

An Introduction on Theory of Evolutionary Optimization

Chao Qian (钱 超) http://staff.ustc.edu.cn/~chaoqian/

UBRI, School of Computer Science and Technology University of Science and Technology of China, China

Outline

Introduction

- Running time analysis approaches
- Running time analysis results
- Examples of running time analysis leading to improved design of EAs
- Summary

Evolutionary algorithms (EAs) have been widely used in real applications

GA, ES, GP, PSO, ACO, DE,

theoretical analysis: difficult initialization

population new solutions zation evaluation & updating

EAs are randomized and complex

- With the same input, the performed operations and the output can be different
- The designed reproduction operators and updating mechanisms can be complex

The theoretical foundation of EAs is still weak,

but important

Schema theorem [Holland, 1975]

• Proposed to explain the behavior of genetic algorithms

$$E[m(H,t+1)] \ge \frac{m(H,t)f(H)}{a_t}(1-p)$$

- Critiqued from several directions, and even wrong [Reeves & Rowe, 2002]
- Cannot explain the performance or limit behaviors of EAs

Convergence analysis [Rudolph, FI'98]

• Given unlimited time, can the algorithm find the optimum with probability 1?

$$\lim_{t \to +\infty} P(\xi_t \in \mathbf{X}^*) = 1?$$

- Sufficient conditions:
 - ✓ There is a positive probability to reach any solution in the search space from any other solution (satisfied by most canonical EAs)
 - \checkmark The algorithm keeps the best found solution (elitism)

Running time analysis

Convergence analysis $\lim_{t\to+\infty} P(\xi_t \in \mathbf{X}^*) = 1 ?$

How fast does it converge?

Running time analysis $\tau = \min \{t \ge 0 \mid \xi_t \in X^*\}$

The number of iterations until finding an optimal solution for the first time

Running time analysis

Convergence analysis

 $\lim_{t\to+\infty} P(\xi_t \in \mathbf{X}^*) = 1 ?$

The leading theoretical aspect [Auger & Doerr, 2011; Neumann & Witt, 2012]

Running time complexity

- The number of iterations × the number of fitness evaluations in each iteration
- Usually grows with the problem size and expressed in asymptotic notations

e.g., (1+1)-EA solving LeadingOnes: $O(n^2)$

Running time analysis $\tau = \min \{t \ge 0 \mid \xi_t \in X^*\}$

The number of iterations until finding an optimal solution for the first time

Running time analysis

The leading theoretical aspect [Auger & Doerr, 2011; Neumann & Witt, 2012]

Running time analysis $\tau = \min \{t \ge 0 \mid \xi_t \in X^*\}$

The number of iterations until finding an optimal solution for the first time

A quick guide to asymptotic notations:

Let g and f be two functions defined on the real numbers.

- $g \in O(f)$: $\exists M > 0$ such that $g(x) \le M \cdot f(x)$ for all sufficiently large x
- $g \in \Omega(f)$: $f \in O(g)$
- $g \in \Theta(f)$: $g \in O(f)$ and $g \in \Omega(f)$

 $g \in O(f) \rightarrow g \le f$ $g \in \Omega(f) \rightarrow g \ge f$ $g \in \Theta(f) \rightarrow g = f$

- Introduction
- Running time analysis approaches
- Running time analysis results
- Examples of running time analysis leading to improved design of EAs
- Summary

Markov chain modeling

Markov chain: $P(\xi_t | \xi_{t-1}, ..., \xi_1, \xi_0) = P(\xi_t | \xi_{t-1})$

Fitness level method

The basic idea [Droste et al., TCS'02]:

1. Divide the solution space *S* into m + 1 subspaces $S_0, S_1, ..., S_m$

- $\forall i \neq j: S_i \cap S_j = \emptyset, \ \bigcup_{i=0}^m S_i = S$
- $\forall i < j, x \in S_i, y \in S_j: f(x) < f(y)$

The basic idea [Droste et al., TCS'02]:

1. Divide the solution space *S* into m + 1 subspaces $S_0, S_1, ..., S_m$

- $\forall i \neq j: S_i \cap S_j = \emptyset, \ \bigcup_{i=0}^m S_i = S$
- $\forall i < j, x \in S_i, y \in S_j: f(x) < f(y)$

2. Bounds on the probability of leaving S_i to higher S_j

- $P(\xi_{t+1} \in \bigcup_{j=i+1}^m S_j | \xi_t \in S_i) \ge v_i$
- $P(\xi_{t+1} \in \bigcup_{j=i+1}^m S_j | \xi_t \in S_i) \le u_i$

Expected running time

• Upper bound:
$$\sum_{i=0}^{m-1} \pi_0(S_i) \cdot \sum_{j=i}^{m-1} \frac{1}{v_j}$$

the initial distribution

The basic idea [Droste et al., TCS'02]:

1. Divide the solution space *S* into m + 1 subspaces S_0, S_1, \dots, S_m

•
$$\forall i \neq j: S_i \cap S_j = \emptyset, \ \bigcup_{i=0}^m S_i = S$$

- $\forall i < j, x \in S_i, y \in S_j: f(x) < f(y)$
- 2. Bounds on the probability of leaving S_i to higher S_j
 - $P(\xi_{t+1} \in \bigcup_{j=i+1}^m S_j | \xi_t \in S_i) \ge v_i$
 - $P(\xi_{t+1} \in \bigcup_{j=i+1}^m S_j | \xi_t \in S_i) \le u_i$

Expected running time

Upper bound: $\sum_{i=0}^{m-1} \pi_0(S_i) \cdot \sum_{j=i}^{m-1} \frac{1}{v_j}$

the initial distribution

Fitness level method

The basic idea [Droste et al., TCS'02]:

1. Divide the solution space *S* into m + 1 subspaces $S_0, S_1, ..., S_m$

- $\forall i \neq j: S_i \cap S_j = \emptyset, \ \bigcup_{i=0}^m S_i = S$
- $\forall i < j, x \in S_i, y \in S_j: f(x) < f(y)$

2. Bounds on the probability of leaving S_i to higher S_j

- $P(\xi_{t+1} \in \bigcup_{j=i+1}^m S_j | \xi_t \in S_i) \ge v_i$
- $P(\xi_{t+1} \in \bigcup_{j=i+1}^m S_j | \xi_t \in S_i) \le u_i$

Expected running time

Upper bound:
$$\sum_{i=0}^{m-1} \pi_0(S_i) \cdot \sum_{j=i}^{m-1} \frac{1}{v_j}$$

Lower bound:
$$\sum_{i=0}^{m-1} \pi_0(S_i) \cdot \frac{1}{u_i}$$

(1+1)-EA:

Given a pseudo-Boolean function *f* :

- 1. $x \coloneqq$ randomly selected from $\{0,1\}^n$.
- 2. Repeat until some termination criterion is met
- 3. $x' \coloneqq$ flip each bit of x with probability 1/n.

4. if
$$f(x') \ge f(x)$$

5. $x - x'$

5.
$$x = x'$$
.

Theorem. [Droste et al., TCS'02] The expected running time of the (1+1)-EA solving the OneMax problem is $O(n \log n)$.

Theorem. [Droste et al., TCS'02] The expected running time of the (1+1)-EA solving the OneMax problem is $O(n \log n)$.

Main idea:

the number of 1-bits

- Divide the solution space $\{0,1\}^n$ into $S_{0,}S_1, \dots, S_n$ with $S_i = \{x \in \{0,1\}^n | (|x|) = i\}$
- The probability of jumping to higher S_j from S_i is lower bounded by

$$P(\xi_{t+1} \in \bigcup_{j=i+1}^{m} S_j | \xi_t \in S_i) \ge \underbrace{n-i}_n \underbrace{(1-\frac{1}{n})^{n-1}}_{\text{flip one of the } n-i \ 0\text{-bits}}$$

Upper bound on the expected running time:
$$\sum_{i=0}^{n-1} \pi_0(S_i) \underbrace{\sum_{j=i}^{n-1} \frac{1}{v_j}}_{\leq \sum_{j=0}^{n-1} \frac{1}{v_j}}_{\leq \sum_{j=0}^{n-1} \frac{1}{v_j}} \le 2n \sum_{j=0}^{n-1} \frac{1}{v_j}$$

Refined fitness level method Original [Droste et al., TCS'02]: $P(\xi_{t+1} \in \bigcup_{j=i+1}^m S_j | \xi_t \in S_i) \ge v_i$ v_1 Upper bound: $\sum_{i=0}^{m-1} \pi_0(S_i) \cdot \sum_{j=i}^{m-1} \frac{1}{n_j}$ S_{z} S_2 Refined [Sudholt, TEC'13]: S_0 $P(\xi_{t+1} \in S_j | \xi_t \in S_i) \ge v_i \cdot \gamma_{i,j}$ $v_1 \gamma_{1,m}$ $\sum_{j=i+1}^{m} \gamma_{i,j} = 1 \qquad \gamma_{i,j} \leq \chi \sum_{k=j}^{m} \gamma_{i,k}$ $v_1\gamma_{1,m-1}$ Upper bound: $\sum_{i=0}^{m-1} \pi_0(S_i) \cdot (\frac{1}{v_i} + \chi \sum_{j=i+1}^{m-1} \frac{1}{v_j})$ $v_1\gamma_{1,3}$ S_2 S_2 Original is a specialization of refined $v_1 \gamma_{1,2}$ If $\chi = 1$, upper bound Sn If $\chi = 0$, lower bound

Refined fitness level method

The above two fitness level methods [Droste et al., TCS'02; Sudholt, TEC'13]

- Only consider jumping to higher levels
- Proposed for elitist EAs

The fitness level method for non-elitist EAs [Dang & Lehre, Algorithmica'16]

• allows jumping to lower levels

 S_m S_{m-1} S_1 S_2 S_1 S_2

Theorem 8 Given a function $f : \mathcal{X} \to \mathbb{R}$, and an f-based partition (A_1, \ldots, A_{m+1}) , let T be the number of selection-variation steps until Algorithm 1 with a selection mechanism p_{sel} obtains an element in A_{m+1} for the first time. If there exist parameters $p_0, s_1, \ldots, s_m, s_* \in (0, 1]$, and $\gamma_0 \in (0, 1)$ and $\delta > 0$, such that

(C1)
$$p_{\text{mut}}\left(y \in A_{i}^{+} \mid x \in A_{j}\right) \geq s_{j} \geq s_{*} \text{ for all } j \in [m],$$

(C2) $p_{\text{mut}}\left(y \in A_{j} \cup A_{j}^{+} \mid x \in A_{j}\right) \geq p_{0} \text{ for all } j \in [m],$
(C3) $\beta(\gamma, P)p_{0} \geq (1+\delta)\gamma \text{ for all } P \in \mathcal{X}^{\lambda} \text{ and } \gamma \in (0, \gamma_{0}],$
(C4) $\lambda \geq \frac{2}{a} \ln\left(\frac{16m}{ac\varepsilon s_{*}}\right) \text{ with } a = \frac{\delta^{2}\gamma_{0}}{2(1+\delta)}, \varepsilon = \min\{\delta/2, 1/2\} \text{ and } c = \varepsilon^{4}/24,$

then

$$\mathbf{E}[T] \le \frac{2}{c\varepsilon} \left(m\lambda(1 + \ln(1 + c\lambda)) + \frac{p_0}{(1 + \delta)\gamma_0} \sum_{j=1}^m \frac{1}{s_j} \right).$$

Drift analysis

The basic idea [Sasaki & Hajek, JACM'88; He & Yao, AIJ'01]:

- 1. Design a distance function $V(x): X \to \mathbb{R}$ to measure the distance from a state $x \in X$ to the optimal state space X^*
 - $\forall x \in X X^*: V(x) > 0$
 - $\forall x \in X^*: V(x) = 0$
- 2. Bounds on the expected drift in one step
 - $\mathbb{E}[V(\xi_t) V(\xi_{t+1}) \mid \xi_t] \ge c_l$
 - $E[V(\xi_t) V(\xi_{t+1}) | \xi_t] \le c_u$

Expected running time

Upper bound: $\sum_{x \in X} \pi_0(x) \cdot \frac{V(x)}{c_l}$

the initial distribution

The hotel

the time $\leq \frac{3}{0.1} = 30$ minutes

Drift analysis

The basic idea [Sasaki & Hajek, JACM'88; He & Yao, AIJ'01]:

- 1. Design a distance function $V(x): X \to \mathbb{R}$ to measure the distance from a state $x \in X$ to the optimal state space X^*
 - $\forall x \in X X^*: V(x) > 0$
 - $\forall x \in X^*: V(x) = 0$
- 2. Bounds on the expected drift in one step
 - $E[V(\xi_t) V(\xi_{t+1}) | \xi_t] \ge c_l$
 - $E[V(\xi_t) V(\xi_{t+1}) | \xi_t] \le c_u$

Expected running time

Upper bound: $\sum_{x \in X} \pi_0(x) \cdot \frac{V(x)}{c_l}$

Lower bound: $\sum_{x \in X} \pi_0(x)$

The hotel

(1+1)-EA:

Given a pseudo-Boolean function *f* :

- 1. $x \coloneqq$ randomly selected from $\{0,1\}^n$.
- 2. Repeat until some termination criterion is met
- 3. $x' \coloneqq$ flip each bit of x with probability 1/n.

4. if
$$f(x') \ge f(x)$$

5. $x = x'$.

LeadingOnes: $\arg \max_{x \in \{0,1\}^n} \sum_{i=1}^n \prod_{j=1}^i x_j$ Lo(x) Count the number of consecutive 1-bits starting from the left e.g., f(11010) = 2, f(01111) = 0

Theorem. [He & Yao, AIJ'01] The expected running time of the (1+1)-EA solving the LeadingOnes problem is $O(n^2)$.

the number of leading 1-bits

Theorem. [He & Yao, AIJ'01] The expected running time of the (1+1)-EA solving the LeadingOnes problem is $O(n^2)$.

Main idea:

- Design the distance function V(x) = n LO(x)
- The expected drift from a solution x with LO(x) = i is lower bounded by

$$E[V(\xi_t) - V(\xi_{t+1}) | \xi_t = x) \ge 1 \cdot \frac{1}{n} \cdot (1 - \frac{1}{n})^i \quad \text{keep the } i \text{ leading } 1\text{-bits unchanged}$$

$$LO(x) = i \rightarrow \ge i + 1 \quad \text{flip the first 0-bit}$$
Upper bound on the expected running time:
$$\sum_{x \in X} \pi_0(x) \cdot \frac{V(x)}{c_l} \le \frac{n}{c_l}$$

$$\le n \cdot n \cdot \frac{1}{(1 - \frac{1}{n})^i} \le en^2 \in O(n^2)$$

Original [He & Yao, AIJ'01]:

$$\begin{bmatrix} E[V(\xi_t) - V(\xi_{t+1}) | \xi_t] \ge c_l & \text{not depend on } \xi_t \end{bmatrix}$$

$$\text{Upper bound: } \sum_{x \in X} \pi_0(x) \cdot \frac{V(x)}{c_l}$$

The hotel

Multiplicative [Doerr et al., Algorithmica'12]: $F[V(\xi_t) - V(\xi_{t+1}) | \xi_t] \ge (\delta \cdot V(\xi_t))$ proportional to the current distance Upper bound: $\sum_{x \in X} \pi_0(x) \cdot \frac{1 + \log(V(x)/V_{min})}{\delta}$ $\min\{V(x) | V(x) > 0\}$

Multiplicative is not stronger than original

Minimum spanning tree (MST):

- Given: an undirected connected graph G = (V, E) on n vertices and m edges with positive integer weights $w: E \rightarrow \mathbb{N}$
- The Goal: find a connected subgraph $E' \subseteq E$ with the minimum weight

The original graph

The minimum spanning tree

(1+1)-EA:

Given a pseudo-Boolean function *f* :

- $x \coloneqq$ randomly selected from $\{0,1\}^n$. 1.
- Repeat until some termination criterion is met 2.
- 3. $x' \coloneqq$ flip each bit of x with probability 1/n.

4. if
$$f(x') \ge f(x)$$

5. $x = x'$.

$$\qquad \qquad x=x'.$$

Solution representation: $x \in \{0,1\}^m \leftrightarrow a$ subgraph

> $x_i = 1$ means that edge e_i is selected e.g., $\{e_1, e_2, e_4\} \rightarrow 11010$

Fitness function:

min

the number of
connected components
$$f(x) = (c(x) - 1) \cdot w_{ub} + \sum_{i:x_i=1}^{i:x_i=1} w_i$$

 $w_{ub} = n^2 \cdot w_{max}$, to make a subgraph with less connected components better

Theorem. [Neumann & Wegener, TCS'07; Doerr et al., Algorithmica'12] The expected running time of the (1+1)-EA solving the MST problem is $O(m^2(\log n + \log w_{max}))$.

Main idea:

(1) obtain a connected subgraph $\longrightarrow c(x) = 1$

(2) obtain a minimum spanning tree

The analysis of phase (1): min $f(x) = (c(x) - 1) \cdot w_{ub} + \sum_{i:x_i=1} w_i$

- *c*(*x*) cannot increase
- at least c(x) 1 edges, the insertion of which can decrease c(x) by 1

the probability of decreasing c(x)by 1 is at least $\frac{c(x)-1}{m}(1-\frac{1}{m})^{m-1}$ \longrightarrow the expected steps for decreasing c(x) by 1 is at most $\frac{em}{c(x)-1}$

The expected running time: $\sum_{c(x)=n}^{2} \frac{em}{c(x)-1} \in O(m \log n)$

The analysis of phase (2): min $f(x) = (c(x) - 1) \cdot w_{ub} + \sum_{i:x_i=1} w_i$

- it will always be connected, i.e., c(x) = 1 always holds
- to analyze $f(x) \rightarrow f_{opt}$ the weight of a minimum spanning tree

Using multiplicative drift analysis:

- design the distance function: $V(x) = f(x) f_{opt}$
- analyze the expected drift:

 $E[V(\xi_t) - V(\xi_{t+1}) | \xi_t = x] = V(x) - E[V(\xi_{t+1}) | \xi_t = x] = f(x) - E[f(\xi_{t+1}) | \xi_t = x]$

$$\geq f(x) - \sum_{i=1}^{m-(n-1)} f(y^i) \cdot \frac{1}{m} (1 - \frac{1}{m})^{m-1} + \sum_{i=1}^n f(z^i) \cdot \frac{1}{m^2} (1 - \frac{1}{m})^{m-2} + (1 - \cdots) f(x))$$

there exists a set of $m - (n - 1)$ 1-bit flips and a set of n 2-bit flips such that the average weight decrease is at least $(f(x) - f_{opt})/(m + 1)$
$$\geq \frac{1}{m} \left(1 - \frac{1}{m}\right)^{m-1} \frac{f(x) - f_{opt}}{m+1} \geq \frac{1}{em(m+1)} V(x)$$

The analysis of phase (2): $\min f(x) = (c(x) - 1) \cdot w_{ub} + \sum_{i:x_{i=1}} w_i$

- it will always be connected, i.e., c(x) = 1 always holds
- to analyze $f(x) \rightarrow f_{opt}$ the weight of a minimum spanning tree
- Using multiplicative drift analysis:
- design the distance function: $V(x) = f(x) f_{opt}$
- analyze the expected drift:

$$E[V(\xi_t) - V(\xi_{t+1}) | \xi_t = x] \ge \underbrace{\frac{1}{em(m+1)}}_{em(m+1)} V(x)$$

proportional to the current distance

Upper bound on the expected running time:

$$\sum_{x \in X} \pi_0(x) \cdot \frac{1 + \log \left(V(x) / V_{min} \right)}{\delta} \le em(m+1)(1 + \log \left(mw_{max} \right))$$
$$\in O(m^2(\log n + \log w_{max}))$$
$$V(x) \le mw_{max} \qquad V_{min} \ge 1$$

Theorem. [Neumann & Wegener, TCS'07; Doerr et al., Algorithmica'12] The expected running time of the (1+1)-EA solving the MST problem is $O(m^2(\log n + \log w_{max}))$.

Main idea:

- (1) obtain a connected subgraph
- (2) obtain a minimum spanning tree

The expected running time of phase (1): $O(m \log n)$ The expected running time of phase (2): $O(m^2(\log n + \log w_{max}))$

The total expected running time: $O(m^2(\log n + \log w_{max}))$

Simplified drift analysis

The simplified drift analysis theorem for proving exponential lower bounds [Oliveto & Witt, Algorithmica'11]

Theorem 2 (Simplified Drift Theorem) Let $X_t, t \ge 0$, be the random variables describing a Markov process over the state space $S := \{0, 1, ..., N\}$ and denote $\Delta_t(i) := (X_{t+1} - X_t \mid X_t = i)$ for $i \in S$ and $t \ge 0$. Suppose there exist an interval [a, b] of the state space (of asymptotically growing length b - a) and three constants $\delta, \varepsilon, r > 0$ such that for all $t \ge 0$ 1. $E(\Delta_t(i)) \ge \varepsilon$ for a < i < b2. $\operatorname{Prob}(\Delta_t(i) = -j) \le 1/(1 + \delta)^{j-r}$ for i > a and $j \ge 1$. then there is a constant $c^* > 0$ such that for $T^* := \min\{t \ge 0: X_t < a \mid X_0 \ge b\}$ it holds $\operatorname{Prob}(T) \le 2^{c^*(b-a)}) = 2^{-\Omega(b-a)}$. **a constant** Exponential running time The order of the state space x is a constant x > 0 such that for $T^* := \min\{t \ge 0: X_t < a \mid X_0 \ge b\}$ The probability of a drift towards the target decreases exponentially

The simplified drift theorem with self-loops [Rowe & Sudholt, TCS'14] The simplified drift theorem with scaling [Oliveto & Witt, TCS'14]

Switch analysis

The basic idea [Yu et al., TEC'15]:

Given EA on the given problem

The task: optimize multiple objectives simultaneously

 $min_{x \in X} (f_1(x), f_2(x), \dots, f_m(x))$

Previous analysis approaches are not easy to be directly applied

Example: GSEMO for LOTZ

GSEMO: Given a pseudo-Boolean function vector *f*:

1. $x \coloneqq$ randomly selected from $\{0,1\}^n$. Keep non-dominated

2.
$$P \coloneqq \{x\}$$
. solutions

- 3. Repeat until some termination criterion is met
- 4. Choose *x* from *P* uniformly at random.
- 5. $x' \coloneqq$ flip each bit of x with probability 1/n.
- 6. if $\nexists z \in P$ such that $z \succ x'$

7.
$$P := (P - \{z \in P \mid x' \ge z\}) \cup \{x'\}$$

LOTZ:

$$\arg \max_{x \in \{0,1\}^n} (\sum_{i=1}^n \prod_{j=1}^i x_j, \sum_{i=1}^n \prod_{j=i}^n (1-x_j))$$

Count the number of leading 1-bits Count the number of trailing 0-bits

The Pareto set: 00 ... 00, 10 ... 00, ..., 11 ... 10, 11 ... 11.

The Pareto front: (0, n), (1, n - 1), ..., (n - 1, 1), (n, 0).

Theorem. [Giel, CEC'03] The expected running time of the GSEMO solving the LOTZ problem is $O(n^3)$.

Main idea:

- (1) obtain the Pareto optimal solution 11 ... 11
- (2) obtain the Pareto front

The analysis of phase (1):

- select the solution with the largest LO value, and only flip its first 0 bit
- the probability: $\frac{1}{n+1} \frac{1}{n} (1-\frac{1}{n})^{n-1}$

the population size is not larger than n + 1

Theorem. [Giel, CEC'03] The expected running time of the GSEMO solving the LOTZ problem is $O(n^3)$.

Main idea:

- (1) obtain the Pareto optimal solution 11 ... 11
- (2) obtain the Pareto front

The analysis of phase (1):

- select the solution with the largest LO value, and only flip its first 0 bit
- the probability: $\frac{1}{n+1} \frac{1}{n} (1-\frac{1}{n})^{n-1}$

Theorem. [Giel, CEC'03] The expected running time of the GSEMO solving the LOTZ problem is $O(n^3)$.

Main idea:

- (1) obtain the Pareto optimal solution 11 ... 11
- (2) obtain the Pareto front

The analysis of phase (1):

• select the solution with the largest LO value, and only flip its first 0 bit

• the probability:
$$\frac{1}{n+1}\frac{1}{n}(1-\frac{1}{n})^{n-1}$$

the probability of increasing the largest LO value by 1 is at least $\frac{1}{en(n+1)}$

it is sufficient to increase *n* times

$$\Rightarrow \frac{\text{The expected running time:}}{n \cdot en(n+1) \in O(n^3)}$$

The analysis of phase (2):

• the found Pareto optimal solutions will always be kept

the probability $\frac{1}{n+1} \left(\frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1}\right)$

• follow the path: $(1^n) \rightarrow 1^{n-1} 0 \rightarrow \cdots \rightarrow 10^{n-1} \rightarrow 0^n$

The expected running time: $n \cdot en(n + 1) \in O(n^3)$ The expected running time of phase (1): $O(n^3)$ The total expected running time: $O(n^3)$ Running time analysis approaches

- Fitness level method
- Refined fitness level method
- Drift analysis
- Multiplicative drift analysis
- Switch analysis
- Simplified drift analysis

Exponential running time

More specific approaches for multi-objective EAs

Upper and lower bounds on the expected running time

Exponential running tim with high probability

- Introduction
- Running time analysis approaches
- Running time analysis results
- Examples of running time analysis leading to improved design of EAs
- Summary

Results in single-objective optimization

(1+1)-EA	linear function $\Theta(n \log n)$ [Droste et al., TCS'02] minimum spanning tree $O(m^2 \log(n + w_{max}))$ [Neumann & Wegener, TCS'07] partition $O(n^2)$ with $\frac{4}{3}$ approximation [Witt, STACS'05] vertex cover $e^{\Omega(n)}$ with arbitrary bad approximation [Oliveto, TEC'09]
	On a Mary $O(um + m \log m)$, I as dim σ On as $O(um \log m + m^2)$ that is EQUAL
	Onewiax $O(un + n \log n)$; LeadingOnes $O(un \log n + n^2)$ [Witt, ECJ'06]
(<i>u</i> +1)-EA	maximum clique $O(un \log n)$ on sparse graphs [Storch, TCS'07]
× /	warten cover O(un logn) on hipartite graphs [Olivete TEC'00]
	vertex cover 0(un log n) on bipartice graphs [Onveto, TEC 09]
	linear function $O(2m + m \log m)$ (D) (1.1. TO(15)
$(1+\lambda)$ -FA	Intear function $O(\lambda n + n \log n)$ [Doerr & Kunnemann, ICS 15]
$(1+\lambda)$ -LA	vertex cover <i>exponential</i> on bipartite graphs [Oliveto, TEC'09]
(<i>N</i> + <i>N</i>)-EA	OneMax $O(Nn \log \log n + n \log n)$; LeadingOnes $O(Nn \log n + n^2)$
	[Chen et al., TSMCB'09]
EDA Mem	[Chen et al., TEC'10]; ACO [Doerr et al., TCS'11]; PSO [Sudholt & Witt, TCS'10]; etic algorithms [Sudholt, TCS'09]; GP [Wagner et al., ECJ'15]

SEMO	LOTZ	$\Theta(n^3)$; COCZ	$O(n^2 \log n)$	[Laumanns et al., TEC'04]
------	------	----------------------	-----------------	---------------------------

LOTZ $O(n^3)$ [Giel, CEC'03]; $\Omega(n^2/p)$ [Doerr et al., CEC'13]

- GSEMO bi-objective minimum spanning tree $O(m^3 w_{min}(|C| + \log n + \log w_{max}))$ with 2 approximation [Neumann, EJOR'07]
- DEMO multi-objective all-pairs-shortest-path $O(nP_{max}g)$ with $r^{3g \log n}$ approximation [Neumann & Theile, PPSN'10]

LOTZ $\Theta(n^2)$; COCZ $\Theta(n \log n)$; bi-objective minimum spanning tree

REMO $0\left(m^2 n w_{min}(|C| + \frac{\log n + \log w_{max}}{n w_{min}} - N_{gc}(1 - \frac{1}{m}))\right)$ with 2 approximation [Qian et al., AIJ'13]

MOEA/D LOTZ $O(n^2 \log n)$; COCZ $O(n \log n)$ [Li et al., TEC'16]

Single-objective optimization problems by multi-objective EAs

Minimum spanning tree (MST):

- Given: an undirected connected graph G = (V, E) on n vertices and m edges with positive integer weights $w: E \rightarrow \mathbb{N}$
- The Goal: find a connected subgraph $E' \subseteq E$ with the minimum weight

Fitness function: min
$$f(x) = (c(x) - 1) \cdot w_{ub} + \sum_{i:x_i=1} w_i$$

 $\int_{\mathbf{W}}$
Bi-objective min $(c(x), \sum_{i:x_i=1} w_i)$

Single-objective: $O(m^2(\log n + \log w_{max}))$ multi-objective better Bi-objective: $O(mn(n + \log w_{max}))$ bi-objective $O(mn(n + \log w_{max}))$ since w_{max} bi-objective better $e.g., m = \Theta(n^2)$

More examples

Problem	Single-objective	Multi-objective
MST	$O(m^2(\log n + \log w_{max}))$	$O(mn(n + \log w_{max}))$ [Neumann & Wegener, GECCO'05]
Set cover	exponential	$O(mn(\log c_{max} + \log n))$ [Friedrich et al., ECJ'10]
Minimum cut	exponential	$O(Fm(\log c_{max} + \log n))$ [Neumann et al., Algorithmica'11]
Minimum LST	$\Omega(ku^k)$	<i>O</i> (<i>k</i> ² log <i>k</i>) [Lai et al., TEC'14]
Minimum cost coverage	exponential	$O(Nn(\log n + \log w_{max} + N))$ [Qian et al., IJCAI'15]

- Introduction
- Running time analysis approaches
- Running time analysis results
- Examples of running time analysis leading to improved design of EAs
- Summary

A full software project scheduling process:

- identify project tasks
- identify task dependencies
- estimate resources for tasks

allocate employees to tasks

create project charts

To minimize the cost and completion time of the software project, while meeting all the constraints

Project Scheduling Problem

1958 University of Science and Technologia

The input:

- a set of employees $e_1, ..., e_n$ with salaries $s_1, ..., s_n$, and sets of skills $skill_1, ..., skill_n$, respectively
- a set of tasks $t_1, ..., t_m$ with required efforts $eff_1, ..., eff_n$, and sets of required skills $req_1, ..., req_m$, respectively
- a task precedence graph (TPG) a directed graph with tasks as nodes and task precedence as edges

The objective: produce a schedule which minimizes the cost and time $x_{i,j} \in \{0, \frac{1}{k}, \frac{2}{k}, ..., 1\}$: the amount of dedication of e_i to t_j

Constraints:

- required skills: $req_j \subseteq \bigcup_{i=1}^n \{skill_i \mid x_{i,j} > 0\}$
- overwork: $max_{i,\tau} \left\{ e_i^{work}(\tau) \right\} \le 1$

the total dedication of employee i at time τ

The overwork problem: $max_{i,\tau} \{e_i^{work}(\tau)\} \le 1$

• Previous - repair

If $M = max_{i,\tau} \{e_i^{work}(\tau)\} > 1, \ x_{i,j} = x_{i,j}/M$

• Proposed – normalization [Minku et al., TSE'14] $x_{i,j} = x_{i,j} / \max(1, \sum_{t_l \in V'} x_{i,l})$

divide dedications when necessary

divide dedications

Theoretical analysis:

Theorem 1. The expected running time of the (1+1)-EA with normalization on a linear schedule problem is $O((knm)^2)$.

Easy instances

Hard instances

Theorem 2. There exists a PSP instance where the (1+1)-EA with normalization needs at least exponential time.

across the whole schedule

Improved design inspired by theory

The proposed algorithm [Minku et al., TSE'14]

Algorithm 3 Pop-EA for project scheduling

1: Initialise population P with μ candidate solutions.

2: repeat

- 3: Select λ parents from *P* using binary tournament selection.
- 4: **for** each pair of parents $x^{(1)}$ and $x^{(2)}$ **do**
- 5: With probability P_c , apply crossover between $x^{(1)}$ and $x^{(2)}$ to generate $x'^{(1)}$ and $x'^{(2)}$.
- 6: Otherwise, $x'^{(1)} \leftarrow x^{(1)}$ and $x'^{(2)} \leftarrow x^{(2)}$
- 7: Apply mutation to $x'^{(1)}$ and $x'^{(2)}$ using probability P_m .
- 8: $P \leftarrow P \cup \{x'^{(1)}, x'^{(2)}\}.$
- 9: end for
- 10: Select the μ best candidate solutions from P to survive for the next generation, based on the fitness function f.

11: **until** happy

The proposed Pop-EA performs the best

Experimental results

TABLE 8

Quality of Feasible Solution Measured by the Number of Employees (*n*) Multiplied by the Completion Time (time)

Benchmark 1: average $n \cdot time$						
n	Pop-EA	(1+1) EA	RLS	(1+1) EA no-norm	GA [6]	
5	98.00	98.04	98.19	113.96	109.40	
10	98.02	98.06	98.17	129.68	112.70	
15	98.02	98.07	98.22	128.06	115.95	
20	98.04	98.08	98.19	129.54	117.60	
Stdev	0.01	0.02	0.02	7.60	3.63	

The averages were calculated considering only the runs in which a feasible solution was found The best values are in bold. Stdev is the standard deviation of the average values reported in the table.

TABLE 3 Average Ranking of Algorithms According to Fitness across Problem Instances

\sim Avg Rank	Avg Rank	Std Deviation	Algorithm
1	1.1875	0.5708	Pop-EA
2	2.0833	0.3472	(1+1) EA
3	2.7292	0.6098	RLS
4	4.0000	0.0000	(1+1) EA no-norm

Smaller ranking values are better rankings.

Theory: single-objective optimization can be solved better by multi-objective optimization

Ensemble pruning [Qian et al., AAAI'15]

Theorem 1. For any objective and any size, PEP within $O(n^4 \log n)$ expected optimization time can find a solution weakly dominating that generated by OEP at the fixed size.

Subset selection [Qian et al., NIPS'15; IJCAI'16]

Theorem 1. For sparse regression, POSS with $E[T] \leq 2ek^2n$ and $I(\cdot) = 0$ (i.e., a constant function) finds a set S of variables with $|S| \leq k$ and $R^2_{Z,S} \geq (1 - e^{-\gamma_{\emptyset,k}}) \cdot OPT$.

Data set	OPT	POSS	FR	FoBa	OMP	RFE	MCP
housing	.7437±.0297	.7437±.0297	.7429±.0300•	.7423±.0301•	.7415±.0300•	.7388±.0304•	.7354±.0297•
eunite2001	.8484±.0132	.8482±.0132	.8348±.0143•	.8442±.0144•	.8349±.0150•	.8424±.0153•	.8320±.0150•
svmguide3	.2705±.0255	.2701±.0257	.2615±.0260•	.2601±.0279•	.2557±.0270●	.2136±.0325•	.2397±.0237•
ionosphere	.5995±.0326	.5990±.0329	.5920±.0352•	.5929±.0346•	.5921±.0353•	.5832±.0415•	.5740±.0348•
sonar	-	$.5365 \pm .0410$.5171±.0440•	.5138±.0432•	.5112±.0425•	.4321±.0636•	.4496±.0482•
triazines	_	.4301±.0603	.4150±.0592•	.4107±.0600●	.4073±.0591•	.3615±.0712•	.3793±.0584•
coil2000	-	$.0627 \pm .0076$.0624±.0076•	.0619±.0075●	.0619±.0075•	.0363±.0141•	.0570±.0075•
mushrooms	-	.9912±.0020	.9909±.0021•	.9909±.0022•	.9909±.0022•	.6813±.1294•	.8652±.0474•
clean1	-	.4368±.0300	.4169±.0299•	.4145±.0309•	.4132±.0315•	.1596±.0562•	.3563±.0364•
w5a	-	.3376±.0267	.3319±.0247•	.3341±.0258•	.3313±.0246•	.3342±.0276•	.2694±.0385•
gisette	-	$.7265 \pm .0098$.7001±.0116•	.6747±.0145•	.6731±.0134•	.5360±.0318•	.5709±.0123•
farm-ads	-	.4217±.0100	.4196±.0101•	.4170±.0113•	.4170±.0113•	-	.3771±.0110•
POSS: w	vin/tie/loss	-	12/0/0	12/0/0	12/0/0	11/0/0	12/0/0

- The theoretical foundation of EAs is weak, but important
- State-of-the-art running time analysis approaches
 - fitness level method
 - drift analysis
 - switch analysis
- Running time analysis results
 - single-objective optimization
 - multi-objective optimization
- Examples of improved design of EAs inspired by theoretical analysis

- Analysis on real EAs or real problems
- Running time analysis approaches for MOEAs
- Improved design of EAs by theory
- Analysis in noisy environments
- Analysis in continuous optimization

Reading books

Bioinspired Computation in Combinatorial Optimization

Algorithms and Their Computational Complexity

Authors: Neumann, Frank, Witt, Carsten

Theory of Randomized Search Heuristics Foundations and Recent Developments

Edited by: Anne Auger (INRIA, France), Benjamin Doerr (Max-Planck-Institut für Informatik, Germany)

- B. Doerr, D. Johannsen and C. Winzen. Multiplicative drift analysis. *Algorithmica*, 2012, 64: 673-697
- B. Doerr and L. A. Goldberg. Adaptive drift analysis. *Algorithmica*, 2013, 65: 224-250
- S. Droste, T. Jansen and I. Wegener. On the analysis of the (1+1) evolutionary algorithm. *Theoretical Computer Science*, 2002, 276(1-2): 51-81
- T. Friedrich, J. He, N. Hebbinghaus, F. Neumann and C. Witt. Approximating covering problems by randomized search heuristics using multi-objective models. *Evolutionary Computation*, 2010, 18(4): 617-633
- J. He and X. Yao. Drift analysis and average time complexity of evolutionary algorithms. *Artificial Intelligence*, 2001, 127(1): 57-85
- X. Lai, Y. Zhou, J. He and J. Zhang. Performance analysis of evolutionary algorithms for the minimum label spanning tree problem. *IEEE Transactions on Evolutionary Computation*, 2014, 18(6): 860-872.

- M. Laumanns, L. Thiele and E. Zitzler. Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions. *IEEE Transactions on Evolutionary Computation*, 2004, 8(2): 170-182
- Y. Li, Y. Zhou, Z.-H. Zhan and J. Zhang. A primary theoretical study on decomposition based multiobjective evolutionary algorithms. *IEEE Transactions on Evolutionary Computation*, 2016, in press
- L. L. Minku, D. Sudholt and X. Yao. Improved evolutionary algorithm design for the project scheduling problem based on runtime analysis. *IEEE Transactions on Software Engineering*, 2014, 40(1): 83-102
- F. Neumann and I. Wegener. Minimum spanning trees made easier via multi-objective optimization. *Natural Computing*, 2006, 5(3): 305-319
- F. Neumann and I. Wegener. Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. *Theoretical Computer Science*, 2007, 378(1): 32-40
- F. Neumann and M. Theile. How crossover speeds up evolutionary algorithms for the multi-criteria all-pairs-shortest-path problem. In: *Proceedings of the 11th International Conference on Parallel Problem Solving from Nature (PPSN'10)*, 2010, pages 667-676, Krakow, Poland

- F. Neumann, J. Reichel and M. Skutella. Computing minimum cuts by randomized search heuristics. *Algorithmica*, 2011, 59(3): 323-342
- P. S. Oliveto and C. Witt. Simplified drift analysis for proving lower bounds in evolutionary computation. *Algorithmica*, 2011, 59(3): 369-386
- P. S. Oliveto and C. Witt. On the runtime analysis of the simple genetic algorithm. *Theoretical Computer Science*, 2014, 545: 2-19
- C. Qian, Y. Yu and Z.-H. Zhou. An analysis on recombination in multi-objective evolutionary optimization. *Artificial Intelligence*, 2013, 204: 99-119
- C. Qian, Y. Yu and Z.-H. Zhou. Pareto ensemble pruning. In: *Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI'15)*, 2015, pages 2935-2941, Austin, TX
- C. Qian, Y. Yu and Z.-H. Zhou. On constrained Boolean Pareto optimization. In: *Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI'15)*, 2015, pages 389-395, Buenos Aires, Argentina

- C. Qian, Y. Yu and Z.-H. Zhou. Subset selection by Pareto optimization. In: Advances in Neural Information Processing Systems 28 (NIPS'15), 2015, pages 1765-1773, Montreal, Canada
- C. Qian, J.-C. Shi, Y. Yu, K. Tang and Z.-H. Zhou. Parallel Pareto optimization for subset selection. In: *Proceedings of the 25th International Joint Conference on Artificial Intelligence* (*IJCAI'16*), 2016, New York, NY
- J. E. Rowe and D. Sudholt. The choice of the offspring population size in the $(1,\lambda)$ evolutionary algorithm. *Theoretical Computer Science*, 2014, 545: 20-38
- Y. Yu, X. Yao and Z.-H. Zhou. On the approximation ability of evolutionary optimization with application to minimum set cover. *Artificial Intelligence*, 2012, 180-181: 20-33
- Y. Yu, C. Qian and Z.-H. Zhou. Switch analysis for running time analysis of evolutionary algorithms. *IEEE Transactions on Evolutionary Computation*, 2015, 19(6): 777-792
- Y. Yu and C. Qian. Running time analysis: Convergence-based analysis reduces to switch analysis. In *Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC'15)*, 2015, pages 2603-2610, Sendai, Japan