips where the result is significantly superior to, inferior to, and almost equivalent to WireMask-EA, respectively, according to the Wilcoxon rank-sum test with significance level 0.05.

	Method	Туре	adaptec1	adaptec2	adaptec3	adaptec4	bigblue1	bigblue3	bigblue4 $(\times 10^7)$	$+/-/\approx$	Avg. Rank
	SP-SA [30]	Packing	18.84 ± 4.62	117.36 ± 8.73	115.48 ± 7.56	120.03 ± 4.25	5.12 ± 1.43	164.70 ± 19.55	25.49 ± 2.73	0/7/0	6.86
	NTUPlace3 [10]	Analytical	26.62	321.17	328.44	462.93	22.85	455.53	48.38	0/7/0	9.00
[Coogle	RePlace [11]	Analytical	16.19 ± 2.10	153.26 ± 29.01	111.21 ± 11.69	37.64 ± 1.05	2.45 ± 0.06	119.84 ± 34.43	11.80 ± 0.73	1/6/0	5.28
l'acontra l'acon	DREAMPlace [25]	Analytical	15.81 ± 1.64	140.79 ± 26.73	121.94 ± 25.05	37.41 ± 0.87	2.44 ± 0.06	107.19 ± 29.91	12.29 ± 1.64	1/6/0	4.86
Natura 20211	Graph [29]	RL	30.10 ± 2.98	351.71 ± 38.20	358.18 ± 13.95	151.42 ± 9.72	10.58 ± 1.29	357.48 ± 47.83	53.35 ± 4.06	0/7/0	9.00
Nature 2021	DeepPR [13]	RL	19.91 ± 2.13	203.51 ± 6.27	347.16 ± 4.32	311.86 ± 56.74	23.33 ± 3.65	430.48 ± 12.18	68.30 ± 4.44	0/7/0	8.86
	MaskPlace [23]	RL	6.38 ± 0.35	73.75 ± 6.35	84.44 ± 3.60	79.21 ± 0.65	2.39 ± 0.05	91.11 ± 7.83	11.07 ± 0.90	0/7/0	4.28
	WireMask-RS	Ours	6.13 ± 0.05	59.28 ± 1.48	60.60 ± 0.45	62.06 ± 0.22	2.19 ± 0.01	62.58 ± 2.07	8.20 ± 0.17	0/5/2	2.57
Our methods	WireMask-BO	Ours	6.07 ± 0.14	59.17 ± 3.94	61.00 ± 2.08	63.86 ± 1.01	2.14 ± 0.03	67.48 ± 6.49	8.62 ± 0.18	0/3/4	2.86
our methous	WireMask-EA	Ours	5.91 ± 0.07	52.63 ± 2.23	57.75 ± 1.16	58.79 ± 1.02	2.12 ± 0.01	59.87 ± 3.40	8.28 ± 0.25	—	1.43

EA achieves the best average rank, and is significantly better on at least 6 out of the 7 chips

[Shi, Xue, Song, and <u>Qian</u>, NeurIPS 2023]

Application II: Electronic Design Automation

Comparison on congestion

Multiple-DMP [Lin et al., TCAD'20]

Our method: less congested

Figure 5: Placement layouts and congestions of Multiple-DMP (top row) and Hybro-WireMask (bottom row) on the ICCAD 2015 benchmarks, superblue1, superblue3, superblue4, and superblue10. The congestion results are obtained by *Cadence Innovus*, where red points indicate the congestion critical regions.

[Xue, Lin, Shi, Kai, Xu, and Qian, DAC 2024]

Comparison on timing metrics

Donobuogli	DREAMP	lace* [20]	DREAMPI	ace 4.0* [18]	Differentiab	ole-TDP [†] [12]	Distribution	1-TDP§ [19]	Ours	
Benchmark	TNS	WNS	TNS	WNS	TNS	WNS	TNS	WNS	TNS	WNS
superblue1	-262.44	-18.87	-85.03	-14.10	-74.85	-10.77	-42.10	-9.26	-17.44	-7.75
superblue3	-76.64	-27.65	-54.74	-16.43	-39.43	-12.37	-26.59	-12.19	-20.40	-11.82
superblue4	-290.88	-22.04	-144.38	-12.78	-82.92	-8.49	-123.28	-8.86	-82.88	-9.17
superblue5	-157.82	-48.92	-95.78	-26.76	-108.08	-25.21	-70.35	-31.64	-62.18	-24.65
superblue7	-141.55	-19.75	-63.86	-15.22	-46.43	-15.22	-95.89	-17.24	-43.52	-15.22
superblue10	-731.94	-26.10	-768.75	-31.88	-558.05	-21.97	-691.10	-25.86	-558.14	-23.08
superblue16	-453.57	-17.71	-124.18	-12.11	-87.03	-10.85	-55.99	-12.21	-22.90	-8.63
superblue18	-96.76	-20.29	-47.25	-11.87	-19.31	-7.99	-19.23	-5.25	-16.16	-6.92
Average Ratio	6.90	2.07	2.75	1.40	2.00	1.09	1.68	1.11	1.00	1.00

Average improvement: 40.5% in total negative slack (TNS) 8.3% in worst negative slack (WNS)

Dear Chao Qian,

I am writing to share that your DATE 2025 accepted manuscript Title: Timing-Driven Global Placement by Efficient Critical Path Extraction Authors: Yunqi Shi, Siyuan Xu, Shixiong Kai, Xi Lin, Ke Xue, Mingxuan Yuan and Chao Qian Number: #166 Has been nominated as a Best Paper Award Candidate! Congratulations!

Nominated as a Best Paper Award Candidate of

2025 Design, Automation & Test in Europe Conference & Exhibition (DATE'25)

One of the Three Leading International Conferences on Electronic Design Automation

Application II: Electronic Design Automation

http://www.lamda.nju.edu.cn/qianc/

Chip register optimization is to maximize the performance of the application system by optimizing

- hardware parameters (various function control of registers)
- software parameters (resource scheduling of operating system)

Challenges

- Black-box: the performance is evaluated by running the system
- Expensive: one evaluation costs 20s-140s
- High-dimensional: 274 parameters

Application II: Electronic Design Automation

Baseline: Huawei HeBO

(Winner of the NeurIPS 2020 BBO challenge)

Tasks	HeBO convergence value	HeBO epochs	Our epochs	Gains
mysql	393522	293	11	26.64
nginx	21768	198	4	49.50
redis	560446	175	49	3.57
unixbench	107	256	29	8.83

Huawei Spark Award

HUAWE

火花奖

記副教授

钱

华为向全社会发布难题,兼顾产业挑战和科学价值。探 索、牵引、开放、思辨,百花齐放,百家争鸣。

钱超副教授在 EDA 专题第一期难题"超高维空间多目标 黑盒优化技术"中,提出了基于变量选择、领域知识辅助、 多目标分解的高效贝叶斯优化框架。在芯片寄存器寻优的工 业实际数据集上较基线算法寻优效率平均提升 22.14 倍,体 现方案先进性。被授予华为公司火花奖,特发此证。

Huawei proposes challenges to the entire society while taking into account both industrial challenges and scientific value, in order to encourage exploration, openness, creative thinking, and charting new direction based on the spirit of "Let a hundred flowers bloom, a hundred schools of thought contend." This is to certify that associate professor Qian Chao has made valuable contributions to the EDA challenge "Multi-Objective Black-Box Optimization Technology for Ultra-High-Dimensional Spaces." Qian proposed an advanced and efficient Bayesian optimization framework based on variable selection, domain knowledge assistance, and multi-objective decomposition. When compared to baseline algorithms, the framework improves the efficiency of chip register optimization over actual industrial datasets by an average of 22.14 times.

"Improve the efficiency of chip register optimization over actual industrial datasets by an average of 22.14 times"

Application III: Comprehending the Origin and Evolution of Life

A high-dimensional black-box optimization problem

to align the permutation and fossil data

geological time

Application III: Comprehending the Origin and Evolution of Life

By collaboration, we have developed an efficient EA

Apply to the currently largest foraminifera dataset Recreate the history of foraminifera biodiversity during the E-O transition period

Improve the efficiency by 17 times, with better objective values

Algorithm	Range of objective values	Running time
Previous EA	39914-41390	~40684s
Our EA	39252-39778	~2376s

A high-resolution biodiversity curve helps understand the environmental drivers of the turnover of species

δ ¹⁸ Ο			Sea	level	Tempe	erature	δ ¹³ C		
Significant	م negative	P e correl	م ation	P Signifi	ρ cant po	P sitive c	ہ orrela	P ation	
F	-0.60	< 0.01	0.63	< 0.01	0.49	<0.01	0.10	>0.05	
PF	-0.85	< 0.01	0.74	< 0.01	0.70	< 0.01	0.02	>0.05	
LBF	-0.86	< 0.01	0.74	< 0.01	0.78	< 0.01	-0.07	>0.05	
SBF	-0.07	>0.05	0.17	>0.05	0.05	>0.05	0.13	>0.05	

П

For example, planktonic foraminiferal and larger benthic foraminiferal extinctions are associated with a rapid cooling, eustatic sea-level fall and positive carbon isotopic excursion

Help understand the current development of the Earth's biodiversity

Application III: Estimating Soil Microbial Derived Carbon Storage http://www.lamda.nju.ec

Use evolutionary learning to reduce the uncertainty in estimating soil Microbial-Derived Carbon (MDC) storage

MDC contributes approximately 758 Pg, representing approximately 40% of the global soil carbon stock

August 22, 2024 | 121 (35) e2401916121

Helpful for mitigating climate change and enhancing soil productivity

Build theoretical foundation of EAs

> Theoretical analysis tools, influence analysis of major factors of EAs

Develop better EL algorithms

> Efficient EL, dynamic algorithm configuration, universal EL

Apply EL to solve complex optimization in learning, industry, and science

> Subset selection, electronic design automation, origin and evolution of life

Collaborators

Zhi-Hua Zhou

Yang Yu

Thank you!