
An Introduction on Theory of

Evolutionary Optimization

Chao Qian (钱 超)
http://staff.ustc.edu.cn/~chaoqian/

UBRI, School of Computer Science and Technology

University of Science and Technology of China, China

第三届演化计算与学习研讨会ECOLE 2016

Outline

• Introduction

• Running time analysis approaches

• Running time analysis results

• Examples of running time analysis leading

to improved design of EAs

• Summary

Evolutionary algorithms

Evolutionary algorithms (EAs) have been widely used in
real applications

GA, ES, GP, PSO,
ACO, DE, …… population new solutions

reproduction

evaluation & updatinginitialization

EAs are randomized and complex

• With the same input, the performed operations and the output
can be different

• The designed reproduction operators and updating mechanisms
can be complex

The theoretical foundation of EAs is still weak,

but important

theoretical analysis: difficult

Early theoretical studies

Schema theorem [Holland, 1975]

• Proposed to explain the behavior of genetic algorithms

• Critiqued from several directions, and even wrong [Reeves & Rowe, 2002]

• Cannot explain the performance or limit behaviors of EAs

Ε 𝑚 𝐻, 𝑡 + 1 ≥
𝑚 𝐻, 𝑡 𝑓 𝐻

𝑎𝑡
(1 − 𝑝)

Convergence analysis [Rudolph, FI’98]

• Given unlimited time, can the algorithm find the optimum with
probability 1?

• Sufficient conditions:

 There is a positive probability to reach any solution in the search space
from any other solution (satisfied by most canonical EAs)

 The algorithm keeps the best found solution (elitism)

𝑙𝑖𝑚𝑡→+∞ 𝑃 𝜉𝑡 ∈ Χ∗ = 1?

Running time analysis

Convergence analysis

𝑙𝑖𝑚𝑡→+∞ 𝑃 𝜉𝑡 ∈ X∗ = 1 ?

How fast does it converge?

Running time analysis

𝜏 = min 𝑡 ≥ 0 𝜉𝑡 ∈ Χ∗}

The number of iterations until
finding an optimal solution
for the first time

Running time analysis

Convergence analysis

𝑙𝑖𝑚𝑡→+∞ 𝑃 𝜉𝑡 ∈ X∗ = 1 ?

Running time analysis

𝜏 = min 𝑡 ≥ 0 𝜉𝑡 ∈ Χ∗}

The number of iterations until
finding an optimal solution
for the first time

Running time complexity

• The number of iterations × the number of fitness
evaluations in each iteration

• Usually grows with the problem size and expressed
in asymptotic notations

e.g., (1+1)-EA solving LeadingOnes: 𝑂(𝑛2)

z
y

Problem size

R
u

n
tim

e

The leading theoretical aspect
[Auger & Doerr, 2011; Neumann & Witt, 2012]

Running time analysis

Convergence analysis

𝑙𝑖𝑚𝑡→+∞ 𝑃 𝜉𝑡 ∈ X∗ = 1 ?

Running time analysis

𝜏 = min 𝑡 ≥ 0 𝜉𝑡 ∈ Χ∗}

The number of iterations until
finding an optimal solution
for the first time

The leading theoretical aspect
[Auger & Doerr, 2011; Neumann & Witt, 2012]

A quick guide to asymptotic notations:

Let 𝑔 and 𝑓 be two functions defined on the real numbers.

• 𝑔 ∈ Ο 𝑓 : ∃𝑀 > 0 such that 𝑔 𝑥 ≤ 𝑀 ∙ 𝑓(𝑥) for all sufficiently large 𝑥

• 𝑔 ∈ Ω 𝑓 : 𝑓 ∈ Ο 𝑔

• 𝑔 ∈ Θ 𝑓 : 𝑔 ∈ Ο 𝑓 and 𝑔 ∈ Ω 𝑓

𝑔 ∈ Ο(𝑓) → 𝑔 ≤ 𝑓

𝑔 ∈ Ω 𝑓 → 𝑔 ≥ 𝑓

𝑔 ∈ Θ 𝑓 → 𝑔 = 𝑓

Outline

• Introduction

• Running time analysis approaches

• Running time analysis results

• Examples of running time analysis leading

to improved design of EAs

• Summary

Markov chain modeling

population new solutions

reproduction

initialization evaluation & updating

EA:

population
0

population
1

population
2

population
3

…

state 𝜉0 …state 𝜉1 state 𝜉2 state 𝜉3

Markov chain: 𝑃 𝜉𝑡 𝜉𝑡−1, … , 𝜉1, 𝜉0 = 𝑃(𝜉𝑡|𝜉𝑡−1)

Running time analysis

𝜏 = min 𝑡 ≥ 0 𝜉𝑡 ∈ Χ∗}

a random variable
• Ε 𝜏
• 𝑃(𝜏 ≤ 𝑇)

Fitness level method

The basic idea [Droste et al., TCS’02]:

1. Divide the solution space 𝑆 into 𝑚 + 1 subspaces 𝑆0, 𝑆1, … , 𝑆𝑚

• ∀𝑖 ≠ 𝑗: 𝑆𝑖 ∩ 𝑆𝑗 = ∅, ⋃𝑖=0
𝑚 𝑆𝑖 = 𝑆

• ∀𝑖 < 𝑗, 𝑥 ∈ 𝑆𝑖 , 𝑦 ∈ 𝑆𝑗: 𝑓 𝑥 < 𝑓(𝑦)

𝑆0

𝑆1

𝑆2

𝑆3

𝑆𝑚−1

𝑆𝑚only optimal solutions

Fitness level method

The basic idea [Droste et al., TCS’02]:

1. Divide the solution space 𝑆 into 𝑚 + 1 subspaces 𝑆0, 𝑆1, … , 𝑆𝑚

• ∀𝑖 ≠ 𝑗: 𝑆𝑖 ∩ 𝑆𝑗 = ∅, ⋃𝑖=0
𝑚 𝑆𝑖 = 𝑆

• ∀𝑖 < 𝑗, 𝑥 ∈ 𝑆𝑖 , 𝑦 ∈ 𝑆𝑗: 𝑓 𝑥 < 𝑓(𝑦)

𝑆0

𝑆1

𝑆2

𝑆3

𝑆𝑚−1

𝑆𝑚

2. Bounds on the probability of leaving 𝑆𝑖 to higher 𝑆𝑗

• 𝑃(𝜉𝑡+1 ∈ ⋃𝑗=𝑖+1
𝑚 𝑆𝑗|𝜉𝑡 ∈ 𝑆𝑖) ≥ 𝑣𝑖

• 𝑃(𝜉𝑡+1 ∈ ⋃𝑗=𝑖+1
𝑚 𝑆𝑗|𝜉𝑡 ∈ 𝑆𝑖) ≤ 𝑢𝑖

Expected running time

Upper bound: ∑𝑖=0
𝑚−1𝜋0(𝑆𝑖) ∙ ∑𝑗=𝑖

𝑚−1 1

𝑣𝑗

the initial distribution

Fitness level method

The basic idea [Droste et al., TCS’02]:

1. Divide the solution space 𝑆 into 𝑚 + 1 subspaces 𝑆0, 𝑆1, … , 𝑆𝑚

• ∀𝑖 ≠ 𝑗: 𝑆𝑖 ∩ 𝑆𝑗 = ∅, ⋃𝑖=0
𝑚 𝑆𝑖 = 𝑆

• ∀𝑖 < 𝑗, 𝑥 ∈ 𝑆𝑖 , 𝑦 ∈ 𝑆𝑗: 𝑓 𝑥 < 𝑓(𝑦)

𝑆0

𝑆1

𝑆2

𝑆3

𝑆𝑚−1

𝑆𝑚

2. Bounds on the probability of leaving 𝑆𝑖 to higher 𝑆𝑗

• 𝑃(𝜉𝑡+1 ∈ ⋃𝑗=𝑖+1
𝑚 𝑆𝑗|𝜉𝑡 ∈ 𝑆𝑖) ≥ 𝑣𝑖

• 𝑃(𝜉𝑡+1 ∈ ⋃𝑗=𝑖+1
𝑚 𝑆𝑗|𝜉𝑡 ∈ 𝑆𝑖) ≤ 𝑢𝑖

Expected running time

Upper bound: ∑𝑖=0
𝑚−1𝜋0(𝑆𝑖) ∙ ∑𝑗=𝑖

𝑚−1 1

𝑣𝑗

the initial distribution

1

𝑣1

1

𝑣2

1

𝑣𝑚−1

Fitness level method

The basic idea [Droste et al., TCS’02]:

1. Divide the solution space 𝑆 into 𝑚 + 1 subspaces 𝑆0, 𝑆1, … , 𝑆𝑚

• ∀𝑖 ≠ 𝑗: 𝑆𝑖 ∩ 𝑆𝑗 = ∅, ⋃𝑖=0
𝑚 𝑆𝑖 = 𝑆

• ∀𝑖 < 𝑗, 𝑥 ∈ 𝑆𝑖 , 𝑦 ∈ 𝑆𝑗: 𝑓 𝑥 < 𝑓(𝑦)

𝑆0

𝑆1

𝑆2

𝑆3

𝑆𝑚−1

𝑆𝑚

2. Bounds on the probability of leaving 𝑆𝑖 to higher 𝑆𝑗

• 𝑃(𝜉𝑡+1 ∈ ⋃𝑗=𝑖+1
𝑚 𝑆𝑗|𝜉𝑡 ∈ 𝑆𝑖) ≥ 𝑣𝑖

• 𝑃(𝜉𝑡+1 ∈ ⋃𝑗=𝑖+1
𝑚 𝑆𝑗|𝜉𝑡 ∈ 𝑆𝑖) ≤ 𝑢𝑖

Expected running time

Upper bound: ∑𝑖=0
𝑚−1𝜋0(𝑆𝑖) ∙ ∑𝑗=𝑖

𝑚−1 1

𝑣𝑗

1

𝑢1

Lower bound: ∑𝑖=0
𝑚−1𝜋0(𝑆𝑖) ∙

1

𝑢𝑖

Example: (1+1)-EA for OneMax

OneMax:
arg𝑚𝑎𝑥𝑥∈{0,1}𝑛 ∑𝑖=1

𝑛 𝑥𝑖

(1+1)-EA:
Given a pseudo-Boolean function 𝑓:

1. 𝑥 ≔ randomly selected from {0,1}𝑛.
2. Repeat until some termination criterion is met
3. 𝑥′ ≔ flip each bit of 𝑥 with probability 1/𝑛.
4. if 𝑓 𝑥′ ≥ 𝑓(𝑥)
5. 𝑥 = 𝑥′.

Count the number of 1-bits

Theorem. [Droste et al., TCS’02] The expected running time of the
(1+1)-EA solving the OneMax problem is 𝑂(𝑛 log 𝑛).

Proof

Theorem. [Droste et al., TCS’02] The expected running time of the
(1+1)-EA solving the OneMax problem is 𝑂(𝑛 log 𝑛).

Main idea:

• Divide the solution space {0,1}𝑛 into 𝑆0, 𝑆1, … , 𝑆𝑛 with 𝑆𝑖 = 𝑥 ∈ 0,1 𝑛 𝑥 = 𝑖}

• The probability of jumping to higher 𝑆𝑗 from 𝑆𝑖 is lower bounded by

𝑃(𝜉𝑡+1 ∈ ⋃𝑗=𝑖+1
𝑚 𝑆𝑗|𝜉𝑡 ∈ 𝑆𝑖) ≥

𝑛−𝑖

𝑛
∙ (1 −

1

𝑛
)𝑛−1

flip one of the 𝑛 − 𝑖 0-bits

keep the other
bits unchanged

the number of 1-bits

Upper bound on the
expected running time: ∑𝑖=0

𝑛−1𝜋0(𝑆𝑖) ∙ ∑𝑗=𝑖
𝑛−1 1

𝑣𝑗
≤ ∑𝑗=0

𝑛−1 1

𝑣𝑗

≤ ∑𝑗=0
𝑛−1 𝑛

𝑛−𝑗

1

(1−
1

𝑛
)𝑛−1

≤ 𝑒𝑛∑𝑗=1
𝑛 1

𝑗
∈ 𝑂(𝑛 log 𝑛)

Refined fitness level method

Original [Droste et al., TCS’02]:

𝑆0

𝑆1

𝑆2

𝑆3

𝑆𝑚−1

𝑆𝑚

𝑃(𝜉𝑡+1 ∈ ⋃𝑗=𝑖+1
𝑚 𝑆𝑗|𝜉𝑡 ∈ 𝑆𝑖) ≥ 𝑣𝑖

Upper bound: ∑𝑖=0
𝑚−1𝜋0(𝑆𝑖) ∙ ∑𝑗=𝑖

𝑚−1 1

𝑣𝑗

Refined [Sudholt, TEC’13]:

𝑃(𝜉𝑡+1 ∈ 𝑆𝑗 |𝜉𝑡 ∈ 𝑆𝑖) ≥ 𝑣𝑖 ∙ 𝛾𝑖,𝑗

∑𝑗=𝑖+1
𝑚 𝛾𝑖,𝑗 = 1 𝛾𝑖,𝑗 ≤ 𝜒 ∑𝑘=𝑗

𝑚 𝛾𝑖,𝑘

Upper bound: ∑𝑖=0
𝑚−1𝜋0(𝑆𝑖) ∙ (

1

𝑣𝑖
+ 𝜒 ∑𝑗=𝑖+1

𝑚−1 1

𝑣𝑗
)

𝑆0

𝑆1

𝑆2

𝑆3

𝑆𝑚−1

𝑆𝑚

Original is a specialization of refined
If 𝜒 = 1, upper bound
If 𝜒 = 0, lower bound

𝑣1

𝑣1𝛾1,2

𝑣1𝛾1,3

𝑣1𝛾1,𝑚−1

𝑣1𝛾1,𝑚

Refined fitness level method

𝑆0

𝑆1

𝑆2

𝑆3

𝑆𝑚−1

𝑆𝑚

• Only consider jumping to higher levels
• Proposed for elitist EAs

The above two fitness level methods
[Droste et al., TCS’02; Sudholt, TEC’13]

The fitness level method for non-elitist
EAs [Dang & Lehre, Algorithmica’16]

• allows jumping to lower levels

Drift analysis

The basic idea [Sasaki & Hajek, JACM’88; He & Yao, AIJ’01]:

The hotel

2. Bounds on the expected drift in one step

Expected running time

Upper bound: ∑𝑥∈𝑋 𝜋0(𝑥) ∙
𝑉(𝑥)

𝑐𝑙

the initial distribution

1. Design a distance function 𝑉 𝑥 : 𝑋 → ℝ to measure the distance

from a state 𝑥 ∈ 𝑋 to the optimal state space 𝑋∗

• ∀𝑥 ∈ 𝑋 − 𝑋∗: 𝑉 𝑥 > 0

• ∀𝑥 ∈ 𝑋∗: 𝑉 𝑥 = 0

the total distance 3 km

at least 0.1 km
per minute

the time ≤
3

0.1
= 30 minutes

• Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡] ≥ 𝑐𝑙

• Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡] ≤ 𝑐𝑢

Drift analysis

The basic idea [Sasaki & Hajek, JACM’88; He & Yao, AIJ’01]:

The hotel

2. Bounds on the expected drift in one step

Expected running time

Upper bound: ∑𝑥∈𝑋 𝜋0(𝑥) ∙
𝑉(𝑥)

𝑐𝑙

1. Design a distance function 𝑉 𝑥 : 𝑋 → ℝ to measure the distance

from a state 𝑥 ∈ 𝑋 to the optimal state space 𝑋∗

• ∀𝑥 ∈ 𝑋 − 𝑋∗: 𝑉 𝑥 > 0

• ∀𝑥 ∈ 𝑋∗: 𝑉 𝑥 = 0

the total distance 3 km

at least 0.1 km
per minute

the time ≤
3

0.1
= 30 minutes

• Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡] ≥ 𝑐𝑙

• Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡] ≤ 𝑐𝑢

Lower bound: ∑𝑥∈𝑋 𝜋0(𝑥) ∙
𝑉(𝑥)

𝑐𝑢

Example: (1+1)-EA for LeadingOnes

LeadingOnes:

arg𝑚𝑎𝑥𝑥∈{0,1}𝑛 ∑𝑖=1
𝑛 ∏𝑗=1

𝑖 𝑥𝑗

(1+1)-EA:
Given a pseudo-Boolean function 𝑓:

1. 𝑥 ≔ randomly selected from {0,1}𝑛.
2. Repeat until some termination criterion is met
3. 𝑥′ ≔ flip each bit of 𝑥 with probability 1/𝑛.
4. if 𝑓 𝑥′ ≥ 𝑓(𝑥)
5. 𝑥 = 𝑥′.

Count the number of consecutive
1-bits starting from the left

Theorem. [He & Yao, AIJ’01] The expected running time of the (1+1)-
EA solving the LeadingOnes problem is 𝑂(𝑛2).

e.g., 𝑓 11010 = 2, 𝑓 01111 = 0

𝐿𝑂(𝑥)

Proof

Theorem. [He & Yao, AIJ’01] The expected running time of the (1+1)-
EA solving the LeadingOnes problem is 𝑂(𝑛2).

Main idea:

• Design the distance function V x = 𝑛 − 𝐿𝑂(𝑥)

• The expected drift from a solution 𝑥 with 𝐿𝑂 𝑥 = 𝑖 is lower bounded by

Ε[𝑉 𝜉𝑡 − 𝑉(𝜉𝑡+1) | 𝜉𝑡 = 𝑥) ≥ 1 ∙
1

𝑛
∙ (1 −

1

𝑛
)𝑖

flip the first 0-bit

keep the 𝑖 leading
1-bits unchanged

the number of leading 1-bits

≤
𝑛

𝑐𝑙

≤ 𝑛 ∙ 𝑛 ∙
1

(1−
1

𝑛
)𝑖
≤ 𝑒𝑛2 ∈ 𝑂(𝑛2)

𝐿𝑂 𝑥 = 𝑖 → ≥ 𝑖 + 1

Upper bound on the
expected running time:

∑𝑥∈𝑋 𝜋0(𝑥) ∙
𝑉(𝑥)

𝑐𝑙

Multiplicative drift analysis

The hotel

Original [He & Yao, AIJ’01]:

Upper bound:

Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡] ≥ 𝑐𝑙

∑𝑥∈𝑋 𝜋0(𝑥) ∙
𝑉(𝑥)

𝑐𝑙

Multiplicative [Doerr et al., Algorithmica’12]:

not depend on 𝜉𝑡

Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡] ≥ 𝛿 ∙ 𝑉(ߦ𝑡)

Upper bound: ∑𝑥∈𝑋 𝜋0(𝑥) ∙
1 + log (𝑉 𝑥 /𝑉𝑚𝑖𝑛)

𝛿

proportional to
the current distance

min 𝑉 𝑥 𝑉(𝑥) > 0}

Multiplicative is not stronger than original

Example: (1+1)-EA for MST

Minimum spanning tree (MST):

• Given: an undirected connected graph 𝐺 = (𝑉, 𝐸) on 𝑛
vertices and 𝑚 edges with positive integer weights
𝑤:𝐸 → ℕ

• The Goal: find a connected subgraph 𝐸′ ⊆ 𝐸 with the
minimum weight

𝑒1: 𝑤1 = 1

𝑒2: 𝑤2 = 1

𝑒3: 𝑤3 = 2

𝑒4: 𝑤4 = 1

𝑒5: 𝑤5 = 3

The original graph

𝑒1: 𝑤1 = 1

𝑒2: 𝑤2 = 1
𝑒4: 𝑤4 = 1

The minimum spanning tree

Example: (1+1)-EA for MST

(1+1)-EA:
Given a pseudo-Boolean function 𝑓:

1. 𝑥 ≔ randomly selected from {0,1}𝑛.
2. Repeat until some termination criterion is met
3. 𝑥′ ≔ flip each bit of 𝑥 with probability 1/𝑛.
4. if 𝑓 𝑥′ ≥ 𝑓(𝑥)
5. 𝑥 = 𝑥′.

𝑥𝑖 = 1 means that edge 𝑒𝑖 is selected

Solution representation: 𝑥 ∈ {0,1}𝑚 ↔ a subgraph

e.g., {𝑒1, 𝑒2, 𝑒4} → 11010

the number of
connected components Fitness function:

min 𝑓 𝑥 = 𝑐 𝑥 − 1 ∙ 𝑤𝑢𝑏 + ∑𝑖:𝑥𝑖=1𝑤𝑖

𝑤𝑢𝑏 = 𝑛2 ∙ 𝑤𝑚𝑎𝑥, to make a subgraph with less connected components better

Proof

Theorem. [Neumann & Wegener, TCS’07; Doerr et al., Algorithmica’12] The
expected running time of the (1+1)-EA solving the MST problem
is 𝑂(𝑚2(log 𝑛 + log𝑤𝑚𝑎𝑥)).

Main idea:

(1) obtain a connected subgraph

(2) obtain a minimum spanning tree

𝑐 𝑥 = 1

the probability of decreasing 𝑐(𝑥)

by 1 is at least
𝑐 𝑥 −1

𝑚
(1 −

1

𝑚
)𝑚−1

the expected steps for decreasing

𝑐(𝑥) by 1 is at most
𝑒𝑚

𝑐 𝑥 −1

The analysis of phase (1): min 𝑓 𝑥 = 𝑐 𝑥 − 1 ∙ 𝑤𝑢𝑏 + ∑𝑖:𝑥𝑖=1𝑤𝑖

• 𝑐(𝑥) cannot increase

• at least 𝑐 𝑥 − 1 edges, the insertion of which can decrease 𝑐(𝑥) by 1

The expected running time: ∑𝑐 𝑥 =𝑛
2 𝑒𝑚

𝑐 𝑥 −1
∈ 𝑂(𝑚 log 𝑛)

Proof

The analysis of phase (2): min 𝑓 𝑥 = 𝑐 𝑥 − 1 ∙ 𝑤𝑢𝑏 + ∑𝑖:𝑥𝑖=1𝑤𝑖

• it will always be connected, i.e., 𝑐 𝑥 = 1 always holds

• to analyze 𝑓 𝑥 → 𝑓𝑜𝑝𝑡 the weight of a minimum spanning tree

Using multiplicative drift analysis:

• design the distance function: 𝑉 𝑥 = 𝑓 𝑥 − 𝑓𝑜𝑝𝑡

• analyze the expected drift:

Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡 = 𝑥] = 𝑉 𝑥 − Ε 𝑉 𝜉𝑡+1 𝜉𝑡 = 𝑥] = 𝑓 𝑥 − Ε 𝑓 𝜉𝑡+1 𝜉𝑡 = 𝑥]

≥ 𝑓 𝑥 − (∑𝑖=1
𝑚−(𝑛−1)

𝑓(𝑦𝑖) ∙
1

𝑚
(1 −

1

𝑚
)𝑚−1+ ∑𝑖=1

𝑛 𝑓(𝑧𝑖) ∙
1

𝑚2
(1 −

1

𝑚
)𝑚−2+ 1 −⋯ 𝑓 𝑥)

there exists a set of 𝑚 − (𝑛 − 1) 1-bit flips and a set of 𝑛 2-bit flips such
that the average weight decrease is at least (𝑓 𝑥 − 𝑓𝑜𝑝𝑡)/(𝑚 + 1)

≥
1

𝑚
1 −

1

𝑚

𝑚−1
𝑓 𝑥 − 𝑓𝑜𝑝𝑡

𝑚 + 1
≥

1

𝑒𝑚 𝑚 + 1
𝑉(𝑥)

Proof

The analysis of phase (2): min𝑓 𝑥 = 𝑐 𝑥 − 1 ∙ 𝑤𝑢𝑏 + ∑𝑖:𝑥𝑖=1𝑤𝑖

• it will always be connected, i.e., 𝑐 𝑥 = 1 always holds

• to analyze 𝑓 𝑥 → 𝑓𝑜𝑝𝑡 the weight of a minimum spanning tree

Using multiplicative drift analysis:

• design the distance function: 𝑉 𝑥 = 𝑓 𝑥 − 𝑓𝑜𝑝𝑡

• analyze the expected drift:

Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡 = 𝑥] ≥
1

𝑒𝑚 𝑚+1
𝑉(𝑥)

Upper bound on the expected running time:

∑𝑥∈𝑋 𝜋0(𝑥) ∙
1 + log (𝑉 𝑥 /𝑉𝑚𝑖𝑛)

𝛿

𝑉 𝑥 ≤ 𝑚𝑤𝑚𝑎𝑥 𝑉𝑚𝑖𝑛 ≥ 1

≤ 𝑒𝑚(𝑚 + 1)(1 + log (𝑚𝑤𝑚𝑎𝑥))

∈ 𝑂(𝑚2(log 𝑛 + log𝑤𝑚𝑎𝑥))

proportional to
the current distance

Proof

Theorem. [Neumann & Wegener, TCS’07; Doerr et al., Algorithmica’12] The
expected running time of the (1+1)-EA solving the MST problem
is 𝑂(𝑚2(log 𝑛 + log𝑤𝑚𝑎𝑥)).

Main idea:

(1) obtain a connected subgraph

(2) obtain a minimum spanning tree

The expected running time of phase (1): 𝑂(𝑚 log 𝑛)

The expected running time of phase (2): 𝑂(𝑚2(log 𝑛 + log𝑤𝑚𝑎𝑥))

The total expected running time: 𝑂(𝑚2(log 𝑛 + log𝑤𝑚𝑎𝑥))

Simplified drift analysis

The simplified drift analysis theorem
for proving exponential lower bounds [Oliveto & Witt, Algorithmica’11]

The expected drift is negative,
i.e., away from the target in expectation

The probability of a drift
towards the target
decreases exponentially

Exponential running timea constant

The simplified drift theorem with self-loops [Rowe & Sudholt, TCS’14]

The simplified drift theorem with scaling [Oliveto & Witt, TCS’14]

Switch analysis

The basic idea [Yu et al., TEC’15]:

investigate the different
behaviors at each step

Given EA on the given problem

Reference algorithm on
the reference problem

The expected running time of {𝜉𝑡
′}𝑡=0
+∞ , easy to analyze

{𝜉𝑡}𝑡=0
+∞

{𝜉𝑡
′}𝑡=0
+∞

Ε 𝜏 ≤ (≥) Ε 𝜏′ + ∑𝑡=0
+∞ 𝜌𝑡

The expected running time:

Multi-objective optimization

The task: optimize multiple objectives simultaneously

better 𝑓1
better 𝑓2

𝑥

𝑦
𝑧

𝑓1

𝑓2

worse 𝑓1
better 𝑓2

𝑥 dominates 𝑧:

𝑓1 𝑥 < 𝑓1 𝑧 ⋀ 𝑓2 𝑥 < 𝑓2 𝑧

𝑥 incomparable 𝑦:

𝑓1 𝑥 > 𝑓1 𝑦 ⋀ 𝑓2 𝑥 < 𝑓2 𝑦

𝑚𝑖𝑛𝑥∈Χ (𝑓1 𝑥 , 𝑓2 𝑥 ,… , 𝑓𝑚 𝑥)

Previous analysis approaches are not easy to be directly applied

Example: GSEMO for LOTZ

LOTZ: arg𝑚𝑎𝑥𝑥∈{0,1}𝑛 (∑𝑖=1
𝑛 ∏𝑗=1

𝑖 𝑥𝑗 , ∑𝑖=1
𝑛 ∏𝑗=𝑖

𝑛 (1 − 𝑥𝑗))

GSEMO: Given a pseudo-Boolean function vector 𝒇:

1. 𝑥 ≔ randomly selected from {0,1}𝑛.
2. 𝑃 ≔ {𝑥}.
3. Repeat until some termination criterion is met
4. Choose 𝑥 from 𝑃 uniformly at random.
5. 𝑥′ ≔ flip each bit of 𝑥 with probability 1/𝑛.
6. if ∄ 𝑧 ∈ 𝑃 such that 𝑧 ≻ 𝑥′
7. 𝑃:= 𝑃 − 𝑧 ∈ 𝑃| 𝑥′ ≽ 𝑧 ∪ {𝑥′}.

Count the number of leading 1-bits

Keep non-dominated
solutions

Count the number of trailing 0-bits

The Pareto set: 00…00, 10…00, … , 11…10, 11…11.

The Pareto front: (0, 𝑛), (1, 𝑛 − 1), … , (𝑛 − 1,1), (𝑛, 0).

Proof

Theorem. [Giel, CEC’03] The expected running time of the GSEMO
solving the LOTZ problem is 𝑂(𝑛3).

Main idea:

(1) obtain the Pareto optimal solution 11…11

(2) obtain the Pareto front

The analysis of phase (1):

• select the solution with the largest LO value, and only flip its first 0 bit

• the probability:
1

𝑛+1

1

𝑛
(1 −

1

𝑛
)𝑛−1

the population size is not larger than 𝑛 + 1

Proof

Theorem. [Giel, CEC’03] The expected running time of the GSEMO
solving the LOTZ problem is 𝑂(𝑛3).

Main idea:

(1) obtain the Pareto optimal solution 11…11

(2) obtain the Pareto front

The analysis of phase (1):

• select the solution with the largest LO value, and only flip its first 0 bit

• the probability:
1

𝑛+1

1

𝑛
(1 −

1

𝑛
)𝑛−1

Proof

Theorem. [Giel, CEC’03] The expected running time of the GSEMO
solving the LOTZ problem is 𝑂(𝑛3).

Main idea:

(1) obtain the Pareto optimal solution 11…11

(2) obtain the Pareto front

the probability of increasing the largest

LO value by 1 is at least
1

𝑒𝑛(𝑛+1)

it is sufficient to increase 𝑛 times

The analysis of phase (1):

• select the solution with the largest LO value, and only flip its first 0 bit

• the probability:
1

𝑛+1

1

𝑛
(1 −

1

𝑛
)𝑛−1

The expected running time:

𝑛 ∙ 𝑒𝑛(𝑛 + 1) ∈ 𝑂(𝑛3)

Proof

The analysis of phase (2):

• the found Pareto optimal solutions will always be kept

• follow the path: 1𝑛 → 1𝑛−10 → ⋯ → 10𝑛−1 → 0𝑛

the probability:
1

𝑛+1
∙
1

𝑛
(1 −

1

𝑛
)𝑛−1

The expected running time: 𝑛 ∙ 𝑒𝑛(𝑛 + 1) ∈ 𝑂(𝑛3)

The expected running time of phase (1): 𝑂(𝑛3)

The total expected running time: 𝑂(𝑛3)

Running time analysis approaches

• Fitness level method

• Refined fitness level method

• Drift analysis

• Multiplicative drift analysis

• Switch analysis

• Simplified drift analysis

Upper and lower bounds
on the expected running
time

Exponential running time
with high probability

More specific approaches for multi-objective EAs

Outline

• Introduction

• Running time analysis approaches

• Running time analysis results

• Examples of running time analysis leading

to improved design of EAs

• Summary

Results in single-objective optimization

(1+1)-EA

(𝑢+1)-EA

(1+𝜆)-EA

(𝑁+𝑁)-EA

linear function Θ(𝑛 log 𝑛) [Droste et al., TCS’02]

minimum spanning tree O(𝑚2 log(𝑛 + 𝑤𝑚𝑎𝑥)) [Neumann & Wegener, TCS’07]

partition O 𝑛2 with
4

3
approximation [Witt, STACS’05]

vertex cover 𝑒Ω(𝑛) with arbitrary bad approximation [Oliveto, TEC’09]

OneMax O 𝑢𝑛 + 𝑛 log 𝑛 ; LeadingOnes O(𝑢𝑛 log 𝑛 + 𝑛2) [Witt, ECJ’06]

maximum clique O 𝑢𝑛 log 𝑛 on sparse graphs [Storch, TCS’07]

vertex cover O 𝑢𝑛 log 𝑛 on bipartite graphs [Oliveto, TEC’09]

linear function O 𝜆𝑛 + 𝑛 log 𝑛 [Doerr & Kunnemann, TCS’15]

vertex cover e𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 on bipartite graphs [Oliveto, TEC’09]

OneMax O 𝑁𝑛 log log 𝑛 + 𝑛 log 𝑛 ; LeadingOnes O(𝑁𝑛 log 𝑛 + 𝑛2)
[Chen et al., TSMCB’09]

EDA [Chen et al., TEC’10]; ACO [Doerr et al., TCS’11]; PSO [Sudholt & Witt, TCS’10];
Memetic algorithms [Sudholt, TCS’09]; GP [Wagner et al., ECJ’15]

Results in multi-objective optimization

SEMO

GSEMO

REMO

MOEA/D

LOTZ Θ(𝑛3); COCZ O(𝑛2 log 𝑛) [Laumanns et al., TEC’04]

LOTZ O 𝑛3 [Giel, CEC’03]; Ω(𝑛2/𝑝) [Doerr et al., CEC’13]

bi-objective minimum spanning tree O 𝑚3𝑤𝑚𝑖𝑛(𝐶 + log 𝑛 + log𝑤𝑚𝑎𝑥)
with 2 approximation [Neumann, EJOR’07]

LOTZ Θ(𝑛2); COCZ Θ(𝑛 log 𝑛); bi-objective minimum spanning tree

LOTZ O 𝑛2 log 𝑛 ; COCZ Θ(𝑛 log 𝑛) [Li et al., TEC’16]

Single-objective optimization problems by multi-objective EAs

DEMO multi-objective all-pairs-shortest-path O 𝑛𝑃𝑚𝑎𝑥𝑔 𝑤𝑖𝑡ℎ

𝑟3𝑔 log 𝑛 approximation [Neumann & Theile, PPSN’10]

O 𝑚2𝑛𝑤𝑚𝑖𝑛(𝐶 +
log 𝑛+log 𝑤𝑚𝑎𝑥

𝑛𝑤𝑚𝑖𝑛
− 𝑁𝑔𝑐(1 −

1

𝑚
)) with 2 approximation

[Qian et al., AIJ’13]

Single-objective better by multi-objective

Minimum spanning tree (MST):

• Given: an undirected connected graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices
and 𝑚 edges with positive integer weights 𝑤:𝐸 → ℕ

• The Goal: find a connected subgraph 𝐸′ ⊆ 𝐸 with the minimum
weight

Fitness function: min 𝑓 𝑥 = 𝑐 𝑥 − 1 ∙ 𝑤𝑢𝑏 + ∑𝑖:𝑥𝑖=1𝑤𝑖

Bi-objective min (𝑐 𝑥 , ∑𝑖:𝑥𝑖=1𝑤𝑖)

Single-objective: 𝑂(𝑚2(log 𝑛 + log𝑤𝑚𝑎𝑥))

Bi-objective: 𝑂(𝑚𝑛(𝑛 + log𝑤𝑚𝑎𝑥))

multi-objective better
for dense graphs,
e.g., 𝑚 = Θ(𝑛2)

More examples

Single-objective Multi-objective

MST 𝑂(𝑚2(log 𝑛 + log𝑤𝑚𝑎𝑥)) 𝑂(𝑚𝑛(𝑛 + log𝑤𝑚𝑎𝑥))

[Neumann & Wegener, GECCO’05]

Set cover 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑂(𝑚𝑛(log 𝑐𝑚𝑎𝑥 + log 𝑛))

[Friedrich et al., ECJ’10]

Minimum cut 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑂(𝐹𝑚(log 𝑐𝑚𝑎𝑥 + log 𝑛))

[Neumann et al., Algorithmica’11]

Minimum LST Ω(𝑘𝑢𝑘) 𝑂(𝑘2log 𝑘)

[Lai et al., TEC’14]

Problem

Minimum cost
coverage

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑂(𝑁𝑛(log 𝑛 + log𝑤𝑚𝑎𝑥 + 𝑁)

[Qian et al., IJCAI’15]

Outline

• Introduction

• Running time analysis approaches

• Running time analysis results

• Examples of running time analysis

leading to improved design of EAs

• Summary

Project scheduling problem

A full software project scheduling process:

• identify project tasks

• identify task dependencies

• estimate resources for tasks

• allocate employees to tasks

• create project charts

To minimize the cost and completion time of the software
project, while meeting all the constraints

𝑡1

𝑡2 𝑡3

𝑡4

Project Scheduling Problem

Project scheduling problem

The input:

the total dedication of employee 𝑖 at time 𝜏

The objective: produce a schedule which minimizes the cost and time

𝑥𝑖,𝑗 ∈ {0,
1

𝑘
,
2

𝑘
, … , 1}: the amount of dedication of 𝑒𝑖 to 𝑡𝑗

• a set of employees 𝑒1, … , 𝑒𝑛 with salaries 𝑠1, … , 𝑠𝑛,
and sets of skills 𝑠𝑘𝑖𝑙𝑙1, … , 𝑠𝑘𝑖𝑙𝑙𝑛, respectively

• a set of tasks 𝑡1, … , 𝑡𝑚 with required efforts 𝑒𝑓𝑓1, … , 𝑒𝑓𝑓𝑛,
and sets of required skills 𝑟𝑒𝑞1, … , 𝑟𝑒𝑞𝑚, respectively

• a task precedence graph (TPG) – a directed graph with
tasks as nodes and task precedence as edges

Constraints:
• required skills: 𝑟𝑒𝑞𝑗 ⊆ ⋃𝑖=1

𝑛 𝑠𝑘𝑖𝑙𝑙𝑖 𝑥𝑖,𝑗 > 0}

𝑚𝑎𝑥𝑖,𝜏 𝑒𝑖
𝑤𝑜𝑟𝑘 𝜏 ≤ 1• overwork:

Improved design inspired by theory

The overwork problem:

Theorem 1. The expected running time of the (1+1)-EA with
normalization on a linear schedule problem is O((𝑘𝑛𝑚)2).

Theoretical analysis:

• Previous - repair

𝑚𝑎𝑥𝑖,𝜏 𝑒𝑖
𝑤𝑜𝑟𝑘 𝜏 ≤ 1

• Proposed – normalization [Minku et al., TSE’14]

If 𝑀 = 𝑚𝑎𝑥𝑖,𝜏 𝑒𝑖
𝑤𝑜𝑟𝑘 𝜏 > 1, 𝑥𝑖,𝑗 = 𝑥𝑖,𝑗/𝑀

divide dedications
when necessary

divide dedications
across the whole schedule

𝑥𝑖,𝑗 = 𝑥𝑖,𝑗/max(1, ∑𝑡𝑙∈𝑉
′𝑥𝑖,𝑙)

Theorem 2. There exists a PSP instance where the (1+1)-EA
with normalization needs at least exponential time.

Easy instances

Hard instances

Improved design inspired by theory

The proposed algorithm
[Minku et al., TSE’14]

Experimental results

The proposed Pop-EA
performs the best

Subset selection
[Qian et al., NIPS’15; IJCAI’16]

Ensemble pruning
[Qian et al., AAAI’15]

More examples

Theory: single-objective optimization can be solved better
by multi-objective optimization

Summary

• The theoretical foundation of EAs is weak, but important

• State-of-the-art running time analysis approaches
– fitness level method

– drift analysis

– switch analysis

• Running time analysis results
– single-objective optimization

– multi-objective optimization

• Examples of improved design of EAs inspired by
theoretical analysis

Schema theorem Convergence Running time

[Holland, 1975] [Rudolph, FI’98] [He & Yao, AIJ’01]

Running time analysis

Algorithm

Problem

Simple Complex

Synthetic Combinatorial

Single-objective Multi-objective

Interesting directions

• Analysis on real EAs or real problems

• Running time analysis approaches for MOEAs

• Improved design of EAs by theory

• Analysis in noisy environments

• Analysis in continuous optimization

• ……

Reading books

References

• B. Doerr, D. Johannsen and C. Winzen. Multiplicative drift analysis. Algorithmica, 2012, 64:
673-697

• B. Doerr and L. A. Goldberg. Adaptive drift analysis. Algorithmica, 2013, 65: 224-250

• S. Droste, T. Jansen and I. Wegener. On the analysis of the (1+1) evolutionary algorithm.
Theoretical Computer Science, 2002, 276(1-2): 51-81

• T. Friedrich, J. He, N. Hebbinghaus, F. Neumann and C. Witt. Approximating covering
problems by randomized search heuristics using multi-objective models. Evolutionary
Computation, 2010, 18(4): 617-633

• J. He and X. Yao. Drift analysis and average time complexity of evolutionary algorithms.
Artificial Intelligence, 2001, 127(1): 57-85

• X. Lai, Y. Zhou, J. He and J. Zhang. Performance analysis of evolutionary algorithms for
the minimum label spanning tree problem. IEEE Transactions on Evolutionary Computation,
2014, 18(6): 860-872.

References

• M. Laumanns, L. Thiele and E. Zitzler. Running time analysis of multiobjective
evolutionary algorithms on pseudo-Boolean functions. IEEE Transactions on Evolutionary
Computation, 2004, 8(2): 170-182

• Y. Li, Y. Zhou, Z.-H. Zhan and J. Zhang. A primary theoretical study on decomposition
based multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary
Computation, 2016, in press

• L. L. Minku, D. Sudholt and X. Yao. Improved evolutionary algorithm design for the
project scheduling problem based on runtime analysis. IEEE Transactions on Software
Engineering, 2014, 40(1): 83-102

• F. Neumann and I. Wegener. Minimum spanning trees made easier via multi-objective
optimization. Natural Computing, 2006, 5(3): 305-319

• F. Neumann and I. Wegener. Randomized local search, evolutionary algorithms, and the
minimum spanning tree problem. Theoretical Computer Science, 2007, 378(1): 32-40

• F. Neumann and M. Theile. How crossover speeds up evolutionary algorithms for the
multi-criteria all-pairs-shortest-path problem. In: Proceedings of the 11th International
Conference on Parallel Problem Solving from Nature (PPSN’10), 2010, pages 667-676, Krakow,
Poland

References

• F. Neumann, J. Reichel and M. Skutella. Computing minimum cuts by randomized search
heuristics. Algorithmica, 2011, 59(3): 323-342

• P. S. Oliveto and C. Witt. Simplified drift analysis for proving lower bounds in
evolutionary computation. Algorithmica, 2011, 59(3): 369-386

• P. S. Oliveto and C. Witt. On the runtime analysis of the simple genetic algorithm.
Theoretical Computer Science, 2014, 545: 2-19

• C. Qian, Y. Yu and Z.-H. Zhou. An analysis on recombination in multi-objective
evolutionary optimization. Artificial Intelligence, 2013, 204: 99-119

• C. Qian, Y. Yu and Z.-H. Zhou. Pareto ensemble pruning. In: Proceedings of the 29th AAAI
Conference on Artificial Intelligence (AAAI'15), 2015, pages 2935-2941, Austin, TX

• C. Qian, Y. Yu and Z.-H. Zhou. On constrained Boolean Pareto optimization. In:
Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI'15), 2015,
pages 389-395, Buenos Aires, Argentina

References

• C. Qian, Y. Yu and Z.-H. Zhou. Subset selection by Pareto optimization. In: Advances in
Neural Information Processing Systems 28 (NIPS'15), 2015, pages 1765-1773, Montreal,
Canada

• C. Qian, J.-C. Shi, Y. Yu, K. Tang and Z.-H. Zhou. Parallel Pareto optimization for subset
selection. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence
(IJCAI'16), 2016, New York, NY

• J. E. Rowe and D. Sudholt. The choice of the offspring population size in the (1,𝜆)
evolutionary algorithm. Theoretical Computer Science, 2014, 545: 20-38

• Y. Yu, X. Yao and Z.-H. Zhou. On the approximation ability of evolutionary optimization
with application to minimum set cover. Artificial Intelligence, 2012, 180-181: 20-33

• Y. Yu, C. Qian and Z.-H. Zhou. Switch analysis for running time analysis of evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, 2015, 19(6): 777-792

• Y. Yu and C. Qian. Running time analysis: Convergence-based analysis reduces to switch
analysis. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC’15),
2015, pages 2603-2610, Sendai, Japan

