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Abstract—Minimum cost seed selection for competitive in-
fluence maximization, which selects a set of key users (called
seed set) to spread its influence widely into the network at a
minimum cost in a competitive social network, is a key algorith-
mic problem in social influence analysis. Due to its application
potential in multiple fields such as market expansion, election
campaigns and cultural competition, numerous studies have been
emerging recently. Despite these efforts, this problem has not
been satisfactorily solved due to that not only finding a (nearly)
optimal solution for cost minimization, but also evaluating a seed
set is computationally complex. Existing works either trade ap-
proximation guarantees for practical efficiency using heuristics,
or vice versa due to costly Monte Carlo simulations. In this
paper, a competitive reverse influence estimation-based greedy
algorithm, which provides bounded approximation guarantees,
but offers significantly improved empirical efficiency under the
competitive independent cascade model, is proposed. The core
of the algorithm is a novel estimation method that improves the
efficiency by constructing representative sketches to avoid heavy
repeated simulations without compromising its performance
guarantees. Experimental results on eight real-world networks
with up to 1.13 million users show that compared with state-
of-the-art algorithms, our algorithm is the most efficient while
keeping the best performance, and can be orders of magnitude
faster.

Index Terms—Competitive influence maximization, minimum
cost seed selection, reverse influence sampling, social networks.

I. INTRODUCTION

COMPETITIVE Influence Maximization (CIM) is a com-
binatorial optimization problem that seeks a small set

(referred to as seed set) of key users who spread the influence
widely into the network via the word-of-mouth effect on
competitive social networks [1]. One popular type of CIM
problems that aims at seeking the seed set at a minimum cost
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is also called minimum cost seed selection. It finds numerous
real-world applications in market expansion when there are
multiple competing products, different political messages or
ideas, such as viral marketing [2]–[4], election campaigns [5],
rumor blocking [6]–[9], profit maximization [10] and social
analysis [11], [12]. Despite its application potential, CIM
presents several challenges especially for its computational
complexity. It has been proved that not only finding an optimal
seed set for cost minimization is a complex combinational
optimization problem, but also evaluating the influence of a
seed set is NP-hard [13], [14]. As a consequence, research on
CIM has witnessed an increasing growth in recent years [1],
[14]–[17].

However, existing works either suffer from high computa-
tional overheads or are unable to offer any performance guar-
antees. Specifically, simulation-based greedy algorithms [14],
[17]–[20] which adopt greedy algorithms to overcome the
combinatorial hardness and Monte Carlo simulations to over-
come the influence evaluation source of hardness are the
primary methods for solving CIM problems as they can
produce near-optimal solutions with theoretical guarantees by
modestly extracting problem properties such as submodular-
ity [21]. Although the greedy algorithm may not perform well
in general, it is able to provide an approximation guarantee
towards the global optimum if the set function is monotone and
submodular [22]. Since submodularity and monotonicity often
arise in analyzing influence spread in a social network [1],
they guarantee why a greedy algorithm finds a nearly optimal
solution in this context. However, such method requires a
large number of costly Monte Carlo simulations, which can
take several days even for small-scale networks, since one
set of simulations can only provide an estimation for one
specified seed set. Therefore, heuristic algorithms without
theoretical guarantees have been proposed to speed up the CIM
by simplifying the influence spread process [13], [17], [23].
While these methods might be more scalable, their efficiency
often comes at the deterioration of solution quality due to
the inaccurate influence estimation caused by the ignorance
of some important features of the problem [16], [24], or their
quality of solutions may not be robust to network structures
partly because of the absence of theoretical guarantees [17].
A few more complicated algorithms such as evolutionary
algorithms [25] and reinforcement learning [26] have also been
developed, but none of them can handle complex large-scale
networks without incurring prohibitive overheads since they
require a large number of costly iterations.
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In this paper, an efficient greedy algorithm able to provide
non-trivial approximation guarantees is proposed to solve the
CIM problem under the prominent competitive independent
cascade model [14]. Compared with state-of-the-art algo-
rithms, its superiority is shown in terms of both the theoretical
approximation guarantee for solution quality in the case with-
out a precise evaluation function and the high efficiency for
practical use. The core of the algorithm is a novel estimation
technique to speed up the influence evaluation by first con-
structing theoretically grounded sketches under the influence
diffusion model based on a Competitive Reverse Influence
Sampling (CRIS) strategy, and then estimating the influence
based on the constructed sketches. Based on the sketches, the
algorithm can avoid the time-consuming overhead of repeated
simulations for each specified seed set by employing the
same sketches for any influence evaluation. This is inspired
by the Reverse Influence Sampling (RIS) [27] which has
made significant progress for non-competitive influence max-
imization [28], [29]. However, existing RIS methods are not
applicable to CIM problems because of the ignorance of com-
petitive relationship and benefits among different competitors
in the sampling. Hence, the novel CRIS is proposed to solve
this problem. In particular, the sketches are finely structured
to consider the possible competing situations that may exist
among a seed set and other competitors, based on which
the influence evaluation can be transformed into a weighted
coverage problem. Indeed, we show that a statistic based on
CRIS is identical to the expectation of the influence, and
moreover, this statistic can be estimated accurately with certain
number of samplings using the Chernoff bound [30]. The
CRIS-based estimation is then integrated into the generalized
greedy algorithm [22] under the guidance of theoretical analy-
sis, and leads to the Competitive Reverse Influence Estimation-
based Greedy (CRIEG) algorithm.

Our contributions are summarized as follows.

1) A theoretically grounded influence estimation mecha-
nism is developed for CIM. It is a key to improving
the efficiency of algorithms. It also includes a tunable
parameter for users to control the balance between
running time and precision. Besides, this mechanism
extends the powerful RIS technology to a more general
case with competitive settings for influence estimation,
and thus may be of important interest to CIM.

2) An efficient and provable effective CIM algorithm is
proposed based on the above influence estimation. The
results show that with probability at least 1 − 1/n,
CRIEG can achieve an approximation ratio within ((1+
η)/(1 − η))-factor of the best existing ratio under the
competitive independent cascade model derived in the
setting with the precise influence function available [14],
where η ∈ [0, 1) indicates the relative estimation error of
CRIS estimation. Here, n, m, and l indicate the number
of nodes, edges and non-seed nodes of competitors,
respectively.

3) Experimental studies are carried out to examine the
proposed CRIEG in comparison to four state-of-the-art
methods. The results on eight real-world networks show

its high efficiency and effectiveness. In particular, on a
network with up to 1.13 million nodes, CRIEG is up
to five times better in solution quality and up to three
orders of magnitude faster.

The remainder of this paper is organized as follows. Section
II reviews related work. Section III presents the problem state-
ment and related notations. Section IV details the proposed
competitive reverse influence estimation method as well as the
CRIEG algorithm. The theoretical and experimental studies are
presented in Section V and Section VI, respectively. Section
VII finally concludes the paper.

II. RELATED WORK

With the immense application potential in competitive
scenarios, CIM has gradually become a research hotspot.
Bharathi et al. [20] and Carnes et al. [23] are among the
first to study CIM problems. Since then, a number of CIM
techniques have been developed. The special case of only two
opposite influences has been widely studied [17]–[19], [31],
but such assumption breaks down in many scenarios when
there are multiple competitors such as when promoting a new
production in the mobile phone market [32].

Therefore, existing research efforts have focused on CIM
with multiple competitors and devising efficient approximation
algorithms. Greedy algorithms are the primarily employed
problem-solving mechanism for seed selection with any in-
fluence evaluation function σ as they can provide relatively
high efficiency as well as a good theoretical guarantee towards
the global optimum [1], [21], compared with reinforcement
learning [33] or evolutionary algorithms [34]–[36] that require
a large number of costly iterations. Specifically, in each
iteration, one node v∗ is added into the candidate set Q, such
that v∗ provides the largest ratio of the marginal gain on the
influence function σ and the seed cost with respect to the
set Q. This selection process is repeated until the termination
condition is met. Particularly, it has been widely shown that
greedy algorithms can achieve state-of-the-art approximation
ratios for CIM problems under various diffusion models. The
most relevant work to ours is [14]. The greedy algorithm
provides the best approximation ratio of ln (f∗/(εc∗)) + 1
for CIM under the competitive independent cascade model,
where ε > 0, and f∗ and c∗ indicate the influence and cost of
the optimal solution, respectively. Nevertheless, such result is
derived when the influence is accurately evaluated, and thus
CIM is still challenging because of the computational hardness
in influence evaluation.

Simulation-based greedy and heuristic algorithms are the
two main techniques for processing the challenge posed by the
influence evaluation. The former employs Monte Carlo simula-
tions which rely on repeated random sampling to calculate the
expected number of influenced non-seed nodes for influence
evaluation [14]. Although such methods can achieve high so-
lution quality, they are computationally expensive as they ask
for a brand-new estimation which contains many simulations
(e.g., 1000 samplings commonly used in practice) for each
specified seed set. The latter avoids this expensive overhead
by simplifying CIM problems. However, the quality of their
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solutions could be worse or less robust to network structures
due to the neglect of the nonlinearity or completeness of the
competitive diffusion process [13], [24], [37], requirement of
priori knowledge of user behavior [16], [33], or excessive
dependency on geometric structure [38]. Du et al. [15] propose
an efficient greedy algorithm and further show that it can
scale well to large-scale networks. However, it is designed
for continuous-step diffusion networks and cannot be used in
discrete-step models, which are more commonly considered in
influence maximization [1]. Thus, it cannot be directly applied
to address our problem.

III. PROBLEM DEFINITION AND NOTATIONS

The problem of minimum cost seed selection for CIM under
the competitive independent cascade model is defined on a
directed graph G(V,E) and k competitors I1, . . . , Ik, where
Ij ⊆ V, j ∈ {1, . . . , k}, V and E represent the sets of nodes
and edges, respectively. A cost c(v) is associated with each
node v ∈ V , a propagation probability w(e) is associated with
each edge e(u, v) ∈ E to indicate the probability that node
u successfully activates node v through e, and an influence
threshold µ is predefined by users. The aim is to determine a
small set of nodes (called seeds) I0 ⊆ V to influence a large
number of non-seed nodes that exceeds the threshold µ, at
a minimal total cost when all competitors participate in the
influence spread, i.e.,

min
∑
v∈I0

c(v) s.t. σ(I0) ≥ µ, (1)

subject to the following competitive influence diffusion pro-
cess. The influence σ(I0) of competitor I0 is the expected
number of nodes that decided to accept the information from
I0 after the diffusion.

The influence spreads and competes as follows. There
are (k + 1) different competitors I0, . . . , Ik spreading their
influences on graph G, and their nodes are active nodes (called
seeds) used to initialize the influence diffusion. Suppose there
are a total of m seeds, each seed si is associated with a set
of competitors Ii which indicates that one seed may spread
multiple influences. The diffusion process begins with these
seeds and advances on the graph G in a cascade manner.
Specifically, in time 0, all non-seeds are inactive. Each seed
begins to spread the influences to its non-seed neighbor nodes,
and si successfully activates v via e(si, v) with the probability
w(e). At time t, every node v that successfully received some
influences from the nodes that was activated at time (t − 1)
becomes active, and intends to spread all influences it received
to its inactive neighbor nodes. At the same time, node v selects
one competitor to accept based on all influences it received,
and changes to the decided state. The acceptance rule is as
follows: denote Iv as the set of competitors that v has received
their influences, v becomes decided to any competitor I ∈ Iv
with equal probability 1/|Iv|. The diffusion process ends when
no more nodes become active.

Fig. 1 presents an example with seven nodes and four
competitors I0, I1, I2, I3. Assume that all propagation prob-
abilities in this graph are 1.0. The influence diffusion starts
from the seed set {s1, s2, s3} and each seed is activated with
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Fig. 1. An example network with seven nodes and four competitors. The
red (horizontal line) indicates I0 = {s2}, blue (oblique line) indicates I1 =
{s1, s3}, green (grid) indicates I2 = {s1, s3}, and yellow (vertical line)
indicates I3 = {s3}.

probability 1.0. At this time, s1 spreads the influences of I1, I2
to y1, y2; s2 spreads the influence of I0 to y1, y4; s3 spreads the
influences of I1, I2, I3 to y1. Next, y1, y2, y4 become active,
and thereafter enter the decided status. y4 decides from I0
with probability 1.0; y1 decides from I0, I1, I2, I3, each with
probability 1/4; y2 decides from I1, I2, each with probability
1/2. Afterwards, similarly, y4 spreads the influence of I0 to
y3; y2 spreads the influences of I1, I2 to y3. Then y3 becomes
active, and decides from I0, I1, I2, each with probability 1/3.
So far, the diffusion stops as there has been no potential active
nodes. Note that the seeds in |I0| always accept the information
from I0. Thus, the influence of I0 can be calculated by
σ(I0) = 1 + 1 + 1/4 + 1/3 = 31/12.

The information spread described above has been proved to
be a submodular and monotone set function [14]. This problem
has been proved to be NP-hard, and the evaluation of influence
spread, i.e., σ(·), is #P-hard [14].

IV. THE PROPOSED APPROACH

As mentioned above, although the CIM problem is com-
putationally complex, the greedy algorithm can produce near-
optimal solutions if the precise influence is available, and the
simulation-based greedy algorithm is shown to be provable
effective. However, the simulation-based greedy algorithm
suffers from a key drawback due to the high computational
overheads resulting from repeated costly Monte Carlo simula-
tions for each specified seed set. In order to circumvent such
difficulty, the CRIEG algorithm is proposed and described
in this section. It adopts a sampling first and seed selection
second manner to release the expensive computational over-
heads. The CRIEG involves two key design issues. The first
is how to perform the sampling efficiently on competitive
social networks, while ensuring a provable effectiveness for
the influence evaluation. The second is how to integrate the
proposed estimation method into the classic greedy algo-
rithm so that the resultant algorithm can provide non-trivial
approximation guarantees. In the following, the CRIS-based
estimation method and the CRIEG algorithm are presented
for the two issues, respectively.

A. Competitive Reverse Influence Estimation

The key idea of this method is to first construct a set of
representative sketches, and then estimate the influence for
any seed set based on the same constructed sketches. Thus, it
requires the sketches to comprehensively consider the possible
competing situations that may exist among a seed set and
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other competitors. The novel CRIS strategy is proposed for this
purpose. First, a set of sketches named random Competitive
Reverse Reachable (CRR) sets is defined and constructed
based on an analysis of three situations which represent
different competitive relationship and benefits. Second, based
on the set of random CRR sets, the influence evaluation is
equivalently transformed into a weighted coverage calculation
through theoretical derivation. In the following, to explain
how the competitive reverse influence estimation works, the
CRR sets is introduced first, and then the transformation is
described.

Definition 1 A CRR set contains two parts, a competitive
subset B and a competitive-free subset D, which are generated
from G by 1) selecting a node u from V uniformly at random;
2) generating a sample graph g from G by removing each edge
e in G with probability 1−ω(e); 3) defining the length of the
directed path from v to u in g as the arriving time of v, for
each v ∈ V ; 4) returning Dg(u) as the set of nodes arriving
earlier than all nodes in H; 5) returning Bg(u) as the union
of the following two sets: one is the set of nodes in H arriving
first, and the other is the set of nodes in H arriving at the
same time, where H =

⋃k
j=1 Ij and H = V \H .

An intuitive way to understand Definition 1 is as follows.
Given a number of random CRR sets, the following three cases
are considered. If a certain node v ∈ V appears frequently in
D, then v is likely a good candidate for the most influential
node, as it arrives earlier than the competitor. In this case, if
a new competitor selects v as a seed node, it is likely to win
the competition. This is also the reason why D is called the
competitive-free subset. If v appears frequently in B, then it
can also be of good potential by competing with competitors,
and thus a new competitor involving this node would be
competitive. The node activated in this case will select a
competitor uniformly at random. Thus, B is named as the
competitive subset. Otherwise, the influence spread of v might
be trivial as the competitor can be more competitive. The
influence spread of a competitor can be derived by combining
the above three cases.

Taking the social network in Fig. 1 as an example, the
sample graph g contains all nodes and edges, as the prop-
agation probabilities are set to 1.0 in this example. Here
H = {s1, s3}. Assume that y3 is selected, the length of
the directed path from nodes y2, y4 to y3 is 1, and the
length from nodes s1, y1, s2 to y3 is 2 in the graph g. As
{y2, y3, y4} ∩H = ∅ and {s1, y1, s2} ∩H 6= ∅, it holds that
Dg(y3) = {y2, y3, y4} and Bg(y3) = {s1, y1, s2}. Similarly,
Dg(y1) = {y1}, Bg(y1) = {s1, s2, s3}; Dg(y2) = {y2},
Bg(y2) = {s1}; Dg(y4) = {y1, s2, y4}, Bg(y4) = {s1, s3};
Dg(s2) = {s2}, Bg(s2) = ∅. Given I0, since I0∩Dg(y4) 6= ∅,
y4 is activated by I0 with probability 1; I0 ∩ Bg(y1) 6= ∅,
and I1 ∩ Bg(y1) 6= ∅, I2 ∩ Bg(y1) 6= ∅, I3 ∩ Bg(y1) 6= ∅,
thereby y1 is activated with probability 1/4; I0 ∩Bg(y2) = ∅,
thereby y2 is activated with probability 0; I0 ∩ Bg(y3) 6= ∅,
and I1 ∩ Bg(y3) 6= ∅, I2 ∩ Bg(y3) 6= ∅, y3 is activated with
probability 1/3; I0 ∩Dg(s2) 6= ∅, thereby s2 is activated with
probability 1; in addition, as I0 ∩H = ∅, the influence spread
σ(I0) = 1 + 1/4 + 0 + 1/3 + 1 + 0 = 31/12, and it can be

seen that the influence computed by the competitive reverse
influence estimation equals to that obtained in Section III.

As shown above, to compute the influence spread of a set
I0, its influence on a node u is first computed given a graph g
randomly drawn from G; then, a summation over all u ∈ H is
taken when computing the influence of I0 for a given g, from
which an expectation over the distribution of g plus |I0 ∩H|
is further taken to get σ(I0). This process is formally stated in
the following theorem. In Theorem 3, it will be shown that an
empirical average based on a number of randomly generated g
can provide a bounded approximation guarantee for the precise
influence σ(I0) and this approximation scheme will be adopted
in CRIEG.

For an event Ω, let [Ω] be the indicator function, i.e., if
Ω is true, [Ω] = 1; otherwise, [Ω] = 0. Denote | · | as the
cardinality of a set.

Theorem 1 The random competitive and competitive-free
subsets are generated based on H , as presented in Defini-
tion 1. For any I , Ĩ ⊆ V , let Z(I, Ĩ) = [I ∩ Ĩ = ∅] and
Z(I, Ĩ) = [I ∩ Ĩ 6= ∅]. For any new competitor I0 ⊆ V ,

σ(I0) =|I0 ∩H|+
∑
u∈H

Eg
(
Z(I0, Dg(u))

+
Z(I0, Dg(u))Z(I0, Bg(u))∑k

j=1 Z(Ij , Bg(u)) + Z(I0, Bg(u))

)
. (2)

Proof Let S =
k⋃
j=0

Ij = I0
⋃
H . Denote Lg(Ij) as the set

of nodes that can be firstly reachable by a node v ∈ Ij , j ∈
{0, 1, . . . , k}, Pg(u) as the set of competitors I that can first
reach the node u, where I ∈ {I0, . . . , Ik}, and Ag(u) as the
set of nodes v that can first reach the node u, where v ∈ S.

By the definition of σ,

σ(I0) = |I0|+
∑

u∈V \S

Eg

(
[u ∈ Lg(I0)]∑k
j=0 [u ∈ Lg(Ij)]

)
(3)

= |I0|+
∑

u∈V \S

Eg

(
[I0 ∈ Pg(u)]∑k
j=0 [Ij ∈ Pg(u)]

)

= |I0|+
∑

u∈V \S

Eg

(
[I0 ∩Ag(u) 6= ∅]∑k
j=0 [Ij ∩Ag(u) 6= ∅]

)
,

where 1/(
∑k
j=0 [u ∈ Lg(Ij)]) = 0 if

∑k
j=0 [u∈Lg(Ij)] = 0.

• If I0∩Dg(u) 6= ∅, then Ag(u) ⊆ I0∩Dg(u). In this case,
I0 ∩Ag(u) 6= ∅ and ∀j ∈ {1, . . . , k}, Ij ∩Ag(u) = ∅.

• Otherwise, Ag(u) = S ∩ Bg(u) = {I0 ∪ H} ∩ Bg(u).
In this case, [I0 ∩ Ag(u) 6= ∅] = [I0 ∩ Bg(u) 6= ∅], and
∀j ∈ {1, . . . , k}, [Ij ∩Ag(u) 6= ∅] = [Ij ∩Bg(u) 6= ∅].

Thus, it holds that σ(I0) = |I0| +
∑
u∈V \S Eg(f1 +

f2), where f1 = Z(I0, Dg(u)) and f2 = Z(I0, Dg(u)) ·
Z(I0,Bg(u))

Z(I0,Bg(u))+
∑k

j=1 Z(Ij ,Bg(u))
. As V \S = I0 ∪H , we have

σ(I0) = |I0|+
∑

u∈I0∩H

Eg(f1 + f2).

Considering u ∈ H\(I0 ∩ H) = I0 ∩ H , we have I0 ∩
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Dg(u) 6= ∅. Thus, it holds that

σ(I0) = |I0| − |I0 ∩H|+
∑
u∈H

Eg(f1 + f2)

= |I0 ∩H|+
∑
u∈H

Eg(f1 + f2),

i.e., the theorem holds. �

B. The CRIEG Algorithm
To solve the resultant problem using the competitive reverse

influence estimation, the generalized greedy algorithm for
submodular set cover [22] is employed. It is a natural approach
for seed selection with any influence evaluation function
σ(·). In our concerned problem, the calculation of exact σ
is proved to be #P-hard [14], and thus, only an estimation
function σ̂(·) rather than the exact σ can be obtained. In the
CRIEG algorithm, the competitive reverse influence estimation
is adopted for the computation of σ̂. Specifically, it first
iteratively generates a number R of random CRR sets with
corresponding competitive and competitive-free subsets, then
sets Q to an empty set, and after that, the node v∗ with the
largest ratio of the marginal gain on the influence function σ̂
and the seed cost is added to Q iteratively. In this process,
the influence spread value σ̂(Q) is calculated as Eq. (2) by
the average of the R samples for any candidate seed set
Q. The parameter R is a tunable parameter for users to
control the balance between running time and precision. Their
relationship will be made clear in the following theoretical
analysis in Section V. It will also be shown that by using
the novel estimation σ̂, CRIEG can avoid the time-consuming
overhead of repeated simulations for each specified seed set
by employing the same CRR sets for any influence evaluation,
but still providing approximation guarantees.

The details of CRIEG are presented in Algorithm 1. At a
high level, it consists of two phases:
• Competitive reverse influence sampling (lines 1–2);
• Seed node selection (lines 3–7).

Algorithm 1: CRIEG
Input: Graph G, seeds in competitors H , influence

threshold µ
Parameter: Sample size R
Output: A seed set Q

1 Generate a number R of random CRR sets from G;
2 Q← ∅;
3 while σ̂(Q) < µ do
4 /* σ̂(·) is calculated as Eq. (2) by the average of the R sets */
5 v∗ ← argmaxv∈V \Q

σ̂(Q∪{v})−σ̂(Q)
c(v)

;
6 Q← Q ∪ {v∗}
7 end
8 return Q

V. THEORETICAL STUDIES

In this section, we theoretically analyze the performance of
CRIEG. Based on an analysis of the estimation error between

σ and σ̂, the general approximation guarantee of CRIEG is first
proved. Next, the relationship between the estimation error and
the number R of samples is provided. Combining these two
points, the approximation guarantee of CRIEG depending on
R is obtained.

A. Approximation Guarantee

We now provide theoretical guarantees of CRIEG in The-
orem 2 given that σ̂ is a good estimation of σ quantified by
Eq. (4).

For any I ⊆ V and s ∈ V , denote p(I, s) = σ(I ∪ {s})−
σ(I) and p̂(I, s) = σ̂(I ∪ {s}) − σ̂(I); that is, p(I, s) and
p̂(I, s) denote the true and estimated marginal gain by adding
s into I , respectively. Assume

|p̂(I, s)− p(I, s)| ≤ ηp(I, s), (4)

where η is a real number in [0, 1) that indicates the relative
estimation error.

The proof of Theorem 2 employs the standard analysis of
the greedy algorithm, as in [14], [22]. The following lemma
justifies the rationale of CRIEG by showing that an inclusion
of a greedily selected node can improve σ by at least a
quantity proportional to the deficiency of the current iteration
in terms of σ, with the proportion depending on the error of
approximating the influence function by its empirical average.

Let vj be the node selected by CRIEG in the j-th iteration
and Qj = {v1, . . . , vj}, and let h be the total number of
iterations executed by CRIEG. For any set I ⊆ V we denote
c(I) =

∑
v∈I c(v).

Lemma 1 For any j ∈ {1, . . . , h}, we have

σ(Qj)− σ(Qj−1)

c(vj)
≥ 1− η

1 + η

σ(Q∗)− σ(Qj−1)

c(Q∗)
, (5)

where
Q∗ = arg minI⊆V : σ(I)≥µ/(1−η)c(I). (6)

To derive approximation guarantees of CRIEG, we still
need a lemma to give a general bound on c(Q) with Q =
{v1, . . . , vh} provided an auxiliary sequence {qj}j=1,...,h sat-
isfying Eqs. (7) and (8) can be built.

Lemma 2 Let {qj}j=0,...,l be a decreasing sequence of num-
bers with q0 ≥ ε · c(Q∗), ε > 0 and ql ≤ 0. If for any
j ∈ {1, . . . , l}, it holds that

qj ≤
(

1− 1− η
1 + η

c(vj)

c(Q∗)

)
qj−1 (7)

and

c(vj) ≤ qj−1 − qj

ε
, (8)

then

c(Q) ≤
(

1 + η

1− η
ln

q0

ε · c(Q∗)
+ 1

)
c(Q∗)− ε−1ql.

Now we present our main result in Theorem 2, showing
the bi-criteria approximation guarantee of CRIEG. The proof
is accomplished by applying Lemma 2. The conditions, i.e.,
Eqs. (7) and (8), of Lemma 2 can be verified using Lemma 1
and σ(Qj) − σ(Qj−1) ≥ εc(vj). The detailed proofs are
provided in Appendix due to space limitations.
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Theorem 2 Assume σ(Q∗) ≥ ε · c(Q∗), ε > 0, ∀j : σ(Qj)−
σ(Qj−1) ≥ εc(vj), and Eq. (4) holds. CRIEG returns a
solution Q with σ(Q) ≥ µ/(1 + η) and

c(Q) ≤
(

1 + η

1− η
max

{
ln

min{σ(Q∗), σ(Q)}
ε · c(Q∗)

, 0

}
+1

)
c(Q∗)

+ min

{
max{0, σ(Q)− σ(Q∗)}

ε
, c(vh)

}
. (9)

The existing best approximation ratio for the greedy al-
gorithm with the precise influence function available is
ln σ(Q∗)

ε·c(Q∗) + 1 [14], which is extended in our discussion to the
case with the function σ approximated by its empirical average
σ̂, i.e., from η = 0 to η ∈ [0, 1). Thus, the approximation
ratio in Theorem 2 is within a ((1 + η)/(1 − η))-factor of
the best existing ratio in [14] if ignoring the last term in
Eq. (9), which vanishes if σ(Q) ≤ σ(Q∗). For the case
σ(Q) > σ(Q∗), this additional term on the cost is reasonable
since the algorithm returns a solution with larger influence.
Fortunately, this additional term can be upper bounded by
c(vh) which can be much smaller than c(Q).

B. Competitive Reverse Influence Estimation Error

In this subsection, we aim to show that Eq. (4) holds with
a high probability if a sufficient number of random CRR sets
is taken. Our basic idea is to show that the function p(I, s)−
p̂(I, s) is the expectation of a random variable minus a sample
average of the variable, which allows us to apply the Chernoff
bound to derive a probabilistic bound on |p(I, s) − p̂(I, s)|.
This further quantifies the number of random CRR required
to meet the criteria of Theorem 2.

For any graph g and any I ⊆ V , denote

Xg(I) =
∑
u∈H

(
Z(I,Dg(u))

+
Z(I,Dg(u))Z(I,Bg(u))∑k

j=1 Z(Ij , Bg(u)) + Z(I,Bg(u))

)
.

According to Eq. (2), we have

σ(I ∪ {s})− σ(I) =|(I ∪ {s}) ∩H|+ E(Xg(I ∪ {s}))
− |I ∩H| − E(Xg(I)).

For any graph g, u ∈ V and I ⊂ V , denote

Xg,u(I) = Z(I,Dg(u))+
Z(I,Dg(u))Z(I,Bg(u))∑k

j=1 Z(Ij , Bg(u)) + Z(I,Bg(u))
.

The following lemma will be used to show that the random
variables involved in the reformulation of p(I, s)− p̂(I, s) are
non-negative and bounded.

Lemma 3 For any graph g, u ∈ V and I ⊆ V , Xg,u(I ∪
{s})−Xg,u(I) ∈ [0, 1], i.e.,

Z(I ∪ {s}, Dg(u))− Z(I,Dg(u))

+
Z(I ∪ {s}, Dg(u))Z(I ∪ {s}, Bg(u))∑k
j=1 Z(Ij , Bg(u)) + Z(I ∪ {s}, Bg(u))

− Z(I,Dg(u))Z(I,Bg(u))∑k
j=1 Z(Ij , Bg(u)) + Z(I,Bg(u))

∈ [0, 1].

Proof Three cases are considered as follows.
• If I ∩Dg(u) 6= ∅, it is Xg,u(I ∪ {s})−Xg,u(I) = 0.
• If I∩Dg(u) = ∅ and I∩Bg(u) = ∅, we have Xg,u(I) = 0

and thus Xg,u(I ∪ {s})−Xg,u(I) ∈ [0, 1].
• If I∩Dg(u) = ∅ and I∩Bg(u) 6= ∅, we have (I∪{s})∩
Bg(u) 6= ∅ and thus

Xg,u(I) =
1∑k

j=1 Z(Ij , Bg(u)) + 1
.

We further distinguish two subcases by considering
whether the set (I ∪ {s}) ∩Dg(u) is empty or not.

– If (I ∪ {s}) ∩Dg(u) 6= ∅, we have

Xg,u(I ∪ {s})−Xg,u(I)

= 1− 1∑k
j=1 Z(Ij , Bg(u)) + 1

∈ [0, 1].

– If (I ∪ {s}) ∩Dg(u) = ∅, we have

Xg,u(I ∪ {s}) =
1∑k

j=1 Z(Ij , Bg(u)) + 1
,

leading to Xg,u(I ∪ {s})−Xg,u(I) = 0.
Combining the above three cases, the lemma holds. �

Lemma 4 (Chernoff bound [30]) Let X1, . . . , XR be inde-
pendent random variables in [0, b] and X =

∑R
i=1Xi/R, then

for any η ∈ [0, 1), it holds that

Pr
{
|E(X)−X| ≥ ηE(X)

}
≤ 2 exp

(
−Rη

2E(X)

3b

)
.

Now we give a probabilistic bound on |p(I, s)− p̂(I, s)|.

Theorem 3 If I ⊆ V and s 6∈ I , then for any η ∈ [0, 1), it
holds that

Pr {|p(I, s)− p̂(I, s)| ≥ ηp(I, s)} ≤ 2 exp

(
− Rη2

3(|H|+ 1)

)
.

(10)

Proof Let g1, . . . , gR be independent samples of graphs. Thus,

p(I, s) =σ(I ∪ {s})− σ(I);

p̂(I, s) =
1

R

R∑
i=1

(
|(I ∪ {s}) ∩H|+Xgi(I ∪ {s})

− |I ∩H| −Xgi(I)
)
.

We define the random variable

Xg(I, s) = |(I ∪{s})∩H|+Xg(I ∪{s})−|I ∩H| −Xg(I),

where the graph g is generated by step 2) in Definition 1,
i.e., by sampling from G by removing each edge e in G with
probability 1−ω(e). Thus, p(I, s)− p̂(I, s) can be written as
follows:

p(I, s)− p̂(I, s) = Eg (Xg(I, s))−
1

R

R∑
i=1

Xgi(I, s).
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According to Lemma 3, it holds that

0 ≤ Xg(I, s) ≤ 1 +Xg(I ∪ {s})−Xg(I)

= 1+
∑
u∈H

(Xg,u(I∪{s})−Xg,u(I)) ≤ 1+|H|.

It then follows from the Chernoff bound in Lemma 4 that

Pr {|p(I, s)− p̂(I, s)| ≥ ηp(I, s)} ≤ 2 exp

(
−Rη

2p(I, s)

3(|H|+ 1)

)
.

(11)

Since s 6∈ I , by Eq. (3), we have
σ(I ∪ {s})− σ(I) = |I ∪ {s}| − |I|

+
∑
u∈S

Eg
(

[u ∈ Lg(I ∪ {s})]∑k
j=1[u ∈ Lg(Ij)] + [u ∈ Lg(I ∪ {s})]

− [u ∈ Lg(I)]∑k
j=1[u ∈ Lg(Ij)] + [u ∈ Lg(I)]

)
= 1 +

∑
u∈S

Eg (Xg,u(I, s)) , (12)

where

Xg,u(I, s) =
[u ∈ Lg(I ∪ {s})]∑k

j=1[u ∈ Lg(Ij)] + [u ∈ Lg(I ∪ {s})]

− [u ∈ Lg(I)]∑k
j=1[u ∈ Lg(Ij)] + [u ∈ Lg(I)]

.

Let u be any element in H .
• If either u ∈ Lg(I) or u 6∈ Lg(I ∪ {s}), Xg,u(I, s) = 0.
• Otherwise, we have

Xg,u(I, s) =
1∑k

j=1[u ∈ Lg(Ij)] + 1
≥ 1

1 + k
.

Combining the above cases together and using Eq. (12), it can
be derived that σ(I ∪ {s})− σ(I) ≥ 1, and thus p(I, s) ≥ 1.

Plugging p(I, s) ≥ 1 back into Eq. (11) yields the stated
inequality Eq. (10). Thus, the theorem holds. �

Combining Theorems 2 and 3, the approximation guarantee
of CRIEG can be obtained, depending on the estimation error,
σ(Q), σ(Q∗) and ε.

Theorem 4 Suppose the number R of random CRR sets
satisfies R ≥ 3η−2(|H|+1)(3 ln(n)+ln 2), with probability at
least 1−1/n, CRIEG returns a solution with σ(Q) ≥ µ/(1+η)
and

c(Q) ≤
(

1 + η

1− η
max

{
ln

min{σ(Q∗), σ(Q)}
ε · c(Q∗)

, 0

}
+1

)
c(Q∗)

+ min

{
max{0, σ(Q)− σ(Q∗)}

ε
, c(vh)

}
.

VI. EMPIRICAL STUDIES

In this section, experimental studies are conducted on eight
real-world data sets to examine the actual performance of
CRIEG empirically. The proposed CRIEG is compared with
state-of-the-art algorithms from the two categories, i.e., the
greedy algorithm based on Monte Carlo simulations that
also provides performance guarantees [14], and three efficient

TABLE I
DATASET STATISTICS

Dataset #Node #Edge 90PED
p2p-Gnutella08 6,301 20,777 5.5

eva 7,253 6,726 5.2
CA-AstroPh 18,772 396,220 5.0

p2p-Gnutella24 26,518 65,369 6.1
Slashdot0902 82,168 948,464 4.7

com-dblp 317,080 1,049,866 8.0
Amazon0312 400,727 3,200,440 7.6
com-youtube 1,134,890 2,987,624 6.5

heuristic methods, i.e., the Linear-combination Single-hop
Spread (LSS) based greedy algorithm [14], Greedy++ [16],
and the Dominated Competitive Influence Maximization with
Cost-Effective Lazy-Forward (DCIM-CELF) [18].

The experiments aim at illustrating the performance from
three aspects: 1) its solution quality in terms of the seed
set cost when satisfying the influence threshold constraint;
2) its practical efficiency in terms of the computation time;
3) its sensitivity to different network characteristics including
propagation probabilities as well as connection ratios.

A. Experimental Settings

The experiments are conducted on a machine with dual
Intel Xeon 2.2GHz CPUs and 128GB of RAM. All algorithms
tested are implemented in C++ and complied by the GNU C++
Compiler with the version of 4.8.5.

1) Datasets: A set of eight real-world datasets from the
famous SNAP and Pajek Datasets [39], [40] is tested. These
datasets are selected from various disciplines so that different
network structures can be integrated into account. Among
them, p2p-Gnutella08 is collected from the Gnutella peer-
to-peer file sharing network from August 8 2002, and p2p-
Gnutella24 is collected similarly. The data set eva is collected
from a multidisciplinary research project combining informa-
tion extraction, information visualization, and social network
analysis techniques to bring greater transparency to the public
disclosure of inter-relationships between corporations. The
CA-AstroPh is collected from the e-print arXiv and covers
scientific collaborations between authors in the Astro Physics
category. Slashdot0902 is collected from Slashdot Zoo social
network from February 2009. com-dblp is collect from the co-
authorship network where two authors are connected if they
publish at least one paper together in a computer science
bibliography named DBLP. Amazon0312 is collected from
the Amazon product co-purchasing network from March 12
2003. The data set com-youtube is collected from the video-
sharing social network of YouTube on January 15th, 2007.
On the other hand, to test the scalability of the algorithms and
examine their performance as the number of nodes increases,
the number of nodes is considered and it ranges from 7,253
to 1,134,890. In addition, the connection ratios of the datasets
in terms of the 90-Percentile Effective Diameter (referred to
as 90PED) [39] are also considered. Table I summarizes the
statistics of the tested networks.

2) Problem settings: The number of other competitors is set
to two. Thus, there are three competitors in the experiments.
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For generating other competitors, we follow the computation
in [14], and assign 15 nodes with maximum out-degree to
the two competitors in turn. The cost of choosing a seed is
uniformly set to 1, i.e., ∀v ∈ V, c(v) = 1. For computing
the edge propagation probabilities, the conventional weighted
cascade model [41] is adopted. The probability of an edge
e = (u, v) is set to ω(e) = 1/d(v), where d(v) indicates
the in-degree of v. In addition, the propagation probabilities
randomly generated within [0, 1] are also tested.

3) Algorithms and Parameter Settings: Four state-of-the-
art algorithms in terms of solution quality or efficiency are
compared in the experiments. The first one is the Monte Carlo
simulation-based algorithm (referred to as MC-Greedy) [14].
As mentioned above, such algorithm can produce solutions
with non-trivial approximation guarantees. Hence, the MC-
Greedy provides a near-optimal reference for the solution
quality. The second is the heuristic LSS [14]. To the best of
our knowledge, it is the previously best in terms of efficiency
under the competitive independent cascade model, and thus it
can be used to verify the efficiency of CRIEG. Two recent
heuristics, i.e., Greedy++ [16] and DCIM-CELF [18], are also
tested under the competitive independent cascade model in
the experiments. For the parameters defined for the compared
algorithms, the recommended values in their corresponding
papers are used if available. In particular, when Monte Carlo
simulation is needed, 1,000 independent runs are conducted
and the average is returned. In LSS, the number of potential
nodes specifies the number of high-degree nodes that are
considered only when selecting seeds. As this value is not
specified by its authors, it is set to half of the number of
nodes to make a trade-off between computational load and
solution quality. In CRIEG, the sample size R of CRR sets
is set to 106 to examine its empirical performance on real-
world datasets. The impact of the value of R is also analyzed
in the experiments. Each method is repeated 10 times and the
average results are reported. The running time of each method
in a run is also limited to be within 48 hours.

B. Experimental Results

In this subsection, the performance of CRIEG is examined
in terms of efficiency as well as the quality of the obtained
seed set. Specifically, we first examine how increasing the
scale of the tested graph affects the performance of CRIEG
and the compared algorithms, and show the advantages of
CRIEG in both efficiency and the quality of the obtained
seed set. Second, the effects of propagation probabilities and
connection ratios are examined and analyzed for more in-depth
understanding. Third, the effect of the sample size R on the
performance of CRIEG is examined, demonstrating that it can
be more efficient in practice than in theory.

1) Solution Quality and Running Time: The results of the
seed set cost and computational running time obtained by MC-
Greedy, LSS and CRIEG when using weighted propagation
probabilites are shown in Figs. 2–4 and those obtained using
random probabilities are shown in Figs. 5–6. The results
of Greedy++ and DCIM-CELF are shown in Fig. 7. In
particular, as Greedy++ and DCIM-CELF cannot provide

influence guarantees since they do not examine whether the
influence exceeds predefined thresholds, they are compared
by specifying the seed cost in advance.

Generally, it can be observed that CRIEG is always among
the best algorithms in seed cost, and exhibits a good scalability
to large-scale graphs with high efficiency. As shown in Fig. 2,
CRIEG is up to two orders of magnitude faster than MC-
Greedy, while still achieving competitive seed set cost. The
results in Fig. 4 further show that CRIEG can scale beyond
million-sized graphs where MC-Greedy becomes infeasible
due to prohibitive computation overheads. For example, when
applied to p2p-Gnutella08, MC-Greedy needs more than 40
hours to achieve the influence threshold 800, whereas CRIEG
needs less than five minutes.

On the other hand, CRIEG not only consistently outper-
forms LSS in terms of the solution quality (i.e., seed cost),
but also scales better to large-scale networks in terms of
the running time. As shown in Fig. 4 and Fig. 6, although
CRIEG needs more time on small-scale networks than LSS,
its advantages emerge with the increasing network size, which
is partly because of the tradeoff mechanism between running
time and solution quality. Specifically, LSS adopts a fast but
coarse method for estimating the influence when selecting the
next seed in each iteration, thus its speed can be fast in this
period. However, in order to achieve a better tradeoff, LSS also
adopts the costly Monte Carlo simulations for the influence
validation for each selected candidate set. While this allows
LSS to provide a good tradeoff between solution quality and
running time on small-scale networks, its performance may
deteriorate rapidly as the network size increases, since more
nodes are then needed to satisfy the influence constraint due to
the coarse estimation. In contrast, CRIEG needs fewer nodes
to satisfy the influence constraint thanks to the more precise
estimation. Take a look at the com-youtube, which has 1.13
million nodes and 2.99 million edges, LSS needs more than 30
hours to return a solution with the influence exceeding 10,000,
whereas CRIEG returns a better solution within 15 seconds.

As compared to Greedy++ and DCIM-CELF, the results in
Fig. 7 indicate that CRIEG always achieves larger influence
for the same seed cost. Besides, unlike the inefficiency of the
two algorithms when faced with large-scale networks due to
prohibitive computation overheads, CRIEG can scale beyond
million-sized networks, as shown in Figs. 3–6. Thus, it is
shown that CRIEG is not only provable effective, but also
presents an empirical efficiency.

In the following, to gain an in-depth understanding of the
performance, the effects of different network sizes are further
analyzed in detail. For the relatively small-scale graphs, i.e.,
p2p-Gnutella08 and eva, where MC-Greedy is feasible to run,
the seed cost results in Fig. 2 show that CRIEG and MC-
Greedy consistently achieve similar results. These results are
consistent with the theoretical analysis in Section IV-A that the
competitive reverse influence estimation can precisely measure
the expectation of competitive influence. Besides, it can be
found that the running time of MC-Greedy is much higher than
that of CRIEG, implying that most of the repeated samplings
for estimating the expected spread of each potential node sets
of MC-Greedy might be wasting. Hence, by sharing the results
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Fig. 2. Performance Comparison of MC-Greedy, LSS and CRIEG in terms of cost minimization and running time. Note that, as the MC-Greedy cannot
produce a solution that satisfies the influence threshold within the time allowed, i.e., 48 hours, on large-scale networks, only the cases where it finds the
solution are presented.
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Fig. 3. Seed cost of LSS and CRIEG. MC-Greedy is omitted here since it cannot find a solution due to prohibitive computation overheads. The thresholds
examined are also restricted for the same reason and thus there are fewer points on the outcome curves of networks with larger scales.
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Fig. 4. Running time of LSS and CRIEG. MC-Greedy is omitted here since it cannot find a solution due to prohibitive computation overheads. The thresholds
examined are also restricted for the same reason and thus there are fewer points on the outcome curves of networks with larger scales.

600 800 1000 1200 1400

threshold

5

10

15

20

se
ed

 c
o

st

p2p-Gnutella08

LSS

CRIEG

600 800 1000 1200 1400

threshold

20

40

60

s
e
e
d

 c
o

s
t

eva

LSS

CRIEG

4000 5000 6000 7000 8000

threshold

5

10

15

20

s
e
e
d

 c
o

s
t

CA-AstroPh

LSS

CRIEG

4000 5000 6000 7000 8000

threshold

20

40

se
ed

 c
o

st

p2p-Gnutella24

LSS

CRIEG

1.4 1.5 1.6 1.7 1.8

threshold ×10
4

4

6

8

s
e
e
d

 c
o

s
t

Slashdot0902

LSS

CRIEG

4 4.5 5 5.5 6

threshold ×10
4

2
4
6
8

10

se
ed

 c
o

st

com-dblp

LSS

CRIEG

Fig. 5. Seed cost of LSS and CRIEG when using random propagation
probabilities. MC-Greedy is omitted here since it cannot find a solution due
to prohibitive computation overheads. For the same reason, two large-scale
datasets are omitted here, and the thresholds examined are restricted and thus
there are fewer points on the outcome curves of networks with larger scales.

of Monte Carlo simulations, the reverse sampling technology
can be more efficient, as already demonstrated in the special
case when the number of competitors is one [1], [27]. This
indicates that the competitive reverse influence estimation can
be a good option for estimating competitive influence. On the
other hand, although LSS performs best in running time on the
small-scale graphs, its seed cost is worse than both CRIEG and
MC-Greedy, verifying that the single-hop linear-combination
estimation of LSS compromises the accuracy of competitive
influence severely.

For the moderate sized graphs, i.e., CA-AstroPh, p2p-
Gnutella24, Slashdot0902, as MC-Greedy incurs prohibitive
computation overheads and cannot be run out within 48 hours,
it is omitted from Figs. 3–4. It can be observed that LSS still
performs worse than CRIEG in terms of the solution quality,
consistent with LSS’s main idea of trading performance guar-
antees for practical efficiency. However, unlike the fast running
on the small-scale graphs, the efficiency of LSS deteriorates
rapidly as the scale of graphs increases. In fact, LSS becomes
slightly worse than CRIEG when applied to p2p-Gnutella24
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Fig. 6. Running time of LSS and CRIEG when using random propagation
probabilities. MC-Greedy is omitted here since it cannot find a solution due
to prohibitive computation overheads. For the same reason, two large-scale
datasets are omitted here, and the thresholds examined are restricted and thus
there are fewer points on the outcome curves of networks with larger scales.

Fig. 7. Influence spread of Greedy++ (left), DCIM-CELF (right) and CRIEG.
Due to prohibitive computation overheads, the number of seed size is set to
5 for Greedy++ and 3 for DCIM-CELF. The top are the results using the
weighted cascade model and the bottom are results using random probabilities.

and Slashdot0902 with a relatively large threshold. Yet, this
is not surprising, as LSS uses Monte Carlo simulations as the
stopping criterion for each iteration to alleviate the inaccurate
estimation of the heuristic mechanism. Since Monte Carlo
simulation is time consuming, especially when the scale of
a graph increases, LSS requires more time in each iteration,
leading to a deterioration in efficiency. For graphs with larger
scale, this issue becomes more severe, and further erodes the
efficiency of LSS.

For the large-scale graphs, i.e., com-dblp, Amazon0312 and
com-youtube, CRIEG consistently achieves better performance
in terms of both the solution quality and running time than
LSS. Further taking into account MC-Greedy, which is omitted
due to prohibitive computation overheads, these results suggest
that CRIEG scales best to the large-scale graphs. Note that
the graph com-youtube, which has 1.13 million nodes and
2.99 million edges, is the largest dataset ever used for the
competitive independent cascade model in the literature. The

results on com-youtube show that our algorithm can efficiently
handle graphs with millions of nodes and edges, and also
verify the efficiency of the RIS mechanism in a competitive
environment.

2) Sensitivity analyses with respect to network character-
istics: In addition to network sizes, propagation probabilities
and connection ratios are two important aspects of networks
which affect the intensity and depth of a diffusion process. In
the following, their effects are analyzed respectively.

For propagation probabilities, two models have been ex-
amined, i.e., the weighted cascade model that assigns the
probability of an edge (u, v) to 1/d(v), where d(v) indicates
the in-degree of v, and one that generates probabilities within
[0, 1] uniformly at random. It is worth noting that the latter
is more likely to have a higher probability of activating a
node when examined on real-world networks, since they are
more likely to consist of nodes with large in-degree due to
complex interactions. Indeed, the results in Figs. 3–7 suggest
that larger probabilities are more likely to lead to a larger
influence given seed sets with the same seed cost, which
might result in more running time. For example, as shown
in Fig. 4 and Fig. 6, when examined on p2p-Gnutella08 with
seed cost 8, the running time of CRIEG is about 479s under
the weighted cascade model, but more than 1000s when using
random propagation probabilities. On the other hand, when
compared with LSS, as CRIEG relies on CRR sets sampled
from networks and LSS adopts a heuristic, the running time of
CRIEG can be more affected by the increasing of propagation
probabilities than LSS. In spite of that, the advantages of
CRIEG still emerge with the increasing network size under
the random propagation probabilities, as that shown under the
weighted cascade model. It is shown by com-dblp in Fig. 4
and Fig. 6 that CRIEG consistently outperforms LSS under
the two probability models in terms of the solution quality.

For connection ratios, the 90PED which measures the 90-
th percentile of undirected shortest path length distribution
(sampled over 1,000 random nodes) [39] is adopted. The
90PED values of the examined graphs are summarized in
Table I. In general, the results suggest that this network
statistic can have an important effect on the running time
of CRIEG as well as the compared LSS. As for CRIEG,
a larger 90PED is more likely to result in sampling deeper
diffusion paths, thus leading to more running time. As for
LSS, although its diffusion paths are almost unaffected since
it simplifies the diffusion process by only considering a few
hops of the diffusion paths, its running time is also likely to
increase rapidly with the increase of 90PED. This is because
its estimate would become farther from the precise influence
and thus may need more iterations to select more seeds. Thus,
it is more likely that the running time of LSS would exceed
that of CRIEG on graphs with larger 90PED. On the other
hand, CRIEG consistently outperforms LSS on seed cost and
the improvement is likely to increase with 90PED.

3) Varying sample size R: The number of CRR sets R is
a tunable parameter in achieving a balance between efficiency
and accuracy for CRIEG. According to the theoretical analysis
in Section V, CRIEG requires the number R of CRR sets to
be 3η−2(|H| + 1)(3 ln(n) + ln 2), as shown in Theorem 4.
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Fig. 8. Seed cost and running time for varying R. The dashed line indicates
that the points on it fail to meet the corresponding threshold constraint
on the horizontal axis. Besides, some curves are truncated here since the
corresponding algorithm cannot find a solution due to prohibitive computation
overheads.

Since this is a theoretical upper bound with worst-case quality
guarantees, the value of R that makes CRIEG an empirically
good balance between efficiency and accuracy is studied in
this part.

Two datasets with different scales are used in this exper-
iment, i.e., p2p-Gnutella24 and Amazon0312. Five values of
R are tested, i.e., R1 = 5.0 × 105, R2 = 1.0 × 106, and the
theoretical sample size R3 with η = 0.7, R4 with η = 0.5,
and R5 with η = 0.3. Fig. 8 shows the results of seed cost
and running time. The results indicate that when decreasing
the value of η, the influence of the obtained seed set can
be more guaranteed towards the influence threshold, which
might result in slightly larger seed costs, but at the same
time, more running time is needed, which is consistent with
the theoretical analyses. Besides, it can also be observed that
CRIEG generally achieves similar results to the theoretical
case, while when R1 is used, it performs slightly worse on
Amazon0312. This implies that CRIEG can be more efficient
in practice than in theory. Actually, R2 is adopted for the
experiments in Section VI.

VII. CONCLUSION

In this paper, the CRIEG algorithm is proposed for the
minimum cost seed selection problem for CIM under the com-
petitive independent cascade model. CRIEG can efficiently
handle networks with size up to millions of users, but also
provide bounded performance guarantees. It is shown that
with probability at least 1 − 1/n, CRIEG can achieve an
approximation ratio within ((1 + η)/(1 − η))-factor of the
best existing ratio under the competitive independent cascade
model derived in the setting with the precise influence function
available [14], where η ∈ [0, 1) indicates the relative esti-
mation error. The core of CRIEG is the competitive reverse
influence estimation mechanism, which borrows the idea from
the powerful RIS technology but overcomes its unavailability
in competitive settings. The experimental studies on various
real-world networks show that compared with the state-of-the-
art algorithms, CRIEG can be orders of magnitude faster while
consistently offering the best performance.

There are several future directions. First, the competitive
reverse influence estimation is derived from the competitive

independent cascade model, and it is interesting to examine it
for other diffusion models. Second, it is relevant to study the
parallelization of the algorithm so that it can be better used in
real-world applications. Third, it is expected to extend CRIEG
to other formulations of CIM, e.g., combining with novel
context features of social networks such as topic, location and
time. Fourth, as CRIEG is based on the greedy algorithm,
it cannot ensure global optimality since it always makes
a locally-optimal choice at a given point. Furthermore, it
can be sensitive when addressing noisy influence evaluation
function in general [42], [43]. Thus, it is expected to combine
CRIEG with some more advanced search mechanisms such as
evolutionary algorithms [44], [45] for better performance and
noise tolerance.

APPENDIX

Proof of Lemma 1 According to Eq. (4), |p̂(Qj−1, vj) −
p(Qj−1, vj)| ≤ ηp(Qj−1, vj), leading to

(1− η)p(Qj−1, vj) ≤ p̂(Qj−1, vj) ≤ (1 + η)p(Qj−1, vj).
(13)

By the greedy choice, it holds that
σ(Qj)− σ(Qj−1)

c(vj)
=
σ(Qj−1 ∪ {vj})− σ(Qj−1)

c(vj)

=
p(Qj−1, vj)

c(vj)
≥ 1

1 + η

p̂(Qj−1, vj)

c(vj)
≥ 1

1 + η

p̂(Qj−1, v̄j)

c(v̄j)

≥ 1− η
1 + η

p(Qj−1, v̄j)

c(v̄j)
,

where v̄j = arg maxs
p(Qj−1,s)

c(s) . Let Q∗ = {x1, . . . , xL}.
Then,

σ(Qj)− σ(Qj−1)

c(vj)
≥ 1− η

1 + η
max
1≤i≤L

p(Qj−1, xi)

c(xi)

≥ 1− η
1 + η

∑L
i=1 p(Q

j−1, xi)

c(Q∗)

≥ 1− η
1 + η

σ(Q∗ ∪Qj−1)− σ(Qj−1)

c(Q∗)

≥ 1− η
1 + η

σ(Q∗)− σ(Qj−1)

c(Q∗)
,

where the third inequality holds by
L∑
i=1

(
σ(Qj−1 ∪ xi)− σ(Qj−1)

)
≥

L∑
i=1

(
σ(Qj−1 ∪Ai)− σ(Qj−1 ∪Ai−1)

)
= σ(Qj−1 ∪Q∗)− σ(Qj−1)

due to the submodularity of σ and Ai = {x1, . . . , xi}, and
the fourth inequality holds due to the monotonicity of σ.
Thus, the lemma holds. �

Proof of Lemma 2 An integer r can be found such that
qr+1 < ε · c(Q∗) ≤ qr.

Let q′ = ε · c(Q∗)− qr+1, q′′ = qr − ε · c(Q∗),

c′ =
q′c(vr+1)

qr − qr+1
and c′′ =

q′′c(vr+1)

qr − qr+1
. (14)
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Thus, we have
qr − qr+1

c(vr+1)
=
q′ + q′′

c′ + c′′
=
q′

c′
=
q′′

c′′
. (15)

By Eqs. (7) and (15), it holds that
qr − ε · c(Q∗)

c′′
=
q′′

c′′
=
qr − qr+1

c(vr+1)
≥ 1− η

1 + η

qr

c(Q∗)
.

Thus, we have

ε · c(Q∗) ≤
(

1− 1− η
1 + η

c′′

c(Q∗)

)
qr

≤
(

1− 1− η
1 + η

c′′

c(Q∗)

)
q0

r∏
i=1

(
1− 1− η

1 + η

c(vi)

c(Q∗)

)

≤ q0 exp

(
−1−η

1+η

c′′

c(Q∗)

)
exp

(
− 1−η

(1+η)c(Q∗)

r∑
i=1

c(vi)

)

= q0 exp

(
−1− η

1 + η

c′′ +
∑r
i=1 c(v

i)

c(Q∗)

)
, (16)

where the second inequation is by Eq. (7) and the third is by
ex ≥ (1 + x). Eq. (16) implies that

c′′ +

r∑
i=1

c(vi) ≤ (1 + η)c(Q∗)

1− η
ln

q0

ε · c(Q∗)
. (17)

Since q′

c′ = qr−qr+1

c(vr+1) ≥ ε due to Eq. (8), it can be known from
the definition of q′ that

c′ ≤ q′

ε
=
ε · c(Q∗)− qr+1

ε
. (18)

According to Eq. (8), it holds that
l∑

i=r+2

c(vi) ≤ 1

ε

l∑
i=r+2

(qi−1 − qi) =
1

ε

(
qr+1 − ql

)
. (19)

Combining Eqs. (14), (17)–(19) together, we have

c(Q) =

l∑
i=1

c(vi) =

r∑
i=1

c(vi) + c(vr+1) +

l∑
i=r+2

c(vi)

=

r∑
i=1

c(vi) + c′′ + c′ +

l∑
i=r+2

c(vi)

≤ (1+η)c(Q∗)

1− η
ln

q0

ε·c(Q∗)
+
ε·c(Q∗)−qr+1

ε
+
qr+1−ql

ε

=
(1 + η)c(Q∗)

1− η
ln

q0

ε · c(Q∗)
+ c(Q∗)− ε−1ql,

i.e., the lemma holds. �

Proof of Theorem 2 If c(Q) < c(Q∗), it is clear
that Eq. (9) holds. In the following, we consider the case
when c(Q) ≥ c(Q∗). As ∀j : σ(Qj) − σ(Qj−1) ≥
εc(vj), σ(Q) ≥ εc(Q), and thus σ(Q) ≥ εc(Q∗). There-
fore, (min{σ(Q∗), σ(Q)})/(εc(Q∗)) ≥ 1, implying that
ln((min{σ(Q∗), σ(Q)})/(εc(Q∗))) ≥ 0. In this case, the
Eq. (9) to be proved becomes

c(Q) ≤
(

1 + η

1− η
ln

min{σ(Q∗), σ(Q)}
ε · c(Q∗)

+ 1

)
c(Q∗)

+ min

{
max{0, σ(Q)− σ(Q∗)}

ε
, c(vh)

}
. (20)

We first use Lemma 2 to show

c(Q)≤
(

1 + η

1− η
ln

min{σ(Q∗), σ(Q)}
ε · c(Q∗)

+ 1

)
c(Q∗) + c(vh).

(21)
It can be assumed that c(Qh−1) ≥ c(Q∗) since the above

inequality is trivial otherwise. According to Eq. (13), we have
σ(Qh−1) = σ(Qh−2 ∪ {vh−1})− σ(Qh−2) + σ(Qh−2)

=

h−1∑
i=1

p(Qi−1, vi) + σ(Q0) ≤ 1

(1− η)

h−1∑
i=1

p̂(Qi−1, vi)

=
1

(1− η)
σ̂(Qh−1) ≤ 1

(1− η)
µ ≤ σ(Q∗),

where the last two inequalities hold by the implementation of
Algorithm 1 and the definition of Q∗ in Lemma 1. We define

qj = σ(Qh−1)− σ(Qj), j ∈ {0, . . . , h− 1}.
Note that the parameter l in Lemma 2 equals to (h−1) here.

According to Lemma 1 and σ(Q∗) ≥ σ(Qh−1), we have
qj−1 − qj

c(vj)
=
σ(Qj)− σ(Qj−1)

c(vj)
≥ 1− η

1 + η

σ(Q∗)− σ(Qj−1)

c(Q∗)

≥ 1− η
1 + η

σ(Qh−1)− σ(Qj−1)

c(Q∗)
=

1− η
1 + η

qj−1

c(Q∗)
,

(22)
implying that Eq. (7) holds. Furthermore, it is clear that

qj−1 − qj = σ(Qj)− σ(Qj−1) ≥ εc(vj), (23)
implying that Eq. (8) holds. According to Eq. (23), we have

q0 = σ(Qh−1) =

h−1∑
j=1

(
qj−1 − qj

)
≥ εc(Q∗) and qh−1 = 0,

where the inequality holds by c(Qh−1) ≥ c(Q∗). Thus, we
can apply Lemma 2 with q0 ≤ min{σ(Q∗), σ(Q)} to derive

c(Qh−1) ≤
(

1 + η

1− η
ln

min{σ(Q∗), σ(Q)}
ε · c(Q∗)

+ 1

)
c(Q∗),

from which we can immediately derive Eq. (21).
We next use Lemma 2 to prove

c(Q) ≤
(

1 + η

1− η
ln

min{σ(Q∗), σ(Q)}
ε · c(Q∗)

+ 1

)
c(Q∗)

+
max{0, σ(Q)− σ(Q∗)}

ε
(24)

by considering two cases.
We first consider the case σ(Q∗) ≥ σ(Q). In this case, we

define

qj = σ(Q)− σ(Qj), j ∈ {0, . . . , h}.

According to Lemma 1 and σ(Q∗) ≥ σ(Q), we have

qj−1 − qj

c(vj)
=
σ(Qj)− σ(Qj−1)

c(vj)
≥ 1− η

1 + η

σ(Q∗)− σ(Qj−1)

c(Q∗)

≥ 1− η
1 + η

σ(Q)− σ(Qj−1)

c(Q∗)
=

1− η
1 + η

qj−1

c(Q∗)
,

implying that Eq. (7) holds. Similar to the analysis of Eq. (23),
we can derive that

qj−1 − qj = σ(Qj)− σ(Qj−1) ≥ εc(vj), (25)
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implying that Eq. (8) holds. Furthermore, according to
Eq. (25) and c(Q) ≥ c(Q∗), we have

q0 = σ(Q) =

h∑
j=1

(
qj−1 − qj

)
≥ εc(Q∗) and qh = 0.

Note that the parameter l in Lemma 2 equals to h here. Thus,
we can apply Lemma 2 to derive

c(Q) ≤
(

1 + η

1− η
ln

q0

ε · c(Q∗)
+ 1

)
c(Q∗). (26)

We now consider the case σ(Q∗) < σ(Q). In this case, we
define

qj = σ(Q∗)− σ(Qj), j ∈ {0, . . . , h}.
According to Lemma 1, we derive

qj−1 − qj

c(vj)
=
σ(Qj)− σ(Qj−1)

c(vj)

≥ 1− η
1 + η

σ(Q∗)− σ(Qj−1)

c(Q∗)
=

1− η
1 + η

qj−1

c(Q∗)
,

implying that Eq. (7) holds. It is easy to see that as
Eq. (23), Eq. (8) still holds. Furthermore, σ(Q∗) ≥ εc(Q∗)
and σ(Q∗) < σ(Q) imply that

q0 = σ(Q∗) ≥ εc(Q∗) and qh = σ(Q∗)− σ(Q) ≤ 0.

Thus, Lemma 2 can be applied to derive

c(Q) ≤
(

1 + η

1− η
ln

q0

ε · c(Q∗)
+ 1

)
c(Q∗)− qh

ε
. (27)

Eq. (24) then follows from Eqs. (26) and (27).
The bounds Eqs. (21) and (24) can be written compactly as

Eq. (20), and thus Eq. (9) holds. By Eq. (13), it holds that
σ(Q) = σ(Qh−1 ∪ {vh})− σ(Qh−1) + σ(Qh−1)

=

h∑
i=1

p(Qi−1, vi) + σ(Q0)

≥ 1

1 + η

h∑
i=1

p̂(Qi−1, vi) =
σ̂(Q)

1 + η
≥ µ

1 + η
.

Thus, the theorem holds. �

Proof of Theorem 4 According to Theorem 2, if Eq. (4)
holds for the evaluation during the running of CRIEG,
then the greedy algorithm achieves the approximation
guarantee shown in Eq. (9). According to Theorem 3 and
R ≥ 3η−2(|H| + 1)(3 ln(n) + ln 2), the probability for one
seed set to violate is at most 1/(n3). During the running of
CRIEG, we estimate the influence spread for at most nh seed
sets, where h indicates the size of the output solution of the
algorithm. By the union bound, we have the probability of at
most 1/n for some estimate to violate the error bound. Thus,
the theorem holds. �
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[41] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, Washington, DC, 2003, pp. 137–146.

[42] C. Qian, “Distributed Pareto optimization for large-scale noisy subset
selection,” IEEE Transactions on Evolutionary Computation, 2019, doi:
10.1109/TEVC.2019.2929555.

[43] C. Qian, J.-C. Shi, Y. Yu, K. Tang, and Z.-H. Zhou, “Subset selection
under noise,” in Advances in Neural Information Processing Systems 30,
2017, pp. 3563–3573.

[44] X. Zhou, H. Wang, W. Peng, B. Ding, and R. Wang, “Solving
multi-scenario cardinality constrained optimization problems via multi-
objective evolutionary algorithms,” SCIENCE CHINA Information Sci-
ences, vol. 62, no. 9, pp. 192 104:1–192 104:18, 2019.

[45] P. Xu, X. Liu, H. Cao, and Z. Zhang, “An efficient energy aware virtual
network migration based on genetic algorithm,” Frontiers of Computer
Science, vol. 13, no. 2, pp. 440–442, 2019.

Wenjing Hong received the B.Eng. and Ph.D. de-
grees in computer science and technology from the
University of Science and Technology of China,
China, in 2012 and 2018, respectively. She is cur-
rently a postdoc in the Department of Computer
Science and Engineering, Southern University of
Science and Technology, and in the School of
Management, University of Science and Technol-
ogy of China, China. Her research interests include
evolutionary computation, evolutionary learning and
network analysis.

Chao Qian received the B.Sc. and Ph.D. degrees
in the Department of Computer Science and Tech-
nology from Nanjing University, China, in 2009
and 2015, respectively. From 2015 to 2019, he was
an associate researcher in the School of Computer
Science and Technology, University of Science and
Technology of China, China. He is currently an
associate professor in the School of Artificial In-
telligence, Nanjing University, China. His research
interests are mainly in evolutionary computation
and machine learning, particularly, the theoretical

foundation of evolutionary algorithms and its application with theoretical
guarantees in machine learning. He has published one book Evolutionary
Learning: Advances in Theories and Algorithms and over 20 first-author
papers in leading international journals and conference proceedings, includ-
ing Artificial Intelligence, Evolutionary Computation, IEEE Transactions on
Evolutionary Computation, Algorithmica, NIPS, IJCAI, AAAI, etc. He won
the ACM GECCO 2011 Best Paper Award (Theory Track), the IDEAL 2016
Best Paper Award, and the 2017 Outstanding Doctoral Dissertation Award of
CAAI. He has served as chair of the IEEE Computational Intelligence Society
Task Force “Theoretical Foundations of Bio-inspired Computation”, and an
Young Associate Editor of Frontiers of Computer Science. He has also been
selected to the Young Elite Scientists Sponsorship Program by CAST.

Ke Tang (M’07-SM’13) received the B.Eng. degree
from the Huazhong University of Science and Tech-
nology, Wuhan, China, in 2002 and the Ph.D. degree
from Nanyang Technological University, Singapore,
in 2007. From 2007 to 2017, he was with the School
of Computer Science and Technology, University of
Science and Technology of China, China, first as an
Associate Professor from 2007 to 2011 and later as
a Professor from 2011 to 2017. He is currently a
Professor with the Department of Computer Science
and Engineering, Southern University of Science and

Technology, China. He has over 7000 Google Scholar citations with an H-
index of 41. He has published over 70 journal papers and over 80 confer-
ence papers. His current research interests include evolutionary computation,
machine learning, and their applications. Dr. Tang was a recipient of the
Royal Society Newton Advanced Fellowship in 2015 and the 2018 IEEE
Computational Intelligence Society Outstanding Early Career Award. He is
an Associate Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY
COMPUTATION and served as a member of Editorial Boards for a few other
journals.


