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Quality-Diversity (QD) algorithms are a new type of Evolutionary Algorithms (EAs), 
aiming to find a set of high-performing, yet diverse solutions
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Given:
• A fitness (quality) function 𝑓 to be maximized
• A behavior descriptor vector function 𝒎

[Cully & Demiris, TEvC’18]
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QD has found many successful applications, e.g., few-shot adaptation, environment 
generation, robust training, scientific designs, etc.

[Cully et al., Nature’15]

A set of high-quality solutions with diverse behaviors
 is helpful for few-shot adaptation

Solution: Policy parameter; Fitness: Forward distance; Behavior: Fraction of time each foot touches the ground
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Robust training
[Samvelyan et al., arXiv’24]

Environment generation
[Bhatt et al., NeurIPS’22]

Scientific design
[Wolinska et al., arXiv’24]

Generate a set of diverse 
environments to train robust agent

• Fitness: Completion rate
• Behavior: Measures of env.

Generate diverse adversarial 
prompts to train robust LLM

• Fitness: Llama Guard score
• Behavior: Style and category

Design diverse crystal structures 
• Fitness: Energy
• Behavior: Features of crystal

QD has found many successful applications, e.g., few-shot adaptation, environment 
generation, robust training, scientific designs, etc.
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Quality-Diversity (QD) algorithms are a new type of Evolutionary Algorithms (EAs), 
aiming to find a set of high-performing, yet diverse solutions

• NSLC [Lehman & Stanley, GECCO’11]: Maximize two objectives
– Local competition (quality): The number of nearest neighbors of a solution worse than itself
– Novelty (diversity): The average distance of nearest neighbors of a solution

• MOLE [Clune et al, GECCO’13]: Maximize two objectives
– Global performance (quality)
– Novelty (diversity)

• MAP-Elites [Cully et al, Nature’15]: More straightforwardly 
– Discretize the behavior space into cells 
– Only compare solutions with the same behavior, and fill each cell with the highest performing solution

Follow the general evolutionary framework!
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MAP-Elites [Cully et al, Nature’15]
performs better than NSLC and MOLE, and has become the most popular QD algorithm
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What kind of diversity is 
proper for adaptation?

Hard to define the behavior 
function to be diversified

①

The optimization of 1024 
diverse policies is difficult

Require sampling
many (e.g., 10%) steps
Low sample efficiency

②

Require ≥ 400G GPU 
memory and ≥ 2000G RAM

Unable to train on typical 
computational servers

Low resource efficiency

③

How to solve these challenges?

Train diverse policies to adapt to 
unseen complex environments

Solutions: 1024 diverse policies with 500M parameters
Fitness: Forward distance
Behavior: ???

???

???

①

QD opt.
②

A solution is a 
large NN with
500M params

③1024 solutions

...
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qCan we provide theoretical support for QD?

Ø Prove that QD can be helpful for optimization, i.e., finding a better overall solution

qHow to define the behavior function?

Ø Learn from human feedback

qHow to improve the sample efficiency?

Ø Clustering-based and NSS-based parent selection, cooperative coevolution

qHow to improve the resource efficiency?

Ø Decomposition and sharing
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• [Nikfarjam, Viet Do, and Neumann, PPSN’22] 

• [Bossek and Sudholt, GECCO’23]

Ø For solving the knapsack problem, MAP-Elites can simulate dynamic programming 
behaviors to find an optimal solution within expected pseudo-polynomial time

Ø For maximizing monotone submodular functions with a size constraint, MAP-Elites 
can achieve a (1 − 1/𝑒)-approximation ratio in expected polynomial time

Ø For minimum spanning tree, MAP-Elites can solve it in expected polynomial time

Ø For any pseudo-Boolean problem, #1-bits of a solution is used as the behavior descriptor, and 
the 𝑖-th cell stores the best found solution with #1-bits belonging to [ 𝑖 − 1 𝑘, 𝑖𝑘 − 1]. The 
expected cover time of MAP-Elites is 𝑂(𝑛! log 𝑛) for 𝑘 = 1, and 𝑂(𝑛/( 𝑛4"𝑝#" )) for 𝑘 ≥ 2

Optimization
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Advantages of QD algorithms widely observed in empirical studies：

Ø Returning a large set of diverse, high-performing solutions

Ø Finding a better overall solution than traditional search algorithms

Can we provide theoretical support?

√
Train a robot to go to a target position 

in hard exploration tasks

QD-PG finds better paths than 
traditional algorithms SAC & TD3

[Pierrot et al., GECCO’22]

[Qian, Xue, and Wang, IJCAI’24]
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MAP-Elites
1.  start from an archive 𝑀 = ∅ and let 𝑖𝑡𝑒𝑟 = 0;
2.  loop
|   2.1 if 𝑖𝑡𝑒𝑟 < 𝐼
|   |   choose 𝒙′ from 𝒳 uniformly at random
|   else
|   |   choose 𝒙 from 𝑀 uniformly at random;
|   |   create 𝒙′ by mutating 𝒙
|   2.2 if 𝑀 𝒃 𝒙′ = ∅ or 𝑓 𝒙′ > 𝑓 𝑀 𝒃 𝒙′ , 

then 𝑀 𝒃 𝒙′ = 𝒙′;
|   2.3 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1
3. return 𝑀

The most popular QD [Cully et al., Nature’15]

Compete with the solution 
having the same behavior

(𝜇 + 1)-EA
1.  initialize a population 𝑃 by choosing 𝜇

solutions from 𝒳 uniformly at random;
2.  loop
|   2.1 choose 𝒙 from 𝑃 uniformly at random;
|   2.2 create 𝒙′ by mutating 𝒙;
|   2.3 let 𝒚 = argmin𝒚∈&𝑓(𝒚); ties are 

broken uniformly;
|   2.4 if 𝑓 𝒙′ > 𝑓 𝒚 , 

then 𝑃 ← 𝑃\ 𝒚 ∪ 𝒙′
3. return 𝑃

A typical EA 

Compete with all solutions in the population 𝑃

For fair comparison,
the population size 𝜇 = the archive size |𝑀| = 𝐼

[Qian, Xue, and Wang, IJCAI’24]
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Monotone Approximately Submodular Maximization 
with A Size Constraint

Monotone: ∀𝑋 ⊆ 𝑌 ⊆ 𝑉: 𝑓 𝑋 ≤ 𝑓(𝑌)

Submodular [Nemhauser et al., MP’78]: satisfy the natural diminishing returns property, i.e., 

∀𝑋 ⊆ 𝑌 ⊆ 𝑉, 𝑣 ∉ 𝑌: 𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋 ≥ 𝑓 𝑌 ∪ 𝑣 − 𝑓 𝑌 ;

or equivalently, ∀𝑋 ⊆ 𝑌 ⊆ 𝑉: 𝑓 𝑌 − 𝑓 𝑋 ≤ ∑'∈(\* (𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋 )

Ground set 
𝑉 = {𝑣!, … , 𝑣&} Subset 𝑋 ⊆ 𝑉

𝑚𝑎𝑥 𝑓(𝑋)

𝑋 ≤ 𝑘

The objective function 
𝑓: 22 → R is monotone 
approximately submodular 

[Qian, Xue, and Wang, IJCAI’24]
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Monotone Approximately Submodular Maximization 
with A Size Constraint

Monotone: ∀𝑋 ⊆ 𝑌 ⊆ 𝑉: 𝑓 𝑋 ≤ 𝑓(𝑌)

Submodular [Nemhauser et al., MP’78]: ∀𝑋 ⊆ 𝑌 ⊆ 𝑉: 𝑓 𝑌 − 𝑓 𝑋 ≤ ∑'∈(\* (𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋 )

The objective function 
𝑓: 22 → R is monotone 
approximately submodular 

Submodular ratio [Das & Kempe, ICML’11] : 𝛾',)(𝑓) = 𝑚𝑖𝑛
*⊆', ,: , "),	*∩,0∅

∑2∈,(𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋 )
𝑓 𝑋 ∪ 𝑌 − 𝑓(𝑋)

How close?

For monotone 𝑓 • ∀𝑈, 𝑘: 𝛾',) 𝑓 ∈ [0,1], the larger, more close to submodular
• 𝑓 is submodular if and only if ∀𝑈, 𝑘: 𝛾',)(𝑓) = 1

Ground set 
𝑉 = {𝑣!, … , 𝑣&} Subset 𝑋 ⊆ 𝑉

𝑚𝑎𝑥 𝑓(𝑋)

𝑋 ≤ 𝑘

[Qian, Xue, and Wang, IJCAI’24]
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Monotone Approximately Submodular Maximization 
with A Size Constraint

Monotone: ∀𝑋 ⊆ 𝑌 ⊆ 𝑉: 𝑓 𝑋 ≤ 𝑓(𝑌)

The objective function 
𝑓: 22 → R is monotone 
approximately submodular 

Submodular ratio [Das & Kempe, ICML’11] : 

For monotone 𝑓 • ∀𝑈, 𝑘: 𝛾',) 𝑓 ∈ [0,1], the larger, more close to submodular
• 𝑓 is submodular if and only if ∀𝑈, 𝑘: 𝛾',)(𝑓) = 1

It is NP-hard, and has many applications, such as maximum coverage, influence 
maximization, sensor placement, and sparse regression, just to name a few.

Ground set 
𝑉 = {𝑣!, … , 𝑣&} Subset 𝑋 ⊆ 𝑉

𝑚𝑎𝑥 𝑓(𝑋)

𝑋 ≤ 𝑘

[Qian, Xue, and Wang, IJCAI’24]

𝛾',)(𝑓) = 𝑚𝑖𝑛
*⊆', ,: , "),	*∩,0∅

∑2∈,(𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋 )
𝑓 𝑋 ∪ 𝑌 − 𝑓(𝑋)
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Monotone Approximately Submodular Maximization 
with A Size Constraint

Maximum coverage [Feige, JACM’98] : select at most 𝑘 sets from 𝑛 given sets 𝑉 = {𝑆&, … , 𝑆3}
to make the size of their union maximal

𝑚𝑎𝑥4⊆2 𝑓 𝑋 = |⋃6!∈4 𝑆$| 𝑠. 𝑡. 𝑋 ≤ 𝑘

Item 𝑣$: a set 𝑆$ of elements Objective 𝑓: size of the union Submodular

[Qian, Xue, and Wang, IJCAI’24]
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Monotone Approximately Submodular Maximization 
with A Size Constraint

Maximum coverage [Feige, JACM’98] : select at most 𝑘 sets from 𝑛 given sets 𝑉 = {𝑆&, … , 𝑆3}
to make the size of their union maximal

𝑚𝑎𝑥4⊆2 𝑓 𝑋 = |⋃6!∈4 𝑆$| 𝑠. 𝑡. 𝑋 ≤ 𝑘

𝑆%&# 𝑆%&' 𝑆'%

𝑆#

𝑆!

𝑆%

Example: ∀𝑖 ≤ 𝑙, 𝑆$ contains the same two elements; ∀𝑖 > 𝑙, 𝑆$ contains one unique 
element; 𝑛 = 2𝑙, 𝑘 = 2

Item 𝑣$: a set 𝑆$ of elements Objective 𝑓: size of the union Submodular

[Qian, Xue, and Wang, IJCAI’24]
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Monotone Approximately Submodular Maximization 
with A Size Constraint

Influence maximization [Kempe et al., KDD’03] : select a subset of users from a social network 
to maximize its influence spread

Influential users

Item 𝑣$: a social network user

Objective 𝑓: influence spread, measured by the expected number of social network 
users activated by diffusion Submodular

[Qian, Xue, and Wang, IJCAI’24]
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Monotone Approximately Submodular Maximization 
with A Size Constraint

Sensor placement [Krause & Guestrin, IJCAI’09 Tutorial] : select a few places to install sensors 
such that the information gathered is maximized

Water contamination detection Fire detection

Item 𝑣$: a place to install a sensor Objective 𝑓: entropy Submodular

[Qian, Xue, and Wang, IJCAI’24]
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Monotone Approximately Submodular Maximization 
with A Size Constraint

Sparse regression [Tropp, TIT’04] : select a few observation variables to best approximate the 
predictor variable by linear regression

observation variables predictor 
variable 𝑧

Item 𝑣$: an observation variable

Objective 𝑓: squared multiple correlation 𝑅4,*5 =
Var 𝑧 − MSE4,*

Var 𝑧

variance mean squared error

a subset 𝑋 of observation variables

Approximately 
Submodular

𝛾',)(𝑓) ≥ 𝜆6#&(C, 𝑈 + 𝑘)
[Das & Kempe, ICML’11]

[Qian, Xue, and Wang, IJCAI’24]
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Monotone Approximately Submodular Maximization 
with A Size Constraint

MAP-Elites can achieve the optimal polynomial-time approximation guarantee

the optimal polynomial-time approximation ratio [Harshaw et al., ICML’19]

Theorem 1. For maximizing a monotone approximately submodular function 𝑓 with a size constraint 
𝑘, the expected runtime of MAP-Elites with the parameter 𝐼 = 𝑛 + 1, until finding a solution 𝒙 with 
𝒙 = 𝑘 and 𝑓(𝒙) ≥ (1 − 𝑒+,()*) · OPT, is 𝑂 𝑛! log 𝑛 + 𝑘 , where 𝛾#-. = 𝑚𝑖𝑛

𝒙:|𝒙|2"+3
𝛾𝒙,", and 𝛾𝒙,"

is the submodularity ratio of 𝑓 w.r.t. 𝒙 and 𝑘.

𝑚𝑎𝑥𝒙∊{=,&}" 𝑓 𝒙 𝑠. 𝑡. 𝒙 ≤ 𝑘

A subset 𝑋 ⊆ 𝑉 𝒙 ∈ {0,1}3: the 𝑖-th bit 𝑥$ = 1 if 𝑣$ ∈ 𝑋; 𝑥$ = 0 otherwise

Unconstrained by setting 𝑓 𝒙 = −1 if 𝒙 > 𝑘

The behavior descriptor: the number of 1-bits of a solution

The archive 𝑀 contains 𝑛 + 1 cells: the 𝑖-th cell stores the best found solution with 𝑖 1-bits

[Qian, Xue, and Wang, IJCAI’24]
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Monotone Approximately Submodular Maximization 
with A Size Constraint

MAP-Elites can achieve the optimal polynomial-time approximation guarantee
Theorem 1. For maximizing a monotone approximately submodular function 𝑓 with a size constraint 
𝑘, the expected runtime of MAP-Elites with the parameter 𝐼 = 𝑛 + 1, until finding a solution 𝒙 with 
𝒙 = 𝑘 and 𝑓(𝒙) ≥ (1 − 𝑒+,()*) · OPT, is 𝑂 𝑛! log 𝑛 + 𝑘 , where 𝛾#-. = 𝑚𝑖𝑛

𝒙:|𝒙|2"+3
𝛾𝒙,", and 𝛾𝒙,"

is the submodularity ratio of 𝑓 w.r.t. 𝒙 and 𝑘.

The behavior descriptor: the number of 1-bits of a solution

Proof Sketch. 

• The expected runtime until finding the empty solution 𝟎 is 𝑂(𝑛! log 𝑛)

Inspired by the analysis of GSEMO [Friedrich & Neumann, ECJ’15; Qian et al., NeurIPS’15]: 
follow the greedy behavior [Das & Kempe, ICML’11]

Ø Select the solution 𝒙 with the minimum number of 1 bits from the archive 𝑀

Ø Flip only one 1-bit of 𝒙 by bit-wise mutation 

1
𝑀 ≥

1
𝑛 + 1

|𝒙|
𝑛

1 −
1
𝑛

+,#
≥
|𝒙|
𝑒𝑛

[Qian, Xue, and Wang, IJCAI’24]
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Monotone Approximately Submodular Maximization 
with A Size Constraint

MAP-Elites can achieve the optimal polynomial-time approximation guarantee
Theorem 1. For maximizing a monotone approximately submodular function 𝑓 with a size constraint 
𝑘, the expected runtime of MAP-Elites with the parameter 𝐼 = 𝑛 + 1, until finding a solution 𝒙 with 
𝒙 = 𝑘 and 𝑓(𝒙) ≥ (1 − 𝑒+,()*) · OPT, is 𝑂 𝑛! log 𝑛 + 𝑘 , where 𝛾#-. = 𝑚𝑖𝑛

𝒙:|𝒙|2"+3
𝛾𝒙,", and 𝛾𝒙,"

is the submodularity ratio of 𝑓 w.r.t. 𝒙 and 𝑘.

The behavior descriptor: the number of 1-bits of a solution

Proof Sketch. Inspired by the analysis of GSEMO [Friedrich & Neumann, ECJ’15; Qian et al., NeurIPS’15]: 
follow the greedy behavior [Das & Kempe, ICML’11]

• The expected runtime until reaching the approximation 1 − 𝑒+,()* is 𝑘 ⋅ 𝑒𝑛(𝑛 + 1)

𝒙 = 𝑖 and 𝑓(𝒙) ≥ 1 − 1 − 7
)

#
S OPT 𝒙 = 𝑖 + 1 and 𝑓(𝒙) ≥ 1 − 1 − 7

)

#8!
S OPT

flip only one

specific 0-bit

[Qian, Xue, and Wang, IJCAI’24]
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Monotone Approximately Submodular Maximization 
with A Size Constraint

MAP-Elites can achieve the optimal polynomial-time approximation guarantee
Theorem 1. For maximizing a monotone approximately submodular function 𝑓 with a size constraint 
𝑘, the expected runtime of MAP-Elites with the parameter 𝐼 = 𝑛 + 1, until finding a solution 𝒙 with 
𝒙 = 𝑘 and 𝑓(𝒙) ≥ (1 − 𝑒+,()*) · OPT, is 𝑂 𝑛! log 𝑛 + 𝑘 , where 𝛾#-. = 𝑚𝑖𝑛

𝒙:|𝒙|2"+3
𝛾𝒙,", and 𝛾𝒙,"

is the submodularity ratio of 𝑓 w.r.t. 𝒙 and 𝑘.

The behavior descriptor: the number of 1-bits of a solution

Proof Sketch. 

• The expected runtime until reaching the approximation 1 − 𝑒+,()* is 𝑘 ⋅ 𝑒𝑛(𝑛 + 1)

Inspired by the analysis of GSEMO [Friedrich & Neumann, ECJ’15; Qian et al., NeurIPS’15]: 
follow the greedy behavior [Das & Kempe, ICML’11]

• The expected runtime until finding the empty solution 𝟎 is 𝑂(𝑛! log 𝑛)

[Qian, Xue, and Wang, IJCAI’24]
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Monotone Approximately Submodular Maximization 
with A Size Constraint

MAP-Elites can achieve the optimal polynomial-time approximation guarantee
Theorem 1. For maximizing a monotone approximately submodular function 𝑓 with a size constraint 
𝑘, the expected runtime of MAP-Elites with the parameter 𝐼 = 𝑛 + 1, until finding a solution 𝒙 with 
𝒙 = 𝑘 and 𝑓(𝒙) ≥ (1 − 𝑒+,()*) · OPT, is 𝑂 𝑛! log 𝑛 + 𝑘 , where 𝛾#-. = 𝑚𝑖𝑛

𝒙:|𝒙|2"+3
𝛾𝒙,", and 𝛾𝒙,"

is the submodularity ratio of 𝑓 w.r.t. 𝒙 and 𝑘.

The behavior descriptor: the number of 1-bits of a solution

Corollary 1. For maximizing a monotone submodular function 𝑓 with a size constraint 𝑘, the 
expected runtime of MAP-Elites with the parameter 𝐼 = 𝑛 + 1, until finding a solution 𝒙 with 
𝒙 = 𝑘 and 𝑓(𝒙) ≥ (1 − 1/𝑒) · OPT, is 𝑂 𝑛! log 𝑛 + 𝑘 .

𝑓 is submodular if and only if ∀𝑈, 𝑘: 𝛾5,"(𝑓) = 1

Consistent with Theorem 5.1 in [Bossek and Sudholt, GECCO’23]

[Qian, Xue, and Wang, IJCAI’24]
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Monotone Approximately Submodular Maximization 
with A Size Constraint

Theorem 2. There exists an instance of monotone submodular maximization with a size constraint 
(particularly, a maximum coverage instance), where the expected runtime of (𝜇 + 1)-EA with 𝜇 =
𝑛 + 1 for achieving an approximation ratio larger than nearly 1/2 is at least exponential w.r.t. 𝑛.

𝑣&
𝑣F

𝑣G3

𝑣G3H&
𝑣G3HF

𝑣3

𝑣G3I&
𝑣3I&

𝜖 = (1 + 𝛿)/3 𝛿 is a small positive constant close to 0

∀1 ≤ 𝑖 ≤ 1 + 𝛿 𝑛/3: 𝑆-= { 𝑣- , 𝑣 367 ./963 , … , (𝑣- , 𝑣.)}

∀ 1 + 𝛿 𝑛/3 ≤ 𝑖 ≤ 𝑛: 𝑆-= { 𝑣- , 𝑣3 , … , (𝑣- , 𝑣 367 ./9)}

The budget 𝑘 = 1 + 𝛿 𝑛/3

The optimal solution 𝒙∗ = {𝑆3, … , 𝑆 367 ./9}

𝑓 𝒙∗ = 1 + 𝛿 2 − 𝛿 𝑛!/9
[Friedrich et al., ECJ’10; 
Friedrich & Neumann, ECJ’15]

[Qian, Xue, and Wang, IJCAI’24]
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Monotone Approximately Submodular Maximization 
with A Size Constraint

Theorem 2. There exists an instance of monotone submodular maximization with a size constraint 
(particularly, a maximum coverage instance), where the expected runtime of (𝜇 + 1)-EA with 𝜇 =
𝑛 + 1 for achieving an approximation ratio larger than nearly 1/2 is at least exponential w.r.t. 𝑛.

𝑣&
𝑣F

𝑣G3

𝑣G3H&
𝑣G3HF

𝑣3

𝑣G3I&
𝑣3I&

𝜖 = (1 + 𝛿)/3 𝛿 is a small positive constant close to 0

The budget 𝑘 = 1 + 𝛿 𝑛/3

Local optimum 𝒙;<=>;: 1 + 𝛿 𝑛/3 sets from {𝑆 367 ./963, … , 𝑆. }

𝑓 𝒙;<=>; = 1 + 𝛿 !𝑛!/9

[Friedrich et al., ECJ’10; 
Friedrich & Neumann, ECJ’15]

1 − 2𝛿 𝑛/3
Add a set from 
{𝑆3, … , 𝑆 367 ./9}

1 + 𝛿 𝑛/3 − 𝑖
Delete a set from 𝒙;<=>;, given that 𝑖 sets 
from {𝑆3, … , 𝑆 367 ./9} have been added 

≤

𝑖 ≥ 𝛿𝑛

[Qian, Xue, and Wang, IJCAI’24]
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Monotone Approximately Submodular Maximization 
with A Size Constraint

Theorem 2. There exists an instance of monotone submodular maximization with a size constraint 
(particularly, a maximum coverage instance), where the expected runtime of (𝜇 + 1)-EA with 𝜇 =
𝑛 + 1 for achieving an approximation ratio larger than nearly 1/2 is at least exponential w.r.t. 𝑛.

𝑣&
𝑣F

𝑣G3

𝑣G3H&
𝑣G3HF

𝑣3

𝑣G3I&
𝑣3I&

𝜖 = (1 + 𝛿)/3 𝛿 is a small positive constant close to 0

The budget 𝑘 = 1 + 𝛿 𝑛/3

The optimal solution 𝒙∗ = {𝑆3, … , 𝑆 367 ./9}

𝑓 𝒙∗ = 1 + 𝛿 2 − 𝛿 𝑛!/9

Local optimum 𝒙;<=>;: 1 + 𝛿 𝑛/3 sets from {𝑆 367 ./963, … , 𝑆. }

𝑓 𝒙;<=>; = 1 + 𝛿 !𝑛!/9
[Friedrich et al., ECJ’10; 
Friedrich & Neumann, ECJ’15]

Flip at least 𝛿𝑛 bits from both the left and 
right parts simultaneously for improvement

Approximation ratio: 1 + 𝛿 / 2 − 𝛿 ≈ 1/2

[Qian, Xue, and Wang, IJCAI’24]
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Monotone Approximately Submodular Maximization 
with A Size Constraint

Theorem 2. There exists an instance of monotone submodular maximization with a size constraint 
(particularly, a maximum coverage instance), where the expected runtime of (𝜇 + 1)-EA with 𝜇 =
𝑛 + 1 for achieving an approximation ratio larger than nearly 1/2 is at least exponential w.r.t. 𝑛.

𝑣&
𝑣F

𝑣G3

𝑣G3H&
𝑣G3HF

𝑣3

𝑣G3I&
𝑣3I&

[Friedrich et al., ECJ’10; 
Friedrich & Neumann, ECJ’15]

Proof Sketch. The population will be full of 
𝒙;<=>; with some probability

• The first 𝑛 iterations: select 𝒙;<=>; and flip no bits in mutation

Prob ≥ 2𝜋𝑛/(𝑒 2𝑒! .)

• To improve 𝒙;<=>;: Prob ≤ 367 ./9
7.

367 ./9
7.

3
.

!7.

• 𝑛 + 1 initial solutions: 𝒙;<=>; and 𝑛 solutions with more than 
𝑘 = 1 + 𝛿 𝑛/3 1-bits

Prob ≥ (𝑛 + 1)(1 − 𝑜(1))/2. by the Chernoff bound

[Qian, Xue, and Wang, IJCAI’24]
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Monotone Approximately Submodular Maximization 
with A Size Constraint

Theorem 2. There exists an instance of monotone submodular maximization with a size constraint 
(particularly, a maximum coverage instance), where the expected runtime of (𝜇 + 1)-EA with 𝜇 =
𝑛 + 1 for achieving an approximation ratio larger than nearly 1/2 is at least exponential w.r.t. 𝑛.

𝑣&
𝑣F

𝑣G3

𝑣G3H&
𝑣G3HF

𝑣3

𝑣G3I&
𝑣3I&

[Friedrich et al., ECJ’10; 
Friedrich & Neumann, ECJ’15]

Proof Sketch. The population will be full of 
𝒙;<=>; with some probability

• The first 𝑛 iterations: select 𝒙;<=>; and flip no bits in mutation

• To improve 𝒙;<=>;: Expected runtime ≥ 2𝜋𝛿𝑛 9:&
;(!8:)

5:&

• 𝑛 + 1 initial solutions: 𝒙;<=>; and 𝑛 solutions with more than 
𝑘 = 1 + 𝛿 𝑛/3 1-bits

[Qian, Xue, and Wang, IJCAI’24]

• The first 𝑛 iterations: select 𝒙;<=>; and flip no bits in mutation

Prob ≥ 2𝜋𝑛/(𝑒 2𝑒! .)

• 𝑛 + 1 initial solutions: 𝒙;<=>; and 𝑛 solutions with more than 
𝑘 = 1 + 𝛿 𝑛/3 1-bits

Prob ≥ (𝑛 + 1)(1 − 𝑜(1))/2. by the Chernoff bound
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MAP-Elites (𝜇 + 1)-EA

Monotone approximately 
submodular maximization 
with a size constraint

1 − 𝑒,-!"#                               1 − 𝑒,#
𝑂 𝑛' log 𝑛 + 𝑘

nearly 1/2
[exponential]

submodular a special case of 
submodular function

the archive size |𝑀| = the population size 𝜇

[Qian, Xue, and Wang, IJCAI’24]
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Set Cover. Given a ground set 𝑈 = {𝑒&, … , 𝑒T}, and a collection 𝑉 = {𝑆&, … , 𝑆T} of 
subsets of 𝑈 with corresponding weights 𝑤:𝑉 → 𝑅H, the goal is to find a subset of 𝑉
(represented by 𝒙 ∈ {0,1}3) such that

argmin
𝒙∈ =,& "

#
$%&

3
𝑤$𝑥$ 𝑠. 𝑡. T

$:V!%&
𝑆$ = 𝑈

Unconstrained

𝑓 𝒙 = 𝑤 𝒙 + 𝜆 ⋅ (𝑚 − 𝑐 𝒙 )

𝑤 𝒙 =#
$%&

3
𝑤$𝑥$ 𝑐 𝒙 = T

$:V!%&
𝑆$𝜆 > 𝑛𝑤WXY

[Qian, Xue, and Wang, IJCAI’24]



http://www.lamda.nju.edu.cn/qianc/

http://www.lamda.nju.edu.cnSet Cover

MAP-Elites can achieve the optimal polynomial-time approximation guarantee

Optimal up to a constant factor, unless P=NP [Feige, JACM’98]

Theorem 1. For the set cover problem, the expected runtime of MAP-Elites with the parameter 
𝐼 = 𝑚 + 1, until finding a solution 𝒙 with 𝑐 𝒙 = 𝑚 and 𝑓 𝒙 ≤ ln𝑚 + 1 · OPT, is 
𝑂(𝑚𝑛(𝑚 + log 𝑛 + log(𝑤TZV/𝑤T$3) )), where 𝑐 𝒙 = ⋃$:V! %&𝑆$ denotes the number of 
elements covered by 𝒙.

The behavior descriptor: the number 𝑐 𝒙 of covered elements of a solution

The archive 𝑀 contains 𝑚 + 1 cells: the 𝑖-th cell stores the best found solution 
covering 𝑖 elements

[Qian, Xue, and Wang, IJCAI’24]
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MAP-Elites can achieve the optimal polynomial-time approximation guarantee

Proof Sketch. Inspired by the analysis of GSEMO [Friedrich et al., ECJ’10]: 
follow the greedy behavior [Chvatal, MOR’79]

The behavior descriptor: the number 𝑐 𝒙 of covered elements of a solution

• The expected runtime until finding the empty solution 𝟎 is 𝑂(𝑚𝑛(log 𝑛 + log(𝑤#?@/𝑤#-.)))

𝐸 𝑋A − 𝑋A63 𝑋A ≥ 𝑋A/(𝑒𝑛(𝑚 + 1))

𝑋A: the minimum weight of solutions in the archive 𝑀 after running 𝑡 iterations

Multiplicative drift analysis [Doerr et al., 2012]

Theorem 1. For the set cover problem, the expected runtime of MAP-Elites with the parameter 
𝐼 = 𝑚 + 1, until finding a solution 𝒙 with 𝑐 𝒙 = 𝑚 and 𝑓 𝒙 ≤ ln𝑚 + 1 · OPT, is 
𝑂(𝑚𝑛(𝑚 + log 𝑛 + log(𝑤TZV/𝑤T$3) )), where 𝑐 𝒙 = ⋃$:V! %&𝑆$ denotes the number of 
elements covered by 𝒙.

[Qian, Xue, and Wang, IJCAI’24]
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MAP-Elites can achieve the optimal polynomial-time approximation guarantee

Proof Sketch. Inspired by the analysis of GSEMO [Friedrich et al., ECJ’10]: 
follow the greedy behavior [Chvatal, MOR’79]

The behavior descriptor: the number 𝑐 𝒙 of covered elements of a solution

• The expected runtime until reaching the approximation ln𝑚 + 1 is 𝑂(𝑚!𝑛)

𝑐(𝒙) = 𝑘
𝑤 𝒙 ≤ 𝐻6 − 𝐻6>) S OPT

flip only one

specific 0-bit

𝑐 𝒙 = 𝑘? > 𝑘
𝑤 𝒙 ≤ 𝐻6 − 𝐻6>)# S OPT

1
𝑀 ⋅

1
𝑛 1 −

1
𝑛

+,#

≥
1

𝑒𝑛(𝑚 + 1)

Theorem 1. For the set cover problem, the expected runtime of MAP-Elites with the parameter 
𝐼 = 𝑚 + 1, until finding a solution 𝒙 with 𝑐 𝒙 = 𝑚 and 𝑓 𝒙 ≤ ln𝑚 + 1 · OPT, is 
𝑂(𝑚𝑛(𝑚 + log 𝑛 + log(𝑤TZV/𝑤T$3) )), where 𝑐 𝒙 = ⋃$:V! %&𝑆$ denotes the number of 
elements covered by 𝒙.

[Qian, Xue, and Wang, IJCAI’24]
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MAP-Elites can achieve the optimal polynomial-time approximation guarantee

Proof Sketch. 

• The expected runtime until finding the empty solution 𝟎 is 𝑂(𝑚𝑛(log 𝑛 + log(𝑤#?@/𝑤#-.)))

Inspired by the analysis of GSEMO [Friedrich et al., ECJ’10]: 
follow the greedy behavior [Chvatal, MOR’79]

The behavior descriptor: the number 𝑐 𝒙 of covered elements of a solution

• The expected runtime until reaching the approximation ln𝑚 + 1 is 𝑂(𝑚!𝑛)

Theorem 1. For the set cover problem, the expected runtime of MAP-Elites with the parameter 
𝐼 = 𝑚 + 1, until finding a solution 𝒙 with 𝑐 𝒙 = 𝑚 and 𝑓 𝒙 ≤ ln𝑚 + 1 · OPT, is 
𝑂(𝑚𝑛(𝑚 + log 𝑛 + log(𝑤TZV/𝑤T$3) )), where 𝑐 𝒙 = ⋃$:V! %&𝑆$ denotes the number of 
elements covered by 𝒙.

[Qian, Xue, and Wang, IJCAI’24]
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Theorem 4. There is a set cover instance, where the expected runtime of (𝜇 + 1)-EA with 𝜇 = 𝑚 + 1
for achieving an approximation ratio smaller than 2#63/𝑚 is at least exponential w.r.t. 𝑚, 𝑛, and 
log(𝑤B>C/𝑤BDE).

𝑆3= { 𝑣3, 𝑣! , … , (𝑣3, 𝑣.)}

∀2 ≤ 𝑖 ≤ 𝑛: 𝑆-= { 𝑣- , 𝑣3 }

The optimal solution 𝒙∗ = 01.+3 = {𝑆!, … , 𝑆.} 𝑤 𝒙∗ = 𝑛 − 1

Set Cover

𝑣&

𝑣F
𝑣\

𝑣3
𝑣3I&

𝑤3= 2.

𝑤-= 1
𝑚 = 𝑛 − 1

Local optimum (runner-up) 𝒙;<=>; = 10.+3 = {𝑆3} 𝑤 𝒙;<=>; = 2.

Flip all the 𝑛 bits simultaneously for improvement

Approximation ratio: 2./ 𝑛 − 1 ≈ 2#63/𝑚

[Qian, Xue, and Wang, IJCAI’24]
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Proof Sketch. 

• 𝑛 initial solutions: 𝒙;<=>; and 𝑛 − 1 worse solutions

• The first 𝑛 − 1 iterations: select 𝒙;<=>; and flip no bits in mutation

The population will be full of 
𝒙;<=>; with some probability

Prob ≥ 𝑛(1 − 𝑜(1))/2.

Prob ≥ 2𝜋(𝑛 − 1)/(𝑒 2𝑒! .+3)

Set Cover

Theorem 4. There is a set cover instance, where the expected runtime of (𝜇 + 1)-EA with 𝜇 = 𝑚 + 1
for achieving an approximation ratio smaller than 2#63/𝑚 is at least exponential w.r.t. 𝑚, 𝑛, and 
log(𝑤B>C/𝑤BDE).

𝑣&

𝑣F
𝑣\

𝑣3
𝑣3I&

[Qian, Xue, and Wang, IJCAI’24]

• To improve 𝒙;<=>;: Prob = !
&

&
Expected runtime = 𝑛&
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MAP-Elites (𝜇 + 1)-EA

Monotone approximately 
submodular maximization 
with a size constraint

1 − 𝑒,-!"#                               1 − 𝑒,#
𝑂 𝑛' log 𝑛 + 𝑘

nearly 1/2
[exponential]

Set cover ln𝑚 + 1
[𝑂(𝑚𝑛 𝑚 + log 𝑛 + log(𝑤./0/𝑤.12)))

23&#/𝑚
[exponential]

submodular a special case of 
submodular function

the archive size |𝑀| = the population size 𝜇

a special case of 
set cover

global 
opt.

QD

behavior 1 behavior 2 . . .

EA

𝑓

local 
opt.

Insight Simultaneous search for high-
performing solutions with diverse 
behaviors can provide stepping 
stones to good overall solutions 
and help avoid local optima

[Qian, Xue, and Wang, IJCAI’24]
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MAP-Elites (𝜇 + 1)-EA

Monotone approximately 
submodular maximization 
with a size constraint

1 − 𝑒,-!"#                               1 − 𝑒,#
𝑂 𝑛' log 𝑛 + 𝑘

nearly 1/2
[exponential]

Set cover ln𝑚 + 1
[𝑂(𝑚𝑛 𝑚 + log 𝑛 + log(𝑤./0/𝑤.12)))

23&#/𝑚
[exponential]

submodular a special case of 
submodular function

the archive size |𝑀| = the population size 𝜇

More examples:

a special case of 
set cover

• [Bossek and Sudholt, GECCO’23]
For maximizing any monotone function over 0,1 &, MAP-Elites using #1-bits of a solution as the 
behavior descriptor can find an optimal solution in 𝑂(𝑛5 log 𝑛) expected runtime

• [Lengler and Zou, TCS’21]
To optimize some monotone functions, (𝜇	 + 	1)-EA with 𝜇@ ≤ 	𝜇	 ≤ 	𝑛	(where 𝜇@ is some constant) 
needs super-polynomial time

[Qian, Xue, and Wang, IJCAI’24]
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MAP-Elites (𝜇 + 1)-EA

Monotone approximately 
submodular maximization 
with a size constraint

1 − 𝑒,-!"#                               1 − 𝑒,#
𝑂 𝑛' log 𝑛 + 𝑘

nearly 1/2
[exponential]

Set cover ln𝑚 + 1
[𝑂(𝑚𝑛 𝑚 + log 𝑛 + log(𝑤./0/𝑤.12)))

23&#/𝑚
[exponential]

submodular a special case of 
submodular function

the archive size |𝑀| = the population size 𝜇

Our contribution:

a special case of 
set cover

Explicitly provide theoretical support for the benefit of QD algorithms, i.e., 
bringing better optimization, for the first time

The analysis of MAP-Elites is not new, similar to that of GSEMO [Friedrich et al., ECJ’10; Friedrich 
& Neumann, ECJ’15; Qian et al., NeurIPS’15] 

However, the results are useful, especially for the QD (almost algorithmic) community

[Qian, Xue, and Wang, IJCAI’24]
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• Study the relationship between MAP-Elites and GSEMO

Ø By treating the behavior descriptors as the extra objective functions to be optimized, 
GSEMO behaves somewhat similarly to MAP-Elites

1) MAP-Elites only compares solutions with the same behavior descriptors, 
while GSEMO compares different behavior descriptors based on domination

2) MAP-Elites can control the granularity of the behavior space by setting the 
number of behavior descriptor values in a cell

Ø The known results of MAP-Elites match that of GSEMO

• Provide theoretical support for the other benefit of QD: Can QD provably be helpful for 
finding a large set of diverse, high-performing solutions?

Can they have a significant 
performance gap on optimization?

MAP-Elites v.s. multiple (1+1)-EAs

New work: “Guiding quality diversity on monotone submodular functions: Customising the feature space by 
adding boolean conjunctions” by Schmidbauer, Opris, Bossek, Neumann, and Sudholt, GECCO’24

Ø Differences:

[Qian, Xue, and Wang, IJCAI’24]
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qCan we provide theoretical support for QD?

Ø Prove that QD can be helpful for optimization, i.e., finding a better overall solution

qHow to define the behavior function?

Ø Learn from human feedback

qHow to improve the sample efficiency?

Ø Clustering-based and NSS-based parent selection, cooperative coevolution

qHow to improve the resource efficiency?

Ø Decomposition and sharing
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What kind of diversity is 
proper for adaptation?

Hard to define the behavior 
function to be diversified

①

Two popular ways
1. Human experience: Define the behavior function by a human expert
2. Data-driven: Train a model to obtain an embedding as the behavior

(e.g., train an auto-encoder with self-supervised learning)
The obtained behavior function may not align with human 
requirement, not applicable for many downstream applications 

???

???

①

QD opt.
②

A solution is a 
large NN with
500M params

③1024 solutions

...

Train diverse policies to adapt to 
unseen complex environments

Solutions: 1024 diverse policies with 500M parameters
Fitness: Forward distance
Behavior: ???
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𝑑2

𝑑1

Expert Human preference 

Similar
Diverse

Solution Space Behavior space Trajectory space

In many scenarios, human cannot define the behavior space precisely 

However, they can distinguish which solutions are similar or not!
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[Wang, Xue, Wang, Yang, Fu, Fu, and Qian, NeurIPS’23 ALOE Workshop]

Learn behavior from human feedback
• Data collection: Select three solutions and query human preference

• Show the trajectories of the solutions to human 
• Let human distinguish which two are the most similar and which two are the most diverse

How much 

diversity???

Most s
imilar

Most diverse

???
🙁 🙁 😀

three solutions two solutions one solution 

Fastest: More trajectories take more timeWhy use three solutions?
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[Wang, Xue, Wang, Yang, Fu, Fu, and Qian, NeurIPS’23 ALOE Workshop]

Learn behavior from human feedback
• Data collection: Select three solutions and query human preference
• Model learning: Max/min the similarity metrics of the most similar/diverse trajectories

Maximize

Minimize

Behavior
𝑑

Similar

Diverse

Gradient

Loss function Human

𝜏#

max log
exp 𝜆 ⋅ 𝑠𝑖𝑚 𝑑 𝜏! , 𝑑 𝜏5

exp 𝜆 ⋅ 𝑠𝑖𝑚 𝑑 𝜏! , 𝑑 𝜏5 + exp 𝜆 ⋅ 𝑠𝑖𝑚 𝑑 𝜏5 , 𝑑 𝜏9
Loss function:

𝜏'

𝜏6
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• Tasks: HalfCheetah Uni, Walker2D Uni, Ant Uni, and Humanoid Uni
• Fitness: Mainly determined by forward distance
• Oracle behavior: Fraction of time each foot touches the ground
• Human feedback: Given based on the oracle behavior

[Wang, Xue, Wang, Yang, Fu, Fu, and Qian, NeurIPS’23 ALOE Workshop]

Walker2D Uni Ant Uni HalfCheetah Uni

Compare with auto-encoder [Grillotti & Cully, TEC'22], learning the behavior by self-supervision
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Oracle
behavior space

Learned
behavior space

The accuracy of DivHF is better than
auto-encoder in all the environments

The learned behavior space captures
the essence of the oracle behavior space

[Wang, Xue, Wang, Yang, Fu, Fu, and Qian, NeurIPS’23 ALOE Workshop]

Different accuracy metrics between 
learned and oracle behaviors

Experiments on QDax Tasks



http://www.lamda.nju.edu.cn/qianc/
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qCan we provide theoretical support for QD?

Ø Prove that QD can be helpful for optimization, i.e., finding a better overall solution

qHow to define the behavior function?

Ø Learn from human feedback

qHow to improve the sample efficiency?

Ø Clustering-based and NSS-based parent selection, cooperative coevolution

qHow to improve the resource efficiency?

Ø Decomposition and sharing
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The optimization of 1024 
diverse policies is difficult

Require sampling
many (e.g., 10%) steps
Low sample efficiency

②

Challenging tasks How to improve the efficiency of operators?

Train diverse policies to adapt to 
unseen complex environments

Solutions: 1024 diverse policies with 500M parameters
Fitness: Forward distance
Behavior: Learn from human feedback

???

???

①

QD opt.
②

A solution is a 
large NN with
500M params

③1024 solutions

...
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Existing works focus more on the variation process
• PGA-ME uses policy gradient as another operator for variation [Nilsson & Cully, GECCO’21, Best paper award]

• DQD considers the gradients of both fitness and behavior [Fontaine & Nikolaidis, NeurIPS’21 Oral]

VariationSelection Parent
solutions

Offspring
solutionsEvaluateUpdate

archive
Stop

criterion
Solution

representation

Archive

Solution 1

Solution 2

Solution N

··· ···
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Existing parent selection 
methods are inefficient

VariationSelection Parent
solutions

Offspring
solutionsEvaluateUpdate

archive
Stop

criterion
Solution

representation

Archive

Solution 1

Solution 2

Solution N

··· ···
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We propose clustering-based selection
• For Diversity: Cluster the solutions into different clusters in the behavior space
• For Quality: Select one high-quality solution from each cluster 

Clustering-based Parent Selection

[Wang, Xue, and Qian, ICLR’22]

Pareto-based selection [Pierrot et al, arXiv'20] 
selects blue points: “diverse” in the Pareto space

However, they are not diverse 
in the behavior space

The red points selected by our method 
are diverse and have high quality
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• Tasks: Half-Cheetah and Ant
• Solution: Policy parameters
• Fitness: Walking (either forward or backward) distance
• Behavior: 1 for forward, -1 for backward

superior performance under different behaviors

Fail to find both modals

[Wang, Xue, and Qian, ICLR’22]

forward

backward
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• Task: Rapidly find policies to circumvent the wall
• Solution: Policy parameters
• Fitness: Sum of distance to the destination at each step
• Behavior: Final location (𝑥, 𝑦) of the ant robot

The figure shows the reward 
of the best policy found by 

each method

[Wang, Xue, and Qian, ICLR’22]

Experiments on Hard Exploration Tasks

EDO-CS performs better 
on optimization
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𝑚
!

𝑚"

?

? ?

It does not align the goal of QD!

A nature method to obtain diversity is by multi-objective optimization [Victor et al, SSCI’21]:
• Consider fitness and behaviors as the objectives to be maximized
• Select solutions by multi-objective optimization

Evolutionary direction 
of Pareto dominance

· · ·
· · ·

· ·

Domination

Toward a certain direction 
of the behavior space, 
instead of covering the 
whole behavior space

Color brightness
represents the goodness
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We propose a new “domination” relationship for QD:

A solution 𝒙 is surrounded dominated if and only if:
for each direction 𝒅 ∈ −1, 1 # in the behavior 
space, there is another solution 𝒙′ that
• 𝒅⊙𝒎 𝒙′ ≻ 𝒅⊙𝒎 𝒙
• 𝑓 𝒙′ > 𝑓 𝒙

Surrounded dominance works well as it
considers all directions of the behavior space

Select the solutions in the top fronts of Non-
Surrounded-Dominated Sorting (NSS) 

[Wang, Xue, Shang, Qian, Fu, and Fu, IJCAI’23]

?

? ?

𝑚"

𝑚
!

Evolutionary directions 
of surrounded dominance

· · ·
· · ·
· · ·

· · ·
· · ·

· ·

Pareto 
dominance

Surrounded 
dominance
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• QDGym
– Solution: Parameters of policy network
– Fitness: Mainly determined by forward distance
– Behavior: Fraction of time each foot touches the ground

• Arm
– Solution: Angle of each joint
– Fitness: Negative variance of the joint angles
– Behavior: Position of the end effector of the arm

• Mario
– Solution: Latent vector for generating Mario environment
– Fitness: Completion rate of an agent simulating in the environment
– Behavior: #tiles of a certain type and #jumps of the agent simulating 

in the environment

[Wang, Xue, Shang, Qian, Fu, and Fu, IJCAI’23]
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[Wang, Xue, Shang, Qian, Fu, and Fu, IJCAI’23]

The selected solutions in one generation 
are diverse and have high quality

The solutions in the final archive 
are diverse and have high quality

Experiments on QD Hopper 
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NSS achieves the highest average rank of QD-Score AUC

[Wang, Xue, Shang, Qian, Fu, and Fu, IJCAI’23]

Experiments 
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For the solution representation of QD
• QD maintains a large number of solutions, each is a network with a large number of parameters
• The optimization space is excessively large

VariationSelection Parent
solutions

Offspring
solutionsEvaluateUpdate

archive
Stop

criterion
Solution

representation

Archive

Solution 1

Solution 2

Solution N

··· ···
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Representation part Decision part[Zhou, SCIS’21]

Observation: Different layers of a policy network 
have different functions

• To reduce the difficulty of optimization
Ø decompose the policy network into two parts 

by layers
Ø maintain archives for the two parts respectively
Ø optimize them by cooperative coevolution

• To further reduce the optimization space
Ø reduce the number of representation parts
Ø share representation knowledge

[Xue, Wang, Li, Li, Hao, and Qian, ICLR’24 Spotlight]

𝑁$ ≪ 𝑁
𝑁
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Survivor selection for each part

Maintain an archive 
for each part

Select parents from each population, combine and variate the solutions

Evaluation

[Xue, Wang, Li, Li, Hao, and Qian, ICLR’24 Spotlight]
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[Xue, Wang, Li, Li, Hao, and Qian, ICLR’24 Spotlight]

On 8 QDax tasks and 1 Atari task using policy parameters as solutions
• Uni (Omni) tasks: 

– Fitness: Weighted sum of forward distance and energy cost 
– Behavior function of Uni: Fraction of time each foot touches the ground
– Behavior function of Omni: Final position of the robot

• Maze tasks:
– Fitness: Sum of negative distance to the target position
– Behavior function: Final position of the robot

• Atari Pong:
– Fitness: Points winning in the game
– Behavior function: Frequency of movement

Walker2D Ant HalfCheetah

Point Maze Ant Maze Pong
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CCQD achieves the highest average rank of 
QD-Score AUC with the same number of samples

[Xue, Wang, Li, Li, Hao, and Qian, ICLR’24 Spotlight]

Experiments 

On the challenging task Atari Pong, 
CCQD uses only less than 20% 

samples to obtain the same QD-Score

Atari Pong
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[Xue, Wang, Li, Li, Hao, and Qian, ICLR’24 Spotlight]

(a)-(c): Visualization of the final 
archives of different methods

(d): Different colors denote different 
representation parts

Different representation parts can 
discover different behaviors

CCQD has the best archive

(a) ME (b) PGA-ME

(c) CCQD (d) CCQD

Experiments 
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qCan we provide theoretical support for QD?

Ø Prove that QD can be helpful for optimization, i.e., finding a better overall solution

qHow to define the behavior function?

Ø Learn from human feedback

qHow to improve the sample efficiency?

Ø Clustering-based and NSS-based parent selection, cooperative coevolution

qHow to improve the resource efficiency?

Ø Decomposition and sharing
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Require ≥ 400G GPU memory 
and ≥ 2000G RAM

Unable to train on typical 
computational servers

Low resource efficiency

③

Large archive in RAM Train & Evaluate on GPU

???

???

①

QD opt.
②

A solution is a 
large NN with
500M params

③1024 solutions

...

Train diverse policies to adapt to 
unseen complex environments

Solutions: 1024 diverse policies with 500M parameters
Fitness: Forward distance
Behavior: Learn from human feedback
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[Wang, Xue, Guan, and Qian, ICML’24]

• Maintain a single shared representation part only      ->  Reduce GPU memory overhead
• Do not save representation parts in decision archive  ->  Reduce RAM overhead

Ø But lead to the mismatch problem between the shared representation part and decision parts

Variation
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Solve the mismatch problem between the 
shared representation part and decision parts:
Ø Periodic re-evaluation: Re-evaluate the decision parts 

and add them back by survivor selection periodically
Ø Deep decision archive: Maintain 𝐾 decision parts instead 

of one in each cell of the decision archive to improve 
robustness

Ø Learning rate decay: Decay the learning rate of the 
representation part to improve its stability

[Wang, Xue, Guan, and Qian, ICML’24]

Decision archive
without representation

D1
D2

DN

···
R

Current (shared)
representation

Re-evaluate the 
decision parts 
periodically

𝐾 layers

Maintain K decision 
parts in each cell

The top layer has 
the best fitness

Fitness

Periodic re-evaluation

Deep decision archiveIterations

Le
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ng
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te

Decision parts 

Representation part

Learning rate decay



http://www.lamda.nju.edu.cn/qianc/

http://www.lamda.nju.edu.cnExperiments

On 8 QDax tasks and 2 Atari tasks using policy parameters as solutions
• Uni tasks: 

– Fitness: Mainly determined by forward distance of the robot
– Behavior: Fraction of time each foot touches the ground

• Maze and Trap tasks:
– Fitness: Sum of negative distance to the target position
– Behavior: Final position of the robot

• Atari tasks:
– Fitness: Points winning in the game
– Behavior:

• Pong: Frequency of movement
• Boxing: Frequency of movement and punches

Walker2D Uni Ant Uni HalfCheetah Uni

Pong Boxing

[Wang, Xue, Guan, and Qian, ICML’24]
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RefQD achieves comparable QD-Score with significantly fewer resources

[Wang, Xue, Guan, and Qian, ICML’24]

Compared methods:
• PGA-ME: The SOTA QD method using unlimited resources

• PGA-ME (s): PGA-ME with a small number of offsprings, using less GPU memory but the same RAM
• Vanilla-RefQD: The vanilla version of RefQD, which does not use the strategies for solving mismatch issue

Experiments
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http://www.lamda.nju.edu.cnChallenges of Quality-Diversity 

qCan we provide theoretical support for QD?

Ø Prove that QD can be helpful for optimization, i.e., finding a better overall solution

qHow to define the behavior function?

Ø Learn from human feedback

qHow to improve the sample efficiency?

Ø Clustering-based and NSS-based parent selection, cooperative coevolution

qHow to improve the resource efficiency?

Ø Decomposition and sharing
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Zero-shot coordination (ZSC) aims at 
training agents that can coordinate well 
with unseen human partners. 

[Xue, Wang, Guan, Yuan, Fu, Fu, Qian, and Yu. Under Review]

Heterogeneous ZSC
• In many real-world applications, human and AI 

are heterogenous, i.e., human and AI have 
different action spaces.

• Traditional SP and PP (homogeneous training 
approach) do not work! 

?

How to achieve that?
Train with diverse partners

Self-play
(SP)

Population-play
(PP)
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We propose a heterogeneous framework based on cooperative coevolution

[Xue, Wang, Guan, Yuan, Fu, Fu, Qian, and Yu. Under Review]

Generate a diverse archive of 
high-performing partners
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Our method achieves 
the best average 

performance

[Xue, Wang, Guan, Yuan, Fu, Fu, Qian, and Yu. Under Review]
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Thank you!
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