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Optimization： min𝒔∈# (𝑓$ 𝒔 , 𝑓% 𝒔 ,… , 𝑓& 𝒔 )

s. t. 𝑔' 𝒔 = 0, 1 ≤ 𝑖 ≤ 𝑞;
𝑞 + 1 ≤ 𝑖 ≤ 𝑚ℎ' 𝒔 ≤ 0,

Objective functions

Equality constraints

Inequality constraints

Solution

Black-box 
Optimization： 𝒔 𝑓 𝒔

Goal：find good solutions using only a few objective evaluations
Usually expensive

Multi-objective 
High-dimension
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Neural architecture search

• Objective: maximize accuracy

Classifier

conv
3×3

avg
3×3

max
3×3

conv
5×5

“cat”

• Objective: minimize computational cost

• Hyper-parameters to be optimized: 
module type, module connections, 
module hyper-parameters, … 

Black-box

Non-unique

Objective evaluation requires neural 
network training and testing, which 
may cost at least several hours

Thousands of hyper-parameters

Expensive
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Macro Placement: An important task in chip floorplanning, which tries to determine the 
positions of all macros with the aim of optimizing PPA (power, performance, area)

• Black-box: the evaluation of placement requires routing and simulation (commercial software)  

• Multi-objective: wirelength, congestion, timing, power, … 
• High-dimensional: thousands of macros

• Expensive: routing and simulation are time-consuming

Example: Electronic Design Automation
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华为“揭榜挂帅”难题存在大量复杂黑箱优化
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Origin and 
evolution of life

Trilobite, graptolite, peduncle, …

Massive 
fossil records 

in 
stratigraphic 

sections 

Biodiversity change 

Geological time

Species richness Recreate 
the history 

of the 
Earth's 

biodiversity

Example: Comprehending the Origin and Evolution of Life 

Fossil data Solution: Permutation of the first 
and last events of all species

geological time

Biodiversity curve

Optimization objective: 
to align the permutation and fossil data

A high-dimensional 
black-box 

optimization problem
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Evolutionary algorithms (EAs) are a kind of randomized heuristic optimization algorithms, 
inspired by nature evolution (reproduction with variation + nature selection)

reproduction

selection selection selection

reproduction reproduction reproduction

In 1950, Turing described how evolution might be used for his optimization:
building intelligent machine

[A. M. Turing. Computing machinery and intelligence. 
Mind 49: 433-460, 1950.]

“Structure of the child machine = Hereditary material
    Changes of the child machine = Mutations
    Judgment of the experimenter = Natural selection”
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Evolutionary algorithms (EAs) are a kind of randomized heuristic optimization algorithms, 
inspired by nature evolution (reproduction with variation + nature selection)

Many variants: genetic algorithm, evolutionary strategy, genetic programming, … 

reproduction

selection selection selection

reproduction reproduction reproduction

particle swarm optimization ant colony optimization
EAs also include some heuristics 
inspired from nature phenomena

Evolutionary Algorithms
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1 0 1 1 1 0

0 1 1 1 1 0

population

arg max𝒔 𝑓(𝒔)

... ...

1 0 1 1 1 0

0 0 1 0 0 10 0 1 0 0 1
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0 0 1 0 0 1

1 0 1 1 1 0

0 1 1 1 1 0

population

arg max𝒔 𝑓(𝒔)

... ...

0 0 1 0 0 1

recombi-
nation

1 0 1 1 1 0

...

1 0 1 1 1 0

0 0 1 0 0 1

1 0 1 1 0 1

0 0 1 0 1 0

A Typical Evolutionary Process
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0 0 1 0 0 1

1 0 1 1 1 0

0 1 1 1 1 0

population

arg max𝒔 𝑓(𝒔)

... ...

0 0 1 0 0 1

recombi-
nation

1 0 1 1 1 0 1 0 1 1 0 1

0 0 1 0 1 0

11 0 1 1 1 1 mutation

0 10 0 0 0 1 1

... ...

A Typical Evolutionary Process



http://www.lamda.nju.edu.cn/qianc/

http://www.lamda.nju.edu.cn

0 0 1 0 0 1

1 0 1 1 1 0

0 1 1 1 1 0

population

arg max𝒔 𝑓(𝒔)

... ...

0 0 1 0 0 1

recombi-
nation

1 0 1 1 1 0 1 0 1 1 0 1

0 0 1 0 1 0

mutation 1 0 1 1 1 1

0 0 0 0 1 1

1 0 1 1 1 0

...

0 1 1 1 1 0

0 0 1 0 0 1

fitness

23

21

18

24

20
......

A Typical Evolutionary Process
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0 0 1 0 0 1

1 0 1 1 1 0

0 1 1 1 1 0

population

arg max𝒔 𝑓(𝒔)

... ...

0 0 1 0 0 1

recombi-
nation

1 0 1 1 1 0 1 0 1 1 0 1

0 0 1 0 1 0

mutation 1 0 1 1 1 1

0 0 0 0 1 1

1 0 1 1 1 0

...

0 1 1 1 1 0

0 0 1 0 0 1

fitness

23

21

18

24

20

1 0 1 1 1 0

0 0 1 0 0 1

1 0 1 1 1 1

new population

selection
......

...

A Typical Evolutionary Process
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0 0 1 0 0 1

1 0 1 1 1 0

0 1 1 1 1 0

population

arg max𝒔 𝑓(𝒔)

... ...

0 0 1 0 0 1

recombi-
nation

1 0 1 1 1 0 1 0 1 1 0 1

0 0 1 0 1 0

mutation 1 0 1 1 1 1

0 0 0 0 1 1

1 0 1 1 1 0

...

0 1 1 1 1 0

0 0 1 0 0 1

fitness

23

21

18

24

20

1 0 1 1 1 0

0 0 1 0 0 1

1 0 1 1 1 1

...

new population

selection 1 0 1 1 1 0

0 0 1 0 0 1

1 0 1 1 1 1

...

end

......

A Typical Evolutionary Process
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Initial 
population

Offspring 
solutions

New 
population

Solution 
representation 

Fitness evaluation 
& selection 

Mutation & 
recombination 

Stop criterion

End
Yes

No

Solution1
Solution2

The general structure of EAs

Ø No requirement on the objective
Ø Population-based search 

Thus, EAs can be applied to solve complicated optimization problems
• non-differentiable, non-continuous 
• without explicit objective formulation
• multiple objective functions

black-box



http://www.lamda.nju.edu.cn/qianc/

http://www.lamda.nju.edu.cnEvolutionary Algorithms

Initial 
population

Offspring 
solutions

New 
population

Solution 
representation 

Fitness evaluation 
& selection 

Mutation & 
recombination 

Stop criterion

End
Yes

No

Solution1
Solution2

The general structure of EAs

Ø No requirement on the objective
Ø Population-based search 

Thus, EAs can be applied to solve complicated optimization problems
• non-differentiable, non-continuous 
• without explicit objective formulation
• multiple objective functions

e.g., NSGA-II [Deb et al., TEC’02]

Multi-objective EAs (MOEAs)

Google scholar: 52081
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Evolutionary selective ensemble Evolutionary neural architecture search

achieves competitive 
performance to the 
hand-designed models
[Google, ICML’17]

achieves smaller 
error by using 
fewer learners
[Zhou et al., AIJ’02]

Evolutionary multitask learning
achieves competitive results 
on 69 public image 
classification tasks
[Gesmundo & Dean, 2022]

[Touvron et al., ICCV’21]SOTA: 99.40%
better
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Series 700 Series N700

High-speed train head design

evolve evolve

Antenna design

93% efficiency38% efficiencysave 19% energy
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“Evolution—the adaption of species to different environments
—has created an enormous diversity of life. Frances Arnold has 
used the same principles – genetic change and selection – to 
develop proteins that solve humankind’s chemical problems. In 
1993, Arnold conducted the first directed evolution of enzymes, 
which are proteins that catalyze chemical reactions. The uses of 
her results include more environmentally friendly manufacturing 
of chemical substances, such as pharmaceuticals, and the 
production of renewable fuels.”

Protein design

[Arnold, 1998]

Applications of Evolutionary Algorithms
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Origin and 
evolution of life

Trilobite, graptolite, peduncle, …

Applications of Evolutionary Algorithms

Massive 
fossil records 

in 
stratigraphic 

sections 

Biodiversity change 

Geological time

Species richness Recreat the 
history of 

the Earth's 
biodiversity

Evolutionary 
algorithm

The world’s first high-precision 
curve of marine biodiversity

School of Earth Sciences & 
Engineering, Nanjing University

Science: “New dataset and method, drive the 
transformation of the entire evolutionary paleontology”
Nature: “Palaeontologists have charted 300 million years 
of Earth’s history in breathtaking detail”

China's Top 10 Scientific Advances in 2020

Fossil data of China
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Evolutionary 
algorithm

The world's first high-precision 
curve of marine biodiversity

Origin and evolution of life

“Tianhe II supercomputer”
7,000,000 CPU hours

Evolutionary algorithms have yielded encouraging empirical outcomes, but

Evolutionary neural 
architecture search

[Google,
ICML’17]

2750 
gpu days

[Fan et al., Science’20]

[Google, Nature’21]

“... it is very slow and difficult to 
parallelize, thereby failing to scale to 
the increasingly large and complex 
circuits of the 1990s and beyond.”

Macro placement

Fossil data of China

How to 
improve the 
efficiency?

Especially for high-
dimensional and 
expensive scenarios



http://www.lamda.nju.edu.cn/qianc/

http://www.lamda.nju.edu.cnEvolutionary Learning

Evolutionary Learning (EL)   

Integration of evolutionary algorithms and machine learning to better solve 
complex black-box optimization problems

• Learn components (e.g., reproduction and selection operators) of EAs

• Learn surrogate models to help the optimization, e.g., preselection, Bayesian optimization 

• Learn effective search subspaces

• Learn to (dynamically) configure hyper-parameters of EAs

• Learn a universal EA 

• Learn to select a proper EA 
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L. Valiant

Turing Award
in 2010

“there has existed no theory that would explain quantitatively which 
mechanisms can so evolve in realistic population sizes within realistic time …”

The theoretical foundation of EAs is underdeveloped • EAs: Highly randomized 
and complex

• Problems: Complex

Theoretical analysis 
is very difficult

Evolutionary Learning (EL)   

Integration of evolutionary algorithms and machine learning to better solve 
complex black-box optimization problems
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qBuild theoretical foundation of EAs

Ø Theoretical analysis tools, influence analysis of major factors of EAs

qDevelop better EL algorithms

Ø Efficient EL, dynamic algorithm configuration, universal EL

qApply EL to solve complex optimization in learning, industry, and science 

Ø Subset selection, electronic design automation, origin and evolution of life
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Objective 𝑓

#objective evaluations𝜏

OPT

𝑓(𝒔)

the process with the highest cost of EA

0

Running time 𝜏:
#objective evaluations until finding desired 
solutions for the first time

Training 
Testing data

e.g., model evaluation
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0 0 0 0 1 1

0 0 1 0 0 1

0 0 1 0 1 01 0 1 1 1 0

1 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 0

1 0 1 1 0 1 0 0 1 1 0 1

0 0 1 1 1 1

0 0 1 0 0 10 0 1 0 0 1

0 0 1 1 1 0

0 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 1

1 0 1 1 1 0

0 0 1 0 0 1

1 0 1 1 1 1

0 0 1 1 1 0
...

Hard to be 
analyzed directly

EA with 
recombination

An Example
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0 0 0 0 1 1

0 0 1 0 0 1

0 0 1 0 1 01 0 1 1 1 0

1 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 0

1 0 1 1 0 1 0 0 1 1 0 1

0 0 1 1 1 1

0 0 1 0 0 10 0 1 0 0 1

0 0 1 1 1 0

0 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 1

1 0 1 1 1 0

0 0 1 0 0 1

1 0 1 1 1 1

0 0 1 1 1 0
...

0 0 1 0 1 1

0 0 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 0

0 0 1 0 1 1

0 0 1 1 1 1

0 0 1 0 0 1

0 0 1 1 0 1

0 0 1 1 0 1

1 0 1 1 1 1

0 0 1 1 1 0

0 0 1 0 0 1

1 0 1 1 1 1

1 0 1 1 1 0

EA without 
recombination ...

Easier to be analyzed 

Hard to be 
analyzed directly

EA with 
recombination

An Example
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0 0 0 0 1 1

0 0 1 0 0 1

0 0 1 0 1 01 0 1 1 1 0

1 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 0

1 0 1 1 0 1 0 0 1 1 0 1

0 0 1 1 1 1

0 0 1 0 0 10 0 1 0 0 1

0 0 1 1 1 0

0 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 1

1 0 1 1 1 0

0 0 1 0 0 1

1 0 1 1 1 1

0 0 1 1 1 0
...

0 0 1 0 1 1

0 0 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 0

0 0 1 0 1 1

0 0 1 1 1 1

0 0 1 0 0 1

0 0 1 1 0 1

0 0 1 1 0 1

1 0 1 1 1 1

0 0 1 1 1 0

0 0 1 0 0 1

1 0 1 1 1 1

1 0 1 1 1 0

EA without 
recombination ...

Easier to be analyzed 

Hard to be 
analyzed directly

Compare
One-step 

time difference
One-step 

time difference
Total

time difference+ + ... =

Expected 
running time

Expected 
running time

+

=

EA with 
recombination

Simplify the analysis

An Example
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0 0 0 0 1 1

0 0 1 0 0 1

0 0 1 0 1 01 0 1 1 1 0

1 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 0

1 0 1 1 0 1 0 0 1 1 0 1

0 0 1 1 1 1

0 0 1 0 0 10 0 1 0 0 1

0 0 1 1 1 0

0 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 1

1 0 1 1 1 0

0 0 1 0 0 1

1 0 1 1 1 1

0 0 1 1 1 0
...

0 0 1 0 1 1

0 0 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 0

0 0 1 0 1 1

0 0 1 1 1 1

0 0 1 0 0 1

0 0 1 1 0 1

0 0 1 1 0 1

1 0 1 1 1 1

0 0 1 1 1 0

0 0 1 0 0 1

1 0 1 1 1 1

1 0 1 1 1 0 ...

Easier to be analyzed 

Hard to be 
analyzed directly

Compare
One-step 

time difference
One-step 

time difference
Total

time difference+ + ... =

Expected 
running time

Expected 
running time

+

=

Simplify the analysis

Complex EA

Simple EA

An Example
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0 0 0 0 1 1

0 0 1 0 0 1

0 0 1 0 1 01 0 1 1 1 0

1 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 0

1 0 1 1 0 1 0 0 1 1 0 1

0 0 1 1 1 1

0 0 1 0 0 10 0 1 0 0 1

0 0 1 1 1 0

0 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 1

1 0 1 1 1 0

0 0 1 0 0 1

1 0 1 1 1 1

0 0 1 1 1 0
...

State 
𝜉!

State 
𝜉"

State 
𝜉#

...

Model an EA process as a Markov chain

Markov chain?

[Yu, Qian and Zhou, IEEE Trans. Evolutionary Computation 2015]
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0 0 0 0 1 1

0 0 1 0 0 1

0 0 1 0 1 01 0 1 1 1 0

1 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 0

1 0 1 1 0 1 0 0 1 1 0 1

0 0 1 1 1 1

0 0 1 0 0 10 0 1 0 0 1

0 0 1 1 1 0

0 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 1

1 0 1 1 1 0

0 0 1 0 0 1

1 0 1 1 1 1

0 0 1 1 1 0
... The generation of the next 

population only depends on 
the current population

State 
𝜉!

State 
𝜉"

State 
𝜉#

...

Model an EA process as a Markov chain

Markov property
𝑃 𝜉!"# 𝜉!, … , 𝜉$ = 𝑃 𝜉!"# 𝜉!

[Yu, Qian and Zhou, IEEE Trans. Evolutionary Computation 2015]

Switch Analysis
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𝜉! 𝜉" 𝜉# 𝜉$ 𝜉% 𝜉& …Target chain 𝜉

Hard to be analyzed directly

[Yu, Qian and Zhou, IEEE Trans. Evolutionary Computation 2015]

Switch Analysis
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𝜉! 𝜉" 𝜉# 𝜉$ 𝜉% 𝜉& …Target chain 𝜉

𝜉!' 𝜉"' 𝜉#' 𝜉$' 𝜉%' 𝜉&'Reference chain 𝜉′ …

Easier to be analyzed 

Hard to be analyzed directly

[Yu, Qian and Zhou, IEEE Trans. Evolutionary Computation 2015]

Switch Analysis
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𝜉! 𝜉" 𝜉# 𝜉$ 𝜉% 𝜉& …

𝜌%𝜌$ 𝜌# 𝜌& 𝜌'

Target chain 𝜉

…+ + + + +

𝜉!' 𝜉"' 𝜉#' 𝜉$' 𝜉%' 𝜉&'Reference chain 𝜉′ …

=

Easier to be analyzed 

Total time difference

How to estimate one-step time difference 𝜌,?

Hard to be analyzed directly

One-step time difference

Expected running time 
𝔼 𝜏′

Expected running time 
𝔼 𝜏

=

+

[Yu, Qian and Zhou, IEEE Trans. Evolutionary Computation 2015]

Switch Analysis
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𝜉! 𝜉" 𝜉# 𝜉$ 𝜉% …𝜉

…𝜉"'𝜉!'

mapping 𝜙

𝜉"' …𝜉#'𝜉!'

𝜉# 𝜉! 𝜉" 𝜉#

𝜉$𝜉! 𝜉" 𝜉#𝜉$

𝜉" 𝜉! 𝜉"

𝜉#' …𝜉$'𝜉"'𝜉!'

𝜙

𝜉!' 𝜉"' 𝜉#' 𝜉$' 𝜉%'𝜉′ …

𝜙

Intermediate 
chains 

… … … … …

Target chain 

Reference 
chain 

How to estimate one-step time difference 𝜌,?

[Yu, Qian and Zhou, IEEE Trans. Evolutionary Computation 2015]

Switch Analysis
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𝜉! 𝜉" 𝜉# 𝜉$ 𝜉% …𝜉

…𝜉"'𝜉!'

mapping 𝜙

𝜉"' …𝜉#'𝜉!'

𝜉# 𝜉! 𝜉" 𝜉#

𝜉$𝜉! 𝜉" 𝜉#𝜉$

𝜉" 𝜉! 𝜉"

𝜉#' …𝜉$'𝜉"'𝜉!'

𝜙

𝜉!' 𝜉"' 𝜉#' 𝜉$' 𝜉%'𝜉′ …

𝜙

Intermediate 
chains 

… … … … …

Target chain 

Reference 
chain 

Time difference between 
adjacent intermediate chains

𝔼 𝜏$ − 𝔼 𝜏#

𝔼 𝜏# − 𝔼 𝜏"

𝔼 𝜏" − 𝔼 𝜏'

…
𝔼[𝜏()"] − 𝔼[𝜏(]

…

𝔼[𝜏] − 𝔼[𝜏*]

= 𝜌#

= 𝜌"

= 𝜌!

= 𝜌(

= 𝜌*
…

… One-step time 
difference

How to estimate one-step time difference 𝜌,?

[Yu, Qian and Zhou, IEEE Trans. Evolutionary Computation 2015]

Switch Analysis
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𝜉! 𝜉" 𝜉# 𝜉$ 𝜉% …𝜉

…𝜉"'𝜉!'

mapping 𝜙

𝜉"' …𝜉#'𝜉!'

𝜉# 𝜉! 𝜉" 𝜉#

𝜉$𝜉! 𝜉" 𝜉#𝜉$

𝜉" 𝜉! 𝜉"

𝜉#' …𝜉$'𝜉"'𝜉!'

𝜙

𝜉!' 𝜉"' 𝜉#' 𝜉$' 𝜉%'𝜉′ …

𝜙

Intermediate 
chains 

… … … … …

Target chain 

Reference 
chain 

Time difference between 
adjacent intermediate chains

𝔼 𝜏$ − 𝔼 𝜏#

𝔼 𝜏# − 𝔼 𝜏"

𝔼 𝜏" − 𝔼 𝜏'

…
𝔼[𝜏()"] − 𝔼[𝜏(]

…

𝔼[𝜏] − 𝔼[𝜏*]

𝔼 𝜏 − 𝔼 𝜏′

Total time 
difference

+

+

+

+

+

+

= 𝜌#

= 𝜌"

= 𝜌!

= 𝜌(

= 𝜌*
…

…
How to estimate one-step time difference 𝜌,?

[Yu, Qian and Zhou, IEEE Trans. Evolutionary Computation 2015]

Switch Analysis
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𝜉! 𝜉" 𝜉# 𝜉$ 𝜉% …𝜉

…𝜉"'𝜉!'

mapping 𝜙

𝜉"' …𝜉#'𝜉!'

𝜉# 𝜉! 𝜉" 𝜉#

𝜉$𝜉! 𝜉" 𝜉#𝜉$

𝜉" 𝜉! 𝜉"

𝜉#' …𝜉$'𝜉"'𝜉!'

𝜙

𝜉!' 𝜉"' 𝜉#' 𝜉$' 𝜉%'𝜉′ …

𝜙

Intermediate 
chains 

… … … … …

Target chain 

Reference 
chain 

Time difference between 
adjacent intermediate chains

𝔼 𝜏$ − 𝔼 𝜏#

𝔼 𝜏# − 𝔼 𝜏"

𝔼 𝜏" − 𝔼 𝜏'

…
𝔼[𝜏()"] − 𝔼[𝜏(]

…

𝔼[𝜏] − 𝔼[𝜏*]

𝔼 𝜏 − 𝔼 𝜏′

Total time 
difference

+

+

+

+

+

+

= 𝜌#

= 𝜌"

= 𝜌!

= 𝜌(

= 𝜌*
…

…

Theorem (Switch Analysis). Given two absorbing Markov chains 𝜉 ∈ 𝒳 and 𝜉( ∈ 𝒴, a series of values
𝜌! ∈ ℝ !)$

"* with 𝜌 = ∑!)$"*𝜌! and a right (or left)-aligned mapping 𝜙:𝒳 → 𝒴, if 𝔼 𝜏 ∣ 𝜉$ ∼ 𝜋$ is finite
and ∀𝑡: ∑+∈𝒳,/∈𝒴 𝜋!(x)𝑃 𝜉!"# ∈ 𝜙1#(y) ∣ 𝜉! = x 𝔼 𝜏( ∣ 𝜉$( = y ≤ or ≥ ∑2,/∈𝒴 𝜋!

3(u)𝑃(
)

𝜉#( = y ∣
𝜉$( = u 𝔼 𝜏( ∣ 𝜉#( = y + 𝜌!, where 𝜋!

3(y) = 𝜋! 𝜙1#(y) = ∑+∈3!"(/)𝜋!(x), we have 𝔼 𝜏 ∣ 𝜉$ ∼ 𝜋$ ≤
or ≥ 𝔼[𝜏( ∣ 𝜉$( ∼ 𝜋$

3] + 𝜌.

How to estimate one-step time difference 𝜌,?

[Yu, Qian and Zhou, IEEE Trans. Evolutionary Computation 2015]

Switch Analysis
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Example: Analyze GSEMO solving the 𝑚COCZ problem

1.  𝒔 ≔ randomly selected from {0,1}#; 𝑃 ≔ {𝒔}
2.  Repeat until some termination criterion is met
3. Choose 𝒔 from 𝑃 uniformly at random     
4. apply bit-wise mutation on 𝒔 to generate 𝒔$
5. if  ∄ 𝒛 ∈ 𝑃 such that 𝒛 ≻ 𝒔$
6. 𝑃:= 𝑃 − 𝒛 ∈ 𝑃|𝒔$ ≽ 𝒛 ∪ {𝒔$}

GSEMO: 𝑚COCZ : max𝒔∈{$,#}% (𝑓# 𝒔 , 𝑓% 𝒔 , … , 𝑓9 𝒔 )

𝑚 objectives

[Bian et al., IJCAI’18]

Switch analysis: 
𝑂(𝑛&)

tighter by 𝑛

[Bian, Qian and Tang, IJCAI 2018]

L. Thiele
Professor, ETH Zurich
EDAA Lifetime 
Achievement Award

𝑂(𝑛&7$)
[Laumanns, Thiele 
and Zitzler, TEC’04] 

Previous results:
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Mutation and recombination are two characterizing features of EAs

1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0

1 0 1 1 1 0 0 0

0 0 1 0 1 0 1 0

1 0 1 1 1 0 1 0

0 0 1 0 1 0 0 0

Parent1

Parent2

Offspring1

Offspring2

Parent Offspring

simulates the chromosome exchange phenomena in zoogamy reproductions  

Example of recombination

Example of mutation

simulates the gene altering of a chromosome in biological mutation

More complicated
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Recombination can accelerate the filling of the Pareto 
front by recombining diverse Pareto optimal solutions

Pareto front

𝑓&

𝑓'
Our result:

[Qian et al., Artificial Intelligence 2013, ACM GECCO’11 Best Theory Paper Award]

Influence Analysis of Recombination Operator

Unique to multi-objective optimization

Example: MOEA solving the LOTZ Problem

Expected running time 𝛩(𝑛8) 𝛩(𝑛%)
recombination

time

problem size 𝑛

𝛩(𝑛%)𝛩(𝑛&)
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The prominent feature in population update of MOEAs: greedy and deterministic
• the next-generation population is formed by selecting the best-ranked solutions
• e.g., NSGA-II (Google scholar: 52081), SPEA-II (Google scholar: 10384), SMS-EMOA

(Google scholar: 2145), MOEA/D (Google scholar: 9166), …

0 0 0 0 1 1

0 0 1 0 0 1

0 0 1 0 1 01 0 1 1 1 0

1 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 0

1 0 1 1 0 1

0 0 1 0 0 1

1 0 1 1 1 1

1 0 1 1 1 0
Select the best-
ranked solutions

offspring 
solutions

Current 
population

Next 
population

Is deterministic population update 
always better?

NO!

Population update:
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[Bian, Zhou, Li, and Qian, IJCAI 2023; Extended to Artificial Intelligence]

Our result:

By introducing randomness into population 
update, MOEAs can go across inferior regions 
around Pareto optimal solutions more easily

Solution Space

Pareto optimal 
solutions
dominated 
solutions

large jump

small jump

Example: SMS-EMOA solving the OneJumpZeroJump problem

Expected 
running time accelerated by 2:/'/𝜇%𝛺 𝑛: 𝑂(𝜇%𝑛:/2:/< )

Stochastic
time

𝑘

the gap increases 
exponentially w.r.t. 𝑘

Deterministic
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Our result:

By introducing randomness into population 
update, MOEAs can go across inferior regions 
around Pareto optimal solutions more easily

• Challenge the common practice of MOEAs, 
i.e., deterministic population update 

• Encourage the exploration of developing 
new MOEAs in the area

For example, [Liang, 
Li and Lehre, GECCO’23]:

Solution Space

Pareto optimal 
solutions
dominated 
solutions

large jump

small jump

[Bian, Zhou, Li, and Qian, IJCAI 2023; Extended to Artificial Intelligence]
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qBuild theoretical foundation of EAs

Ø Theoretical analysis tools, influence analysis of major factors of EAs

qDevelop better EL algorithms

Ø Efficient EL, dynamic algorithm configuration, universal EL

qApply EL to solve complex optimization in learning, industry, and science 

Ø Subset selection, electronic design automation, origin and evolution of life
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Neural architecture search

The black-box optimization problems can be high-dimensional

How to develop efficient EL for high-dimensional black-box optimization?

Thousands of hyper-parameters 

Macro placement

Thousands of macros

Origin and evolution of life

Thousands of species
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Current approaches usually solve high-dimensional BBO in a low-dimensional subspace:

1. Obtain a low-dimensional subspace

2. Optimize in the low-dimensional subspace

3. Project the low-dimensional solution back to the high-dimensional space

• Decomposition: 𝑓 can be decomposed into the sum of low-dimensional functions

• Embedding: only a few dimensions affect 𝑓 significantly

• Variable selection: only a few axis-aligned dimensions affect 𝑓 significantly

[Kandasamy et al., ICML’15; Rolland et al., AISTATS’18]

[Wang et al., JAIR’16; Letham et al., NeurIPS’20] 

[Li et al., IJCAI’17] 
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Dropout [Li et al., IJCAI’17] select 𝑑 variables randomly and optimize the selected variables

• Select 𝑑 variables randomly

• Optimize the selected variables

• Use “fill-in” strategy to obtain the unselected variables

Select 𝑑 variables 
randomly

Select important 
variables automatically 

A metric for the 
importance of variables

An algorithm to 
select important variables

Variable selection: Simpler than embedding and can reduce the runtime
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[Song, Xue, Huang, and Qian, NeurIPS 2022 Spotlight]

A

B C

𝑥$, 𝑥%, … , 𝑥>

𝑥8, 𝑥?, 𝑥@, 𝑥>𝑥$, 𝑥%, 𝑥<, 𝑥A, 𝑥B
important unimportant

variable score 𝒔 =
∑ 𝕄,𝓓 ∈𝔻 ∑ 𝒙',(' ∈𝓓

D'⋅F 𝕄

∑ 𝕄,𝓓 ∈𝔻 𝓓 ⋅F(𝕄) =
The number of queries using each variable

The sum of query evaluations using each variable

MCTS

Importance  

Can be combined with 
any BBO algorithm

𝑣 + 2𝐶K 2 log 𝑛K /𝑛

exploitation exploration

UCB-based selection
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[Song, Xue, Huang, and Qian, NeurIPS 2022 Spotlight]

Theorem: ∀𝛿 ∈ (0, 1), let 𝛽, = 2 log <L)
M + 2𝑑, log(𝑑,𝑡%𝑏𝑟 log(<NOM )) and 𝐿 = 𝑏 log <NOM , 

and 𝜋, ,P$ satisfies ∑,P$𝜋,Q$ = 1 and 𝜋, > 0. Let 𝛽R∗ = max
$T'TR

𝛽,. At iteration 𝑇, 

𝑅R ≤ 𝐶$𝑇𝛽R∗𝛾R + 2𝛼&OU + 2Z
,V$

R

Z
'∈ N ∖𝕄)

𝛼'∗𝐿𝑟

Cumulative regret 𝑅R = ∑,V$R (𝑓 𝑥∗ − 𝑓(𝑥,))

Regret from 
unselected variables

𝛼'∗: Importance of 𝑥'

If important variables are selected, the cumulative regret can be reduced
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[Song, Xue, Huang, and Qian, NeurIPS 2022 Spotlight]

Experiments by combining with Bayesian optimization

Application to neural architecture search

Compared to state-of-the-art 
methods, MCTS-VS reduces 

runtime significantly
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[Wang, Xue, Song, Huang, and Qian, NeurIPS 2024 Spotlight]

Leverage MCTS to divide search spaces
• Use K-Means to divide the samples in a node 

into two clusters
• Use a binary classifier to separate the two 

clusters and divide the space into two nodes
• The left and right child nodes have higher 

and lower potential, respectively

Potential of node 𝑚:

!𝑦5,6: average objective values of the samples 
of the 𝑖-th source task in node 𝑚

!𝑦7,6: average objective values of the samples 
of the target task in node 𝑚

Utilize data of source tasks
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[Wang, Xue, Song, Huang, and Qian, NeurIPS 2024 Spotlight]

Potential of node 𝑚:

!𝑦5,6: average objective values of the samples 
of the 𝑖-th source task in node 𝑚

!𝑦7,6: average objective values of the samples 
of the target task in node 𝑚

Utilize data of source tasks

𝑤5: weight of the 𝑖-th source task

𝛾: decay factor 

Distance(𝐷(, 𝐷)), 1 ≤ 𝑖 ≤ 𝐾

Ranking 𝑟(, 1 ≤ 𝑖 ≤ 𝐾

Reflect the similarity 
between the 𝑖-th
source task and the 
target task

The influence of source tasks decays during the optimization process
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[Wang, Xue, Song, Huang, and Qian, NeurIPS 2024 Spotlight]

Leverage MCTS to divide search spaces
• Use K-Means to divide the samples in a node 

into two clusters
• Use a binary classifier to separate the two 

clusters and divide the space into two nodes
• The left and right child nodes have higher 

and lower potential, respectively

Potential of node 𝑚: Utilize data of source tasks

Node selection: Select the node 𝑚 with 
higher UCB from ROOT
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[Wang, Xue, Song, Huang, and Qian, NeurIPS 2024 Spotlight]

MCTS-transfer achieves the best average rank in high-dimensional real-world problems

Similar/Mixed transfer: learning from the data of similar (or similar and dissimilar) tasks
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The black-box optimization problems can be expensive

How to develop efficient EL for expensive black-box optimization?

Objective evaluation requires neural 
network training and testing, which may 
cost at least several hours

Only a very limited number of 
evaluations (e.g., 10) are allowed

Neural architecture search Macro placement

Canvas

Objective evaluation requires routing and 
simulation, which are time-consuming

modules
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[Trabucco et al., ICML’22] 

• Forward approach (𝑥 → 𝑦, surrogate model)

• Backward approach (𝑦 → 𝑥, generative model)
[Kumar & Levine, NeurIPS’20; Krishnamoorthy et al., ICML’23] 

[Chen et al., NeurIPS’22; Kim et al., NeurIPS’23] 

Offline optimization: Generate good solutions only using a given static data set

No iterative online evaluation!

Current approaches:
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Forward approaches (mainstream):

• Train a surrogate model 𝑓X to predict the 
function values via regression:

𝜃∗ = argminX $
Y∑'V$

Y 𝑓X 𝑥' − 𝑦'
%

• Obtain the final solution that maximizes 
the model output via gradient ascent:

𝑥,7$ = 𝑥, + 𝜂∇U𝑓X 𝑥 |UVU)

OOD issue

[Yuan et al., arXiv’24] 

OOD 
error

Suboptimal solutions

Prior works try to eliminate OOD prediction 
error via regularization or ensemble learning

[Trabucco et al., ICML’21; Chen et al., NeurIPS’22;
Yuan et al., NeurIPS’23; Dao et al., ICML’24] 
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[Tan, Xue, Lyu, Shang, Wang, Wang, Fu, and Qian, ICLR 2025 Under Review]

Primary goal of offline optimization:
• to select promising designs, rather than 

to predict their scores precisely

OOD error in order-preserving is more 
important than OOD prediction error 

Offline Dataset
Design Candidate

𝑝1

𝑝2

𝑝3

𝑝𝑎 𝑝𝑏

Surrogate Model መ𝑓𝜽
Ground-truth Function 𝑓

Design

Sc
or

e

(a) Offline Dataset
Design Candidate

𝑝1

𝑝2

𝑝3

Surrogate Model መ𝑓𝜽
Ground-truth Function 𝑓

Design

Sc
or

e

(b)

𝑓 𝑝′ > 𝑓(𝑝′′)

𝑝′ 𝑝′′

መ𝑓𝜽 𝑝′ < መ𝑓𝜽(𝑝′′)

𝑝𝑎 𝑝𝑏

𝑝′
𝑝′′

𝑓 𝑝′ > 𝑓(𝑝′′)
መ𝑓𝜽 𝑝′ > መ𝑓𝜽(𝑝′′)

We propose a novel framework for offline 
optimization based on learning to rank

• Utilize data augmentation to construct 
training data for the ranking framework

• Train the surrogate model with ranking loss

• Search for the final solutions using gradient 
ascent under output adaptation
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[Tan, Xue, Lyu, Shang, Wang, Wang, Fu, and Qian, ICLR 2025 Under Review]

• Identify the importance of the order-preserving surrogate 
models for offline optimization

• The i.i.d. generalization error bound has a convergence 
rate of 𝒪(1/ 𝑛) where 𝑛 is the number of training data

!(1/ %)

A special case where pairwise ranking loss is 
more robust than MSE in OOD regions:
• Assume the training data suffers from 

heavy-tailed noise 
• Assume the model to be learned is a 

linear model
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[Tan, Xue, Lyu, Shang, Wang, Wang, Fu, and Qian, ICLR 2025 Under Review]

Experiment on Design-Bench [Trabucco et al., ICML’22] :

Our method equipped with two 
ranking losses outperforms other 
20 methods with average ranks 
of 2.7 and 2.2

The third method: only ranks 5.9 
on average
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[Tan, Xue, Lyu, Shang, Wang, Wang, Fu, and Qian, ICLR 2025 Under Review]

Examine the versatility of ranking loss by replacing the MSE 
term in regression-based methods with the best-performing 
ranking loss, ListNet

The gains are always positive 
except two cases, clearly 
demonstrating the versatility 
of ranking loss
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However, current approaches only consider single-objective scenario, 
while many real-world applications have multiple objectives 

[Trabucco et al., ICML’22] 

• Forward approach (𝑥 → 𝑦, surrogate model)

• Backward approach (𝑦 → 𝑥, generative model)
[Kumar & Levine, NeurIPS’20; Krishnamoorthy et al., ICML’23] 

[Chen et al., NeurIPS’22; Kim et al., NeurIPS’23] 

Offline optimization: Generate good solutions only using a given static data set 

No iterative online evaluation!

Current approaches:
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[Xue, Tan, Huang, and Qian, ICML 2024]

Propose 
offline 

multi-objective 
optimization 

for the first time 

Various benchmark tasks

Extensive analysis
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Dynamic AC (DAC)Algorithm Configuration (AC) Per-instance AC

a single taskmultiple tasks multiple tasks

Evolutionary algorithms often have multiple heterogeneous hyper-parameters, whose 
configuration can influence the performance largely

Can we adjust multiple hyper-parameters of EAs automatically and dynamically?
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Open problem: How to adjust multiple 
heterogeneous hyper-parameters 
simultaneously? 
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Open problem: How to adjust multiple heterogeneous hyper-parameters simultaneously? 

One direct method: 
Treat multiple hyper-parameters as a whole, 
and apply RL methods

Very difficult 
because of the large action space!
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Our solution:

• Cooperative 
multi-agent 
modeling

• Each agent 
handles one 
hyper-parameter

[Xue, Xu, Yuan, Li, Qian, et al. NeurIPS 2022 Spotlight]

Open problem: How to adjust multiple heterogeneous hyper-parameters simultaneously? 
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Significantly better on almost 
all the 24 problems

Good generalization ability

Train on DTLZ2, WFG4, and WFG6 with 
𝑚 objectives, and test on the other 

problems with 𝑚 objectives 

[Xue, Xu, Yuan, Li, Qian, et al. NeurIPS 2022 Spotlight]

Application of Multi-Agent DAC to MOEA/D

Task: Adjust four hyper-parameters of 
MOEA/D (a popular MOEA) dynamically
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BBO: Optimize an objective function 𝑓 𝑥 , with the only permission of querying 𝑓 𝑥

End-to-end learning for BBO: Utilize data from the task distribution 𝑃(ℱ) to pre-train a 
model 𝑀, which performs like an algorithm to optimize unseen objective functions

Task 1
𝑓$ Data 1

Unseen
𝑓(𝑥)

Pre-trained
Model 𝑀

Task 𝑁
𝑓Y Data 𝑁

…
“Algorithm”

Algorithm 
𝒜$

Algorithm 
𝒜Z

…
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[Google, NeurIPS’22] makes the first attempt on learning end-to-end black-box optimizers

• Convert the metadata (description of the 
problem and algorithm) into text

• Convert the historical optimization trajectory 
of classical algorithms into text

• Train the OPTFormer to learn the converted 
trajectories from datasets

Outputs:

Inputs:

Training ℒ(𝜃;𝑚, ℎ) =a
+

log 𝑃,(ℎ + |𝑚, ℎ ":+." ) Inference 𝜋 𝑥( 𝑚, ℎ(." =i
/0"

1

𝑝,(𝑥(/|𝑚, ℎ(.", 𝑥(
(":/."))

OPTFormer

Cannot select proper algorithms automaticallyImitate the behavior of algorithms 
with an identifier of algorithm
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Source task: 𝑓' ∼ 𝑃(ℱ)

Behavior algorithm: 𝒜k, 𝑗 = 1,⋯𝐾

Collected by executing a behavior BBO 
algorithm 𝒜k on 𝑓'

Offline dataset: 𝒟',k = 𝒉R
',k,&

&V$

l

𝑅, = ∑,*V,7$
R 𝑦∗ − 𝑦,*

Augment histories by regret-to-go (RTG)

[Song, Gao, Xue, Wu, Li, Hao, Zhang, and Qian. CoRR abs/2402.17423]
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Bring identifiability of algorithms 
and help generate user-desired 

algorithms automatically 

𝑅, = ∑,*V,7$
R 𝑦∗ − 𝑦,*

ℒmnoop 𝜃 = −𝐸qr+∼𝒟',, Z,V$

R
log𝑀X 𝑥, pℎ,Q$)

Augmented Histories

Naïve RTG update strategy for inference 𝑅, = 𝑅,Q$ − (𝑦∗ − 𝑦,) Fall below 0

[Song, Gao, Xue, Wu, Li, Hao, Zhang, and Qian. CoRR abs/2402.17423]
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Hindsight Regret Relabeling (HRR) for inference

The immediate RTG is set as 0 to generate 
the most advantageous solutions

Previous RTG tokens are updated by 
adding the current regret

Reinforced In-context BBO

𝑅, = ∑,*V,7$
R 𝑦∗ − 𝑦,* = 0

𝑅' = ∑,*V'7$
, 𝑦∗ − 𝑦,* 𝑅' = ∑,*V'7$

R 𝑦∗ − 𝑦,*

[Song, Gao, Xue, Wu, Li, Hao, Zhang, and Qian. CoRR abs/2402.17423]
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Behavior algorithms
• Heuristic search, e.g., random search, shuffled grid search, hill climbing 
• Evolutionary algorithms, e.g., regularized evolution, eagle strategy, CMA-ES
• Bayesian optimization, e.g., GP-EI

Benchmarks
• BBOB functions [Elhara et al., 2019]

• HPO [Arango et al., 2021]

• Robot control problems [Wang et al., 2018]

A series of transformation are used to construct training and test data sets for BBOB and 
robot control problems, and a training and test split is provided by the authors for HPO

[Song, Gao, Xue, Wu, Li, Hao, Zhang, and Qian. CoRR abs/2402.17423]
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RIBBO outperforms the behavior algorithms and baselines

[Song, Gao, Xue, Wu, Li, Hao, Zhang, and Qian. CoRR abs/2402.17423]
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RIBBO can generalize to 
unseen function distributions

train on 4 other function distributions and test on 
GriewankRosenbrock, which has different properties

Cross-distribution generalization Influence of initial RTG token

By incorporating RTG tokens into the 
optimization histories, RIBBO can automatically 
generate user-desired optimization trajectories

[Song, Gao, Xue, Wu, Li, Hao, Zhang, and Qian. CoRR abs/2402.17423]
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qBuild theoretical foundation of EAs

Ø Theoretical analysis tools, influence analysis of major factors of EAs

qDevelop better EL algorithms

Ø Efficient EL, dynamic algorithm configuration, universal EL

qApply EL to solve complex optimization in learning, industry, and science 

Ø Subset selection, electronic design automation, origin and evolution of life
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There are many applications of selecting a good subset from a ground set

observation variables predictor variable a subset of observation variables

Sparse regression
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There are many applications of selecting a good subset from a ground set

Influence maximization
Influential users

Application I: Subset Selection
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There are many applications of selecting a good subset from a ground set
Document summarization Sensor placementSparse regression Influence maximization

Ground set 𝑉 Subset 𝑆 ⊆ 𝑉
max𝑓(𝑆)

𝑆 ≤ 𝑏

Subset Selection: Given all items 𝑉 = {𝑣$, … , 𝑣x}, an objective function 𝑓: 2y → ℝ
and a budget 𝑏, to select a subset 𝑆 ⊆ 𝑉 such that

max#⊆y 𝑓 𝑆 s. t. 𝑆 ≤ 𝑏 NP-hard

Application I: Subset Selection



http://www.lamda.nju.edu.cn/qianc/

http://www.lamda.nju.edu.cn

● denotes that POSS is significantly better by the 𝑡-test with confidence level 0.05

EA is always 
significantly better

relaxation methodsgreedy algorithmsexhaustive search

Comparison on 
sparse regression max*⊆, 𝑅-,*' =

Var 𝑧 − MSE-,/
Var 𝑧 s. t. 𝑆 ≤ 𝑏

observation variables predictor variable a subset of observation variables

[Qian, Yu and Zhou, NeurIPS 2015]

Evolutionary 
algorithm

Application I: Subset Selection
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Theorem 1. For subset selection with monotone objective functions, POSS with 𝔼[𝑇] ≤ 2𝑒𝑏#𝑛 and 
𝐼 ⋅ = 0, i.e., a constant function, can find a solution 𝒔 with |𝒔|" ≤ 𝑏 and 𝑓 𝒔 ≥ 1 − 𝑒.4!"# ⋅ OPT, 
where 𝛾567 = min𝒔:|𝒔|$0:."𝛾𝒔,:.

EA can achieve the optimal polynomial-time approximation guarantee

Proved to be the optimal polynomial-time approximation [Harshaw et al., ICML’19]

[Qian, Yu and Zhou, NeurIPS 2015; Qian, et al. NeurIPS 2017]

Theorem 2. For subset selection under multiplicative noise with the assumption Eq. (17.29), 
with probability at least (1/2)(1 − (12𝑛𝑏# log 2𝑏)/𝑙#<), PONSS with 𝜃 ≥ 𝜖 and 𝑇 =
2𝑒𝑙𝑛𝑏#log 2𝑏 finds a solution 𝒔 with |𝒔|" ≤ 𝑏 and 𝑓 𝒔 ≥ &01

&21
1 − 𝑒03 U OPT.

EA
𝑓 𝑆
OPT ≥

1 − 𝜖
1 + 𝜖 1 − 𝑒.4

𝑓 𝑆
OPT

≥
1

1 + 2𝜖𝑏
1 − 𝜖 𝛾

1 −
1 − 𝜖
1 + 𝜖

4
𝑒03

Significantly better
Best known [Horel and Singer, NeurIPS’16]

EA: 𝛩(1)
Best known:
𝛩(1/𝑏)

𝑏

approximation ratio

constant 𝛾 and 𝜖

Under noise, EA achieves better guarantees than conventional algorithms

Application I: Subset Selection
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Function design and verification: Design the RTL and verify the functions. (Document -> RTL)

Logic synthesis: Mapping the RTL design into netlist. (RTL -> Netlist)

Physical design: Design the physical layout according to netlist by EDA tools. (Netlist -> GDS)

Chip manufacturing: Fabricate the chip from GDS layout by photolithography. (GDS -> Product)

Logic Design (RTL) Netlist Chip Layout (GDS) Wafer Chip Products

Logic Synthesis Physical Design Fabrication Packing and Testing

Design Document

Development
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Netlist Canvas and modules

Placement

Routing

Routing result3D-vision

Application II: Electronic Design Automation

Figures are from http://www.or.uni-bonn.de/~vygen/files/buda.pdf
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Macro Placement: an important task in chip floorplanning, which tries to determine the 
positions of all macros with the aim of optimizing PPA (power, performance, area)

• Black-box: the evaluation of placement requires routing and simulation (commercial software)  

• Multi-objective: wirelength, congestion, timing, power, … 
• High-dimensional: thousands of macros

• Expensive: routing and simulation are time-consuming

Application II: Electronic Design Automation
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[Google, 
Nature 2021]

Wirelength comparison with state-of-the-art methods

Our methods

EA achieves the best average rank, and is significantly better on at least 6 out of the 7 chips

[Shi, Xue, Song, and Qian, NeurIPS 2023]

Application II: Electronic Design Automation
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Comparison on congestion

Our method:
less congested

[Xue, Lin, Shi, Kai, Xu, and Qian, DAC 2024]

Application II: Electronic Design Automation

[Lin et al., TCAD’20] 

Multiple-DMP
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Average improvement: 
40.5% in total negative 

slack (TNS) 
8.3% in worst negative 

slack (WNS)

[Shi, Xu, Kai, Lin, Xue, Yuan, and Qian, DATE 2025]

Comparison on timing metrics

Nominated as a Best Paper Award Candidate of 
2025 Design, Automation & Test in Europe Conference & Exhibition (DATE’25)
One of the Three Leading International Conferences on Electronic Design Automation
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Chip register optimization is to maximize the performance of the 
application system by optimizing 

• hardware parameters (various function control of registers) 

• software parameters (resource scheduling of operating system) 

Challenges

Application II: Electronic Design Automation

• Black-box: the performance is evaluated by running the system

• Expensive: one evaluation costs 20s-140s 

• High-dimensional: 274 parameters
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Baseline: Huawei HeBO
(Winner of the NeurIPS 2020 BBO challenge)

Tasks
HeBO

convergence 
value

HeBO
epochs

Our 
epochs Gains

mysql 393522 293 11 26.64
nginx 21768 198 4 49.50
redis 560446 175 49 3.57

unixbench 107 256 29 8.83

Huawei Spark Award

Application II: Electronic Design Automation

“Improve the efficiency of chip register optimization over actual 
industrial datasets by an average of 22.14 times”
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Fossil dataset of China

Section: 3122

Species: 11268

Evolutionary 
algorithm

The world's first high-precision 
curve of marine biodiversity

School of Earth Sciences & 
Engineering, Nanjing University

Science: “New dataset and method, drive the 
transformation of the entire evolutionary paleontology”
Nature: “Palaeontologists have charted 300 million years 
of Earth’s history in breathtaking detail.”

China's Top 10 Scientific Advances in 2020

Fossil data Solution: Permutation of the first 
and last events of all species

geological time

Biodiversity curve

Optimization objective: 
to align the permutation and fossil data

A high-dimensional 
black-box 

optimization problem

“Tianhe II supercomputer”
7,000,000 CPU hours
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By collaboration, we have developed an efficient EA

Apply to the currently largest foraminifera dataset 

The curve obtained 
through our EA

Recreate the history of foraminifera biodiversity 
during the E-O transition period

Algorithm Range of 
objective values Running time

Previous EA 39914-41390 ~40684s

Our EA 39252-39778 ~2376s

Improve the efficiency by 17 times, 
with better objective values

Application III: Comprehending the Origin and Evolution of Life 
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!

 δ18O Sea level Temperature δ13C 

 ρ P ρ P ρ P ρ P 

F -0.60 <0.01 0.63 <0.01 0.49 <0.01 0.10 >0.05 

PF -0.85 <0.01 0.74 <0.01 0.70 <0.01 0.02 >0.05 

LBF -0.86 <0.01 0.74 <0.01 0.78 <0.01 -0.07 >0.05 

SBF -0.07 >0.05 0.17 >0.05 0.05 >0.05 0.13 >0.05 

A high-resolution biodiversity curve helps understand the environmental drivers of the 
turnover of species 

Significant negative correlation Significant positive correlation

Application III: Comprehending the Origin and Evolution of Life 

For example, planktonic foraminiferal and larger 
benthic foraminiferal extinctions are associated 
with a rapid cooling, eustatic sea-level fall and 
positive carbon isotopic excursion 

Help understand the current development of the Earth’s biodiversity
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Use evolutionary learning to reduce the uncertainty in estimating soil Microbial-
Derived Carbon (MDC) storage

MDC contributes 
approximately 758 Pg, 
representing approximately 
40% of the global soil 
carbon stock

Helpful for mitigating climate change and enhancing soil productivity
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qBuild theoretical foundation of EAs

Ø Theoretical analysis tools, influence analysis of major factors of EAs

qDevelop better EL algorithms

Ø Efficient EL, dynamic algorithm configuration, universal EL

qApply EL to solve complex optimization in learning, industry, and science 

Ø Subset selection, electronic design automation, origin and evolution of life
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Thank you!

Collaborators

Yang Yu

Zhi-Hua Zhou


