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Subset selection

Subset selection is to select a subset of size at most 𝐵 from a 
total set of 𝑛 items for optimizing some objective function

Formally stated: given all items 𝑉 = {𝑣1, … , 𝑣𝑛}, an objective function
𝑓: 2𝑉 → R and a budget 𝐵, to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵

Ground set 

𝑉 = {𝑣1, … , 𝑣𝑛}
Subset 𝑋 ⊆ 𝑉

𝑚𝑎𝑥 𝑓(𝑋)

𝑋 ≤ 𝐵

Subset selection has diverse applications, which have different 
meanings on the item 𝑣𝑖 and the objective 𝑓
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Application - sensor placement

Sensor placement [Krause & Guestrin, IJCAI’09 Tutorial] : select a few places to 
install sensors such that the information gathered is maximized

Water contamination detection Fire detection

Item 𝑣𝑖: a place to install a sensor Objective 𝑓: entropy 
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Application - document summarization

Document summarization [Lin & Bilmes, ACL’11] : select a few 
sentences to best summarize the documents

Item 𝑣𝑖: a sentence

Objective 𝑓: summary quality
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Application - influence maximization

Influence maximization [Kempe et al., KDD’03] : select a subset of users 
from a social network to maximize its influence spread

Influential users

Item 𝑣𝑖: a social network user

Objective 𝑓: influence spread, measured by the expected 
number of social network users activated by diffusion 
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Application - sparse regression

Sparse regression [Tropp, TIT’04] : select a few observation variables 
to best approximate the predictor variable by linear regression

observation variables predictor 
variable 𝑧

Item 𝑣𝑖: an observation variable

Objective 𝑓: squared multiple correlation 𝑅𝑧,𝑋2 =
Var 𝑧 − MSE𝑧,𝑋

Var 𝑧

variance mean squared 
error

a subset 𝑋 of observation variables
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Application - maximum coverage

Maximum coverage [Feige, JACM’98] : select at most 𝐵 sets from 𝑛 given 
sets 𝑉 = {𝑆1, … , 𝑆𝑛} to make the size of their union maximal

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 = |⋃𝑆𝑖∈𝑋 𝑆𝑖| 𝑠. 𝑡. 𝑋 ≤ 𝐵

𝑆𝑙+1 𝑆𝑙+2 𝑆2𝑙

𝑆1

𝑆𝑖

𝑆𝑙

Example: ∀𝑖 ≤ 𝑙, 𝑆𝑖 contains the same two elements, ∀𝑖 > 𝑙, 𝑆𝑖
contains one unique element; 𝑛 = 2𝑙, 𝐵 = 2

Item 𝑣𝑖: a set of elements Objective 𝑓: size of the union 
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Subset selection

Subset selection is to select a subset of size at most 𝐵 from a 
total set of 𝑛 items for optimizing some objective function

Formally stated: given all items 𝑉 = {𝑣1, … , 𝑣𝑛}, an objective function
𝑓: 2𝑉 → R and a budget 𝐵, to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵

Application 𝒗𝒊 𝒇

sensor placement a place to install a sensor entropy 

document summarization a sentence summary quality 

influence maximization a social network user influence spread 

sparse regression an observation variable squared multiple
correlation 

maximum coverage a set of elements size of the union 

Many applications, but 
NP-hard in general!



http://www.lamda.nju.edu.cn/yuy/http://www.lamda.nju.edu.cn/qianc/

Subset selection

Subset selection is to select a subset of size at most 𝐵 from a 
total set of 𝑛 items for optimizing some objective function

Formally stated: given all items 𝑉 = {𝑣1, … , 𝑣𝑛}, an objective function
𝑓: 2𝑉 → R and a budget 𝐵, to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵

[Mathematical Programming 1978]

𝑓:monotone and submodular

Greedy algorithm：(1 − 1/𝑒)-approximation

George Nemhauser

John Von Neumann

Theory Prize

ICML&NIPS Best Paper

[Iyer, et al., ICML’13]

[Iyer & Bilmes, NIPS’13]

KDD Test of Time Award

[Kempe et al., KDD’03]

Application to 
influence maximization

ICML Best Paper

[Das & Kempe, ICML’11]

Extension to
non-submodular
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Previous approaches

• Greedy algorithm

Process:  iteratively select one item maximizing the increment on 𝑓

Iteration 1:
𝑉 =

{𝑣1, 𝑣2, … , 𝑣𝑛}

𝑣∗

𝑋1 = {𝑣∗}

𝑣∗ = arg𝑚𝑎𝑥𝑣∈𝑉∖𝑋𝑗−1 𝑓 𝑋𝑗−1 ∪ 𝑣 − 𝑓 𝑋𝑗−1

Iteration j:
𝑣∗

𝑉 ∖ 𝑋𝑗−1
𝑋𝑗 =

𝑋𝑗−1 ∪ {𝑣∗}

𝑋𝑗: the subset obtained after 𝑗 iterations

Run 
𝐵 iterations
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Approximation guarantees

𝑓: monotone and submodular

Subset selection: given all items 𝑉 = {𝑣1, … , 𝑣𝑛}, an objective function
𝑓: 2𝑉 → R and a budget 𝐵, to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵

The approximation guarantee [Nemhauser et al., MP’78] :

1 − 1/𝑒 ≈ 0.632 by the greedy algorithm  

𝑓 𝑋 ≥ 1 −
1

𝑒
⋅ OPT

The subset 𝑋 output by the greedy algorithm satisfies 

the optimal 
function value
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Monotone and submodular

Monotone: the function value increases as a set extends, i.e., 

A set function 𝑓: 2𝑉 → R requires a solution to be a subset of 𝑉

∀𝑋 ⊆ 𝑌 ⊆ 𝑉: 𝑓 𝑋 ≤ 𝑓(𝑌)

Submodular [Nemhauser et al., MP’78] : satisfy the natural diminishing 
returns property, i.e., 

∀𝑋 ⊆ 𝑌 ⊆ 𝑉, 𝑣 ∉ 𝑌: 𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋 ≥ 𝑓 𝑌 ∪ 𝑣 − 𝑓 𝑌 ;

or equivalently, 

∀𝑋 ⊆ 𝑌 ⊆ 𝑉: 𝑓 𝑌 − 𝑓 𝑋 ≤ ∑𝑣∈𝑌\X 𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋 ;

or equivalently,

∀𝑋, 𝑌 ⊆ 𝑉: 𝑓 𝑋 + 𝑓 𝑌 ≥ 𝑓 𝑋 ∩ 𝑌 + 𝑓 𝑋 ∪ 𝑌
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Submodular applications

Monotone: ∀𝑋 ⊆ 𝑌 ⊆ 𝑉: 𝑓 𝑋 ≤ 𝑓(𝑌)

Submodular: ∀𝑋 ⊆ 𝑌 ⊆ 𝑉, 𝑣 ∉ 𝑌: 𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋 ≥ 𝑓 𝑌 ∪ 𝑣 − 𝑓 𝑌

Maximum coverage [Feige, JACM’98] : select at most 𝐵 sets from 𝑛 given sets 
𝑉 = {𝑆1, … , 𝑆𝑛} to make the size of their union maximal

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 = |⋃𝑆𝑖∈𝑋 𝑆𝑖| 𝑠. 𝑡. 𝑋 ≤ 𝐵

𝑋 = {𝑆1} 𝑌 = {𝑆1, 𝑆2}𝑆1 𝑆2𝑆1

𝑆1 𝑆2𝑆1

𝑆3 𝑆3𝑋 = {𝑆1}

𝑌 = {𝑆1, 𝑆2}

𝑣 = 𝑆3

𝑓 𝑌 − 𝑓(𝑋)
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Submodular applications

Maximum coverage [Feige, JACM’98] : select at most 𝐵 sets from 𝑛 given sets 
𝑉 = {𝑆1, … , 𝑆𝑛} to make the size of their union maximal

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 = |⋃𝑆𝑖∈𝑋 𝑆𝑖| 𝑠. 𝑡. 𝑋 ≤ 𝐵

More applications:

- Sensor placement

- Document summarization

- Influence maximization

Their objective 
functions are all 
monotone and 
submodular
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Approximation guarantees

𝑓: monotone and submodular

Subset selection: given all items 𝑉 = {𝑣1, … , 𝑣𝑛}, an objective function
𝑓: 2𝑉 → R and a budget 𝐵, to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵

The approximation guarantee [Nemhauser et al., MP’78] :

1 − 1/𝑒 ≈ 0.632 by the greedy algorithm  

𝑓: monotone

The approximation guarantee [Das & Kempe, ICML’11] :

1 − 1/𝑒𝛾 by the greedy algorithm  

Submodular ratio 𝛾: to what extent 𝑓 satisfies the submodular property 



http://www.lamda.nju.edu.cn/yuy/http://www.lamda.nju.edu.cn/qianc/

Submodular ratio

Submodular ratio [Das & Kempe, ICML’11; Zhang & Vorobeychi, AAAI’16] : 

Submodular [Nemhauser et al., MP’78] : 

∀𝑋 ⊆ 𝑌 ⊆ 𝑉, 𝑣 ∉ 𝑌: 𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋 ≥ 𝑓 𝑌 ∪ 𝑣 − 𝑓 𝑌 ;

or ∀𝑋 ⊆ 𝑌 ⊆ 𝑉: 𝑓 𝑌 − 𝑓 𝑋 ≤ ∑𝑣∈𝑌\X 𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋

𝛾𝑈,𝑘(𝑓) = 𝑚𝑖𝑛
𝑋⊆𝑈, 𝑌: 𝑌 ≤𝑘,𝑋∩𝑌=∅

∑𝑣∈𝑌𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋

𝑓 𝑋 ∪ 𝑌 − 𝑓(𝑋)

𝛼𝑓 = 𝑚𝑖𝑛
𝑋⊆𝑌,𝑣∉𝑌

𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋

𝑓 𝑌 ∪ 𝑣 − 𝑓(𝑌)

Characterize to what extent a set function 𝑓 satisfies the submodular property 

For example, when 𝑓 is monotone,

• ∀𝑈, 𝑘: 𝛾𝑈,𝑘 𝑓 ∈ [0,1], the larger, more close to submodular

• 𝑓 is submodular if and only if ∀𝑈, 𝑘: 𝛾𝑈,𝑘(𝑓) = 1
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Non-submodular applications

Submodular ratio [Das & Kempe, ICML’11; Zhang & Vorobeychi, AAAI’16] : characterize 

to what extent a general set function satisfies the submodular property

𝛾𝑈,𝑘(𝑓) = 𝑚𝑖𝑛
𝑋⊆𝑈, 𝑌: 𝑌 ≤𝑘,𝑋∩𝑌=∅

∑𝑣∈𝑌𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋

𝑓 𝑋 ∪ 𝑌 − 𝑓(𝑋)

𝛼𝑓 = 𝑚𝑖𝑛
𝑋⊆𝑌,𝑣∉𝑌

𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋

𝑓 𝑌 ∪ 𝑣 − 𝑓(𝑌)

• Sparse regression: 𝛾𝑈,𝑘(𝑓) ≥ 𝜆𝑚𝑖𝑛(C, 𝑈 + 𝑘) [Das & Kempe, ICML’11]

• Sparse support selection: 𝛾𝑈,𝑘(𝑓) ≥ 𝑚/𝑀 [Elenberg et al., Annals of Statistics’18]

• Bayesian experimental design [Bian et al., ICML’17]: 

𝛾𝑈,𝑘(𝑓) ≥ 𝛽2/ V 2 𝛽2 + 𝜎−2 V 2

• Determinantal function maximization [Qian et al., IJCAI’18]:

𝛼𝑓 ≥ (𝜆𝑛 A − 1)/ (𝜆1 A − 1)∏𝑖=1
𝑛−1𝜆𝑖 A

Lower bounds on submodular ratio for some non-submodular applications
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Approximation guarantees

𝑓: monotone and submodular

The approximation guarantee [Nemhauser et al., MP’78] :

1 − 1/𝑒 ≈ 0.632 by the greedy algorithm  

𝑓: monotone

The approximation guarantee [Das & Kempe, ICML’11] :

1 − 1/𝑒𝛾 by the greedy algorithm  

Optimal [Nemhauser & Wolsey, MOR’78]

Optimal [Harshaw et al., ICML’19]


• Good approximation guarantee, i.e., good performance in worst cases

• Practical performance is much better (e.g., close to optima) in most cases 

Good optimization performance:

？
The greedy nature
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Previous approaches (con’t)

• Relaxation method

Process:  relax the original problem, and then find the optimal        

solutions to the relaxed problem    

Weakness:  the optimal solution of the relaxed problem may be 
distant to the true optimum

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵

𝑚𝑎𝑥𝒘∊𝑅𝑛 𝑔 𝒘 𝑠. 𝑡. |𝒘|0 ≤ 𝐵

𝑚𝑎𝑥𝒘∊𝑅𝑛 𝑔 𝒘 𝑠. 𝑡. |𝒘|1 ≤ 𝐵

non-convex

convex



http://www.lamda.nju.edu.cn/yuy/http://www.lamda.nju.edu.cn/qianc/

Variants of subset selection

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵

𝑚𝑖𝑛𝑋⊆𝑉 𝑓 𝑋 /𝑔(𝑋)

• Ratio optimization

1 − 1/𝑒𝛾

[Das & Kempe, ICML’11] 

1/2
[Ohsaka & Yoshida, NIPS’15] 

1 − 𝑒−1/(2∆)

[Tschiatschek et al, AAAI’17] 

(𝛼/2) 1 − 1/𝑒𝛼

[Alon et al., WWW’12] 

(𝛼/2) 1 − 1/𝑒𝛼

[Zhang & Vorobeychik, AAAI’16] 

|𝑋∗|

(1 + ( 𝑋∗ − 1)(1 − 𝜅))𝛾
[Bai et al., ICML’16] 

𝑋 ≤ 𝐵 → 𝑐 𝑋 ≤ 𝐵

• General constraints

𝑋: a subset → a multiset

• Multiset selection

𝑋: a subset → 𝑘 subsets

• 𝑘-subsets selection

𝑋: a subset → a sequence

• Sequence selection

1 − 1/𝑒𝛽

[Soma et al., ICML’14] 

• Subset selection
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Motivation

1. Optimize the objective 𝑓

2. Keep the size small

Two conflicting objectives:

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋

𝑚𝑖𝑛𝑋⊆𝑉 𝑚𝑎𝑥{|𝑋| − 𝐵, 0}

Subset selection:       

Why not optimize the bi-objective formulation?

𝑚𝑖𝑛𝑋⊆𝑉 (−𝑓 𝑋 , |𝑋|)

Previous theoretical studies have disclosed the advantage of 
solving single-objective constrained optimization by MOEAs

[Neumann & Wegener, NC’06; Friedrich et al., ECJ’10; 
Neumann et al., Algorithmica’11; Yu et al., AIJ’12] 
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Outline

Introduction

Pareto optimization for subset selection

Pareto optimization for large-scale subset selection

Pareto optimization for noisy subset selection

Pareto optimization for dynamic subset selection 

Conclusion
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Subset representation

A subset 𝑋 ⊆ 𝑉 can be naturally represented by a Boolean 

vector 𝒙 ∈ {0,1}𝑛

• the 𝑖-th bit 𝑥𝑖 = 1 if the item 𝑣𝑖 ∈ 𝑋; 𝑥𝑖 = 0 otherwise

• 𝑋 = {𝑣𝑖 ∣ 𝑥𝑖 = 1}

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} a subset 𝑋 ⊆ 𝑉 a Boolean vector 𝒙 ∈ {0,1}5

∅ 00000

{𝑣1} 10000

{𝑣2, 𝑣3, 𝑣5} 01101

{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} 11111
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Pareto optimization

The basic idea:

𝑚𝑎𝑥𝒙∊{0,1}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝒙 ≤ 𝐵

𝑚𝑖𝑛𝒙 (𝑓1 𝒙 , 𝑓2 𝒙 )

Bi-objective optimization

z

x

y

𝑓1

𝑓2

better 𝑓1
better 𝑓2

worse 𝑓1
better 𝑓2

x dominates z :

𝑓1 𝒙 < 𝑓1 𝒛 ⋀ 𝑓2 𝒙 < 𝑓2 𝒛

x is incomparable with y :

𝑓1 𝒙 > 𝑓1 𝒚 ⋀ 𝑓2 𝒙 < 𝑓2 𝒚

𝑚𝑎𝑥𝒙∊{0,1}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝑐(𝒙) ≤ 𝐵

𝑚𝑖𝑛𝒙∊{0,1}𝑛 𝑓 𝒙 /𝑔(𝒙)

𝑚𝑎𝑥𝒙∊{0,1,… , 𝑘}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝒙 ≤ 𝐵

subset selection 
and some variants
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Pareto optimization

The basic idea:

Output: select the best solution 
w.r.t. the original problem

How to 
transform?

Multi-objective 
evolutionary algorithms

𝑚𝑎𝑥𝒙∊{0,1}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝒙 ≤ 𝐵

𝑚𝑖𝑛𝒙 (𝑓1 𝒙 , 𝑓2 𝒙 )

Bi-objective optimization𝑚𝑎𝑥𝒙∊{0,1}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝑐(𝒙) ≤ 𝐵

𝑚𝑖𝑛𝒙∊{0,1}𝑛 𝑓 𝒙 /𝑔(𝒙)

𝑚𝑎𝑥𝒙∊{0,1,… , 𝑘}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝒙 ≤ 𝐵

Different from traditional multi-objective optimization
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Subset selection with monotone submodular 𝑓

[Friedrich & Neumann, ECJ’15]

Transformation: 

𝑚𝑎𝑥𝒙∊{0,1}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝒙 ≤ 𝐵 original

𝑚𝑖𝑛𝒙∊{0,1}𝑛 (−𝑓 𝒙 , |𝒙|) bi-objective

population new solutions

reproduction

updatinginitialization

A simple multi-objective evolutionary 
algorithm GSEMO [Laumanns et al., TEvC’04] 

Initialization: put a random solution
from {0,1}𝑛 into the population 𝑃

Reproduction: pick a solution 𝒙 randomly
from 𝑃, and flip each bit of 𝒙 ∊ {0,1}𝑛 with
prob. 1/𝑛 to generate a new solution

Updating: if the new solution is not
dominated by any solution in 𝑃, put it into
𝑃 and weed out bad solutions

Output: select the best solution with size at most 𝐵

It can achieve the optimal approximation guarantee of (1 − 1/𝑒)
in 𝑂(𝑛2(𝐵 + log 𝑛)) expected running time

Exclude solutions with size larger than 𝐵
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Subset selection with monotone 𝑓

The POSS algorithm [Qian, Yu and Zhou, NIPS’15]

Transformation: 

Initialization: put the special solution {0}𝑛

into the population 𝑃

Reproduction: pick a solution 𝒙 randomly
from 𝑃, and flip each bit of 𝒙 with prob.
1/𝑛 to produce a new solution

Updating: if the new solution is not
dominated by any solution in 𝑃, put it
into 𝑃 and weed out bad solutions

Output: select the best feasible solution

𝑚𝑎𝑥𝒙∊{0,1}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝒙 ≤ 𝐵 original

𝑚𝑖𝑛𝒙∊{0,1}𝑛 (−𝑓 𝒙 , |𝒙|) bi-objective

Exclude solutions with size at least 2𝐵
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Subset selection with monotone 𝑓

The POSS algorithm [Qian, Yu and Zhou, NIPS’15]

Transformation: 

Initialization: put the special solution {0}𝑛

into the population 𝑃

Reproduction: pick a solution 𝒙 randomly
from 𝑃, and flip each bit of 𝒙 with prob.
1/𝑛 to produce a new solution

Updating: if the new solution is not
dominated by any solution in 𝑃, put it
into 𝑃 and weed out bad solutions

Output: select the best feasible solution

𝑚𝑎𝑥𝒙∊{0,1}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝒙 ≤ 𝐵 original

𝑚𝑖𝑛𝒙∊{0,1}𝑛 (−𝑓 𝒙 , |𝒙|) bi-objective

Exclude solutions with size at least 2𝐵

• Selection: each solution in the population 𝑃
is selected with probability 1/|𝑃|

• Bit-wise mutation:
Pr(flip 𝑖 specific bits)= 1/𝑛 𝑖 1 − 1/𝑛 𝑛−𝑖

e.g., if 𝑃 contains 10 solutions, each solution
is selected with probability 1/10

e.g., the probability of flipping a specific bit
of a solution is (1/𝑛) 1 − 1/𝑛 𝑛−1
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The POSS algorithm [Qian, Yu and Zhou, NIPS’15]

Transformation: 

Initialization: put the special solution {0}𝑛

into the population 𝑃

Reproduction: pick a solution 𝒙 randomly
from 𝑃, and flip each bit of 𝒙 with prob.
1/𝑛 to produce a new solution

Updating: if the new solution is not
dominated by any solution in 𝑃, put it
into 𝑃 and weed out bad solutions

Output: select the best feasible solution

𝑚𝑎𝑥𝒙∊{0,1}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝒙 ≤ 𝐵 original

𝑚𝑖𝑛𝒙∊{0,1}𝑛 (−𝑓 𝒙 , |𝒙|) bi-objective

Exclude solutions with size at least 2𝐵

Subset selection with monotone 𝑓

• Selection: each solution in the population 𝑃
is selected with probability 1/|𝑃|

• Bit-wise mutation:
Pr(flip 𝑖 specific bits)= 1/𝑛 𝑖 1 − 1/𝑛 𝑛−𝑖

e.g., if 𝑃 contains 10 solutions, each solution
is selected with probability 1/10

e.g., the probability of flipping a specific bit
of a solution is (1/𝑛) 1 − 1/𝑛 𝑛−1

• The population 𝑃 always contains non-
dominated solutions generated so-far
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Theorem 1. For subset selection with monotone objective function 𝑓, POSS using 

E 𝑇 ≤ 2𝑒𝐵2𝑛 finds a solution 𝒙 with 𝒙 ≤ 𝐵 and 𝑓 𝒙 ≥ (1 − 𝑒−𝛾) ∙ OPT.

Theoretical analysis

POSS can achieve the optimal approximation guarantee, 
previously obtained by the greedy algorithm

the expected number of iterations

the optimal polynomial-time approximation ratio, 
previously obtained by the greedy algorithm [Das & Kempe, ICML’11]
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𝑓(𝑋 ∪ {  𝑣}) − 𝑓(𝑋) ≥
𝛾

𝐵
(OPT − 𝑓(𝑋))

Proof

the optimal function valuesubmodularity ratio [Das & Kempe, ICML’11]

Roughly speaking, the improvement by adding a specific item 
is proportional to the current distance to the optimum

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that
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Proof

Main idea:

• consider a solution 𝒙 with |𝒙| ≤ 𝑖 and 𝑓(𝒙) ≥ 1 − 1 −
𝛾

𝐵

𝑖
∙ OPT

𝑖 = 0 𝑖 = 𝐵

initial solution 00…0 1 − 1 −
𝛾

𝐵

𝐵

𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝐵
(OPT − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that

𝑓 00…0 = 0

|00…0| = 0
≥ 1 − 𝑒−𝛾

(1 − 1/𝑚)𝑚 ≤ 1/𝑒

= 1 − 1 −
1

𝐵/𝛾

𝐵/𝛾 ⋅𝛾

a subset

let 𝑚 = 𝐵/𝛾
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Proof

Main idea:

• consider a solution 𝒙 with |𝒙| ≤ 𝑖 and 𝑓(𝒙) ≥ 1 − 1 −
𝛾

𝐵

𝑖
∙ OPT

𝑖 = 0 𝑖 = 𝐵

initial solution 00…0 1 − 1 −
𝛾

𝐵

𝐵

≥ 1 − 𝑒−𝛾

the desired approximation guarantee

𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝐵
(OPT − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that

𝑓 00…0 = 0

|00…0| = 0

？

a subset
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Proof

Main idea:

• consider a solution 𝒙 with |𝒙| ≤ 𝑖 and 𝑓(𝒙) ≥ 1 − 1 −
𝛾

𝐵

𝑖
∙ OPT

• in each iteration of POSS:        

 select 𝒙 from the population 𝑃

 flip one specific 0-bit of 𝒙 to 1-bit

𝒙′ = 𝒙 + 1 ≤ 𝑖 + 1 and 𝑓(𝒙′) ≥ 1 − 1 −
𝛾

𝐵

𝑖+1
∙ OPT

𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝐵
(OPT − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that

(i.e., add the specific item  𝑣 in Lemma 1)

a subset
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Proof

𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝐵
(OPT − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that

𝑓 𝒙′ − 𝑓(𝒙) ≥
𝛾

𝐵
∙ OPT − 𝑓 𝒙

𝑓(𝒙) ≥ 1 − 1 −
𝛾

𝐵

𝑖

∙ OPT

𝑓 𝒙′ ≥ 1 −
𝛾

𝐵
𝑓 𝒙 +

𝛾

𝐵
∙ OPT

𝑓 𝒙′ ≥ 1 −
𝛾

𝐵
1 − 1 −

𝛾

𝐵

𝑖

∙ OPT +
𝛾

𝐵
∙ OPT = 1 − 1 −

𝛾

𝐵

𝑖+1

∙ OPT
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Proof

Main idea:

• consider a solution 𝒙 with |𝒙| ≤ 𝑖 and 𝑓(𝒙) ≥ 1 − 1 −
𝛾

𝐵

𝑖
∙ OPT

• in each iteration of POSS:        

 select 𝒙 from the population 𝑃, 

 flip one specific 0-bit of 𝒙 to 1-bit, 

𝒙′ = 𝒙 + 1 ≤ 𝑖 + 1 and 𝑓(𝒙′) ≥ 1 − 1 −
𝛾

𝐵

𝑖+1
∙ OPT

𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝐵
(OPT − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that

(i.e., add the specific item  𝑣 in Lemma 1)

𝑖 𝑖 + 1 the probability: 
1

𝑃
∙
1

𝑒𝑛

a subset

the probability: 
1

𝑃

the probability: 
1

𝑛
1 −

1

𝑛

𝑛−1
≥

1

𝑒𝑛
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Proof

𝑖 𝑖 + 1 the probability: 
1

𝑃
∙
1

𝑒𝑛

1

2𝑒𝐵𝑛

𝑃 ≤ 2𝐵

𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝐵
(OPT − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that

Main idea:

• consider a solution 𝒙 with |𝒙| ≤ 𝑖 and 𝑓(𝒙) ≥ 1 − 1 −
𝛾

𝐵

𝑖
∙ OPT

• in each iteration of POSS:        

 Exclude solutions with size at least 2𝐵

 The solutions in 𝑃 are always incomparable 

For each size in 
{0,1, … , 2𝐵 − 1}, 
there exists at most 
one solution in 𝑃

a subset



http://www.lamda.nju.edu.cn/yuy/http://www.lamda.nju.edu.cn/qianc/

Proof

𝑖 𝑖 + 1 the probability: 
1

𝑃
∙
1

𝑒𝑛

1

2𝑒𝐵𝑛

𝑃 ≤ 2𝐵

𝑖 𝑖 + 1 the expected number of iterations: 2𝑒𝐵𝑛

𝑖 = 0 𝐵 the expected number of iterations: 𝐵 ∙ 2𝑒𝐵𝑛

𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝐵
(OPT − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that

Main idea:

• consider a solution 𝒙 with |𝒙| ≤ 𝑖 and 𝑓(𝒙) ≥ 1 − 1 −
𝛾

𝐵

𝑖
∙ OPT

• in each iteration of POSS:        

a subset
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Theoretical analysis

Theorem 2. For the Exponential Decay subclass of sparse regression, POSS using 
E 𝑇 = 𝑂(𝐵2 𝑛 − 𝐵 𝑛 log 𝑛) finds an optimal solution, while the greedy algorithm 
cannot.

POSS can do better than the greedy algorithm in cases
[Das & Kempe, STOC’08]

Theorem 1. For subset selection with monotone objective function 𝑓, POSS using 

E 𝑇 ≤ 2𝑒𝐵2𝑛 finds a solution 𝒙 with 𝒙 ≤ 𝐵 and 𝑓 𝒙 ≥ (1 − 𝑒−𝛾) ∙ OPT.

POSS can achieve the optimal approximation guarantee, 
previously obtained by the greedy algorithm

the optimal polynomial-time approximation ratio, 
previously obtained by the greedy algorithm [Das & Kempe, ICML’11]
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Experiments on sparse regression

Sparse regression: given all observation variables 𝑉 = {𝑣1, … , 𝑣𝑛}, a
predictor variable 𝑧 and a budget 𝐵, to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑅𝑧,𝑋
2 =

Var 𝑧 − MSE𝑧,𝑋
Var 𝑧

𝑠. 𝑡. 𝑋 ≤ 𝐵

observation variables predictor 
variable 𝑧

Var 𝑧 : variance of 𝑧 MSE𝑧,𝑋: mean squared error of predicting 𝑧
by using observation variables in 𝑋

a subset 𝑋 of observation variables
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Experimental results - 𝑅2 values

greedy algorithms relaxation methods

POSS is significantly better than all the 
compared algorithms on all data sets 

the size constraint: 𝑩 = 𝟖 the number of iterations of POSS: 𝟐𝒆𝑩𝟐𝒏

exhaustive search

● denotes that POSS is significantly better by 
the 𝑡-test with confidence level 0.05
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Experimental results - 𝑅2 values

POSS tightly follows OPT, and has a 
clear advantage over the rest algorithms

different size constraints: 𝑩 = 𝟑 → 𝟖
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Experimental results – running time

POSS can be much more efficient in practice

OPT: 𝑛𝐵/𝐵𝐵 greedy algorithms (FR):  𝐵𝑛 POSS: 2𝑒𝐵2𝑛

theoretical 
running time
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Pareto optimization vs. Greedy algorithm

Greedy algorithm: 

• Generate a new solution by adding a single item 

(i.e., single-bit forward search: 0 → 1)

• Keep only one solution

Pareto optimization:

• Generate a new solution by flipping each bit with prob. 1/𝑛

 single-bit forward search : 0 → 1

 backward search : 1 → 0

 multi-bit search : 00 → 11

• Keep a set of non-dominated solutions due to bi-objective optimization

Pareto optimization may have a better ability of 
escaping from local optima
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Variants of subset selection

• Ratio optimization

• Subset selection 𝑚𝑎𝑥𝒙∊{0,1}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝒙 ≤ 𝐵

• General constraints 𝑚𝑎𝑥𝒙∊{0,1}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝑐(𝒙) ≤ 𝐵

• Multiset selection 𝑚𝑎𝑥𝒙∊Z+𝑛 𝑓 𝒙 𝑠. 𝑡. |𝒙| ≤ 𝐵

• 𝑘-subsets selection 𝑚𝑎𝑥𝒙∊{0,1,…,𝑘}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝒙 ≤ 𝐵

• Sequence selection 𝑚𝑎𝑥𝑥∊𝒮 𝑓 𝑥 𝑠. 𝑡. |𝑥| ≤ 𝐵

𝑚𝑖𝑛𝒙∊{0,1}𝑛 𝑓 𝒙 /𝑔(𝒙)

𝑥𝑖: the number of times that the item 𝑣𝑖 appears 

𝑥𝑖: the subset where the item 𝑣𝑖 appears 

𝑥: a sequence where the order of items influences 𝑓
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Variants of subset selection

• Ratio optimization

• General constraints

• Multiset selection

• Subset selection 𝑚𝑎𝑥𝒙∊{0,1}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝒙 ≤ 𝐵

𝑚𝑎𝑥𝒙∊{0,1}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝑐(𝒙) ≤ 𝐵

𝑚𝑎𝑥𝒙∊Z+𝑛 𝑓 𝒙 𝑠. 𝑡. |𝒙| ≤ 𝐵

• 𝑘-subsets selection 𝑚𝑎𝑥𝒙∊{0,1,…,𝑘}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝒙 ≤ 𝐵

• Sequence selection 𝑚𝑎𝑥𝑥∊𝒮 𝑓 𝑥 𝑠. 𝑡. |𝑥| ≤ 𝐵

𝑚𝑖𝑛𝒙∊{0,1}𝑛 𝑓 𝒙 /𝑔(𝒙)

Pareto optimization can achieve the best-known polynomial-time 
approximation guarantee, and perform well in practice

[Qian et al., IJCAI’17a]

[Qian et al., AAAI’18]

[Qian et al., TEvC’18]

[Qian et al., IJCAI’18]

[Qian et al., IJCAI’17b]

[Friedrich & Neumann, 
ECJ’15; Qian et al., NIPS’15]
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Ratio optimization

The PORM algorithm [Qian, Shi, Yu, Tang and Zhou, IJCAI’17]

Transformation: 

𝑚𝑖𝑛𝒙∊{0,1}𝑛 𝑓 𝒙 /𝑔(𝒙) original

𝑚𝑖𝑛𝒙∊{0,1}𝑛 (𝑓 𝒙 , −𝑔(𝒙)) bi-objective

Initialization: put a random solution from
{0,1}𝑛 into the population 𝑃

Reproduction: pick a solution 𝑥 randomly
from 𝑃, and flip each bit of 𝑥 with prob.
1/𝑛 to produce a new solution

Updating: if the new solution is not
dominated by any solution in 𝑃, put it into
𝑃 and weed out bad solutions; keep at
most three solutions for each subset size

Output: the solution with the smallest ratio

(smallest 𝑓, largest 𝑔, smallest ratio 𝑓/𝑔)
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Ratio optimization

The PORM algorithm [Qian, Shi, Yu, Tang and Zhou, IJCAI’17]

Transformation: 

𝑚𝑖𝑛𝒙∊{0,1}𝑛 𝑓 𝒙 /𝑔(𝒙) original

𝑚𝑖𝑛𝒙∊{0,1}𝑛 (𝑓 𝒙 , −𝑔(𝒙)) bi-objective

Theory: PORM achieves the best-known approximation guarantee 
|𝑋∗|

(1+( 𝑋∗ −1)(1−𝜅))𝛾
, previously obtained by GreedRatio [Bai et al., ICML’16]

Application: 

F-measure maximization 
in information retrieval

Improvement ratio over GreedRatio
Always better
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How can Pareto optimization be applied to 
large-scale subset selection problems? 

Pareto optimization for subset selection

achieve excellent performance on diverse variants of 
subset selection both theoretically and empirically

The running time (e.g., 2𝑒𝐵2𝑛) for achieving a good solution 

unsatisfactory when the problem size (e.g., 𝐵 and 𝑛) is large 

A sequential algorithm that cannot be readily parallelized 

can be reduced to linear time but with performance loss
[Crawford & Kuhnle, 2019]
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Outline

Introduction

Pareto optimization for subset selection

Pareto optimization for large-scale subset selection

Pareto optimization for noisy subset selection

Pareto optimization for dynamic subset selection 

Conclusion
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Pareto optimization for subset selection

solution 
{0}𝑛

p
o
p
u
la

ti
o
n
 𝑃

pick a 
solution 

a new 
solution

pick a 
solution 

a new 
solution

iteration 1 iteration 2

p
o
p
u
la

ti
o
n
 𝑃

Sequential

𝑚𝑎𝑥𝒙∊{0,1}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝒙 ≤ 𝐵

𝑚𝑖𝑛𝒙∊{0,1}𝑛 (−𝑓 𝒙 , |𝒙|)

Bi-objective transformation:

MOEA

randomly
solution 
{0}𝑛 pick a 

solution 

a new 
solution

population 
𝑃

flip each bit 
with prob. 1/𝑛

if not dominated, 
put it into 𝑃 and 
delete dominated solutions from 𝑃

select 
the best 
feasible 
solution

initialize

terminated
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Parallel Pareto optimization for subset selection

solution 
{0}𝑛

p
o
p
u
la

ti
o
n
 𝑃

pick a 
solution 

a new 
solution

pick a 
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a new 
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solution
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Parallel Pareto optimization for subset selection

[Qian et al., IJCAI’16]

1

𝑇

𝑁

𝑇/𝑁

Q: the same solution quality?

POSS

PPOSS

[Qian et al., NIPS’15]

Yes!

#cores

#iterations:

#iterations:

#cores



http://www.lamda.nju.edu.cn/yuy/http://www.lamda.nju.edu.cn/qianc/

Parallel Pareto optimization for subset selection

1POSS
[Qian et al., NIPS’15]

p
o
p
u
la

ti
o
n
 𝑃

pick a 
solution 

a new 
solution

p
o
p
u
la

ti
o
n
 𝑃

Linear speedup

1

𝑒𝑛
success

1

𝑒𝑛
success

1 −
1

𝑒𝑛
failure

1 −
1

𝑒𝑛

𝑁

all failures

1 − 1 −
1

𝑒𝑛

𝑁

≈
𝑁

𝑒𝑛

at least one success

#cores

[Qian et al., IJCAI’16]

𝑁PPOSS

p
o
p
u
la

ti
o
n
 𝑃

pick a 
solution 

a new 
solution

p
o
p
u
la

ti
o
n
 𝑃

a new 
solution

a new 
solution

a new 
solution

a new 
solution

#cores
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Theorem 3. For subset selection with monotone objective function 𝑓, 
the expected number of iterations until PPOSS finds a solution 𝒙 with 
𝒙 ≤ 𝐵 and 𝑓 𝒙 ≥ (1 − 𝑒−𝛾) ∙ OPT is

(1) if 𝑁 = 𝑜 𝑛 , then E 𝑇 ≤ 2𝑒𝐵2𝑛/𝑁;

(2) if 𝑁 = Ω 𝑛𝑖 for 1 ≤ 𝑖 ≤ 𝐵, then E 𝑇 = 𝑂(𝐵2/𝑖);

(3) if 𝑁 = Ω 𝑛min{3𝐵−1,𝑛} , then E 𝑇 = 𝑂 1 .

Theoretical analysis

• When the number 𝑁 of cores is asymptotically less than the number 𝑛
of items, the expected number E[𝑇] of iterations can be reduced linearly
w.r.t. the number of cores 

Keep the optimal 
approximation guarantee
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Theorem 3. For subset selection with monotone objective function 𝑓, 
the expected number of iterations until PPOSS finds a solution 𝒙 with 
𝒙 ≤ 𝐵 and 𝑓 𝒙 ≥ (1 − 𝑒−𝛾) ∙ OPT is

(1) if 𝑁 = 𝑜 𝑛 , then E 𝑇 ≤ 2𝑒𝐵2𝑛/𝑁;

(2) if 𝑁 = Ω 𝑛𝑖 for 1 ≤ 𝑖 ≤ 𝐵, then E 𝑇 = 𝑂(𝐵2/𝑖);

(3) if 𝑁 = Ω 𝑛min{3𝐵−1,𝑛} , then E 𝑇 = 𝑂 1 .

Theoretical analysis

• When the number 𝑁 of cores is asymptotically less than the number 𝑛
of items, the expected number E[𝑇] of iterations can be reduced linearly 
w.r.t. the number of cores 

Keep the optimal 
approximation guarantee

• With increasing number 𝑁 of cores, the expected number E[𝑇] of 
iterations can be continuously reduced, eventually to a constant
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Experiments on sparse regression

Compare the speedup as well as the solution quality measured by 𝑹𝟐 values 
with different number of cores 

Speedup
Solution 
quality
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Experiments on sparse regression

the lock-free version of PPOSS

PPOSS (blue line): achieve speedup around 8 when the number of cores 
is 10; the 𝑹𝟐 values are stable, and better than the greedy algorithm

PPOSS-lf (red line): achieve better speedup as expected; the 𝑹𝟐 values 
are slightly worse

the best previous algorithm [Das & Kempe, ICML’11]
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Can we make Pareto optimization distributable? 

Pareto optimization for subset selection

achieve excellent performance on diverse variants of 
subset selection both theoretically and empirically

Parallel Pareto optimization for subset selection

achieve nearly linear runtime speedup while keeping the 
solution quality 

Require centralized access to the whole data set

restrict the application to large-scale real-world problems
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(Parallel) Pareto optimization for subset selection

[Qian et al., IJCAI’16]

1

𝑁

POSS

PPOSS

[Qian et al., NIPS’15]

flip each bit 
with prob. 1/𝑛

The new solution contains any 
item with some probability

Require centralized access to the whole data set at each machine

Large-scale data is too large to be stored at one single machine



http://www.lamda.nju.edu.cn/yuy/http://www.lamda.nju.edu.cn/qianc/

Distributed Pareto optimization for subset selection

solution 
{0}𝑛

p
o
p
u
la

ti
o
n
 𝑃

pick a 
solution 

a new 
solution

Single machine

Data

POSS
[Qian et al., NIPS’15]

stage 1 stage 2

Data

data 1

S
p
li
t

data 𝑚

DPOSS
[Qian et al., IJCAI’18]

solution 
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ti
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pick a 
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a new 
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Single machine

solution 
{0}𝑛

p
o
p
u
la

ti
o
n
 𝑃

pick a 
solution 

a new 
solution

Single machine

Output the subset satisfying
arg𝑚𝑎𝑥𝑆𝑖 𝑓 𝑆𝑖 1 ≤ 𝑖 ≤ 𝑚 + 1}

M
e
rg

e

solution 
{0}𝑛

p
o
p
u
la

ti
o
n
 𝑃

pick a 
solution 

a new 
solution

Single machine

𝑆1

𝑆𝑚

𝑆𝑚+1

uniformly 
random partition
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Experiments on sparse regression

Compare DPOSS with the state-of-the-art distributed greedy algorithm 
RandGreeDi [Mirzasoleiman et al., JMLR’16] under different number of machines 

On regular-scale data sets

DPOSS is always better than RandGreeDi
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Experiments on sparse regression

On regular-scale data sets

DPOSS is very close to 
the centralized POSS 

DPOSS is better than 
RandGreeDi

On large-scale data sets

𝑟𝑎𝑡𝑖𝑜 =
𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑏𝑦 DPOSS

𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑏𝑦 POSS
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Experiments on maximum coverage

On regular-scale data sets

On large-scale data sets

DPOSS is very close to the centralized 
POSS, and is better than RandGreeDi
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Pareto optimization for subset selection

achieve excellent performance on diverse variants of 
subset selection both theoretically and empirically

Parallel Pareto optimization for subset selection

achieve nearly linear runtime speedup while keeping the 
solution quality 

Distributed Pareto optimization for subset selection

achieve very close performance to the centralized algorithm 

large-scale subset selection
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Previous analyses often assume that the exact value of the 
objective function can be accessed  

However, in many applications of subset selection, only a 
noisy value of the objective function can be obtained 

The objective function 𝑓(𝑋):

the expected number of 
users activated by 
propagating from 𝑋

Influential usersInfluence 
maximization

Noise



http://www.lamda.nju.edu.cn/yuy/http://www.lamda.nju.edu.cn/qianc/

1st diffusion: 15

2nd diffusion: 16

To achieve an 
accurate estimation, 
10,000 independent 
diffusion processes 
are required
[Kempe et al., KDD’03]Very expensive
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Previous analyses often assume that the exact value of the 
objective function can be accessed  

However, in many applications of subset selection, only a 
noisy value of the objective function can be obtained 

The objective function 𝑓(𝑋): 
the expected number of 
users activated by 
propagating from 𝑋

Influential usersInfluence 
maximization

noise
The average number of users activated by a limited number 
of independent diffusion processes [Kempe et al., KDD’03]

Noise
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How about the performance for noisy subset selection? 

Previous analyses often assume that the exact value of the 
objective function can be accessed  

However, in many applications of subset selection, only a 
noisy value of the objective function can be obtained 

The objective function 𝑓(𝑋):

the squared multiple 
correlation 𝑅𝑧,𝑋

2 of 
predicting 𝑧 by using 𝑋

Sparse
regression

noise

Noise

observation variables predictor 
variable 𝑧

a subset 𝑋 of observation variables
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Outline

Introduction

Pareto optimization for subset selection

Pareto optimization for large-scale subset selection

Pareto optimization for noisy subset selection

Pareto optimization for dynamic subset selection 

Conclusion
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Noisy subset selection

Subset selection: given 𝑉 = {𝑣1, … , 𝑣𝑛}, an objective function 
𝑓: 2𝑉 → R and a budget 𝐵, to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵

Multiplicative:   1 − 𝜖 ⋅ 𝑓 𝑋 ≤ 𝐹 𝑋 ≤ 1 + 𝜖 ⋅ 𝑓(𝑋)

Additive:    𝑓 𝑋 − 𝜖 ≤ 𝐹 𝑋 ≤ 𝑓 𝑋 + 𝜖

Noise

Applications: influence maximization, sparse regression

crowdsourced image collection summarization [Singla et al., AAAI’16]

maximizing information gain in graphical models [Chen et al., COLT’15]

exact objective value noisy objective value
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Theoretical analysis

Multiplicative noise:

𝑓 𝑋 ≥
1

1 +
2𝜖𝐵
1 − 𝜖 𝛾

1 −
1 − 𝜖

1 + 𝜖

𝐵

1 −
𝛾

𝐵

𝐵

∙ OPT

Additive noise:

The noiseless approximation guarantee [Das & Kempe, ICML’11; 

Qian, Yu and Zhou, NIPS’15]

𝑓 𝑋 ≥ 1 − 1 −
𝛾

𝐵

𝐵

∙ OPT ≥ 1 − 𝑒−𝛾 ∙ OPT
a constant 
approximation ratio

𝜀 ≤ 1/𝐵 for a constant 
approximation ratio

The performance degrades largely in noisy environments

𝑓 𝑋 ≥ 1 − 1 −
𝛾

𝐵

𝐵

∙ OPT −
2𝐵

𝛾
−
2𝐵

𝛾
𝑒−𝛾 𝜖

Greedy algorithm & POSS [Qian et al., NIPS’17]:

constant 𝛾

߳: the noise strength
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PONSS

In our previous work, threshold selection has been 
theoretically shown to be robust against noise [Qian et al., ECJ’18]

Exponentially 
decrease the 
running time

𝑓 𝑋 ≥ 𝑓(𝑌) 𝑓 𝑋 ≥ 𝑓 𝑌 + 𝜃

A solution is better if its objective value is larger 
by least a threshold

POSS [Qian et al., NIPS’15] 𝑋 ≼ 𝑌 ⇔  
𝑓 𝑋 ≥ 𝑓(𝑌)

𝑋 ≤ |𝑌|

“dominate”

Multiplicative noise: 𝑋 ≼ 𝑌 ⇔  
𝑓 𝑋 ≥

1 + 𝜃

1 − 𝜃
𝑓(𝑌)

𝑋 ≤ |𝑌|

PONSS [Qian et al., NIPS’17]

Reduce the risk 
of deleting a 
good solution
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PONSS

In our previous work, threshold selection has been 
theoretically shown to be robust against noise [Qian et al., ECJ’18]

Exponentially 
decrease the 
running time

𝑓 𝑋 ≥ 𝑓(𝑌) 𝑓 𝑋 ≥ 𝑓 𝑌 + 𝜃

A solution is better if its objective value is larger 
by least a threshold

POSS [Qian et al., NIPS’15] 𝑋 ≼ 𝑌 ⇔  
𝑓 𝑋 ≥ 𝑓(𝑌)

𝑋 ≤ |𝑌|

“dominate”

PONSS [Qian et al., NIPS’17]

Reduce the risk 
of deleting a 
good solution

Additive noise: 𝑋 ≼ 𝑌 ⇔  
𝑓 𝑋 ≥ 𝑓 𝑌 + 2𝜃

𝑋 ≤ |𝑌|
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Theoretical analysis

Multiplicative noise:

𝑓 𝑋 ≥
1 − 𝜖

1 + 𝜖
1 − 1 −

𝛾

𝐵

𝐵

∙ OPTPONSS

𝑓 𝑋 ≥
1

1 +
2𝜖𝐵
1 − 𝜖 𝛾

1 −
1 − 𝜖

1 + 𝜖

𝐵

1 −
𝛾

𝐵

𝐵

∙ OPTPOSS & Greedy

(𝜃 ≥ 𝜖)

=
1 − 𝜖

1 + 𝜖
⋅
𝛾

𝐵
⋅ 1 −

1 − 𝜖

1 + 𝜖

𝐵

1 −
𝛾

𝐵

𝐵

/ 1 −
1 − 𝜖

1 + 𝜖
1 −

𝛾

𝐵

=
1

1 +
2𝜖𝐵
1 − 𝜖 𝛾

1 −
1 − 𝜖

1 + 𝜖

𝐵

1 −
𝛾

𝐵

𝐵

better

1 − 𝜖

1 + 𝜖
1 − 1 −

𝛾

𝐵

𝐵

=
1 − 𝜖

1 + 𝜖
⋅
𝛾

𝐵
⋅  

𝑖=0

𝐵−1

1 −
𝛾

𝐵

𝑖

≥
1 − 𝜖

1 + 𝜖
⋅
𝛾

𝐵
⋅  

𝑖=0

𝐵−1
1 − 𝜖

1 + 𝜖
1 −

𝛾

𝐵

𝑖
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Theoretical analysis

Multiplicative noise:

𝑓 𝑋 ≥
1 − 𝜖

1 + 𝜖
1 − 1 −

𝛾

𝐵

𝐵

∙ OPTPONSS

𝑓 𝑋 ≥
1

1 +
2𝜖𝐵
1 − 𝜖 𝛾

1 −
1 − 𝜖

1 + 𝜖

𝐵

1 −
𝛾

𝐵

𝐵

∙ OPTPOSS & Greedy

Significantly 
better

𝛾 = 1 (submodular), 𝜖 is a constant

a constant approximation ratioPONSS

Θ(1/𝐵) approximation ratioPOSS & Greedy

(𝜃 ≥ 𝜖)
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Theoretical analysis

Multiplicative noise:

𝑓 𝑋 ≥
1 − 𝜖

1 + 𝜖
1 − 1 −

𝛾

𝑏

𝐵

∙ OPTPONSS

𝑓 𝑋 ≥
1

1 +
2𝜖𝐵
1 − 𝜖 𝛾

1 −
1 − 𝜖

1 + 𝜖

𝐵

1 −
𝛾

𝐵

𝐵

∙ OPTPOSS & Greedy

Additive noise:

𝑓 𝑋 ≥ 1 − 1 −
𝛾

𝐵

𝐵

∙ OPT − 2𝜖PONSS

𝑓 𝑋 ≥ 1 − 1 −
𝛾

𝐵

𝐵

∙ OPT −
2𝐵

𝛾
−
2𝐵

𝛾
𝑒−𝛾 𝜖POSS & Greedy

Significantly 
better

better

2𝐵

𝛾
−
2𝐵

𝛾
𝑒−𝛾 ≥ 2
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Experimental results - influence maximization

PONSS (red line) vs POSS (blue line) vs Greedy (black line): 

• Noisy evaluation: the average of 10 independent Monte 
Carlo simulations

• The output solution: the average of 10,000 independent 
Monte Carlo simulations

Influence spread 
under different 
budgets 

Performance
over runtime
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Experimental results - sparse regression

PONSS (red line) vs POSS (blue line) vs Greedy (black line): 

• Noisy evaluation: a random sample of 1,000 instances

• The output solution: the whole data set

𝑅2 value under 
different budgets 

Performance
over runtime
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Experimental results – sensitivity to 𝜃

PONSS (red line) vs POSS (blue line) vs Greedy (black line): 

The performance of PONSS 
is not very sensitive to 𝜃

𝑋 ≼ 𝑌 ⇔  
𝑓 𝑋 ≥

1 + 𝜃

1 − 𝜃
𝑓(𝑌)

𝑋 ≤ |𝑌|

“dominate”
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Outline

Introduction

Pareto optimization for subset selection

Pareto optimization for large-scale subset selection

Pareto optimization for noisy subset selection

Pareto optimization for dynamic subset selection 

Conclusion
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Dynamic sensor placement

Sensor placement [Krause & Guestrin, IJCAI’09 Tutorial] : select a few places to 
install sensors such that the information gathered is maximized

Fire detection

10 sensors 

15 sensors 
(more investment)

12 sensors 
(sensor failure)

How about the performance for dynamic subset selection? 
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Dynamic subset selection

[Roostapour, Neumann, Neumann and Friedrich, AAAI’19]

Subset selection with general constraints: given 𝑉 = {𝑣1, … , 𝑣𝑛}, an 
objective function 𝑓: 2𝑉 → R, a cost function 𝑐: 2𝑉 → R and a budget 𝐵, 
to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑐(𝑋) ≤ 𝐵

Dynamic subset selection

The available resources 
may change over time

The budget 𝐵 may 
change over time

To examine: Can an algorithm find a good solution quickly for the new 
problem, when starting from the solutions obtained for the old problem?

Compare Pareto optimization with the greedy algorithm

Both of them achieve the best-known approximation guarantee for the 
static problem [Zhang & Vorobeychik, AAAI’16; Qian et al., IJCAI’17] 
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Greedy algorithm

𝑣∗ = arg𝑚𝑎𝑥𝑣∈𝑉∖𝑋𝑗−1
𝑓 𝑋𝑗−1 ∪ 𝑣 − 𝑓(𝑋𝑗−1)

𝑐 𝑋𝑗−1 ∪ 𝑣 − 𝑐(𝑋𝑗−1)

Approximation ratio: (𝛼/2)(1 − 𝑒−𝛼) [Zhang & Vorobeychik, AAAI’16] 

Process:  iteratively select one item making the ratio of the increment 

on 𝑓 and 𝑐 maximzied

Iteration j:
𝑣∗

𝑉 ∖ 𝑋𝑗−1
𝑋𝑗 =

𝑋𝑗−1 ∪ {𝑣∗}

𝑋𝑗: the subset obtained after 𝑗 iterations

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑐(𝑋) ≤ 𝐵
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Pareto optimization - POMC

Transformation: 

𝑚𝑎𝑥𝒙∊{0,1}𝑛 𝑓 𝒙 𝑠. 𝑡. 𝑐(𝒙) ≤ 𝐵 original

𝑚𝑖𝑛𝒙∊{0,1}𝑛 (−𝑓 𝒙 , 𝑐(𝒙)) bi-objective

Initialization: put the special solution {0}𝑛

into the population 𝑃

Reproduction: pick a solution 𝑥 randomly
from 𝑃, and flip each bit of 𝑥 with prob.
1/𝑛 to produce a new solution

Updating: if the new solution is not
dominated by any solution in 𝑃, put it
into 𝑃 and weed out bad solutions

Output: select the best feasible solution

Approximation ratio: (𝛼/2)(1 − 𝑒−𝛼) [Qian et al., IJCAI’17] 
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Theorem 1. For dynamic subset selection, there exist instances of dynamically 
increasing 𝐵 and decreasing 𝐵 such that the approximation ratios of the greedy 
algorithm are 𝑂(1/𝑛) and 𝑂(1/ 𝑛), respectively. 

Theoretical analysis

The greedy algorithm can achieve arbitrarily bad approximation 
ratios during a sequence of dynamic changes

POMC can maintain good approximation ratios efficiently

Theorem 2. For dynamic subset selection, with a constant probability, POMC 
achieves an approximation ratio of (𝛼/2)(1 − 𝑒−𝛼) for any budget 𝑏 ∈ [0, 𝐵] after 
𝑐𝑛𝑃𝑚𝑎𝑥𝐵/𝛿 iterations. 

Theorem 3. For dynamic subset selection with 𝐵 increasing to 𝐵∗, with a constant 
probability, POMC achieves an approximation ratio of (𝛼/2)(1 − 𝑒−𝛼) for any 
budget 𝑏 ∈ [0, 𝐵∗] after 𝑐𝑛𝑃𝑚𝑎𝑥(𝐵

∗ − 𝐵)/𝛿 iterations.

[Roostapour, Neumann, Neumann and Friedrich, AAAI’19]

(Already good for decreasing 𝐵)
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Experimental results - influence maximization

Change of the budget 𝐵:GGA: the greedy algorithm starting from 
scratch for each new budget

AGGA: the greedy algorithm

𝐏𝐎𝐌𝐂𝝉
𝐖𝐏: POMC𝜏 with a warm-up phase 

(running 10,000 iterations for the initial 𝐵)

𝐏𝐎𝐌𝐂𝝉: POMC running 𝜏 iterations for 
each new budget

POMC𝜏 achieves better performance than GGA and AGGA after 25 
changes, and POMC𝜏

WP can bring improvement in the first 25 changes 
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Conclusion

• Pareto optimization for subset selection
– Show excellent performance theoretically and empirically

• Pareto optimization for large-scale subset selection
– Introduce parallel and distributed strategies

• Pareto optimization for noisy subset selection
– Introduce noise-aware domination relationship

• Pareto optimization for dynamic subset selection
– Show robustness against dynamic changes

Single-objective 
optimization

Bi-objective 
optimization

Multi-objective 
evolutionary algorithms
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Future work

• Problem issues
– Non-monotone objective functions [Qian et al., AIJ’19; Do & Neumann, PPSN’20]

– Continuous submodular objective functions
– More complex constraints [Neumann & Neumann, PPSN’20; Do & Neumann, PPSN’20]

– More uncertain environments
– Other than subset selection

• Algorithm issues
– More complicated MOEAs

• Theory issues
– Beat the best-known approximation guarantee

• Application issues
– Attempts on more real-world applications

[Neumann & Wegener, NC’06; Friedrich et al., ECJ’10; 
Neumann et al., Algorithmica’11; Qian et al., IJCAI’15; 
Crawford, IJCAI’19; Assimi et al., ECAI’20] 
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