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Evolutionary algorithms

Evolutionary algorithms (EAs) have been widely used in
real applications

reproduction

GA, ES, GP, PSO, N
ACO, DE, ......
SN T

theoretlcal analYSBI difficult initialization evaluation & updating

EAs are randomized and complex

« With the same input, the performed operations and the output
can be different

* The designed reproduction operators and updating mechanisms
can be complex

The theoretical foundation of EAs is still weak,
but important



Early theoretical studies

Schema theorem [Holland, 1975]
* Proposed to explain the behavior of genetic algorithms

L mHOfE)

%
 Critiqued from several directions, and even wrong [Reeves & Rowe, 2002]

E[m(H,t + 1)]

« Cannot explain the performance or limit behaviors of EAs

Convergence analysis [Rudolph, FI'98]

* Given unlimited time, can the algorithm find the optimum with
probability 17?
lim 400 P(§ €X7) =17
* Sufficient conditions:

v’ There is a positive probability to reach any solution in the search space
from any other solution (satisfied by most canonical EAs)

v’ The algorithm keeps the best found solution (elitism)



Running time analysis

Convergence analysis
limy o P(6, € X) =17

How fast does it converge?

Running time analysis
T=min {t > 0| € X"}

The number of iterations until
finding an optimal solution
for the first time



Running time analysis

Running time analysis
T=min {t > 0| € X"}

Convergence analysis
limy o P(6, € X) =17

The number of iterations until
finding an optimal solution
for the first time

The leading theoretical aspect
[Auger & Doerr, 2011; Neumann & Witt, 2012]

Running time complexity A

 The number of iterations X the number of fithess
evaluations in each iteration

* Usually grows with the problem size and expressed
in asymptotic notations

e.g., (1+1)-EA solving LeadingOnes: 0 (n?)

awmuny|

Problem size



Running time analysis

Convergence analysis
limy o P(6, € X) =17

Running time analysis
T=min {t > 0| € X"}

The number of iterations until
finding an optimal solution
for the first time

The leading theoretical aspect
[Auger & Doerr, 2011; Neumann & Witt, 2012]

A quick guide to asymptotic notations:

Let g and f be two functions defined on the real numbers.

* g €0(f):AM > 0 such that g(x) < M - f(x) for all sufficiently large x
* 9 €Q(f):f €0(9) geEO(f)-g=f

. | - geEQf)»g=f
g €0(f):g € 0(f) and g € Q(f) GEO(f)>g=f
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Markov chain modeling

reproduction

EA:

Running time analysis

@min 201 & € ¥
population new solutions
/ \ / a random variable

* E[7]
initialization evaluation & updating  P(t<T)

0 1 2 3

Markov chain:  P(&|&—1, ..., &1, &) = P(&|&e-1)




Fitness level method

The basic idea [Droste et al., TCS02]:

1. Divide the solution space S into m + 1 subspaces Sy, Sy, ..., S

Vi#j:5inS=0,UiZS5 =S5 only optimal solutions €<——
c Vi<jx€S,y€S;if(x)<f)




Fitness level method

The basic idea [Droste et al., TCS02]:

1. Divide the solution space S into m + 1 subspaces Sy, Sy, ..., S
° Vl':,tj!SinSj=@, U’{ZOSL-=S
° Vl<],XESl,yES]f(X)<f(y)

2. Bounds on the probability of leaving S; to higher §;

* P41 €UZiq Sjléc € S) = v

* P(§41 €UZin1 Siléc €S) <

Expected running time

1
— Upper bound: Y7:'my(S;) -Z}-’L‘il —

|

the initial distribution



Fitness level method
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1. Divide the solution space S into m + 1 subspaces Sy, Sy, ..., S

d Vl':,tj!SinSj=@, U’{ZOSL-=S

'] - 1
* Vi<j,x€S,yES;:f(x) <f(y) " (ﬂ
m-—1

2. Bounds on the probability of leaving S; to higher §; .

* P41 €UZiq Sjléc € S) = v

* P(§41 €UZin1 Siléc €S) <

Expected running time

— Upper bound: Y7:'my(S;) -

the initial distribution




Fitness level method

The basic idea [Droste et al., TCS02]:

1. Divide the solution space S into m + 1 subspaces Sy, Sy, ..., S
° Vl':,tj!SinSj=@, U’{ZOSL-=S
° Vl<],XESl,yES]f(X)<f(y)

2. Bounds on the probability of leaving S; to higher §;

* P41 €UZiq Sjléc € S) = v

* P(§41 €UZin1 Siléc €S) < —

Expected running time

1
Upper bound: Y% o (S;) - Z}Tl:—il _

v.
— Lower bound: Y, 'm(S))

J




Example: (1+1)-EA for OneMax

(1+1)-EA:
Given a pseudo-Boolean function f:

x = randomly selected from {0,1}".

Repeat until some termination criterion is met
x' = flip each bit of x with probability 1/n.
if f(x') = f(x)

x =x'.

OneMax:
drg maxxe{o,l}" Count the number of 1-bits

Theorem. [Droste et al, TCS'02] The expected running time of the
(1+1)-EA solving the OneMax problem is O (n logn).

SAR S



Proof

Theorem. [Droste et al, TCS'02] The expected running time of the
(1+1)-EA solving the OneMax problem is O(nlogn).

Main idea: the number of 1-bits

* Divide the solution spaceinto So, S1, -, Sy with §; = {x € {0,1}" |@= i}

* The probability of jumping to higher §; from §; is lower bounded by

p e U & €S > % keep the other
Ceea J= lgt 2 bits unchanged

flip one of the n — i 0-bits

Upper bound on the < yn-11
expected running time: < Xj=0

1
< Z] m— (1__)n - < enZ] 15 "€ O(nlogn)




Refined fitness level method

Or1gmal Droste et al., TCS'02]:

g P e.m es) =)

Upper bound: Y% mo(S;) - 2?1:—1_1 oy
j

Refined [Sudholt, TEC'13]:

P(err €SI € 5) =

Z}”:wﬂ/t,; =1 v, S@Zﬁij Vik

_ 1 1 1
Upper bound: Z?iolﬂo(si) . (v—i + X Z?:ihv_j

Original is a specialization of refined
If y = 1, upper bound
If y = 0, lower bound

vy




Refined fitness level method

The above two fithess level methods
[Droste et al., TCS’02; Sudholt, TEC'13]

* Only consider jumping to higher levels
» Proposed for elitist EAs

The fitness level method for non-elitist
EAs [Dang & Lehre, Algorithmica'16]

* allows jumping to lower levels

Theorem 8 Givenafunction f : X — R, andan f-based partition (A1, ..., A1),
let T be the number of selection-variation steps until Algorithm 1 with a selection
mechanism pse1 obtains an element in A1 forthe first time. [f there exist parameters
POs STy e e s Sm. S« € (0, 1], and yo € (0, 1) and 5§ > 0, such that

(C1) pmut (y € AJ{ | x € A;) >5; = s« forall j € m],

(€2) puu (v € AjUAT [ x € A}) = poforall j & [m],

(C3) By, P)po = (1 +8)y forall P € X* and y < (0, yl,

2 16m 82
(C4) » = —1In n with a = ro , & =min{8/2, 1/2} and ¢ = &*/24,
a ACESy 2(1 +6)

then
m

|
J=1 S

2
E[T]Ecg(mk(l—l—ln +c)+ ——— l—|—6)



Drift analysis

The basic idea [Sasaki & Hajek, JACM'88; He & Yao, AIJ'01]:

1. Design a distance function V(x): X — R to measure the distance

from a state x € X to the optimal state space X*
s VxeX—-X"V(x)>0
e VxeX":V(x)=0

2. Bounds on the expected drift in one step

« E[V() - V(&4 1é] = ¢
* E[V(&) = V(&) & < cy

Expected running time

,i\ at least 0.1 km
— Upper bound: Y ,cx mo(x) - per minute

|

the time < % = 30 minutes
the initial distribution '



Drift analysis

The basic idea [Sasaki & Hajek, JACM'88; He & Yao, AIJ'01]:

1. Design a distance function V(x): X — R to measure the distance

from a state x € X to the optimal state space X*
s VxeX—-X"V(x)>0
e VxeX":V(x)=0

2. Bounds on the expected drift in one step

« E[V() - V(&4 1é] = ¢
* E[V(&) = V(&) & < cy

Expected running time

V(x) ,i\ at least 0.1 km

per minute
!

. 3 .
—— Lower bound: er x T (x) the time < i 30 minutes

Upper bound: ,cx mo(x) -




Example: (1+1)-EA for LeadingOnes

(1+1)-EA:
Given a pseudo-Boolean function f:
x = randomly selected from {0,1}".
Repeat until some termination criterion is met
x' = flip each bit of x with probability 1/n.
if f(x') = f(x)

x =x'.

SAR S

. LO(x)
LeadingOnes:
Count the number of consecutive
argmaxyefo,13" 1-bits starting from the left
e.g., f(11010) = 2, f(01111) =0

Theorem. [He & Yao, Al01] The expected running time of the (1+1)-
EA solving the LeadingOnes problem is 0(n?).



Proof

Theorem. [He & Yao, Al01] The expected running time of the (1+1)-
EA solving the LeadingOnes problem is 0 (n?).

Main idea: the number of leading 1-bits
* Design the distance function V(x) = n —

* The expected drift from a solution x with LO(x) = i is lower bounded by

E[V(E) = V() [ & = %) 2 keep the i leading
1-bits unchanged

LO(x) =i »=i+1 flip the first 0-bi

Upper bound on the <
expected running time: B

1
<n-n- T




Multiplicative drift analysis

Original [He & Yao, A1y01]:

g E[V(&) = V(a1 | &] 2@—> not depend on &,

V(x)
Ci

Upper bound: Y ,cx mo(x) -

Multiplicative [Doerr et al., Algorithmica'12]:

proportional to

< E[ V(&) = V(&41) | &] 2 the current distance k

Upper bound: ¥, cx mo(x) - SR (Va(x)/@) R

a

min{V(x) | V(x) > 0}

Multiplicative is not stronger than original



Example: (1+1)-EA for MST

Minimum spanning tree (MST):

* Given: an undirected connected graph ¢ = (V,E) onn
vertices and m edges with positive integer weights
w:E — N

* The Goal: find a connected subgraph E’ € E with the
minimum weight

The original graph The minimum spanning tree



Example: (1+1)-EA for MST

(1+1)-EA:
Given a pseudo-Boolean function f:

x = randomly selected from {0,1}".

Repeat until some termination criterion is met
x' = flip each bit of x with probability 1/n.
if f(x') = f(x)

x =x'.

SAR R A

Solution representation: ~ x € {0,1}" & a subgraph

e.g., {e;,e;e,} > 11010 x; =1 means that edge e; is selected

the number of

Fitness function: connected components
min £ = €6~ 1) () + Conmi)

Wyp = N? * Wy, to make a subgraph with less connected components better



Proof

Theorem. [Neumann & Wegener, TCS’07; Doerr et al., Algorithmica’12] The

expected running time of the (1+1)-EA solving the MST problem
is 0(m?(logn + log Wy, 0.)).

Main idea:

(1) obtain a connected subgraph —— c(x) =1
(2) obtain a minimum spanning tree

The analysis of phase (1):  min f(x) = (c(x) = 1) - wy, + Die=1Wi
* ¢(x) cannot increase

<  atleast c(x) — 1 edges, the insertion of which can decrease c(x) by 1

the probability of decreasing c(x)

the expected steps for decreasing
. c(x)—-1 :>
by 1is at least —

(1—2)m-1 c(x) by 1 is at most
m

em
c(x)—1
The expected running time:

Zc(x) —n C(x) EO(mlogn)



Proof

The analysis of phase (2):  min f(x) = (c(x) = 1) * wyp + Yix,=1W;
* it will always be connected, i.e., c(x) = 1 always holds

* toanalyze f(x) — the weight of a minimum spanning tree

Using multiplicative drift analysis:

* design the distance function: V(x) = f(x) — fop¢
« analyze the expected drift:

E[V() = V(1) 1 & =x] =V (x) —E[V(&41) [ §e = x] = f(x) —E[ f(&41) | & = x]

> 00 - GO (1@@ —(1} )f (@)

there existsQa set of m — (n — 1) 1-bit flip®and@ set of n 2-bit fli
that the average weight decrease is at least (f (x) — fopr)/(m + 1)

m-—1
1 (1__> f( ) fopt 1 V(x)

m m m+1 _em(m+1)




Proof

The analysis of phase (2):  minf(x) = (c(x) = 1) - wy, + i, Wi
* it will always be connected, i.e., c(x) = 1 always holds

* toanalyze f(x) — the weight of a minimum spanning tree

— Using multiplicative drift analysis:

* design the distance function: V(x) = f(x) — fop¢

* analvze the expected drift: roportional to
y P - prop

the current distance
B[ V(&) — V(Eepr) | & = %] = V(x)

—» Upper bound on the expected running time:

1+ log (V(x)/me)

xex To(x) - /O \ m(m + 1)(1 + log (mwp44))

€ O(m?(logn + log Wyax))

Vix) < MW ax Vinin 2



Proof

Theorem. [Neumann & Wegener, TCS’07; Doerr et al., Algorithmica’12] The

expected running time of the (1+1)-EA solving the MST problem
is O(m?(logn + logwy,4.)).

Main idea:

(1) obtain a connected subgraph

(2) obtain a minimum spanning tree

The expected running time of phase (1): 0(mlogn)

The expected running time of phase (2):  0(m?*(logn +10g Wyax))

The total expected running time: 0(m?(logn + log Wp,4x))



Simplified drift analysis

The simplified drift analysis theorem
for proving exponential lower bounds [Oliveto & Witt, Algorithmica11]

Theorem 2 (Simplified Drift Theorem) Let X;,t > 0, be the random vari-

ables describing a Markov process over the state space S := {0,1,...,N} and

denote N¢(1) = (X1 — Xe | Xy =12) for1 € S andt > 0. Suppose there exist

an interval [a,b] of the state space (of asymptotically growing length b —a) and

three constants 0,2, 1 > 0 such that for all t > 0

| | The expected drift is negative,
1. B(A(i) =(e)fora<i<b —_— : :

i.e., away from the target in expectation

—j) < L1 4+0)77" fori>aand j > 1

2. Prob(A;(7)

then there is a cgnstant c* > 0 such that for T := min{t > 0: X;
it holds Prob(T] < 2¢7(b=a)y = 9—=(b—a),

N\ The probability of a drift

r : . towards the target
xponential running time :
l decreases exponentially

a

Xo > b}

a constant

The simplified drift theorem with self-loops [Rowe & Sudholt, TCS'14]

The simplified drift theorem with scaling [Oliveto & Witt, TCS'14]



Switch analysis

The basic idea [Yu et al, TEC'15];

Given EA on the given problem

Vo~
~
~
-~
~
~
~
~
S
N

Reference algorithm on investigate the different

the reference problem behaviors at each step
A
The expected running time: //'
E[r] < () E[r'] + %i5 o
e

The expected running time of {¢{}{55, easy to analyze



Multi-objective optimization

The task: optimize multiple objectives simultaneously

min,ex (f1(x), f2(x), ..

f2

x dominates z:

i) <fi@2) A f,(x) < fr(2)

X incomparable y:

) > 0D A fL(x) < f2(p)

o fm (X))

better f;
better f,

~

f

Previous analysis approaches are not easy to be directly applied



Example: GSEMO for LOTZ

GSEMO: Given a pseudo-Boolean function vector f:

1. x:=randomly selected from {0,1}".  Keep non-dominated
P = {x}. solutions
Repeat until some termination criterion is met
Choose x from P uniformly at random.
x' = flip each bit of x with probability 1/n.
if Az € P such thatz > x’
P:=(P —-{zeP|x' =z} u{x']

NG LN

LOTZ: arg MAaxXyefo,1}™ Qi1 H§'=1xj' Z?=1H?=i(1 — X))

Count the number of leading 1-bits  Count the number of trailing 0-bits

The Pareto set: 00 ...00, 10...00, ..., 11...10, 11 ...11.
The Pareto front: (0,n), (1,n—1), ..., (n —1,1), (n,0).



Proof

Theorem. [Giel, CEC'03] The expected running time of the GSEMO
solving the LOTZ problem is O (n?).

Main idea:

(1) obtain the Pareto optimal solution 11 ...11
(2) obtain the Pareto front

The analysis of phase (1):

select the solution with the largest LO value, and only flip its first 0 bit
. 111+ l — l -1
the probability:(——(1 — )"

the population size is not larger thann + 1



Proof

Theorem. [Giel, CEC'03] The expected running time of the GSEMO
solving the LOTZ problem is O (n?).

Main idea:
(1) obtain the Pareto optimal solution 11 ...11
(2) obtain the Pareto front

The analysis of phase (1):

select the solution with the largest LO value, and

only flip its first 0 biD

* the probability:



Proof

Theorem. [Giel, CEC'03] The expected running time of the GSEMO
solving the LOTZ problem is O (n?).

Main idea:

(1) obtain the Pareto optimal solution 11 ...11
(2) obtain the Pareto front

The analysis of phase (1):

select the solution with the largest LO value, and only flip its first 0 bit

g * the probability: ﬁ% (1-— %)n—1

the probability of increasing the largest
LO value by 1 is at least

en(n+1) : The expected running time:

. 3
it is sufficient to increase n times n-en(n+1) € 0(n’)



Proof

The analysis of phase (2):

* the found Pareto optimal solutions will always be kept
« follow the path:@—> ™10 - - - 10"t - 0"

< the probability

The expected running time: n-en(n+ 1) € 0(n?)
C The expected running time of phase (1): 0(n3)

The total expected running time: 0(n?)



Running time analysis approaches

Fitness level method
Refined fitness level method
Drift analysis

Multiplicative drift analysis
Switch analysis

Simplified drift analysis

Upper and lower bounds
on the expected running
time

Exponential running time

with high probability

More specific approaches for multi-objective EAs
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Results in single-objective optimization

linear function ©(nlogn) [Droste et al., TCS'02]
minimum spanning tree 0(m?log(n + Wy,4,)) [Neumann & Wegener, TCS'07]

(1+1)_EA .. 2 . 4 . .
partition O(n®) with 5 approximation [Witt, STACS'05]

vertex cover e®™ with arbitrary bad approximation [Oliveto, TEC'09]

OneMax O(un + nlogn); LeadingOnes O(unlogn + n?) [Witt, ECJ'06]
(u+1)-EA  maximum clique O(unlogn) on sparse graphs [Storch, TCS'07]

vertex cover O(unlogn) on bipartite graphs [Oliveto, TEC'09]

linear function 0(An + nlogn) [Doerr & Kunnemann, TCS'15]
(1+4)-EA

vertex cover exponential on bipartite graphs [Oliveto, TEC'09]

OneMax O(Nnloglogn + nlogn); LeadingOnes O(Nnlogn + n?)
(N+N)-EA [Chen et al., TSMCB’09]

EDA [Chenetal, TEC'10]; ACO [Doerr et al,, TCS'11]; PSO [Sudholt & Witt, TCS'10];
Memetic algorithms [Sudholt, TCS'09]; GP [Wagner et al., ECJ'15]



Results in multi-objective optimization

SEMO LOTZ @(TLB) ; COCZ O(n2 logn) [Laumanns et al., TEC'04]

LOTZ 0(n3) [Giel, CEC'03]; Q(n?/p) [Doerr et al., CEC'13]

GSEMOQ  bi-objective minimum spanning tree O(m>wy,;,(|C| + logn + log Wy,4x))
with 2 approximation [Neumann, EJOR’07]

DEMO multi-objective all-pairs-shortest-path O(nPy,,,g) with
r39 1087 approximation [Neumann & Theile, PPSN'10]

LOTZ ©(n?); COCZ ©(nlogn);bi-objective minimum spanning tree

REMO 0 (manmin(lcl + log n+1og winax

NMWmin

— Nye(1 - %))) with 2 approximation
[Qian et al., AI]'13]

MOEA/D LOTZ 0(n?logn); COCZ O(nlogn) [Lietal, TEC'16]

Single-objective optimization problems by multi-objective EAs



Single-objective better by multi-objective

Minimum spanning tree (MST):

*  Given: an undirected connected graph ¢ = (V, E) on n vertices
and m edges with positive integer weights w: E - N

* The Goal: find a connected subgraph E’ € E with the minimum
weight

Fitness function:  min f(x) = (c(x) — 1) - wy, + Dix;=1Wi

I

Bi-objective  min (c(x), Yi.x,=1W;)

Single-objective: 0 (m?(logn + log Wp,qx)) multi-objective better
—) for dense graphs,
Bi-objective: O(mn(n + log Wy,ax)) e.g, m=0(n?



More examples

Problem Single-objective Multi-objective

MST 0(m?(logn + log Wy4,)) O(mn(n + logWiax))
[Neumann & Wegener, GECCO’05]

Set cover exponential O(mn(log c;qx + logn))
[Friedrich et al., ECJ"10]

Minimum cut exponential O(Fm(log cipgyx + logn))

[Neumann et al., Algorithmica’11]

Minimum LST Q(ku®) 0 (k*log k)
[Lai et al, TEC'14]

Minimum cost exponential O(Nn(logn + logwyqx + N)
coverage [Qian et al., [JCAI'15]
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Project scheduling problem

A full software project scheduling process:
* identify project tasks

* identity task dependencies

* estimate resources for tasks

@cate employees to t@
* create project charts \

To minimize the cost and completion time of the software
project, while meeting all the constraints

Project Scheduling Problem




Project scheduling problem

The input:

« aset of employees ey, ..., e, with salaries sy, ..., Sy,
and sets of skills skill4, ..., skill,,, respectively

» aset of tasks ¢4, ..., t;, with required efforts ef f1, ..., ef f,
and sets of required skills reqq, ..., req,,, respectively

 atask precedence graph (IPG) — a directed graph with
tasks as nodes and task precedence as edges

The objective: producwhich minimizes the cost and time

X;j € {0,%,%, .., 1}: the amount of dedication of e; to ¢;

Constraints:
 required skills:  req; € UL, {skill; | x;; > 0}

« overwork: max;. {e*™ (1)} <1

the total dedication of employee i at time ©



Improved design inspired by theory

The overwork problem:  max;, {e}"*™* (1)} < 1

° ° _ : P . .
Previous - repair divide dedications

If M = max;, {ework (T)} >1, x;;=x.;/M across the whole schedule
) l 4 ) )

 Proposed — normalization [Minku et al., TSE’14
P | ! divide dedications

Xij = xi,j/max(l; Ztlev’ xi,z) when necessary

Theoretical analysis:

Theorem 1. The expected running time of the (1+1)-EA with
normalization on a linear schedule problem is O((knm)#).
Easy instances

Theorem 2. There exists a PSP instance where the (1+1)-EA
with normalization needs at least exponential time.
Hard instances



Improved design inspired by theory

The proposed algorithm

[Minku et al., TSE'14]

Algorithm 3 Pop-EA for project scheduling

1: Initialise population P with p candidate solutions.

2: repeat
3. Select A parents from P using binary tourna-
ment selection.

1. for each pair of parents (1) and z® do

5: With probability P., apply crossover between
2z and 73 to generate z'*) and 2/(?).

6: Otherwise, /(1) « z(1) and 2/® « (2

7: Apply mutation to 2’(!) and 2'(?) using prob-
ability P,,.

8: P« PuU {2/, 2/},

9:  end for

10:  Select the p best candidate solutions from P to

survive for the next generation, based on the
fitness function f.

11: until happy

The proposed Pop-EA
performs the best

Experimental results

TABLE 8
Quality of Feasible Solution Measured by the Number of
Employees (n) Multiplied by the Completion Time (time)

Benchmark 1: average n - time
n Pop-EA | (1+1) EA | RLS | (1+1) EA no-norm | GA [6]
5 98.00 98.04 |98.19 113.96 109.40
10 98.02 98.06 |98.17 129.68 112.70
15 98.02 98.07 |98.22 128.06 115.95
20 98.04 98.08 |98.19 129.54 117.60
[Stdev[[ 001 | 002 |0.02 | 7.60 | 363 |

The averages were calculated considering only the runs in which a feasi-
ble solution was found The best values are in bold. Stdev is the standard
deviation of the average values reported in the table.

TABLE 3
Average Ranking of Algorithms According to Fitness
across Problem Instances

~ Avg Rank | Avg Rank | Std Deviation Algorithm
1 1.1875 0.5708 Pop-EA
2 2.0833 0.3472 (1+1) EA
3 2.7292 0.6098 RLS
4 4.0000 0.0000 (1+1) EA no-norm

Smaller ranking values are better rankings.



More examples
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Theory: single-objective optimization can be solved better
by multi-objective optimization
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Summary

* The theoretical foundation of EAs is weak, but important

* State-of-the-art running time analysis approaches
— fitness level method
— drift analysis
— switch analysis

* Running time analysis results
— single-objective optimization
— multi-objective optimization

« Examples of improved design of EAs inspired by
theoretical analysis



[Holland, 1975] [Rudolph, FI'98] [He & Yao, AIJ01]

Running time analysis

Algorithm <SimplD—><Complex>—> ¢« oo
Problem SyntheMnbina@—) ¢ oo




Interesting directions

* Analysis on real EAs or real problems

* Running time analysis approaches for MOEAs

* Improved design of EAs by theory
 Analysis in noisy environments

* Analysis in continuous optimization
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