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Evolutionary algorithms

Evolutionary algorithms (EAs) have been widely used in 
real applications

GA, ES, GP, PSO, 
ACO, DE, …… population new solutions

reproduction

evaluation & updatinginitialization

EAs are randomized and complex

• With the same input, the performed operations and the output 
can be different 

• The designed reproduction operators and updating mechanisms 
can be complex

The theoretical foundation of EAs is still weak, 

but important

theoretical analysis: difficult



Early theoretical studies

Schema theorem [Holland, 1975]

• Proposed to explain the behavior of genetic algorithms

• Critiqued from several directions, and even wrong [Reeves & Rowe, 2002]

• Cannot explain the performance or limit behaviors of EAs

Ε 𝑚 𝐻, 𝑡 + 1 ≥
𝑚 𝐻, 𝑡 𝑓 𝐻

𝑎𝑡
(1 − 𝑝)

Convergence analysis [Rudolph, FI’98]

• Given unlimited time, can the algorithm find the optimum with 
probability 1?

• Sufficient conditions: 

 There is a positive probability to reach any solution in the search space 
from any other solution (satisfied by most canonical EAs)

 The algorithm keeps the best found solution (elitism)

𝑙𝑖𝑚𝑡→+∞ 𝑃 𝜉𝑡 ∈ Χ∗ = 1?



Running time analysis

Convergence analysis

𝑙𝑖𝑚𝑡→+∞ 𝑃 𝜉𝑡 ∈ X∗ = 1 ?

How fast does it converge?

Running time analysis

𝜏 = min 𝑡 ≥ 0 𝜉𝑡 ∈ Χ∗}

The number of iterations until 
finding an optimal solution 
for the first time



Running time analysis

Convergence analysis

𝑙𝑖𝑚𝑡→+∞ 𝑃 𝜉𝑡 ∈ X∗ = 1 ?

Running time analysis

𝜏 = min 𝑡 ≥ 0 𝜉𝑡 ∈ Χ∗}

The number of iterations until 
finding an optimal solution 
for the first time

Running time complexity

• The number of iterations × the number of fitness 
evaluations in each iteration

• Usually grows with the problem size and expressed 
in asymptotic notations

e.g., (1+1)-EA solving LeadingOnes: 𝑂(𝑛2)
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The leading theoretical aspect
[Auger & Doerr, 2011; Neumann & Witt, 2012]



Running time analysis

Convergence analysis

𝑙𝑖𝑚𝑡→+∞ 𝑃 𝜉𝑡 ∈ X∗ = 1 ?

Running time analysis

𝜏 = min 𝑡 ≥ 0 𝜉𝑡 ∈ Χ∗}

The number of iterations until 
finding an optimal solution 
for the first time

The leading theoretical aspect
[Auger & Doerr, 2011; Neumann & Witt, 2012]

A quick guide to asymptotic notations: 

Let 𝑔 and 𝑓 be two functions defined on the real numbers.

• 𝑔 ∈ Ο 𝑓 : ∃𝑀 > 0 such that 𝑔 𝑥 ≤ 𝑀 ∙ 𝑓(𝑥) for all sufficiently large 𝑥

• 𝑔 ∈ Ω 𝑓 : 𝑓 ∈ Ο 𝑔

• 𝑔 ∈ Θ 𝑓 : 𝑔 ∈ Ο 𝑓 and 𝑔 ∈ Ω 𝑓

𝑔 ∈ Ο(𝑓) → 𝑔 ≤ 𝑓

𝑔 ∈ Ω 𝑓 → 𝑔 ≥ 𝑓

𝑔 ∈ Θ 𝑓 → 𝑔 = 𝑓
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Markov chain modeling

population new solutions

reproduction

initialization evaluation & updating

EA:

population
0 

population
1

population
2

population
3 

…

state 𝜉0 …state 𝜉1 state 𝜉2 state 𝜉3

Markov chain: 𝑃 𝜉𝑡 𝜉𝑡−1, … , 𝜉1, 𝜉0 = 𝑃(𝜉𝑡|𝜉𝑡−1)

Running time analysis

𝜏 = min 𝑡 ≥ 0 𝜉𝑡 ∈ Χ∗}

a random variable
• Ε 𝜏
• 𝑃(𝜏 ≤ 𝑇)



Fitness level method 

The basic idea [Droste et al., TCS’02]:

1. Divide the solution space 𝑆 into 𝑚 + 1 subspaces 𝑆0, 𝑆1, … , 𝑆𝑚

• ∀𝑖 ≠ 𝑗: 𝑆𝑖 ∩ 𝑆𝑗 = ∅, ⋃𝑖=0
𝑚 𝑆𝑖 = 𝑆

• ∀𝑖 < 𝑗, 𝑥 ∈ 𝑆𝑖 , 𝑦 ∈ 𝑆𝑗: 𝑓 𝑥 < 𝑓(𝑦)

𝑆0

𝑆1

𝑆2

𝑆3

𝑆𝑚−1

𝑆𝑚only optimal solutions



Fitness level method 

The basic idea [Droste et al., TCS’02]:

1. Divide the solution space 𝑆 into 𝑚 + 1 subspaces 𝑆0, 𝑆1, … , 𝑆𝑚

• ∀𝑖 ≠ 𝑗: 𝑆𝑖 ∩ 𝑆𝑗 = ∅, ⋃𝑖=0
𝑚 𝑆𝑖 = 𝑆

• ∀𝑖 < 𝑗, 𝑥 ∈ 𝑆𝑖 , 𝑦 ∈ 𝑆𝑗: 𝑓 𝑥 < 𝑓(𝑦)

𝑆0

𝑆1

𝑆2

𝑆3

𝑆𝑚−1

𝑆𝑚

2. Bounds on the probability of leaving 𝑆𝑖 to higher 𝑆𝑗

• 𝑃(𝜉𝑡+1 ∈ ⋃𝑗=𝑖+1
𝑚 𝑆𝑗|𝜉𝑡 ∈ 𝑆𝑖) ≥ 𝑣𝑖

• 𝑃(𝜉𝑡+1 ∈ ⋃𝑗=𝑖+1
𝑚 𝑆𝑗|𝜉𝑡 ∈ 𝑆𝑖) ≤ 𝑢𝑖

Expected running time

Upper bound: ∑𝑖=0
𝑚−1𝜋0(𝑆𝑖) ∙ ∑𝑗=𝑖

𝑚−1 1

𝑣𝑗

the initial distribution



Fitness level method 

The basic idea [Droste et al., TCS’02]:
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1

𝑣1

1

𝑣2

1

𝑣𝑚−1



Fitness level method 

The basic idea [Droste et al., TCS’02]:

1. Divide the solution space 𝑆 into 𝑚 + 1 subspaces 𝑆0, 𝑆1, … , 𝑆𝑚

• ∀𝑖 ≠ 𝑗: 𝑆𝑖 ∩ 𝑆𝑗 = ∅, ⋃𝑖=0
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• ∀𝑖 < 𝑗, 𝑥 ∈ 𝑆𝑖 , 𝑦 ∈ 𝑆𝑗: 𝑓 𝑥 < 𝑓(𝑦)

𝑆0

𝑆1

𝑆2

𝑆3

𝑆𝑚−1

𝑆𝑚

2. Bounds on the probability of leaving 𝑆𝑖 to higher 𝑆𝑗

• 𝑃(𝜉𝑡+1 ∈ ⋃𝑗=𝑖+1
𝑚 𝑆𝑗|𝜉𝑡 ∈ 𝑆𝑖) ≥ 𝑣𝑖

• 𝑃(𝜉𝑡+1 ∈ ⋃𝑗=𝑖+1
𝑚 𝑆𝑗|𝜉𝑡 ∈ 𝑆𝑖) ≤ 𝑢𝑖

Expected running time

Upper bound: ∑𝑖=0
𝑚−1𝜋0(𝑆𝑖) ∙ ∑𝑗=𝑖

𝑚−1 1

𝑣𝑗

1

𝑢1

Lower bound: ∑𝑖=0
𝑚−1𝜋0(𝑆𝑖) ∙

1

𝑢𝑖



Example: (1+1)-EA for OneMax

OneMax:
arg𝑚𝑎𝑥𝑥∈{0,1}𝑛 ∑𝑖=1

𝑛 𝑥𝑖

(1+1)-EA:
Given a pseudo-Boolean function 𝑓:

1. 𝑥 ≔ randomly selected from {0,1}𝑛.
2. Repeat until some termination criterion is met
3. 𝑥′ ≔ flip each bit of 𝑥 with probability 1/𝑛.
4. if  𝑓 𝑥′ ≥ 𝑓(𝑥)
5. 𝑥 = 𝑥′.

Count the number of 1-bits

Theorem. [Droste et al., TCS’02] The expected running time of the 
(1+1)-EA solving the OneMax problem is 𝑂(𝑛 log 𝑛).



Proof

Theorem. [Droste et al., TCS’02] The expected running time of the 
(1+1)-EA solving the OneMax problem is 𝑂(𝑛 log 𝑛).

Main idea:

• Divide the solution space {0,1}𝑛 into 𝑆0, 𝑆1, … , 𝑆𝑛 with 𝑆𝑖 = 𝑥 ∈ 0,1 𝑛 𝑥 = 𝑖}

• The probability of jumping to higher 𝑆𝑗 from 𝑆𝑖 is lower bounded by         

𝑃(𝜉𝑡+1 ∈ ⋃𝑗=𝑖+1
𝑚 𝑆𝑗|𝜉𝑡 ∈ 𝑆𝑖) ≥

𝑛−𝑖

𝑛
∙ (1 −

1

𝑛
)𝑛−1

flip one of the 𝑛 − 𝑖 0-bits

keep the other 
bits unchanged

the number of 1-bits

Upper bound on the 
expected running time: ∑𝑖=0

𝑛−1𝜋0(𝑆𝑖) ∙ ∑𝑗=𝑖
𝑛−1 1

𝑣𝑗
≤ ∑𝑗=0

𝑛−1 1

𝑣𝑗

≤ ∑𝑗=0
𝑛−1 𝑛

𝑛−𝑗

1

(1−
1

𝑛
)𝑛−1

≤ 𝑒𝑛∑𝑗=1
𝑛 1

𝑗
∈ 𝑂(𝑛 log 𝑛)



Refined fitness level method 

Original [Droste et al., TCS’02]:

𝑆0

𝑆1

𝑆2

𝑆3

𝑆𝑚−1

𝑆𝑚

𝑃(𝜉𝑡+1 ∈ ⋃𝑗=𝑖+1
𝑚 𝑆𝑗|𝜉𝑡 ∈ 𝑆𝑖) ≥ 𝑣𝑖

Upper bound: ∑𝑖=0
𝑚−1𝜋0(𝑆𝑖) ∙ ∑𝑗=𝑖

𝑚−1 1

𝑣𝑗

Refined [Sudholt, TEC’13]:

𝑃(𝜉𝑡+1 ∈ 𝑆𝑗 |𝜉𝑡 ∈ 𝑆𝑖) ≥ 𝑣𝑖 ∙ 𝛾𝑖,𝑗

∑𝑗=𝑖+1
𝑚 𝛾𝑖,𝑗 = 1 𝛾𝑖,𝑗 ≤ 𝜒 ∑𝑘=𝑗

𝑚 𝛾𝑖,𝑘

Upper bound: ∑𝑖=0
𝑚−1𝜋0(𝑆𝑖) ∙ (

1

𝑣𝑖
+ 𝜒 ∑𝑗=𝑖+1

𝑚−1 1

𝑣𝑗
)

𝑆0

𝑆1

𝑆2

𝑆3

𝑆𝑚−1

𝑆𝑚

Original is a specialization of refined
If 𝜒 = 1, upper bound
If 𝜒 = 0, lower bound

𝑣1

𝑣1𝛾1,2

𝑣1𝛾1,3

𝑣1𝛾1,𝑚−1

𝑣1𝛾1,𝑚



Refined fitness level method 

𝑆0

𝑆1

𝑆2

𝑆3

𝑆𝑚−1

𝑆𝑚

• Only consider jumping to higher levels
• Proposed for elitist EAs 

The above two fitness level methods
[Droste et al., TCS’02; Sudholt, TEC’13]

The fitness level method for non-elitist
EAs [Dang & Lehre, Algorithmica’16]

• allows jumping to lower levels



Drift analysis 

The basic idea [Sasaki & Hajek, JACM’88; He & Yao, AIJ’01]:

The hotel

2. Bounds on the expected drift in one step

Expected running time

Upper bound: ∑𝑥∈𝑋 𝜋0(𝑥) ∙
𝑉(𝑥)

𝑐𝑙

the initial distribution

1. Design a distance function 𝑉 𝑥 : 𝑋 → ℝ to measure the distance

from a state 𝑥 ∈ 𝑋 to the optimal state space 𝑋∗

• ∀𝑥 ∈ 𝑋 − 𝑋∗: 𝑉 𝑥 > 0

• ∀𝑥 ∈ 𝑋∗: 𝑉 𝑥 = 0

the total distance 3 km

at least 0.1 km 
per minute

the time ≤
3

0.1
= 30 minutes

• Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡] ≥ 𝑐𝑙

• Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡] ≤ 𝑐𝑢



Drift analysis 

The basic idea [Sasaki & Hajek, JACM’88; He & Yao, AIJ’01]:

The hotel

2. Bounds on the expected drift in one step

Expected running time

Upper bound: ∑𝑥∈𝑋 𝜋0(𝑥) ∙
𝑉(𝑥)

𝑐𝑙

1. Design a distance function 𝑉 𝑥 : 𝑋 → ℝ to measure the distance

from a state 𝑥 ∈ 𝑋 to the optimal state space 𝑋∗

• ∀𝑥 ∈ 𝑋 − 𝑋∗: 𝑉 𝑥 > 0

• ∀𝑥 ∈ 𝑋∗: 𝑉 𝑥 = 0

the total distance 3 km

at least 0.1 km 
per minute

the time ≤
3

0.1
= 30 minutes

• Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡] ≥ 𝑐𝑙

• Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡] ≤ 𝑐𝑢

Lower bound: ∑𝑥∈𝑋 𝜋0(𝑥) ∙
𝑉(𝑥)

𝑐𝑢



Example: (1+1)-EA for LeadingOnes

LeadingOnes:

arg𝑚𝑎𝑥𝑥∈{0,1}𝑛 ∑𝑖=1
𝑛 ∏𝑗=1

𝑖 𝑥𝑗

(1+1)-EA:
Given a pseudo-Boolean function 𝑓:

1. 𝑥 ≔ randomly selected from {0,1}𝑛.
2. Repeat until some termination criterion is met
3. 𝑥′ ≔ flip each bit of 𝑥 with probability 1/𝑛.
4. if  𝑓 𝑥′ ≥ 𝑓(𝑥)
5. 𝑥 = 𝑥′.

Count the number of consecutive 
1-bits starting from the left

Theorem. [He & Yao, AIJ’01] The expected running time of the (1+1)-
EA solving the LeadingOnes problem is 𝑂(𝑛2).

e.g., 𝑓 11010 = 2, 𝑓 01111 = 0

𝐿𝑂(𝑥)



Proof

Theorem. [He & Yao, AIJ’01] The expected running time of the (1+1)-
EA solving the LeadingOnes problem is 𝑂(𝑛2).

Main idea:

• Design the distance function V x = 𝑛 − 𝐿𝑂(𝑥)

• The expected drift from a solution 𝑥 with 𝐿𝑂 𝑥 = 𝑖 is lower bounded by         

Ε[ 𝑉 𝜉𝑡 − 𝑉(𝜉𝑡+1) | 𝜉𝑡 = 𝑥) ≥ 1 ∙
1

𝑛
∙ (1 −

1

𝑛
)𝑖

flip the first 0-bit

keep the 𝑖 leading 
1-bits unchanged

the number of leading 1-bits

≤
𝑛

𝑐𝑙

≤ 𝑛 ∙ 𝑛 ∙
1

(1−
1

𝑛
)𝑖
≤ 𝑒𝑛2 ∈ 𝑂(𝑛2)

𝐿𝑂 𝑥 = 𝑖 → ≥ 𝑖 + 1

Upper bound on the 
expected running time:

∑𝑥∈𝑋 𝜋0(𝑥) ∙
𝑉(𝑥)

𝑐𝑙



Multiplicative drift analysis 

The hotel

Original [He & Yao, AIJ’01]:

Upper bound:

Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡] ≥ 𝑐𝑙

∑𝑥∈𝑋 𝜋0(𝑥) ∙
𝑉(𝑥)

𝑐𝑙

Multiplicative [Doerr et al., Algorithmica’12]:

not depend on 𝜉𝑡

Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡] ≥ 𝛿 ∙ 𝑉(ߦ𝑡)

Upper bound: ∑𝑥∈𝑋 𝜋0(𝑥) ∙
1 + log (𝑉 𝑥 /𝑉𝑚𝑖𝑛)

𝛿

proportional to 
the current distance

min 𝑉 𝑥 𝑉(𝑥) > 0}

Multiplicative is not stronger than original



Example: (1+1)-EA for MST 

Minimum spanning tree (MST):

• Given: an undirected connected graph 𝐺 = (𝑉, 𝐸) on 𝑛
vertices and 𝑚 edges with positive integer weights 
𝑤:𝐸 → ℕ

• The Goal: find a connected subgraph 𝐸′ ⊆ 𝐸 with the 
minimum weight

𝑒1: 𝑤1 = 1

𝑒2: 𝑤2 = 1

𝑒3: 𝑤3 = 2

𝑒4: 𝑤4 = 1

𝑒5: 𝑤5 = 3

The original graph

𝑒1: 𝑤1 = 1

𝑒2: 𝑤2 = 1
𝑒4: 𝑤4 = 1

The minimum spanning tree



Example: (1+1)-EA for MST 

(1+1)-EA:
Given a pseudo-Boolean function 𝑓:

1. 𝑥 ≔ randomly selected from {0,1}𝑛.
2. Repeat until some termination criterion is met
3. 𝑥′ ≔ flip each bit of 𝑥 with probability 1/𝑛.
4. if  𝑓 𝑥′ ≥ 𝑓(𝑥)
5. 𝑥 = 𝑥′.

𝑥𝑖 = 1 means that edge 𝑒𝑖 is selected

Solution representation: 𝑥 ∈ {0,1}𝑚 ↔ a subgraph

e.g., {𝑒1, 𝑒2, 𝑒4} → 11010

the number of 
connected components Fitness function:

min 𝑓 𝑥 = 𝑐 𝑥 − 1 ∙ 𝑤𝑢𝑏 + ∑𝑖:𝑥𝑖=1𝑤𝑖

𝑤𝑢𝑏 = 𝑛2 ∙ 𝑤𝑚𝑎𝑥, to make a subgraph with less connected components better



Proof

Theorem. [Neumann & Wegener, TCS’07; Doerr et al., Algorithmica’12] The 
expected running time of the (1+1)-EA solving the MST problem 
is 𝑂(𝑚2(log 𝑛 + log𝑤𝑚𝑎𝑥)).

Main idea:

(1)  obtain a connected subgraph

(2)  obtain a minimum spanning tree

𝑐 𝑥 = 1

the probability of decreasing 𝑐(𝑥)

by 1 is at least 
𝑐 𝑥 −1

𝑚
(1 −

1

𝑚
)𝑚−1

the expected steps for decreasing 

𝑐(𝑥) by 1 is at most 
𝑒𝑚

𝑐 𝑥 −1

The analysis of phase (1): min 𝑓 𝑥 = 𝑐 𝑥 − 1 ∙ 𝑤𝑢𝑏 + ∑𝑖:𝑥𝑖=1𝑤𝑖

• 𝑐(𝑥) cannot increase

• at least 𝑐 𝑥 − 1 edges, the insertion of which can decrease 𝑐(𝑥) by 1

The expected running time:    ∑𝑐 𝑥 =𝑛
2 𝑒𝑚

𝑐 𝑥 −1
∈ 𝑂(𝑚 log 𝑛)



Proof

The analysis of phase (2): min 𝑓 𝑥 = 𝑐 𝑥 − 1 ∙ 𝑤𝑢𝑏 + ∑𝑖:𝑥𝑖=1𝑤𝑖

• it will always be connected, i.e., 𝑐 𝑥 = 1 always holds

• to analyze 𝑓 𝑥 → 𝑓𝑜𝑝𝑡 the weight of a minimum spanning tree

Using multiplicative drift analysis:

• design the distance function: 𝑉 𝑥 = 𝑓 𝑥 − 𝑓𝑜𝑝𝑡

• analyze  the expected drift:

Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡 = 𝑥] = 𝑉 𝑥 − Ε 𝑉 𝜉𝑡+1 𝜉𝑡 = 𝑥] = 𝑓 𝑥 − Ε 𝑓 𝜉𝑡+1 𝜉𝑡 = 𝑥]

≥ 𝑓 𝑥 − (∑𝑖=1
𝑚−(𝑛−1)

𝑓(𝑦𝑖) ∙
1

𝑚
(1 −

1

𝑚
)𝑚−1+ ∑𝑖=1

𝑛 𝑓(𝑧𝑖) ∙
1

𝑚2
(1 −

1

𝑚
)𝑚−2+ 1 −⋯ 𝑓 𝑥 )

there exists a set of 𝑚 − (𝑛 − 1) 1-bit flips and a set of 𝑛 2-bit flips such 
that the average weight decrease is at least (𝑓 𝑥 − 𝑓𝑜𝑝𝑡)/(𝑚 + 1)

≥
1

𝑚
1 −

1

𝑚

𝑚−1
𝑓 𝑥 − 𝑓𝑜𝑝𝑡

𝑚 + 1
≥

1

𝑒𝑚 𝑚 + 1
𝑉(𝑥)



Proof

The analysis of phase (2): min𝑓 𝑥 = 𝑐 𝑥 − 1 ∙ 𝑤𝑢𝑏 + ∑𝑖:𝑥𝑖=1𝑤𝑖

• it will always be connected, i.e., 𝑐 𝑥 = 1 always holds

• to analyze 𝑓 𝑥 → 𝑓𝑜𝑝𝑡 the weight of a minimum spanning tree

Using multiplicative drift analysis:

• design the distance function: 𝑉 𝑥 = 𝑓 𝑥 − 𝑓𝑜𝑝𝑡

• analyze the expected drift:

Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡 = 𝑥] ≥
1

𝑒𝑚 𝑚+1
𝑉(𝑥)

Upper bound on the expected running time:

∑𝑥∈𝑋 𝜋0(𝑥) ∙
1 + log (𝑉 𝑥 /𝑉𝑚𝑖𝑛)

𝛿

𝑉 𝑥 ≤ 𝑚𝑤𝑚𝑎𝑥 𝑉𝑚𝑖𝑛 ≥ 1

≤ 𝑒𝑚(𝑚 + 1)(1 + log (𝑚𝑤𝑚𝑎𝑥))

∈ 𝑂(𝑚2(log 𝑛 + log𝑤𝑚𝑎𝑥))

proportional to 
the current distance



Proof

Theorem. [Neumann & Wegener, TCS’07; Doerr et al., Algorithmica’12] The 
expected running time of the (1+1)-EA solving the MST problem 
is 𝑂(𝑚2(log 𝑛 + log𝑤𝑚𝑎𝑥)).

Main idea:

(1)  obtain a connected subgraph

(2)  obtain a minimum spanning tree

The expected running time of phase (1):    𝑂(𝑚 log 𝑛)

The expected running time of phase (2): 𝑂(𝑚2(log 𝑛 + log𝑤𝑚𝑎𝑥))

The total expected running time: 𝑂(𝑚2(log 𝑛 + log𝑤𝑚𝑎𝑥))



Simplified drift analysis 

The simplified drift analysis theorem 
for proving exponential lower bounds [Oliveto & Witt, Algorithmica’11]

The expected drift is negative, 
i.e., away from the target in expectation

The probability of a drift 
towards the target 
decreases exponentially

Exponential running timea constant

The simplified drift theorem with self-loops [Rowe & Sudholt, TCS’14]

The simplified drift theorem with scaling [Oliveto & Witt, TCS’14]



Switch analysis 

The basic idea [Yu et al., TEC’15]:

investigate the different 
behaviors at each step

Given EA on the given problem

Reference algorithm on
the reference problem

The expected running time of {𝜉𝑡
′}𝑡=0
+∞ , easy to analyze

{𝜉𝑡}𝑡=0
+∞

{𝜉𝑡
′}𝑡=0
+∞

Ε 𝜏 ≤ (≥) Ε 𝜏′ + ∑𝑡=0
+∞ 𝜌𝑡

The expected running time:



Multi-objective optimization

The task: optimize multiple objectives simultaneously

better 𝑓1
better 𝑓2

𝑥

𝑦
𝑧

𝑓1

𝑓2

worse 𝑓1
better 𝑓2

𝑥 dominates 𝑧:

𝑓1 𝑥 < 𝑓1 𝑧 ⋀ 𝑓2 𝑥 < 𝑓2 𝑧

𝑥 incomparable 𝑦:

𝑓1 𝑥 > 𝑓1 𝑦 ⋀ 𝑓2 𝑥 < 𝑓2 𝑦

𝑚𝑖𝑛𝑥∈Χ (𝑓1 𝑥 , 𝑓2 𝑥 ,… , 𝑓𝑚 𝑥 )

Previous analysis approaches are not easy to be directly applied



Example: GSEMO for LOTZ 

LOTZ: arg𝑚𝑎𝑥𝑥∈{0,1}𝑛 (∑𝑖=1
𝑛 ∏𝑗=1

𝑖 𝑥𝑗 , ∑𝑖=1
𝑛 ∏𝑗=𝑖

𝑛 (1 − 𝑥𝑗))

GSEMO: Given a pseudo-Boolean function vector 𝒇:

1. 𝑥 ≔ randomly selected from {0,1}𝑛.
2. 𝑃 ≔ {𝑥}.
3. Repeat until some termination criterion is met
4. Choose 𝑥 from 𝑃 uniformly at random.
5. 𝑥′ ≔ flip each bit of 𝑥 with probability 1/𝑛.
6. if  ∄ 𝑧 ∈ 𝑃 such that 𝑧 ≻ 𝑥′
7. 𝑃:= 𝑃 − 𝑧 ∈ 𝑃| 𝑥′ ≽ 𝑧 ∪ {𝑥′}.

Count the number of leading 1-bits

Keep non-dominated
solutions 

Count the number of trailing 0-bits

The Pareto set: 00…00, 10…00, … , 11…10, 11…11.

The Pareto front: (0, 𝑛), (1, 𝑛 − 1), … , (𝑛 − 1,1), (𝑛, 0).



Proof

Theorem. [Giel, CEC’03] The expected running time of the GSEMO 
solving the LOTZ problem is 𝑂(𝑛3).

Main idea:

(1)  obtain the Pareto optimal solution 11…11

(2)  obtain the Pareto front

The analysis of phase (1):

• select the solution with the largest LO value, and only flip its first 0 bit

• the probability: 
1

𝑛+1

1

𝑛
(1 −

1

𝑛
)𝑛−1

the population size is not larger than 𝑛 + 1



Proof

Theorem. [Giel, CEC’03] The expected running time of the GSEMO 
solving the LOTZ problem is 𝑂(𝑛3).

Main idea:

(1)  obtain the Pareto optimal solution 11…11

(2)  obtain the Pareto front

The analysis of phase (1):

• select the solution with the largest LO value, and only flip its first 0 bit

• the probability: 
1

𝑛+1

1

𝑛
(1 −

1

𝑛
)𝑛−1



Proof

Theorem. [Giel, CEC’03] The expected running time of the GSEMO 
solving the LOTZ problem is 𝑂(𝑛3).

Main idea:

(1)  obtain the Pareto optimal solution 11…11

(2)  obtain the Pareto front

the probability of increasing the largest 

LO value by 1 is at least 
1

𝑒𝑛(𝑛+1)

it is sufficient to increase 𝑛 times

The analysis of phase (1):

• select the solution with the largest LO value, and only flip its first 0 bit

• the probability: 
1

𝑛+1

1

𝑛
(1 −

1

𝑛
)𝑛−1

The expected running time:

𝑛 ∙ 𝑒𝑛(𝑛 + 1) ∈ 𝑂(𝑛3)



Proof

The analysis of phase (2):

• the found Pareto optimal solutions will always be kept

• follow the path: 1𝑛 → 1𝑛−10 → ⋯ → 10𝑛−1 → 0𝑛

the probability: 
1

𝑛+1
∙
1

𝑛
(1 −

1

𝑛
)𝑛−1

The expected running time:   𝑛 ∙ 𝑒𝑛(𝑛 + 1) ∈ 𝑂(𝑛3)

The expected running time of phase (1): 𝑂(𝑛3)

The total expected running time: 𝑂(𝑛3)



Running time analysis approaches

• Fitness level method

• Refined fitness level method

• Drift analysis

• Multiplicative drift analysis

• Switch analysis

• Simplified drift analysis

Upper and lower bounds 
on the expected running 
time

Exponential running time 
with high probability

More specific approaches for multi-objective EAs



Outline

• Introduction

• Running time analysis approaches

• Running time analysis results

• Examples of running time analysis leading 

to improved design of EAs

• Summary



Results in single-objective optimization

(1+1)-EA

(𝑢+1)-EA

(1+𝜆)-EA

(𝑁+𝑁)-EA

linear function   Θ(𝑛 log 𝑛) [Droste et al., TCS’02]

minimum spanning tree   O(𝑚2 log(𝑛 + 𝑤𝑚𝑎𝑥)) [Neumann & Wegener, TCS’07]

partition   O 𝑛2 with
4

3
approximation [Witt, STACS’05]

vertex cover   𝑒Ω(𝑛) with arbitrary bad approximation [Oliveto, TEC’09]

OneMax  O 𝑢𝑛 + 𝑛 log 𝑛 ; LeadingOnes O(𝑢𝑛 log 𝑛 + 𝑛2) [Witt, ECJ’06]

maximum clique   O 𝑢𝑛 log 𝑛 on sparse graphs [Storch, TCS’07]

vertex cover   O 𝑢𝑛 log 𝑛 on bipartite graphs [Oliveto, TEC’09]

linear function  O 𝜆𝑛 + 𝑛 log 𝑛 [Doerr & Kunnemann, TCS’15]

vertex cover   e𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 on bipartite graphs [Oliveto, TEC’09]

OneMax  O 𝑁𝑛 log log 𝑛 + 𝑛 log 𝑛 ; LeadingOnes O(𝑁𝑛 log 𝑛 + 𝑛2)
[Chen et al., TSMCB’09]

EDA [Chen et al., TEC’10];  ACO [Doerr et al., TCS’11]; PSO [Sudholt & Witt, TCS’10];
Memetic algorithms [Sudholt, TCS’09]; GP [Wagner et al., ECJ’15]



Results in multi-objective optimization

SEMO

GSEMO

REMO

MOEA/D

LOTZ   Θ(𝑛3); COCZ   O(𝑛2 log 𝑛) [Laumanns et al., TEC’04]

LOTZ  O 𝑛3 [Giel, CEC’03];   Ω(𝑛2/𝑝) [Doerr et al., CEC’13]

bi-objective minimum spanning tree  O 𝑚3𝑤𝑚𝑖𝑛( 𝐶 + log 𝑛 + log𝑤𝑚𝑎𝑥)
with 2 approximation [Neumann, EJOR’07]

LOTZ   Θ(𝑛2);  COCZ   Θ(𝑛 log 𝑛); bi-objective minimum spanning tree 

LOTZ  O 𝑛2 log 𝑛 ; COCZ  Θ(𝑛 log 𝑛) [Li et al., TEC’16]

Single-objective optimization problems by multi-objective EAs

DEMO multi-objective all-pairs-shortest-path  O 𝑛𝑃𝑚𝑎𝑥𝑔 𝑤𝑖𝑡ℎ

𝑟3𝑔 log 𝑛 approximation [Neumann & Theile, PPSN’10]

O 𝑚2𝑛𝑤𝑚𝑖𝑛( 𝐶 +
log 𝑛+log 𝑤𝑚𝑎𝑥

𝑛𝑤𝑚𝑖𝑛
− 𝑁𝑔𝑐(1 −

1

𝑚
)) with 2 approximation

[Qian et al., AIJ’13]



Single-objective better by multi-objective 

Minimum spanning tree (MST):

• Given: an undirected connected graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices 
and 𝑚 edges with positive integer weights 𝑤:𝐸 → ℕ

• The Goal: find a connected subgraph 𝐸′ ⊆ 𝐸 with the minimum 
weight

Fitness function: min 𝑓 𝑥 = 𝑐 𝑥 − 1 ∙ 𝑤𝑢𝑏 + ∑𝑖:𝑥𝑖=1𝑤𝑖

Bi-objective min (𝑐 𝑥 , ∑𝑖:𝑥𝑖=1𝑤𝑖)

Single-objective: 𝑂(𝑚2(log 𝑛 + log𝑤𝑚𝑎𝑥))

Bi-objective: 𝑂(𝑚𝑛(𝑛 + log𝑤𝑚𝑎𝑥))

multi-objective better 
for dense graphs, 
e.g., 𝑚 = Θ(𝑛2)



More examples

Single-objective Multi-objective

MST 𝑂(𝑚2(log 𝑛 + log𝑤𝑚𝑎𝑥)) 𝑂(𝑚𝑛(𝑛 + log𝑤𝑚𝑎𝑥))

[Neumann & Wegener, GECCO’05] 

Set cover 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑂(𝑚𝑛(log 𝑐𝑚𝑎𝑥 + log 𝑛))

[Friedrich et al., ECJ’10] 

Minimum cut 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑂(𝐹𝑚(log 𝑐𝑚𝑎𝑥 + log 𝑛))

[Neumann et al., Algorithmica’11] 

Minimum LST Ω(𝑘𝑢𝑘) 𝑂(𝑘2log 𝑘)

[Lai et al., TEC’14] 

Problem

Minimum cost
coverage

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑂(𝑁𝑛(log 𝑛 + log𝑤𝑚𝑎𝑥 + 𝑁)

[Qian et al., IJCAI’15] 
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Project scheduling problem 

A full software project scheduling process:

• identify project tasks

• identify task dependencies

• estimate resources for tasks

• allocate employees to tasks

• create project charts 

To minimize the cost and completion time of the software 
project, while meeting all the constraints 

𝑡1

𝑡2 𝑡3

𝑡4

Project Scheduling Problem



Project scheduling problem 

The input:

the total dedication of employee 𝑖 at time 𝜏

The objective: produce a schedule which minimizes the cost and time

𝑥𝑖,𝑗 ∈ {0,
1

𝑘
,
2

𝑘
, … , 1}: the amount of dedication of 𝑒𝑖 to 𝑡𝑗

• a set of employees 𝑒1, … , 𝑒𝑛 with salaries 𝑠1, … , 𝑠𝑛, 
and sets of skills 𝑠𝑘𝑖𝑙𝑙1, … , 𝑠𝑘𝑖𝑙𝑙𝑛, respectively

• a set of tasks 𝑡1, … , 𝑡𝑚 with required efforts 𝑒𝑓𝑓1, … , 𝑒𝑓𝑓𝑛, 
and sets of required skills 𝑟𝑒𝑞1, … , 𝑟𝑒𝑞𝑚, respectively

• a task precedence graph (TPG) – a directed graph with 
tasks as nodes and task precedence as edges

Constraints:
• required skills: 𝑟𝑒𝑞𝑗 ⊆ ⋃𝑖=1

𝑛 𝑠𝑘𝑖𝑙𝑙𝑖 𝑥𝑖,𝑗 > 0}

𝑚𝑎𝑥𝑖,𝜏 𝑒𝑖
𝑤𝑜𝑟𝑘 𝜏 ≤ 1• overwork:



Improved design inspired by theory

The overwork problem:

Theorem 1. The expected running time of the (1+1)-EA with
normalization on a linear schedule problem is O((𝑘𝑛𝑚)2).

Theoretical analysis:

• Previous - repair

𝑚𝑎𝑥𝑖,𝜏 𝑒𝑖
𝑤𝑜𝑟𝑘 𝜏 ≤ 1

• Proposed – normalization [Minku et al., TSE’14]

If 𝑀 = 𝑚𝑎𝑥𝑖,𝜏 𝑒𝑖
𝑤𝑜𝑟𝑘 𝜏 > 1,   𝑥𝑖,𝑗 = 𝑥𝑖,𝑗/𝑀

divide dedications 
when necessary

divide dedications 
across the whole schedule

𝑥𝑖,𝑗 = 𝑥𝑖,𝑗/max(1, ∑𝑡𝑙∈𝑉
′𝑥𝑖,𝑙)

Theorem 2. There exists a PSP instance where the (1+1)-EA 
with normalization needs at least exponential time.

Easy instances

Hard instances



Improved design inspired by theory

The proposed algorithm 
[Minku et al., TSE’14]

Experimental results

The proposed Pop-EA 
performs the best



Subset selection 
[Qian et al., NIPS’15; IJCAI’16]

Ensemble pruning 
[Qian et al., AAAI’15]

More examples

Theory: single-objective optimization can be solved better 
by multi-objective optimization 



Summary

• The theoretical foundation of EAs is weak, but important

• State-of-the-art running time analysis approaches
– fitness level method

– drift analysis

– switch analysis

• Running time analysis results
– single-objective optimization

– multi-objective optimization

• Examples of improved design of EAs inspired by 
theoretical analysis



Schema theorem Convergence Running time

[Holland, 1975] [Rudolph, FI’98] [He & Yao, AIJ’01]

Running time analysis

Algorithm

Problem

Simple Complex

Synthetic Combinatorial

Single-objective Multi-objective



Interesting directions

• Analysis on real EAs or real problems

• Running time analysis approaches for MOEAs

• Improved design of EAs by theory

• Analysis in noisy environments

• Analysis in continuous optimization

• ……



Reading books
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