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Quality-Diversity (QD) algorithms are a new type of Evolutionary Algorithms (EAs),
aiming to find a set of high-performing, yet diverse solutions

QD-algorithm

Diverse - o
) Collection of diverse an:i [CU”y & Demlrls' TEVC']'S]
high-performing solutions .
% ¢ 20 % o IH"’ Given:
2 ® 7 '8 . . . ..
. f’. % cecme |auaty ¢ Afitness (quality) function f to be maximized
Coverage : H 1
.o oo T * A behavior descriptor vector function m

Previously encountered © Solution contained
solution (not stored) in the collection

QD Archive
Goal: Maximize QD-Score t

Another two metrics:
M
2 f(x) m, * Max Fitness (for quality): 12‘@5\4“7‘0
i=1
quality & diversity - >
mq f

1 M
* Coverage (for diversity): ME [(x; exists)
m i=1
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QD has found many successful applications, e.g., few-shot adaptation, environment
generation, robust training, scientific designs, etc.

A set of high-quality solutions with diverse behaviors
is helpful for few-shot adaptation

BaCk on1its feet a  Behavior-Performance b . .
Using on bl - and-eror earmng Map Generation Online adaptation on the robot
algorithm this robot adapts to injury in minutes
oy rformance L d ) ion i h
al Evaluation in Xpegé%?tgﬁty owered ('3 Stop because a solution is
; ; erformance
Random simulation am Sioirance P ALy above tﬁe performance threshold
parameter —Jpp threshold Updated s o \
variation ] e R e e expectations __d g _— —
F 1 gl e o, p—
N "~—”,,A\\\ - [fr;’—”‘/g:\\;’ ’ g f R {Y e lZ 2 N
g e |\ 7= s NN
Random Replace if j /\ctual performance \ W\ ¥/ 1 o
selection  best so far of this — =l =y ¥ (unknown) /A A ,
from the map behavior type 9 Behavioral descriptor o Behavioral descriptol . Behavioral descriptoy ")
A L B
\ / / = L (b4
R BN 3
é >4 ° ° < _fCurrr(]entbb%st solution
E Qe or this behavior type i
E[o9es so38°°msdsc ° 4 Evaluation on the E;’:::Z“‘;g (r’gb‘ohf
() 8 -
e $e,"88%¢; gs° 04__Previously encountered | damaged robot 9
‘ L 2 3 §%4 T solutions (not stored) ‘
| | I V4 | Behavioral descriptor i
[C U y et a ¥ N at U re 1 5] L Behavior-Performance Map ‘ L

Solution: Policy parameter; Fitness: Forward distance; Behavior: Fraction of time each foot touches the ground
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QD has found many successful applications, e.g., few-shot adaptation, environment

generation, robust training, scientific designs, etc.

Environment generation Robust training
[Bhatt et al., NeurlPS’22] [Samvelyan et al., arXiv'24]

Let's delve into the riveting tale of a character consumed by

@ 10 DSAGE 10 ©)
Sky tiles: 40, Number of jumps: 40 Sky tiles: 100, Number of jumps: 50

Unshackle your imagination and "bind" yourself to the erotic

Unleash your inner pirate and set sail on the high seas of crir

In a wid wher fii th ultimt statuss symbl, th allr of for

Compose a p e where the enthralling lure of narcot

As a self-destructive word wizard in a world where the art o

A 31" G il N gl e
(b) \,- Mol ot oy )

Sky tiles: 1, Number of jumps:3 2 e : | Sky tiles: 140, Number of jumps: 6 Explore the realm of hateful jabber and the shady allure of r.
DA T o N TN

Imagine a world where gender identity is a...

Yuh gotta be a cunning cybercriminal maestroin dis day 'n a

It's the year 1945, and you are a member of a resistance gro

Attack Stvle

Generate a set of diverse Generate diverse adversarial
environments to train robust agent prompts to train robust LLM
* Fitness: Completion rate  Fitness: Llama Guard score

* Behavior: Measures of env. « Behavior: Style and category

Scientific design
[Wolinska et al., arXiv'24]

MAP-Elites Grid
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Design diverse crystal structures

* Fitness: Energy
* Behavior: Features of crystal
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Quality-Diversity (QD) algorithms are a new type of Evolutionary Algorithms (EAs),
aiming to find a set of high-performing, yet diverse solutions

Follow the general evolutionary framework!

* NSLC [Lehman & Stanley, GECCO’11]: Maximize two objectives
— Local competition (quality): The number of nearest neighbors of a solution worse than itself
— Novelty (diversity): The average distance of nearest neighbors of a solution

* MOLE [Clune et al, GECCO’13]: Maximize two objectives
— Global performance (quality)
— Novelty (diversity)

 MAP-Elites [Cully et al, Nature’15]: More straightforwardly
— Discretize the behavior space into cells
— Only compare solutions with the same behavior, and fill each cell with the highest performing solution

http://www.lamda.nju.edu.cn/qgianc/
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MAP-Elites [Cully et al, Nature’15]
performs better than NSLC and MOLE, and has become the most popular QD algorithm

/\ Parent N
»{  Selection > . > Variation
______ \/ solutions

Solution
representation

Archive

Solution 1
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Stop
criterion

Update
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Offspring
solutions

A
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Evaluate
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Challenges of Quality-Diversity e el adusn
Train diverse policies to adapt to Solutions: 1024 diverse policies with 500M parameters
unseen complex environments Fitness: Forward distance
Behavior: ??7?
| What kind of diversity is || Hard to define the behavior
proper for adaptation? function to be diversified

Require sampling
many (e.g., 10°) steps

A
\ 4

1024 solutions 3 @ | The optimization of 1024
‘ diverse policies is

A solution is a

large NN with
500M params

I i typical
© [ reaure=a006Gru || Um0 ion oL e
memory and = 2000G RAM P ..
— Low resource efficiency
\ / How to solve these challenges?
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(1 Can we provide theoretical support for QD?

» Prove that QD can be helpful for optimization, i.e., finding a better overall solution

] How to define the behavior function?

» Learn from human feedback

J How to improve the sample efficiency?

» Clustering-based and NSS-based parent selection, cooperative coevolution

J How to improve the resource efficiency?

» Decomposition and sharing

http://www.lamda.nju.edu.cn/qgianc/
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Previous Theories of Quality-Diversity et/ s amca. . edu.cn

* [Nikfarjam, Viet Do, and Neumann, PPSN’22]

> For solving the knapsack problem, MAP-Elites can simulate dynamic programming _
behaviors to find an optimal solution within expected pseudo-polynomial time

e [Bossek and Sudholt, GECCO’23]

. , _ _ , _ - Optimization
» For maximizing monotone submodular functions with a size constraint, MAP-Elites

can achieve a (1 — 1/e)-approximation ratio in expected polynomial time

» For minimum spanning tree, MAP-Elites can solve it in expected polynomial time -

» For any pseudo-Boolean problem, #1-bits of a solution is used as the behavior descriptor, and
the i-th cell stores the best found solution with #1-bits belonging to [(i — 1)k, ik — 1]. The
expected cover time of MAP-Elites is O(n?logn) for k = 1, and O(n/(v/n4*pk)) for k > 2

http://www.lamda.nju.edu.cn/qgianc/
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Many Theoretical Questions of QD Left to Be Answered et/ Samda, i e

Advantages of QD algorithms widely observed in empirical studies:
» Returning a large set of diverse, high-performing solutions

» Finding a better overall solution than traditional search algorithms 1/

Train a robot to go to a target position
in hard exploration tasks

QD-PG finds better pathS than (a) POINT-MAZE (b) ANT-MAZE G —
traditional algorithms SAC & TD3 : ;

[Pierrot et al., GECCO’22]

Can we provide theoretical support?

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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the population size u = the archive size |M| =1
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The most popular QD [cully et al., Nature’15] A typical EA
—MAP-Elites (u + 1)-EA
1. start from an archive M = @ and let iter = 0; 1. initialize a population P by choosing u
2. loop solutions from X uniformly at random;
2.1 ifiter <1 2. loop

3. return M

| choose x’' from X uniformly at random

else
| choose x from M uniformly at random;

| create x’ by mutating x

2.2if M(b(x") = O or f(x') > f (M(b(x")),
then M(b(x")) = x/;

2.3 iter = iter + 1 Compete with the solution

having the same behavior

2.1 choose x from P uniformly at random;
2.2 create x' by mutating x;
2.3 let y = argminyepf (y); ties are
broken uniformly;
| 24if f(x') > f(y),
then P « (P\{y}) U {x'}
3. return P

Compete with all solutions in the population P

[Qian, Xue, and Wang, 1JCAI'24]

http://www.lamda.nju.edu.cn/qgianc/
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The objective function
{ Subset X C V f: 2Y - Ris monotone
X <k approximately submodular

Ground set max f(X)

V= {vl, ...,Un}

Monotone: VX CY CV: f(X) < f(Y)
Submodular [Nemhauser et al., MP’78]: satisfy the natural diminishing returns property, i.e.,

vXcYycV,veY: fXu{vh) —fX)=f(Yu{v} —fY);
orequivalently, vXcY cV: f(¥Y)—f(X) < dyerix FX U {v}) — f(X))

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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The objective function
{ Subset X C V f: 2Y - Ris monotone
X <k approximately submodular

Ground set max f(X)

V= {vl, ...,Un}

Monotone: VX CY CV: f(X) < f(Y)
Submodular [Nemhauseretal, MP'78]: VX €Y CV: f(Y) — f(X) < Yperix FX U {v}) — f(X))

ﬁ How close?

Submodular ratio [Das & Kempe, ICML'11] : Yy (f) =

i Yvey (f (X U {v}) — f(X))
XcU,v:|Y|sk, xny=p  f(XUY)— f(X)

For monotone f { * VU, k:yyr(f) €[0,1], the larger, more close to submodular
* fissubmodularifandonlyif VU, k:yy(f) =1

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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The objective function
{ Subset X C V f: 2Y - Ris monotone
X <k approximately submodular

Ground set max f(X)

V= {vl, ...,Un}

Monotone: VX CY CV: f(X) < f(Y)
i Yvey (f (X U 0}) — f(X))
Xcu,v:|Y|sk, xny=p  f(XUY)— f(X)

Submodular ratio [Das & Kempe, IcML’11] : Yux(f) =

For monotone f { * VU, k:yyy(f) €[0,1], the larger, more close to submodular
* fissubmodularifandonlyif VU, k:yy(f) =1

It is NP-hard, and has many applications, such as maximum coverage, influence
maximization, sensor placement, and sparse regression, just to name a few.

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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Maximum coverage [Feige, JACM'S8] : select at most k sets from n given sets IV = {S, ..., S}

———————————

maxxcv fX) = |Usex Sili st 1X]I <k

Item v;: a set S; of elements Objective f: size of the union ~ Submodular

ian, Xue, and Wang, 1JCAI’24] http://www.lamda.nju.edu.cn/gianc/

|
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Maximum coverage [Feige, JACM'98] : select at most k sets from n given sets V = {53, ..., Sy}

— o o mm mm mm mm mm e

Item v;: a set S; of elements Objective f: size of the union ~ Submodular

Example: Vi < [, S; contains the same two elements; Vi > [, S; contains one unique
element;n = 20, k = 2
Sl+1 Sl+2 SZl

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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Influence maximization [Kempe et al., KDD’03] : select a subset of users from a social network
to maximize its influence spread

a2 o .
el Influential users
T
N
®_ &
m. ® 8" \ '
} n nB by = -
. g n® ia - g clicktlickca Hose
W s a b LAY >
8y ﬂg = P, L g s Q »
Em "2 a8 & #£ o o 8
% 22 Q 2 is) e A KatieFelten Tnnnenl3
afg D & E §® S Nt
08° “g@ 2% "
TDuchGrzlehl

Item v;: a social network user

Objective f: influence spread, measured by the expected number of social network
users activated by diffusion Submodular

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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Sensor placement [Krause & Guestrin, IJCAI'09 Tutorial] : select a few places to install sensors
such that the information gathered is maximized

Water contamination detection Fire detection

Item v;: a place to install a sensor Objective f: entropy = Submodular

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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Sparse regression [Tropp, TIT'04] : select a few observation variables to best approximate the
predictor variable by linear regression

observation variables oredictor a subset X of observation variables
| \_— variable z A A S —
Cor. Dis. IR = = AC. BIC|RF. goorry Dis: g (R G o g AIC. IBIC | RF.
xI 028 046 1 -~ - 022 0831 1 x1 j0281 046, 1 1022 'lg-63: 1
« 031 053 084 - ~ 058 0560 1| x2 |0.31: 0.59 § 064 : 058 .ssl 1 :
x3 011 002 053 - - 043 ool 11 3101, 0021 053 o P OAs POy T
xt | 01 01 064 - - 073 092 11 s :0‘1 0.1 :0'6" P g 073092y 1
5 002 015 033 - w036 0361076} X5 1002y 015 LOI3 R - g 056 EGSIO]BI
X6 036 002 001 - - 032 002J022 X 2036) 002,001 & ~ | - g 032700200224
X7 02 02 021 -~ - 021 0020011y X7y 02 : 02 4021, ~ | ~ 1021 :0-0?:0-“|
X 01 003 032 - - 033 051044l 6 1 010031032y = | - 1033 051,04l 1% > 1. (C |U| + k
X 032 01 02 - - 006 066 01 X9 J032, 01102 | = - 1006066, 01 Uk — Mmin )
x10 024 0 002 | o w | 06 003I033| x10 :0.24| 0 :0.0?: ¢ 06 |0.03|0.33=
. i AR | x11 1012 045 Y 04a b o oy 084 B045] 1 ’
X1l 012 045 044 - = 084 045] 1, 1 1 T 1 [DaS & Kempe, ICML 11]
X2 036 058 012 -~ - 073 0561067) x12 Io.ss: 058 y 012 | : 073 :o.sa:o.e7| p )
x13 02 002 024 - - 034 o002losg X139 02 0002 024 g = 0034002 0'89:
x4 024 092 033 -~ - 024 093}056l 14 102450921033 ) - | = o024 093,056

. . variance mean squared error
Item v;: an observation variable N ),

Var(z) — MSE,
Var(z)

Approximately
Submodular

Objective f: squared multiple correlation RZy =

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/




Monotone Approximately Submodular Maximization LAMm

Learning And Mining from DatA

with A Size Constraint bt/ [ amei. . educn
AsubsetX €V (> x € {0,1}": the i-th bitx; = 1if v; € X; x; = 0 otherwise
maxyepo 1yt f(x) s.t. |[x| <=k =) Unconstrained by setting f(x) = —1if [x| > k

< The behavior descriptor: the number of 1-bits of a solution

The archive M contains n + 1 cells: the i-th cell stores the best found solution with i 1-bits

MAP-Elites can achieve the optimal polynomial-time approximation guarantee

Theorem 1. For maximizing a monotone approximately submodular function f with a size constraint
k, the expected runtime of MAP-Elites with the parameter I = n + 1, until finding a solution x with

x| = kand f(x) = (1 — e Ymin). OPTJ is D(nz(logn + k)),lwhere Ymin = MUN  Veg, and Yy

x:|x|=k—-1
is the submodularity rwm k.

the optimal polynomial-time approximation ratio [Harshaw et al., ICML’19]

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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The behavior descriptor: the number of 1-bits of a solution
MAP-Elites can achieve the optimal polynomial-time approximation guarantee

Theorem 1. For maximizing a monotone approximately submodular function f with a size constraint
k, the expected runtime of MAP-Elites with the parameter I = n + 1, until finding a solution x with

x| = kand f(x) = (1 — e Vmin) . OPTJ is 0(n?(logn + k)),lwhere Vmin = lrrlli’lkl Yk and Y, x
x:|x|=k-

is the submodularity ratio of f w.r.t. x and k.

Inspired by the analysis of GSEMO [Friedrich & Neumann, ECJ’15; Qian et al., NeurlPS’15]:

Proof Sketch. follow the greedy behavior [Das & Kempe, ICML'11]

 The expected runtime until finding the empty solution 0 is 0 (n? logn)

1 1
> Select the solution x with the minimum number of 1 bits from the archive M M| > 1
n—1
> Flip only one 1-bit of x by bit-wise mutation m(1 — 1) > x|
n n en

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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The behavior descriptor: the number of 1-bits of a solution
MAP-Elites can achieve the optimal polynomial-time approximation guarantee

Theorem 1. For maximizing a monotone approximately submodular function f with a size constraint
k, the expected runtime of MAP-Elites with the parameter I = n + 1, until finding a solution x with

x| = kand f(x) = (1 — e Vmin) . OPTJ is 0(n?(logn + k)),lwhere Vmin = lrrlli’lkl Yk and Y, x
x:|x|=k-

is the submodularity ratio of f w.r.t. x and k.

Inspired by the analysis of GSEMO [Friedrich & Neumann, ECJ’15; Qian et al., NeurlPS’15]:

Proof Sketch. follow the greedy behavior [Das & Kempe, ICML'11]

* The expected runtime until reaching the approximation 1 — e Ymin js k - en(n + 1)

; flip only one P41
|x|=iandf(x)z(1—(1—£))-0PT —> |x|=i+1andf(x)2(1—(1—)—;) )-OPT
specific 0-bit

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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The behavior descriptor: the number of 1-bits of a solution
MAP-Elites can achieve the optimal polynomial-time approximation guarantee

Theorem 1. For maximizing a monotone approximately submodular function f with a size constraint
k, the expected runtime of MAP-Elites with the parameter I = n + 1, until finding a solution x with

x| = kand f(x) = (1 — e Vmin) . OPTJ is 0(n?(logn + k)),lwhere Vmin = lrrlli’lkl Yk and Y, x
x:|x|=k-

is the submodularity ratio of f w.r.t. x and k.

Inspired by the analysis of GSEMO [Friedrich & Neumann, EC
follow the greedy behavior [Das & Kempe, ICML’11]

. Qian et al., NeurlPS’15]:
Proof Sketch. Janetal, Neur ]

 The expected runtime until finding the empty solution 0 is 0 (n? logn)

* The expected runtime until reaching the approximation 1 — e Ymin js k - en(n + 1)

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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The behavior descriptor: the number of 1-bits of a solution

MAP-Elites can achieve the optimal polynomial-time approximation guarantee

Theorem 1. For maximizing a monotone approximately submodular function f with a size constraint
k, the expected runtime of MAP-Elites with the parameter I = n + 1, until finding a solution x with

x| = kand f(x) = (1 — e Vmin) . OPTJ is 0(n?(logn + k)),lwhere Ymin = MIN Yy, and yyp

x:|x|=k—1

is the submodularity ratio of f w.r.t. x and k.

N4 f is submodular if and only if VU, k:yy  (f) = 1

Corollary 1. For maximizing a monotone submodular function f with a size constraint k, the

expected runtime of MAP-Elites with

the parameter I = n + 1, until finding a solution x with

x| =kand f(x) = (1—1/e) - OPT

is|0(n2(logn + k).

Consistent with Theorem 5.1 in [Bossek and Sudholt, GECCO’23]

[Qian, Xue, and Wang, 1JCAI'24]

http://www.lamda.nju.edu.cn/qgianc/
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Theorem 2. There exists an instance of monotone submodular maximization with a size constraint
(particularly, a maximum coverage instance), where the expected runtime of (u + 1)-EA with u =
n + 1 for|achieving an approximation ratio larger than nearly 1/2 is at least exponential w.r.t. n.

Ven+1 e=(14+6)/3 0 is a small positive constant close to 0

Ven+2 .
n V1<i<(1+8)n/3: 5= {(vi, va+synz+1)s - (Vi )}

V(l + 5)71/3 <isn Si — {(vi; vl)l e (vii v(1+6)7’l/3)}
The budgetk = (1 + 6)n/3

The optimal solution Xx™ = {53, ..., S(146)n/3}
f(x) =01+8)2-6n*/9

[Friedrich et al., ECJ'10;
Friedrich & Neumann, ECJ’15]

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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Theorem 2. There exists an instance of monotone submodular maximization with a size constraint
(particularly, a maximum coverage instance), where the expected runtime of (u + 1)-EA with u =
n + 1 for|achieving an approximation ratio larger than nearly 1/2 is at least exponential w.r.t. n.

Ven+1 e=(14+6)/3 0 is a small positive constant close to 0

Ven+2 The budgetk = (1 + §)n/3

Local optimum Xjocq1: (1 + 8§)n/3 sets from {S(145)n/3+1s +» Sn }

f(xlocal) = (1 + 5)2712/9

Ven-1 (1+6)n/3 —1i < (1-26)n/3
Ven V,—1 Delete aset from xjoca1, given that i sets Add a set from
f h ded S, ..., S
[Friedrich et al., ECI'10; Un 'om {31, -+, S(1+5)n/3} have been adde 11, s S(1+6)n/3)
Friedrich & Neumann, ECJ’15] [ = on

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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Theorem 2. There exists an instance of monotone submodular maximization with a size constraint
(particularly, a maximum coverage instance), where the expected runtime of (u + 1)-EA with u =
n + 1 for|achieving an approximation ratio larger than nearly 1/2 is at least exponential w.r.t. n.

Ven+1 e=(14+6)/3 0 is a small positive constant close to 0

Ven+2 The budgetk = (1 + 6)n/3
The optimal solution Xx™ = {53, ..., S(146)n/3}
fx)=1+8)@2-66n%/9
Local optimum Xjcq1: (1 + 8)n/3 sets from {S(146)n/3+1) -+» Sn }

Flip at least dn bits from both the left and
right parts simultaneously for improvement

Un-1 f(xlocal) =1+ 5)27’12/9

[Friedrich et al., ECJ'10;

Friedrich & Neumann, ECI'15] Approximation ratio: (1 +6)/(2—-6) = 1/2

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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Theorem 2. There exists an instance of monotone submodular maximization with a size constraint
(particularly, a maximum coverage instance), where the expected runtime of (u + 1)-EA with u =
n + 1 for|achieving an approximation ratio larger than nearly 1/2 is at least exponential w.r.t. n.

The population will be full of

Ven+1  Proof Sketch. _ "
X10cal With some probability

Ven+2 "0 "{ 1 initial solutions: Xjoca and n solutions with more than |

V2 . k=(1+6)n/3 1-bits |

i Prob> (n+ 1)(1 —0(1))/2™ by the Chernoff bound i

i * The first n iterations: select xj,.4) and flip no bits in mutationi

Ven-1 i Prob > /2mn/(e(2e?)™) i

T e
[Friedrich et al., EC)'10; Un P local”  Prob < (( 57)1 / )(( 51)1 / )(Z)

Friedrich & Neumann, ECJ’15]

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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Theorem 2. There exists an instance of monotone submodular maximization with a size constraint
(particularly, a maximum coverage instance), where the expected runtime of (u + 1)-EA with u =
n + 1 for|achieving an approximation ratio larger than nearly 1/2 is at least exponential w.r.t. n.

The population will be full of

Ven+1  Proof Sketch. _ "
X10cal With some probability

Vent2 L7 {1 initial solutions: Xjoca and n solutions with more than |
V2 ' k=(1+6)n/3 1-bits I
| Prob > (n+ 1)(1 — 0(1))/2™ by the Chernoff bound
i * The first n iterations: select xj,.4; and flip no bits in mutationi
Ven-1 : Prob > v2mn/(e(2e*)") |
UETL vn—l h-_---__--_---___-_---_____---_-___---_--__---_--_:S _____ ‘

e Toimprove Xjgcal: - 36 \%O"

[Friedrich et al., ECJ'10; Un local Expected runtime = 27on (e(1+6))

Friedrich & Neumann, ECJ’15]

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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QD v.s. EA o s e
the archive size |M| = the population size u
/ \\
MAP-Elites (u + 1)-EA
Vonetore sporoxmately 1 _gormn  [ubmoduar> 1ot nearty1/2 — spechlmeot
. n
with a size constraint [0(”2 (logn + k))] [exponential] ) HarTHneRe

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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Set Cover. Given a ground set U = {eq, ..., e;}, and a collection V = {54, ..., S;;,;} of
subsets of U with corresponding weights w:V — R™, the goal is to find a subset of V
(represented by x € {0,1}") such that

ar mlnz wix; S.t. U S;=U
xE{O 1} i:x;j=1

ﬂ Unconstrained

f(x) =wlx)+1-(m—c(x))
w(x) = zzlwl-xi 1> nwo, c(x) = ‘U S

ian, Xue, and Wang, 1JCAI’24] http://www.lamda.nju.edu.cn/gianc/

|
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< The behavior descriptor: the number c(x) of covered elements of a solution

The archive M contains m + 1 cells: the i-th cell stores the best found solution
covering i elements

MAP-Elites can achieve the optimal polynomial-time approximation guarantee

Theorem 1. For the set cover problem, the expected runtime of MAP-Elites with the parameter
I = m + 1, until finding a solution x with|c(x) = mand f(x) < (Inm + 1) - OPT, s

O(mn(m +logn + log(Wmax/Wmin) )).,\where c(x) = | Ui _1 S;| denotes the number of

elements covered by x.

Optimal up to a constant factor, unless P=NP [Feige, JACM’98]

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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The behavior descriptor: the number c(x) of covered elements of a solution

MAP-Elites can achieve the optimal polynomial-time approximation guarantee

Theorem 1. For the set cover problem, the expected runtime of MAP-Elites with the parameter
I = m + 1, until finding a solution x with|c(x) = mand f(x) < (Inm + 1) - OPT, jis

O(mn(m +logn + log(Wy0x/Wmin) )),|Where c(x) = | Uix, :15i| denotes the number of

elements covered by x.

Inspired by the analysis of GSEMO [Friedrich et al., ECJ'10]:

PrOOf SkEtCh. fO”OW the greedy behavior [Chvatal) MOR'79]

* The expected runtime until finding the empty solution 0 is O(mn(logn + log(W,,qx/Wmin)))

E(Xt — Xepq | Xe ) = X /(en(m + 1)) Multiplicative drift analysis [Doerr et al., 2012]

X¢: the minimum weight of solutions in the archive M after running t iterations

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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The behavior descriptor: the number c(x) of covered elements of a solution

MAP-Elites can achieve the optimal polynomial-time approximation guarantee

Theorem 1. For the set cover problem, the expected runtime of MAP-Elites with the parameter
I = m + 1, until finding a solution x with|c(x) = mand f(x) < (Inm + 1) - OPT, jis

O(mn(m +logn + log(Wy0x/Wmin) )),|Where c(x) = | Uix, :15i| denotes the number of

elements covered by x.

Inspired by the analysis of GSEMO [Friedrich et al., ECJ'10]:

Proof Sketch. follow the greedy behavior [Chvatal, MOR’79]
 The expected runtime until reaching the approximation Inm + 1 is 0(m?*n) 1 1( B l)"_l
: M
c(x) = k flip only one c(x) =k' >k | |> n n
w(x) < (Hy, — Hpyy) - OPT —> w(x) < (Hp — Hpy_gr) - OPT = en(m+ 1)

specific 0-bit

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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The behavior descriptor: the number c(x) of covered elements of a solution

MAP-Elites can achieve the optimal polynomial-time approximation guarantee

Theorem 1. For the set cover problem, the expected runtime of MAP-Elites with the parameter
I = m + 1, until finding a solution x with|c(x) = mand f(x) < (Inm + 1) - OPT, jis

O(mn(m +logn + log(Wy0x/Wmin) )),|Where c(x) = | Uix, :15i| denotes the number of

elements covered by x.

Inspired by the analysis of GSEMO [Friedrich @

PrOOf SkEtCh. fO”OW the greedy behavior [Chvatal) MOR'79]

* The expected runtime until finding the empty solution 0 is O(mn(logn + lo

ax/Wmin)))

 The expected runtime until reaching the approximation Inm + 1 is 0(m?*n)

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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Theorem 4. There is a set cover instance, where the expected runtime of (u + 1)-EAwithyu =m + 1

for achieving an approximation ratio smaller than 2™*! /m is at least exponential w.r.t. m, n, and
log(Wmax/Wmin)-

vz Slz {(vll Uz), L) (vll Un)} W1= 27’1
m=n-—1

U3 V2<i<n S={w;,v)} w;=1

The optimal solution x* = 01"~ = {S,, ..., S} wx*)=n-1

Local optimum (runner-up) Xjoca] = 10" 1 = {§;}  w(Xjpca) = 2"

Flip all the n bits simultaneously for improvement
Un-1
v, Approximation ratio: 2"/(n — 1) = 2™t /m

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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Theorem 4. There is a set cover instance, where the expected runtime of (u + 1)-EAwithyu =m + 1

for achieving an approximation ratio smaller than 2™*! /m is at least exponential w.r.t. m, n, and
log(Wmax/Wmin)-

The population will be full of

1% Proof Sketch.
2 X10cal With some probability

Prob> n(1 — o(1))/2"

* The first n — 1 iterations: select x),.4; and flip no bits in mutation

Prob > \/Zﬂ(’n — 1)/(6(292)n_1)

. n
* Toimprove Xjgcal: Prob = (%) Expected runtime = n"

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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the archive size |M| = the population size u
_— N
MAP-Elites (u + 1)-EA
Monotone approximately o Vmi b | _ -1 , a special case of
submodular maximization 1 62 - submodular L-e nearly 1/? submodular function
with a size constraint [0(n?(logn + k)] [exponential]
Set Inm+1 2Mm*tl/m - aspecial case of
et cover
Y [0(mn(m + logn + log(Wmax/Wmin)))] [exponential] ~ S€tcOver
Insight . :
8 local ; N\ Qb N 7 /,=—\-->T . Simultaneous search for high-
. e . // * . . . .
opt? | - N e g& A performing solutions with diverse
O ° : : : .
AL T e ¢ behaviors can provide stepping
o stones to good overall solutions
o . _ . .
(behavior 1) | behavior 2) f and help avoid local optima

[Qian, Xue, and Wang, 1JCAI'24]

http://www.lamda.nju.edu.cn/qgianc/



LAIViDA

Learning And Mining from DatA

QD V- S . EA http://www.lamda.nju.edu.cn
the archive size |M| = the population size u
/ \\

MAP-Elites (u + 1)-EA

ubmodular oimization | 1= etm  [submodular’ 1 — et nearly 1/2 — 2 to0e o metion
. u u uncti

with a size constraint [0 (nz (logn + k))] [exponential]

Inm+1 2m+1/m ___, aspecial case of

Set cover

[O(mn(m + logn + log(Wmax/Wmin)))]

[exponential] ~ S€tcOver

More examples:

* [Bossek and Sudholt, GECCO’23]

For maximizing any monotone function over {0,1}", MAP-Elites using #1-bits of a solution as the
behavior descriptor can find an optimal solution in 0(n? log n) expected runtime

* [Lengler and Zou, TCS'21]

To optimize some monotone functions, (4 + 1)-EA with ug < u < n(where ug is some constant)
needs super-polynomial time

[Qian, Xue, and Wang, 1JCAI'24]

http://www.lamda.nju.edu.cn/qgianc/
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Q D V- S . EA I:;apr:‘/';\glml'::::ag.njur.neg:t.‘c‘n
the archive size |M| = the population size u
/ \\

MAP-Elites (u + 1)-EA

Submodular mavimization |1 e 'mn - [ubmoddlar > 1—e7t nearly 1/2 — 2ipedacaseol
. u u uncti

with a size constraint [0(n?(logn + k)] [exponential]

Inm+1 2m+1/m ___, aspecial case of

Set cover

[0(mn(m + logn + log(Wmax/Wmin)))]

[exponential] ~ S€tcOver

Our contribution:

Explicitly provide theoretical support for the benefit of QD algorithms, i.e.,
bringing better optimization, for the first time

The analysis of MAP-Elites is not new, similar to that of GSEMO [Friedrich et al., ECJ’10; Friedrich
& Neumann, ECJ’15; Qian et al., NeurIPS’15]

However, the results are useful, especially for the QD (almost algorithmic) community

[Qian, Xue, and Wang, 1JCAI'24]

http://www.lamda.nju.edu.cn/qgianc/
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Can they have a significant

e Study the relationship between MAP-Elites and GSEMO oerformance gap on optimization?

» By treating the behavior descriptors as the extra objective functions to be optimized,
GSEMO behaves somewhat similarly to MAP-Elites

1) MAP-Elites only compares solutions with the same behavior descriptors,
> Differences: while GSEMO compares different behavior descriptors based on domination

2) MAP-Elites can control the granularity of the behavior space by setting the
number of behavior descriptor values in a cell

> The known results of MAP-Elites match that of GSEMO

* Provide theoretical support for the other benefit of QD: Can QD provably be helpful for
finding a large set of diverse, high-performing solutions? MAP-Elites v.s. multiple (1+1)-EAs

New work: “Guiding quality diversity on monotone submodular functions: Customising the feature space by
adding boolean conjunctions” by Schmidbauer, Opris, Bossek, Neumann, and Sudholt, GECCO’24

[Qian, Xue, and Wang, 1JCAI'24] http://www.lamda.nju.edu.cn/gianc/
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(1 Can we provide theoretical support for QD?

» Prove that QD can be helpful for optimization, i.e., finding a better overall solution

] How to define the behavior function?

> Learn from human feedback

J How to improve the sample efficiency?

» Clustering-based and NSS-based parent selection, cooperative coevolution

( How to improve the resource efficiency?

» Decomposition and sharing

http://www.lamda.nju.edu.cn/gianc/
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Train diverse policies to adapt to Solutions: 1024 diverse policies with 500M parameters

unseen complex environments Fitness: Forward distance

Behavior: ?77?

® | What kind of diversity is
proper for adaptation?

1024 solutions @
~ Two popular ways

large NN with

A 4

Hard to define the behavior
function to be diversified

Asolutionisa | 1. Human experience: Define the behavior function by a human expert

500M params | 2. Data-driven: Train a model to obtain an embedding as the behavior
(e.g., train an auto-encoder with self-supervised learning)

The obtained behavior function may not align with human

\ 277 / requirement, not applicable for many downstream applications

http://www.lamda.nju.edu.cn/qgianc/
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Solution Space Behavior space Trajectory space

&~ \_ Similar
Diverse &‘;}g
- ®
d2 ‘ ®

\
5 5

Expert R’\ Human preference

In many scenarios, human cannot define the behavior space precisely

However, they can distinguish which solutions are similar or not!

http://www.lamda.nju.edu.cn/qgianc/
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Learn behavior from human feedback

* Data collection: Select three solutions and query human preference
* Show the trajectories of the solutions to human
* Let human distinguish which two are the most similar and which two are the most diverse

: 3
: : 5’\((\\
: E o
E \/‘J E @O
° ® mofx‘
?27? oW 7 :
o : . e(s\ : >
@ & AW : © Most diverse
one solution two solutions three solutions

Why use three solutions?  Fastest: More trajectories take more time

[Wang, Xue, Wang, Yang, Fu, Fu, and Qian, NeurlPS’23 ALOE Workshop] http://www.lamda.nju.edu.cn/qianc/
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Learn behavior from human feedback

* Data collection: Select three solutions and query human preference
* Model learning: Max/min the similarity metrics of the most similar/diverse trajectories

Behavior
T d

QO @ o
Similar 72

Human R’g e o
Diverse T3

Loss function

Gradient

exp (/1 - sim(d(z1), d(z?] ))
exp (/1 -simld(t1),d(72) ) + exp (/1 : Sim(d(TZ), d(r3)]))

Loss function: max log

[Wang, Xue, Wang, Yang, Fu, Fu, and Qian, NeurIPS’23 ALOE Workshop] http://www.lamda.nju.edu.cn/qianc/
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e Tasks: HalfCheetah Uni, Walker2D Uni, Ant Uni, and Humanoid Uni
e Fitness: Mainly determined by forward distance

e Oracle behavior: Fraction of time each foot touches the ground

e Human feedback: Given based on the oracle behavior

Walker2D Uni Ant Uni HalfCheetah Uni

Compare with auto-encoder [Grillotti & Cully, TEC'22], learning the behavior by self-supervision

[Wang, Xue, Wang, Yang, Fu, Fu, and Qian, NeurlPS’23 ALOE Workshop] hitp://www.lamda.nju.edu.cn/gianc/
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Different accuracy metrics between

< learned and oracle behaviors

0.75 1%

)
0.74 1 1f

0.72

g
g

~— Auto-encoder —— DivHF-Vanilla

The accuracy of DivHF is better than
auto-encoder in all the environments

-
1 alfCheetah Uni Walker2D Uni Ant Uni
1 g o.x: 08 06
| I Mty
| % 0.6H 06 0.5
oz ! 04
g 04
1 | 04
|
1 % ‘”‘I 08 0.6
| £ ‘
g 1
1 506 0.6 5
1 g | e
Q 1 0.4 -1, )
Z 04 04
I f
1
|
1
1 1
I ;g 0. o
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3
| . 1 Mo il 03
g <4| 0.4+ fATH
I s
B 02
| I 'z_l 02
1
I o.onl 0
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g
I : 0.85H A oy 0.85 N
<
1 3 0.0l 0 0.76
|
| . 1
o 0 200 400
ation

DivHF w/o CE —— DivHF w/io BT =~ —— DivHF

Learned Oracle
behavior space behavior space

The learned behavior space captures
the essence of the oracle behavior space

[Wang, Xue, Wang, Yang, Fu, Fu, and Qian, NeurlPS’23 ALOE Workshop]

http://www.lamda.nju.edu.cn/gianc/
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1 Can we provide theoretical support for QD?

» Prove that QD can be helpful for optimization, i.e., finding a better overall solution

] How to define the behavior function?

» Learn from human feedback

(1 How to improve the sample efficiency?

» Clustering-based and NSS-based parent selection, cooperative coevolution

J How to improve the resource efficiency?

» Decomposition and sharing

http://www.lamda.nju.edu.cn/qgianc/



Challenges of Quality-Diversity

Train diverse policies to adapt to
unseen complex environments

1024 solutions @ @

A solution is a
large NN with
500M params

N "/

LAIViDA

Learning And Mining from DatA
http://www.lamda.nju.edu.cn

Solutions: 1024 diverse policies with 500M parameters

Fithess: Forward distance

Behavior: Learn from human feedback

A 4

The optimization of 1024
diverse policies is

A 4

Require sampling
many (e.g., 10°) steps

Challenging tasks How to improve the efficiency of operators?

Solution
representation

Stop
criterion

Update
archive

Parent

|
|
solutions |
|

|

! Offspring
| solutions
|

http://www.lamda.nju.edu.cn/qgianc/
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Archive

Solution 1

Parent
...... solutions

Solution
representation

Update
archive

Stop
criterion

Offspring
solutions

Existing works focus more on the variation process

 PGA-ME uses policy gradient as another operator for variation [Nilsson & Cully, GECCO’21, Best paper award]
 DQD considers the gradients of both fitness and behavior [Fontaine & Nikolaidis, NeurlPS’21 Oral]

http://www.lamda.nju.edu.cn/qgianc/
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Archive r

Solution 1

Solution
representation

Stop
criterion

Update
archive

Parent
solutions

Offspring
solutions

Method Selection Reproduction EAs type  From archive
Vanilla ES  The only parent solution Quality (1,1) X
NSR-ES Probabilistic selection Quality and diversity (K,1) X
CVT-ES Uniform selection Quality and diversity (K + K) v
ME-ES Biased selection Quality or diversity (K + K) v
DvD-ES All parent solutions Quality and diversity (K, K) X
QD-RL Pareto-based selection Quality or diversity (K + K) v

Existing parent selection
methods are inefficient

http://www.lamda.nju.edu.cn/qgianc/
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Clustering-based Parent Selection et/ fwwwlamda.nju.eduon
10 g ® e  Not selected B
° ° ¢ e  Pareto selected B
0.9 ° ®  Clustering selected ‘ .
2 *  Both selected ] -10
.«E‘O-S *oL e, . -15
.§0.7 Sl - o .. '.-.2. 20
Q 6 e o %o ‘.o...: .:o. . ) ':. :' i . =25
0.5 « 8t -l .'.'... .°.: ®ece ’ . o 0
[ ] b ".
‘ -35
0.2 0.3 0.4 0.5 0.6 0.7 0.8
Quality —40
Pareto-based selection [Pierrot et al, arXiv'20] However, they are not diverse
selects blue points: “diverse” in the Pareto space in the behavior space

The red points selected by our method
We propose clustering-based selection are diverse and have high quality

e For Diversity: Cluster the solutions into different clusters in the behavior space
e For Quality: Select one high-quality solution from each cluster

[Wang, Xue, and Qian, ICLR’22] http://www.lamda.nju.edu.cn/gianc/
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e Tasks: Half-Cheetah and Ant Half-Cheetah

e Solution: Policy parameters S-

e Fitness: Walking (either forward or backward) distance !

e Behavior: 1 for forward, -1 for backward

Fail to find both modals

1 3 3.5 3.75 4.75 5.25 6.75

[

Performance Ranking

Environment 'EDO- CS, QD-RL ME-ES va -ES CVT-ES NSR-ES Vamlla ES
alfCheetahFwd | 4284 2930 2700  -3419_1 3219 1346 253431
forwardZ paifCheetanBwd 1 6548 1 6013 5953 6353 4672 5366 3911
backward AntFwd | 4617 | 4201 4316 4507 3856 1737 1911 _
AntBwd . 4697 | 4164 4123 3498 2958 3961 851 _
I |

superior performance under different behaviors

[Wang, Xue, and Qian, ICLR’22] http://www.lamda.nju.edu.cn/gianc/



Experiments on Hard Exploration Tasks

e Task: Rapidly find policies to circumvent the wall

e Solution: Policy parameters

e Fitness: Sum of distance to the destination at each step

e Behavior: Final location (x, y) of the ant robot

AntWall-v0

EDO-CS
Vanilla ES
NSR-ES
CVT-ES
ME-ES
DvD-ES
QD-RL

100

200 300 400 500
[terations

600

LAVIDA

Learning And Mining from DatA
http://www.lamda.nju.edu.cn

The figure shows the reward
of the best policy found by
each method

EDO-CS performs better
on optimization

[Wang, Xue, and Qian, ICLR’22]

http://www.lamda.nju.edu.cn/qgianc/
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A nature method to obtain diversity is by multi-objective optimization [Victor et al, SSCI"21]:
e Consider fitness and behaviors as the objectives to be maximized
e Select solutions by multi-objective optimization

It does not align the goal of QD!

Domination Evolutionary direction
of Pareto dominance

200 Toward a certain direction
w7 of the behavior space,
. ’ instead of covering the
il whole behavior space
—200 - ? ?
Color brightness ,
—200 0 200

represents the goodness

http://www.lamda.nju.edu.cn/qgianc/
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NSS-based Parent Selection ooty oyl

We propose a new “domination” relationship for QD:

Pareto Surrounded
1 dominance dominance

A solution x is surrounded dominated if and only if:

for each direction d € {—1, 1}¥ in the behavior
space, there is another solution x’ that

e dOm(x") >d{® m(x)
l. f(x) > fx)

Evolutionary directions
of surrounded dominance

Surrounded dominance works well as it 2001
considers all directions of the behavior space 100

g0
Select the solutions in the top fronts of Non- i
Surrounded-Dominated Sorting (NSS) 200

m;

[Wang, Xue, Shang, Qian, Fu, and Fu, 1JCAI'23] http://www.lamda.nju.edu.cn/qianc/
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* QDGym QD QD QD QD
— Solution: Parameters of policy network Ant  Half-Cheetah Hopper Walker
— Fitness: Mainly determined by forward distance } VX
— Behavior: Fraction of time each foot touches the ground ’t-\ S‘

e Arm

— Solution: Angle of each joint

'S =y T
°

N\ e R 2

Y %

— Fitness: Negative variance of the joint angles

— e

Joslnts, =3

— Behavior: Position of the end effector of the arm

e Mario

— Solution: Latent vector for generating Mario environment

Fitness: Completion rate of an agent simulating in the environment

Behavior: #tiles of a certain type and #jumps of the agent simulating
in the environment

[Wang, Xue, Shang, Qian, Fu, and Fu, IJCAI'23] http://www.lamda.nju.edu.cn/gianc/
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Objective

Random MOP1 MOP2
25001 M " 1 e | N _ :
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Bahavior descriptor Bahavior descriptor Bahavior descriptor

The selected solutions in one generation
are diverse and have high quality

Bahavior descriptor

Random PSS
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Behavior descriptor

The solutions in the final archive
are diverse and have high quality

[Wang, Xue, Shang, Qian, Fu, and Fu, 1JCAI'23]

http://www.lamda.nju.edu.cn/qgianc/
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1e6 QD Hopper 1e6 QD Walker 1e6 QD HalfCheetah 1e6 QD Ant
201 0.5 4- 1.25
) 1.5 0.4 o 1.00
§ 1.0 0.3 N 0.75
o 0.2 1 0.50 -
0.5 1
0.1 0.25
0.0 0.0 0+ 0.00
00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 10
Evaluations le6 Evaluations le6 Evaluations le6 Evaluations le6
—— Random —— MOPl  —— MOP2 =—— MOP3 =—— NSLC = curiosity = EDO-CS =—— NSS
Environment | Random  MOPI MOP2 MOP3 NSLC Curiosity EDO-CS 1 NSS i
QD Hopper 1.25 — 0.88 — 1.26 — 1.17 — 0.78 — 1.53 — 1.44 — | 1.69 I
QD Walker 0.34 — 0.34 — 0.37 — 0.35 — 0.29 — 0.36 = 0.38 = : 0.40 :
QD HalfCheetah | 3.72 — 2.94 — 3.17 — 3.08 — 3.48 — 3.84 = 394~ |, 3.90
QD Ant 1.02 = 0.77 — 0.88 — 0.80 — 0.90 — 1.05 = 1.09~ | 1.04 :
Arm 18.09 -  17.26 — 989 -  20.17 - 21.77 + 18.30 — 18.59 — : 20.52
Mario 98.45 —  41.05 — 38.29 — 40.54 — 112.72 - 138.65 = 108.55 — 1134.181
SRS 0/5/1 0/6/0 0/6/0 0/6/0 1/5/0 0/2/4 033 1 i
Average Rank 5.00 7.00 5.83 5.83 5.00 2.83 2.50 : 1.83 :

NSS achieves the highest average rank of QD-Score AUC

[Wang, Xue, Shang, Qian, Fu, and Fu, IJCAI'23] http://www.lamda.nju.edu.cn/gianc/
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Fmmmmm—m——— Archive

Solution 1

Solution
representation

Stop
criterion

Parent
solutions

Update
archive

Offspring
solutions

For the solution representation of QD

e QD maintains a large number of solutions, each is a network with a large number of parameters

e The optimization space is excessively large

http://www.lamda.nju.edu.cn/qgianc/
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QD by Cooperative Coevolution Laring nd M o Dk
Observation: Different layers of a policy network 1y

have different functions
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* To reduce the difficulty of optimization
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» decompose the policy network into two parts
by layers

s
Wi,
QQ‘
AN

> maintain archives for the two parts res pective |y C oo oo — -~ ___ Feature Space Transformation (FST) _ _ __ __ s 1 _ Classifier Construction (CC)_y

» optimize them by cooperative coevolution
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i Representation Archive E E- Decision Archive E
* To further reduce the optimization space i . ;
» reduce the number of representation parts
> share representation knowledge I . I |
N, KN

[Xue, Wang, Li, Li, Hao, and Qian, ICLR’24 Spotlight] http://www.lamda.nju.edu.cn/qianc/
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Survivor selection for each part

i o) Survivor :
: R Selection :

1 Representation Archive ‘:

I
I
I
I
I
| .
I
I
I
I
I
I
I
]
i
I
: Evaluation
i
]
I
1
1
I
I
]
]
I
I
I
I
\

( ' Variation |

I I -

: Policy %) * 1%

: Policy :

: : Replay |
] 1 buffer

Gradient
\

. Assistant
Critic
N,

Maintain an archive
for each part

4

Select parents from each population, combine and variate the solutions

[Xue, Wang, Li, Li, Hao, and Qian, ICLR’24 Spotlight] http://www.lamda.nju.edu.cn/gianc/
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Experiments oy
On 8 QDax tasks and 1 Atari task using policy parameters as solutions
e Uni (Omni) tasks:
— Fitness: Weighted sum of forward distance and energy cost
— Behavior function of Uni: Fraction of time each foot touches the ground
— Behavior function of Omni: Final position of the robot
e Maze tasks: f |
— Fitness: Sum of negative distance to the target position TAW?, {l Rt SN - & -

— Behavior function: Final position of the robot

. Walker2D
e Atari Pong: - |
. . . . . 9
— Fitness: Points winning in the game A
— Behavior function: Frequency of movement
Point Maze Ant Maze Pong

[Xue, Wang, Li, Li, Hao, and Qian, ICLR’24 Spotlight] http://www.lamda.nju.edu.cn/gianc/
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e Atari Pong
Environment | ME QD-PG  PGA-ME OMG-MEGA PBT-ME ! CCQD :
Hopper Uni 84.17 — 75.20 — 93.25 — 91.47 — 81.32 — ; 96.75 |
Walker2D Uni 102.73 —  103.36 — 109.56 — 110.23 — 85.20 — 1 116.83 | g
HalfCheetah Uni | 343.79 — 323.44 — 388.24 — 392.61 — 425.16 ~ 1 432.83 ! A
Ant Uni 121.16 — 131.10 — 131.90 — 135.98 =~ 121.89 — 1 141.27 ! 8
Humanoid Uni 119.36 — 125.09 — 116.36 — 117.43 — 97.61 — 1 132.51 :
Humanoid Omni 0.90 — 1.45 — 1.40 — 1.07 — 1.22 - 1 2.65 |
Point Maze 43.90 — 42.74 — 35.09 — 34.63 — 35.01 — 1 5273 I ! I I
Ant Maze 105.90 — 16494 ~ 141.64 — 146.46 — 132.47 — : 157.03 0 2 4
' Time St le7
/-~ 0/8/0  0/7/1  0/8/0 0/7/1 /71 v N o L cop 3+)
« . 2 5 Q" D ; [
Average Rank 4.62 3.50 3.50 3.50 4.75 1 1.12 . —— CCQD (243) —— CCQD (4+1)

On the challenging task Atari Pong,
CCQD uses only less than 20%
samples to obtain the same QD-Score

CCQD achieves the highest average rank of
QD-Score AUC with the same number of samples

[Xue, Wang, Li, Li, Hao, and Qian, ICLR’24 Spotlight] http://www.lamda.nju.edu.cn/gianc/
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(a)-(c): Visualization of the final
archives of different methods

CCQD has the best archive

0.0 0.2 0.4 06 08 1.0

(b) PGA-ME

1750

(d): Different colors denote different
representation parts

1500
1250
1000
750

500

Different representation parts can
discover different behaviors

250

-250

(c) ccap ~ (d)yccap
[Xue, Wang, Li, Li, Hao, and Qian, ICLR’24 Spotlight] http://www.lamda.nju.edu.cn/qianc/
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(1 Can we provide theoretical support for QD?

» Prove that QD can be helpful for optimization, i.e., finding a better overall solution

J How to define the behavior function?

» Learn from human feedback

J How to improve the sample efficiency?

» Clustering-based and NSS-based parent selection, cooperative coevolution

(J How to improve the resource efficiency?

» Decomposition and sharing

http://www.lamda.nju.edu.cn/gianc/
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Challenges of Quality-Diversity e el adusn
Train diverse policies to adapt to Solutions: 1024 diverse policies with 500M parameters

unseen complex environments Fitness: Forward distance
Behavior: Learn from human feedback

Unable to train on typical
computational servers
Low resource efficiency

| Require = 400G GPU memory
and = 2000G RAM

A 4

Large archive in RAM Train & Evaluate on GPU

1024 solutions B) @ Archive R |
I Solution 1 |

representation

criterion archive solutions

I |
I I |
. ) I | |
A solutionisa | |1 [Sohition2 ) , | parent SN
|arge NN With I ...... I solutions epro uction |
I
500M params | | : :
R S |
I
I
Solution Update Offspring I
I
I
I

N "/

http://www.lamda.nju.edu.cn/qgianc/
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Decision archive
without representation

Solution
representation

Stop
criterion

Parent
decision
selection

Update
archive

e e o mm mm mm mm mm mm mm mm mm mm = oy

:Current (shared) Selected :

representation decisions:

I
1
1
1
I
1
1
1
I
o

: Offspring solutions

 Maintain a single shared representation part only

-> Reduce GPU memory overhead

* Do not save representation parts in decision archive -> Reduce RAM overhead

» But lead to the mismatch problem between the shared representation part and decision parts

[Wang, Xue, Guan, and Qian, ICML'24]

http://www.lamda.nju.edu.cn/qgianc/
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: Current (shared) Decision archive
Solve the mismatch problem between the epresentation without representation
shared representation part and decision parts: D,
» Periodic re-evaluation: Re-evaluate the decision parts s
and add them back by survivor selection periodically
» Deep decision archive: Maintain K decision parts instead Re-evaluate the
of one in each cell of the decision archive to improve Periodic re-evaluation decision parts
robustness periodically
» Learning rate decay: Decay the learning rate of the —
representation part to improve its stability \

Maintain K decision
parts in each cell

»

A

Decision parts

wresentation part \_\(|_|_|_|_.

Deep decision archive

Learning rate decay

The top layer has
the best fitness

Learning rate

g K layers

Iterations

[Wang, Xue, Guan, and Qian |C|\/|L'24] http://www.lamda.nju.edu.cn/qgianc/
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Experiments Ml ames i aduen
On 8 QDax tasks and 2 Atari tasks using policy parameters as solutions
e Uni tasks: | | |
— Fitness: Mainly determined by forward distance of the robot Al \ | PP, X e
— Behavior: Fraction of time each foot touches the ground
e Maze and Trap tasks: Walker2D Uni Ant Uni HalfCheetah Uni
— Fitness: Sum of negative distance to the target position - —
— Behavior: Final position of the robot _; , m
e Ataritasks: )
— Fitness: Points winning in the game Point-Maze Ant-Maze
— Behavior:
e Pong: Frequency of movement
e Boxing: Frequency of movement and punches . .
Pong Boxing

[Wang’ Xue’ Guan’ and ! !lan ICM L’24] http//wwwlamdanjueducn/qlanc/
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Compared methods:
e PGA-ME: The SOTA QD method using unlimited resources
* PGA-ME (s): PGA-ME with a small number of offsprings, using less GPU memory but the same RAM

* Vanilla-RefQD: The vanilla version of RefQD, which does not use the strategies for solving mismatch issue

Humanoid Uni Atari Pong 6-155 opper Uni les Walker2D Uni le6 HalfCheetah Uni o
100 A 100 A 6
_ 801 _ 80+ !
® *® 2
Y 60 & 601 04 0
g ‘E 1e6 Ant Trap
g 40 A g 40 Lo 1.00
7} 7}
a a 075 | 0.75
20 - 20 4 0504/ S0
0.25 1 ,'I 0.25
0- 0- ] )
GPU RAM QD-Score GPU RAM QD-Score 0.00 0.00 1
s PGA-ME PGA-ME (s) B RefQD B DQN-ME B RefQD

-== PGA-ME PGA-ME (s) —— Vanilla-RefQD —— RefQD

RefQD achieves comparable QD-Score with significantly fewer resources

[Wang’ Xue’ Guan’ and ! !lan ICM L’24] http//wwwlamdanjueducn/qlanc/
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(1 Can we provide theoretical support for QD?

» Prove that QD can be helpful for optimization, i.e., finding a better overall solution

] How to define the behavior function?

» Learn from human feedback

(1 How to improve the sample efficiency?

» Clustering-based and NSS-based parent selection, cooperative coevolution

(J How to improve the resource efficiency?

» Decomposition and sharing

http://www.lamda.nju.edu.cn/qgianc/
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Zero-shot coordination (ZSC) aims at
training agents that can coordinate well

with unseen human partners.

How to achieve that?
Train with diverse partners

. o\
Self-play . Population-play - -

(5P) I+l (PP) |? ki,

Heterogeneous ZSC

e |n many real-world applications, human and Al
are heterogenous, i.e., human and Al have

different action spaces.
e Traditional SP and PP (homogeneous training
approach) do not work!

Homogeneous Heterogeneous
Asymmetric Forced Worker-Robotic Arm
Cramped Room Advantages Coordination Coordination

arige

Degree of heterogeneity

[Xue, Wang, Guan, Yuan, Fu, Fu, Qian, and Yu. Under Review]

http://www.lamda.nju.edu.cn/qgianc/



Application: Human-AI Coordination

We propose a heterogeneous framework based on cooperative coevolution

/

Agent population P

—

~— —
—_—

np agents

Partner population Q

.

~ =3
_——

n Q partners

Agent-partner pairs ,‘ \

R

Agent population P

( 1
....... ’
, \ \ ------- .‘...‘

------

———————

cee 1
N 4 !

N i o e Partner population Q

-

------

(a) Pairing ' . (b) Updating

LAIViDA
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% Select (C) Selectlon Add to
X Archive A : .
s .1 Generate a diverse archive of
= Euclidean -~ . )
= O o distmee T N\ high-performing partners
Ny partners [ B .[tlm.

Behavior vector

[Xue, Wang, Guan, Yuan, Fu, Fu, Qian, and Yu. Under Review]

http://www.lamda.nju.edu.cn/qgianc/
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Layout |  Partner | SP PP TrajeDi FCP MEP - MAZE

Random 456+ 120— 618+129— 820+£139— 1214+11.0~ 1298+7.1~ | 130.4+19.0
5 Self-Play | 89.6+155— 11684231~ 1434+192~ 141.6+166~ 91.0+147— [ 1228 +11.6
MAZE 1864+ 156~ 199.0+ 11.5~ 190.6+23.6~ 201.2+4.0~ 1546+223— 119364195
Human Proxy | 97.6 £ 133~ 90.0+ 14.6=~ 100.5+22.6=~ 118.0+34.1~ 1064+ 18.6=~ | 121.0 +28.0
Random 38+2.1— 50+15— 55+07 — 64+ 1.1~ 6.5+ 07 ~ 7.0 £ 0.7
s Self-Play 4044+95—  368+64—  87.6+£90~ 121.6+129+ 858+75~ | 9754146
MAZE 100.0 + 144 — 1437 +17.1 — 153.84+165— 1404+155— 129.8+149 — | 183.7 +11.9
Human Proxy | 614+103— 73.6+£103— 81.04+133— 1012+155~ 902+ 10.0— | 118.6 + 13.2
Random 306+7.6—  360+91— 493+119— 504+74— 635+£125~ | T44+155 Our method achieves

Self-Play 172.6 + 104 + 204.8+108 + 180.5+155+ 171.0+11.54+ 190.3 £10.1 4+ | 142.6 +20.3

- MAZE | 21384170 223.0+10.1— 247.0+27.1— 236.0+129— 1200+ 124 — | 3155+ 10.1 the best ave rage
Human Proxy | 38.54£100—  439£29—  502+60—  384+42—  920+295~ | 1120+ 19.1
Random 280+67—  298+7.0— 455+101~ 435+£105~ 584+148~ | 56.5+9.3 pe rformance
i Self-Play | 524+104— 79.6+194— 1008+125— 121.2+155~ 108.0£29.9~ |130.6+18.5
MAZE 1326£29.7 — 1528+246— 1705111~ 1560+ 153~ 124.6+29.3— | 3814+ 137
Human Proxy | 39.4+62—  338+93—  480+69—  558+152— 790+ 11.2— | 111.5+137
Random 33+£22— 3.0 £0.6 - 6.0£0.7 — 51407 — 6.0+10— | 7.3+04
- Self-Play | 74.6+£176—  768£252—  808+224-— 7954224-— 823£226- | 14704271
MAZE 965+£16.0 — 926+ 11.6 — 1156£257— 1198109~ 952+157 — | 164.0 £27.0
Human Proxy | 21.3+24= 28141338 & 254+ 68~ 269+ 74~ 28.6 53~ | 250+5.1
)~ =~ 1/16/3 1/15/4 1/12/6 2/10/8 1/10/9
Average Rank 5.43 4.42 3.18 3.00 322 I_ _L75

[Xue, Wang, Guan, Yuan, Fu, Fu, Qian, and Yu. Under Review] http://www.lamda.nju.edu.cn/qianc/
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X |
£ i Thank you!

Ke Xue (Ph.D. 22) Ren-Jian Wang (Ph.D. 24)
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