
Pareto Ensemble Pruning∗

Chao Qian and Yang Yu and Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology, Nanjing University

Collaborative Innovation Center of Novel Software Technology and Industrialization
Nanjing 210023, China

{qianc,yuy,zhouzh}@lamda.nju.edu.cn

Abstract
Ensemble learning is among the state-of-the-art learn-
ing techniques, which trains and combines many base
learners. Ensemble pruning removes some of the base
learners of an ensemble, and has been shown to be
able to further improve the generalization performance.
However, the two goals of ensemble pruning, i.e., max-
imizing the generalization performance and minimizing
the number of base learners, can conflict when being
pushed to the limit. Most previous ensemble pruning
approaches solve objectives that mix the two goals. In
this paper, motivated by the recent theoretical advance
of evolutionary optimization, we investigate solving the
two goals explicitly in a bi-objective formulation and
propose the PEP (Pareto Ensemble Pruning) approach.
We disclose that PEP does not only achieve significantly
better performance than the state-of-the-art approaches,
and also gains theoretical support.

Introduction
Ensemble methods (Zhou 2012) are a kind of powerful ma-
chine learning approaches, which train and combine mul-
tiple base learners for one single learning task. They usu-
ally achieve the state-of-the-art prediction performance, and
thus have been widely applied. Instead of combining all
the trained base learners of an ensemble, ensemble prun-
ing (Tsoumakas, Partalas, and Vlahavas 2009) selects only a
subset of base learners to use. Obviously, reducing the com-
positing base learners can save the storage space and acceler-
ate the prediction speed. Furthermore, it has been shown that
the pruned ensemble can have a better generalization perfor-
mance than the whole ensemble (Zhou, Wu, and Tang 2002;
Zhang, Burer, and Street 2006).

Previous ensemble pruning techniques can be cate-
gorized into two branches, the ordering-based pruning
and the optimization-based pruning. The ordering meth-
ods (Martı́nez-Muñoz, Hernández-Lobato, and Suárez 2009;
Partalas, Tsoumakas, and Vlahavas 2012) commonly start
from an empty set and then iteratively add a base learner op-
timizing a certain objective. The sequence of being added

∗This research was supported by the NSFC (61333014,
61375061), JiangsuSF (BK2012303), FRF Central Universities
(20620140519) and Baidu Fund (181415PO2189).
Copyright c⃝ 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

into the pruned ensemble gives an order of the base clas-
sifiers, the front classifiers of which constitute the final
ensemble. Different ordering methods are mainly differ-
ent on the choice of the objective, which can be mini-
mizing the error (Margineantu and Dietterich 1997), max-
imizing the diversity (Banfield et al. 2005), or combin-
ing the both (Li, Yu, and Zhou 2012). Many studies have
shown that they can achieve a good pruned ensemble ef-
ficiently (Martı́nez-Muñoz, Hernández-Lobato, and Suárez
2009; Hernández-Lobato, Martı́nez-Muñoz, and Suárez
2011). The optimization-based pruning formulates the en-
semble pruning as an optimization problem which aims at
finding a subset of base learners with the best generaliza-
tion performance. Different optimization techniques have
been employed, e.g., semi-definite programming (Zhang,
Burer, and Street 2006), quadratic programming (Li and
Zhou 2009) and heuristic optimization such as genetic al-
gorithms (Zhou, Wu, and Tang 2002) and artificial im-
mune algorithms (Castro et al. 2005). The heuristic methods
use some trial-and-error style heuristics to directly search
in the solution space. They were believed to be powerful,
but their performance had no theoretical support. More-
over, empirical results have shown that the size of the
pruned ensemble by heuristic methods is often much larger
than that by ordering methods (Zhou, Wu, and Tang 2002;
Li and Zhou 2009).

Ensemble pruning naturally bears two goals simultane-
ously, maximizing the generalization performance and min-
imizing the number of learners. When pushing to the limit,
the two goals are conflicting, as overly fewer base learners
lead to a poor performance. In order to achieve both a good
performance and a small ensemble size, previous ensemble
pruning approaches solve some objectives that mix the two
goals. But recently, it has been revealed that, when dealing
with multiple objectives via evolutionary optimization, ex-
plicit consideration of every goal in a multi-objective for-
mulation can be quite helpful (Yu, Yao, and Zhou 2012).

This paper investigates the explicit bi-objective formula-
tion of ensemble pruning, and proposes the PEP (Pareto En-
semble Pruning) approach. PEP solves the bi-objective for-
mulation of ensemble pruning by an evolutionary Pareto op-
timization method combined with a local search operator.
Firstly, we show theoretically that PEP is superior to the or-
dering methods in both performance and size. Then, the em-

pirical studies support that PEP is significantly better than
the state-of-the-art approaches. Finally, we apply PEP in the
application on mobile human activity recognition.

The rest of the paper presents the PEP approach, the theo-
retical studies, the empirical studies, the application, and the
conclusion in subsequent sections.

The PEP Approach
Given a data set D = {(xi, yi)}mi=1 and a set of n trained
base classifiers H = {hi}ni=1, where hi : X → Y maps
the feature space X to the label space Y , let Hs denote
a pruned ensemble with the selector vector s ∈ {0, 1}n,
where si = 1 means that the base classifier hi is selected.
The ensemble pruning simultaneously optimizes some per-
formance measure f related to the generalization error of
Hs and minimizes the size of Hs which is simply counted
as |s| =

∑n
i=1 si.

Instead of optimizing a mixture objective of these two
goals, we investigate directly solving the bi-objective en-
semble pruning problem, which is formulated as

argmins∈{0,1}n (f(Hs), |s|).

In the bi-objective formulation, the objective function, i.e.,
(f(Hs), |s|), gives to any candidate solution s not a scalar
value but a vector. For example, a pruning solution which
results in 0.2 value of the employed f function and 10 clas-
sifiers will have the objective vector (0.2, 10). Unlike single-
objective optimization, the objective vector makes the com-
parison between two solutions not straightforward, because
it is possible that one solution is better on the first dimension
while the other is better on the second dimension. Therefore,
the domination relationship is usually used for this special
situation. Definition 1 introduces the domination relation-
ship in bi-objective (i.e., two objectives) minimization case.

Definition 1 (Domination). Let g = (g1, g2) : S → R2 be
the objective vector. For two solutions s, s′ ∈ S:
(1) s weakly dominates s′ if g1(s) ≤ g1(s

′) and g2(s) ≤
g2(s

′), denoted as ≽g;
(2) s dominates s′ if s ≽g s′ and either g1(s) < g1(s

′) or
g2(s) < g2(s

′), denoted as ≻g .

Consequently, a bi-objective optimization problem may
not have a single optimal solution, but instead have a set of
Pareto optimal solutions. A solution s is Pareto optimal if
there is no other solution in S that dominates s.

We propose the PEP (Pareto Ensemble Pruning) approach
as presented in Algorithm 1 to solve the bi-objective ensem-
ble pruning problem. PEP is inspired by a multi-objective
evolutionary algorithm, which has been shown to be among
the best-so-far algorithms for approximating some NP-hard
problems (Yu, Yao, and Zhou 2012). It firstly generates a
random solution, and puts it into the candidate solution set
P ; and then follows a cycle to improve the solutions in P it-
eratively. In each iteration, a solution s is randomly selected
from P ; and is then perturbed to generate a new solution
s′; if s′ is not dominated by any solution in P , s′ is added
into P and at the same time solutions in P that are weakly
dominated by s′ get removed.

As PEP is inspired by evolutionary algorithms, which
usually focus on global exploration but may not utilize the
local information well, a local search is incorporated into
PEP to improve the quality of the new candidate solution in
order to improve its efficiency. We employ the VDS (Lin and
Kernighan 1973), short for the variable-depth search as de-
scribed in Algorithm 2. It is known for the TSP problem as
the Lin-Kernighan strategy. The VDS performs a sequence
of greedy local moves, each of which chooses the best lo-
cal solution. To prevent loops in the moves, it keeps a set
L to record the moved directions. We apply the VDS to the
newly included solution s′ (i.e., step 8 of Algorithm 1), and
the generated solutions are then used to update P .

Algorithm 1 (PEP). Given a set of trained classifiers
H = {hi}ni=1, an objective f : 2H → R and an evaluation
criterion eval, it contains:

1. Let g(s) = (f(Hs), |s|) be the bi-objective.
2. Let s=randomly selected from{0, 1}nandP ={s}.
3. Repeat
4. Select s ∈ P uniformly at random.
5. Generate s′ by flipping each bit of s with prob. 1

n .
6. if @z ∈ P such that z ≻g s′

7. P = (P − {z ∈ P | s′ ≽g z}) ∪ {s′}.
8. Q = VDS(f, s′).
9. for q ∈ Q
10. if @z ∈ P such that z ≻g q
11. P = (P − {z ∈ P | q ≽g z}) ∪ {q}.
12. Output argmins∈P eval(s).

Algorithm 2 (VDS Subroutine). Given a pseudo-Boolean
function f and a solution s, it contains:

1. Q = ∅, L = ∅.
2. Let N(·) denote the set of neighbor solutions of a

binary vector with Hamming distance 1.
3. While Vs = {y ∈ N(s) | (yi ̸= si ⇒ i /∈ L)} ̸= ∅
4. Choose y ∈ Vs with the minimal f value.
5. Q = Q ∪ {y}.
6. L = L ∪ {i | yi ̸= si}.
7. s = y.
8. Output Q.

It is noticeable that the VDS subroutine only considers
the objective f but not the other objective. One could think
if this will bias the search toward one objective. Since the
selection (i.e., steps 6-7 and 9-11) determines the search di-
rection, the VDS is used only to generate more potential can-
didate solutions for the selection in PEP, but will not effect
the search direction.

After a set of Pareto optimal solutions to the bi-objective
formulation of ensemble pruning has been solved, we can
select out one final solution according to our preference,
which is done through optimizing some evaluation criterion
at the last step of Algorithm 1.

On the choice of the performance measure f , since the
generalization performance is hard to be measured directly,
an alternative way is to use the error directly on the training
set or on a validation data set (Margineantu and Dietterich
1997; Zhou, Wu, and Tang 2002; Caruana et al. 2004). Other
criteria have also been introduced to guide the pruning, such
as the diversity measures. A representative is the κ-statistics

used in the Kappa pruning method (Banfield et al. 2005),
which calculates the difference of two classifiers from their
disagreements on a data set. Several diversity measures have
been proposed (Brown et al. 2005) and have been shown to
be connected to the generalization performance (Li, Yu, and
Zhou 2012). A measure combining the data error and the
diversity measure has been shown to lead to the state-of-the-
art performance (Li, Yu, and Zhou 2012).

When selecting the final solution out of the Pareto opti-
mal set, the choice of the eval criterion could be application
dependent. When the model size is sensitive, the selection
should be among only those with small number of classi-
fiers; otherwise it should lean to the performance measure.

Theoretical Analysis
This section investigates the effectiveness of PEP by com-
paring it theoretically with the ordering-based ensemble
pruning methods, briefly called OEP. Algorithm 3 presents
a common structure of OEP, where the objective f is used
to guide the search and an evaluation criterion (usually using
the validation error) is employed to select the final ensemble.

Algorithm 3 (OEP). Given trained classifiers H={hi}ni=1,
an objective f :2H →R and a criterion eval, it contains:

1. Let HS = ∅, HU = {h1, h2, . . . , hn}.
2. Repeat until HU = ∅ :
3. h∗ = argminh∈HU f(HS ∪ {h}).
4. HS = HS ∪ {h∗}, HU = HU − {h∗}.
5. Let HS = {h∗

1, . . . , h
∗
n}, where h∗

i is the classifier
added in the i-th iteration.

6. Let k = argmin1≤i≤n eval({h∗
1, . . . , h

∗
i }).

7. Output {h∗
1, h

∗
2, . . . , h

∗
k}.

In the following subsections, we firstly show that, for any
pruning instance, PEP can produce a solution at least as good
as that by OEP. We then show that PEP is strictly better than
OEP on some cases. Furthermore, we show that traditional
heuristic single-objective optimization based pruning meth-
ods (briefly called SEP) can be much worse than PEP/OEP.

PEP Can Do All of OEP
We prove in Theorem 1 that for any pruning task, PEP can
efficiently produce at least an equally good solution as that
by OEP in both the performance and the size. The optimiza-
tion time is counted as the number of pruned ensemble eval-
uations, which is often the most time consuming step.

Theorem 1. For any objective and any size, PEP within
O(n4 log n) expected optimization time can find a solution
weakly dominating that generated by OEP at the fixed size.

The proof idea is that, first PEP can find the special solu-
tion {0}n (i.e., none of the classifiers is selected) efficiently;
then PEP can apply VDS on {0}n to follow the process of
OEP; and thus PEP can produce a solution at least as good
as that by OEP. Lemma 1 bounds the time for finding the
special solution {0}n. Let Pmax denote the largest size of P
in PEP during the optimization.

Lemma 1. The expected iterations of PEP for finding {0}n
is O(Pmaxn log n).

Proof. Let i = min{|s| | s ∈ P}, i.e., the minimal number
of 1 bits for solutions in P . It is easy to see that i cannot in-
crease because a solution with more 1 bits cannot weakly
dominate a solution s with |s| = i. Once a solution s′

with |s′| < i is generated, it will always be accepted, be-
cause it is better on the size objective and no other solution
in P can dominate it. Thus, i can decrease by 1 in one it-
eration with probability at least 1

Pmax
· i

n (1 − 1
n)

n−1, be-
cause it is sufficient to select a solution s with |s| = i
from P , whose probability is at least 1

Pmax
, and then flip

just one 1 bit, whose probability is i
n (1 − 1

n)
n−1. Then,

the expected iterations E[i] for decreasing i by 1 is at most
Pmax

n
i

1
(1− 1

n)n−1 ≤ ePmaxn
i , where the inequality is by

(1 − 1
n)

n−1 ≥ 1
e . By summing up E[i], an upper bound∑n

i=1 E[i] ≤
∑n

i=1 ePmaxn/i ∈ O(Pmaxn logn) on the
expected iterations for finding {0}n is derived.

Proof of Theorem 1. We consider that the solution {0}n is
generated in step 5 of Algorithm 1. As {0}n is Pareto opti-
mal, it will go into the VDS process, which actually follows
the process of OEP, since OEP starts from the empty set (i.e.,
{0}n), and iteratively adds one classifier (i.e., changes one
bit from 0 to 1) minimizing f . Denote s∗ as the solution gen-
erated by OEP. The set of solutions Q output by VDS thus
must contain s∗. Then, s∗ will be used to update P as in
steps 9-11 of Algorithm 1; this will make P always contain
a solution weakly dominating s∗.

Thus, we only need to analyze the expected iterations un-
til {0}n is generated by step 5. We consider two cases. If the
initial solution is {0}n which will never be removed as it is
Pareto optimal, {0}n can be regenerated by step 5 with prob-
ability at least 1

Pmax
(1 − 1

n)
n, since it is sufficient to select

{0}n from P , whose probability is at least 1
Pmax

, and then
flip no bits, whose probability is (1− 1

n)
n. Thus, in this case

the expected iterations is at most Pmax/(1− 1
n)

n ≤ 2ePmax.
Otherwise, the expected iterations is O(Pmaxn log n) by
Lemma 1. Since any two solutions in P are incompara-
ble, there exists at most one corresponding solution in P
for each possible size. Thus, Pmax ≤ n + 1 since the size
|s| ∈ {0, 1, . . . , n}. Then, the expected iterations for gener-
ating {0}n is O(n2 log n).

For each iteration of PEP, the optimization time is at most
1 (i.e., evaluating s′) + that of VDS. The VDS takes n local
moves since after every local move one index is added to L,
and each local move performs at most n evaluations since
|Vs| ≤ n. Thus, the optimization time of one iteration is
O(n2), which implies that the expected time for finding a
solution weakly dominating s∗ is O(n4 log n). �

PEP Can Do Better Than OEP
We consider binary classification (i.e., Y = {−1, 1}), vot-
ing for combining base classifiers, and taking the validation
data set error as the performance objective f and also the
evaluation criterion. The validation error is calculated as

f(Hs) =
1

m

∑m

i=1
I(Hs(xi) ̸= yi), (1)

where I(·) is the indicator function that is 1 if the inner ex-
pression is true and 0 otherwise. Let f(Hs={0}n) = +∞ to
ensure that at least one classifier will be selected.

Theorem 2 shows that, for the type of pruning tasks de-
scribed in Situation 1, PEP can find the optimal pruned en-
semble within polynomial time, while OEP only finds a sub-
optimal one with larger error, or larger size, or both.

In this setting, a pruned ensemble Hs is composited as

Hs(x) = argmaxy∈Y
∑n

i=1
si · I(hi(x) = y).

We define the difference of two classifiers as

diff(hi, hj) =
1

m

∑m

k=1

(
1− hi(xk)hj(xk)

)
/2,

and the error of one classifier as

err(hi) =
1

m

∑m

k=1

(
1− hi(xk)yk

)
/2.

Both of them ∈ [0, 1]. If diff(hi, hj) = 1 (or 0), hi and hj

always make the opposite (or same) prediction; if err(hi) =
1 (or 0), hi always makes the wrong (or right) prediction.

In situation 1, the optimal pruned ensemble consists of 3
base classifiers (i.e., H ′): each makes different mistakes, and
the combination leads to zero error. The proof of Theorem
2 is mainly that OEP will first select the base classifier h∗

with the smallest error due to the greedy nature and will be
misled by it, while PEP can first efficiently find the pruned
ensemble {h∗}, and then applying VDS on it can produce
the optimal pruned ensemble H ′ with a large probability.
Situation 1.

∃H ′⊆H, |H ′|=3 ∧ ∀g,h∈H ′, diff(g,h)=err(g)+err(h);

∃h∗∈H−H ′,

{
err(h∗) < min{err(h)|h ∈ H ′},
∀h∈H ′, diff(h, h∗)<err(h)+err(h∗);

∀g∈H−H ′−{h∗}, err(g)>max{err(h)|h∈H ′}
∧ err(g) + err(h∗)− diff(g, h∗) >

(min+max){err(h)+err(h∗)−diff(h, h∗)|h∈H ′}.
Theorem 2. In Situation 1, OEP using Eq.1 finds a solution
with objective vector (≥ 0,≥ 3) where the two equalities
never hold simultaneously, while PEP finds a solution with
objective vector (0, 3) in O(n4 log n) expected time.

Proof. Without loss of generality, assume h∗ = h1, H ′ =
{h2, h3, h4} and err(h2) = min{err(h)|h ∈ H ′}. Let di =
(err(h1)+err(hi)−diff(h1, hi))/2, i.e., the ratio of the same
mistakes made by h1 and hi, and then di>0. Assume d3≤
d4. Denote Bj ∈{0,1}j as a Boolean vector of length j.

For OEP, it follows such an optimization path:

{0}n→1{0}n−1→11{0}n−2→111{0}n−3→1111{0}n−4→· · · .
The corresponding f value changes as: +∞ → err(h1) →
(err(h1)+err(h2))/2→d2+d3→(d2+d3+d4)/2→≥ 0.

The 1st ‘→’ is because h1 has the smallest error; the 2nd is
because the error of combining two classifiers is their aver-
age error and thus h2 with the smallest error in the remain-
ing classifiers is selected; the 3rd is by err(111{0}n−3) =

d2+d3≤err(1101{0}n−4)=d2+d4 and ∀s∈{1100Bn−4 |
|Bn−4| = 1}, err(s) > (min+max){d2, d3, d4} ≥ d2+d3;
the 4th is by ∀s ∈ {1110Bn−4 | |Bn−4| = 1}, err(s) >
(d2+d3+(min+max){d2, d3, d4})/2> (d2+d3+d4)/2=
err(11110n−4). Since (err(h1) + err(h2))/2 > err(h1) >
d2+ d3, OEP will output a solution with objective vector
(d2+d3, 3), ((d2+d3+d4)/2, 4) or (≥0,≥5).

For PEP, by Lemma 1, the expected iterations for finding
{0}n is O(Pmaxn log n). Then, 1{0}n−1 will be generated
in one iteration with probability at least 1

Pmax
· 1n (1−

1
n)

n−1≥
1

enPmax
, since it is sufficient to select {0}n from P and flip

just the first 0 bit. Because 1{0}n−1 is Pareto optimal, it
will always keep in P . Once it is regenerated by step 5 of
Algorithm 1, whose probability is at least 1

Pmax
· (1− 1

n)
n, it

will go into the VDS process, and with probability Ω(1n) the
solution path found by VDS on 1{0}n−1 is: 1{0}n−1 →
11{0}n−2→111{0}n−3→1111{0}n−4→0111{0}n−4→· · · .
The corresponding objective vector changes as:
(err(h1), 1) → ((err(h1)+err(h2))/2, 2) → (d2 + d3, 3)

→ ((d2 + d3 + d4)/2, 4) → (0, 3) → (≥ 0,≥ 4).
Note that Pmax ≤ n + 1. Thus, the expected time for find-
ing the optimal solution 0111{0}n−4 with objective vector
(0, 3) is O(Pmaxn log n + Pmaxn + Pmaxn) · O(n2), i.e.,
O(n4 log n).

PEP/OEP Can Do Better Than SEP
Heuristic optimization methods like evolutionary algorithms
(EAs) (Bäck 1996) have been employed for solving the en-
semble pruning in a single-objective formulation that mixes
the two goals, which are briefly called SEP. GASEN (Zhou,
Wu, and Tang 2002) is probably the first such method,
and several other methods (e.g., artificial immune algo-
rithms (Castro et al. 2005)) have also been proposed. How-
ever, it was unknown theoretically how well these optimiza-
tion methods can be. Taking an EA presented in Algorithm
4 (He and Yao 2001; Auger and Doerr 2011) as a represen-
tative SEP, we prove in Theorem 3 that, for the type of prun-
ing tasks described in Situation 2, OEP (and thus PEP due to
Theorem 1) can find the optimal pruned ensemble efficiently
but SEP needs at least exponential optimization time.
Algorithm 4 (SEP). Given a set of trained classifiers
H = {hi}ni=1 and an objective f : 2H → R, it contains:

1. s = randomly selected from {0, 1}n.
2. Repeat until the termination condition is met:
3. Generate s′ by flipping each bit of s with prob. 1

n .
4. if f(Hs′) ≤ f(Hs) then s = s′.
5. Output s.
In Situation 2, all base classifiers make the same predic-

tions except one that makes fewer mistakes. Without loss of
generality, assume H ′ = {h2, . . . , hn}. Let err(h1) = c1
and err(h ∈ H ′) = c2, where c1 < c2. Then, the objective
function of Eq.1 is

f(Hs) =

+∞, if s = {0}n,
c1, if s = 1{0}n−1,
(c1 + c2)/2, if |s| = 2 ∧ s1 = 1,
c2, otherwise.

The main proof idea of Theorem 3 is that OEP can easily
find the optimal solution 1{0}n−1 by the first greedy step,
while SEP almost performs a random walk on a plateau
and thus is inefficient. The proof needs Lemma 2, which is
the drift analysis tool for deriving the optimization time of
Markov chains, and note that the analyzed SEP (i.e., EA) is
commonly modeled as a Markov chain (He and Yao 2001;
Auger and Doerr 2011).
Situation 2.

∃H ′ ⊆ H, |H ′| = n− 1 ∧ ∀g, h ∈ H ′, diff(g, h) = 0;

err(H −H ′) < err(h ∈ H ′).

Lemma 2. (Oliveto and Witt 2011) Let Xt (t ≥ 0) be the
random variable describing a Markov process over a finite
state space S ⊆ R+

0 and denote ∆t(i) = (Xt+1 − Xt |
Xt = i) for i ∈ S and t ≥ 0. Suppose there exist an interval
[a, b], two constants δ, ϵ > 0 and, possibly depending on
l := b − a, a function r(l) satisfying 1 ≤ r(l) = o(l/ log l)
such that for all t ≥ 0 the following two conditions hold:

1. E(∆t(i)) ≥ ϵ for a < i < b;

2. P (|∆t(i)|≥j)≤r(l)/(1+δ)j for i>a and j∈N0.

Then there is a constant c∗ > 0 such that for T ∗ = min{t ≥
0 : Xt ≤ a | X0 ≥ b} it holds

P (T ∗ ≤ 2
c∗l
r(l)) = 2−Ω(l

r(l)
).

Theorem 3. In Situation 2, OEP using Eq.1 finds the opti-
mal solution in O(n2) optimization time, while the time of
SEP is at least 2Ω(n) with probability 1− 2−Ω(n).

Proof. For OEP, according to the objective f , it will follow
such an optimization path:

{0}n → 1{0}n−1 → 1Bn−1, |Bn−1| = 1 → · · · .

The corresponding objective value changes as

+∞ → c1 → (c1 + c2)/2 → c2.

Thus, it outputs the optimal solution 1{0}n−1. Its optimiza-
tion time is fixed. In the i (1 ≤ i ≤ n)-th iteration of Algo-
rithm 3, it needs to evaluate and compare n−i+1 pruned en-
sembles, which are generated by combing the current pruned
ensemble with any of the n − i + 1 unselected classifiers.
Thus, the total optimization time is

∑n
i=1(n − i + 1) =

n(n+ 1)/2, i.e., O(n2).
For SEP where a new solution is generated based on the

current solution, we can model it by a Markov chain and use
Lemma 2 to prove. Let a = 2, b = n/3, and let Xt = |s| be
the number of 1 bits of the current solution. Let mut(i → j)
be the probability of generating |s′| = j from |s| = i by
step 3 of Algorithm 4. For any a<i<b, we have

E(∆t(i))=
∑n

j=1
mut(i→j) · j +mut(i→0) · i− i

≥
∑n

j=0
mut(i→j) · j−i=(n−i)

1

n
+i(1− 1

n
)−i≥ 1

3
,

where the 1st equality is because any solution except {0}n
has at most the same objective value as a solution s with

|s| = i > 2, and then is always accepted; the 2nd equality is
by applying the linearity of expectation on

∑n
j=0 mut(i →

j) · j = E(
∑n

i=1 s
′
i), which is actually the expected number

of 1 bits of the new solution generated by step 3 of Algo-
rithm 4.
To make |∆t(i)| ≥ j, it is necessary to flip at least j bits.
Thus, we have

P (|∆t(i)| ≥ j) ≤
(
n

j

)
1

nj
≤ 1

j!
≤ 2

2j
.

Thus, the conditions of Lemma 2 hold with ϵ = 1
3 , δ = 1 and

r(l) = 2. We can then get P (T ∗ ≥ 2Ω(n)) = 1 − 2−Ω(n),
where T ∗ = min{t ≥ 0 : Xt ≤ 2 | X0 ≥ n

3 }. By Chernoff
bounds, P (X0 ≥ n

3)= 1−2−Ω(n) due to the uniform distri-
bution of initial solution. Thus, with probability 1−2−Ω(n),
the optimization time for finding a solution s with |s|≤2 is
2Ω(n), which is obviously an optimization time lower bound
for finding the optimal solution 1{0}n−1.

Empirical Study
We conducted experiments on 20 binary and 10 multiclass
data sets (Blake, Keogh, and Merz 1998), pruning the base
classifiers trained by Bagging (Breiman 1996). To assess
each method on each data set, we repeat the following pro-
cess 30 times. The data set is randomly and evenly split into
three parts, each as the training set, the validation set and
the test set. A Bagging of 100 C4.5 decision trees (Quinlan
1993) is trained on the training set, then pruned by a pruning
method using the validation set, and finally tested on the test
set.

For PEP, the first goal is to minimize the validation er-
ror, which is also used as the evaluation criterion for the
final ensemble selection. Two baselines are the full Bag-
ging, which uses all the base classifiers, and the Best In-
dividual (BI), which selects the best classifier according
to the validation error. Five state-of-the-art ordering meth-
ods are compared, including Reduce-Error (RE) (Caru-
ana et al. 2004), Kappa (Banfield et al. 2005), Comple-
mentarity (CP) (Martı́nez-Muñoz, Hernández-Lobato, and
Suárez 2009), Margin Distance (MD) (Martı́nez-Muñoz,
Hernández-Lobato, and Suárez 2009), and DREP (Li, Yu,
and Zhou 2012) methods. They mainly differ in their con-
sidered objectives relating to the generalization perfor-
mance, and they all use the validation error as the evalua-
tion criterion for selecting the final ensemble. As a repre-
sentative heuristic single-objective optimization method, an
EA (Bäck 1996) is compared, which is similar to Algorithm
4 except that it generates and maintains n solutions in each
iteration, minimizing the validation error. The parameter p
for MD is set to be 0.075 (Martı́nez-Muñoz, Hernández-
Lobato, and Suárez 2009), and the parameter ρ of DREP is
selected from {0.2, 0.25, . . . , 0.5} (Li, Yu, and Zhou 2012).
The number of iterations for PEP is set to be ⌈n2 logn⌉ (the
total number of evaluations O(n4 log n) divided by the num-
ber of evaluations in each iteration O(n2), as suggested by
Theorems 1&2). For the fairness of comparison, the number
of iterations for EA is set to be ⌈n3 log n⌉ so that it costs the
same number of evaluations as PEP.

Table 1: The test errors and the sizes (mean+std.) of the compared methods on 20 binary data sets. In each data set, the smallest
values are bolded, and ‘•/◦’ denote respectively that PEP is significantly better/worse than the corresponding method by the
t-test with confidence level 0.05. In the rows of the count of the best, the largest values are bolded. The count of direct win
denotes the number of data sets on which PEP has a smaller test error/size than the corresponding method (1 tie is counted as
0.5 win), where significant cells by the sign-test (Demšar 2006) with confidence level 0.05 are bolded.

Test Error
Data set PEP Bagging BI RE Kappa CP MD DREP EA
australian .144±.020 .143±.017 .152±.023• .144±.020 .143±.021 .145±.022 .148±.022 .144±.019 .143±.020
breast-cancer .275±.041 .279±.037 .298±.044• .277±.031 .287±.037 .282±.043 .295±.044• .275±.036 .275±.032
disorders .304±.039 .327±.047• .365±.047• .320±.044• .326±.042• .306±.039 .337±.035• .316±.045 .317±.046•
heart-statlog .197±.037 .195±.038 .235±.049• .187±.044 .201±.038 .199±.044 .226±.048• .194±.044 .196±.032
house-votes .045±.019 .041±.013 .047±.016 .043±.018 .044±.017 .045±.017 .048±.018• .045±.017 .041±.012
ionosphere .088±.021 .092±.025 .117±.022• .086±.021 .084±.020 .089±.021 .100±.026• .085±.021 .093±.026
kr-vs-kp .010±.003 .015±.007• .011±.004 .010±.004 .010±.003 .011±.003 .011±.005 .011±.003 .012±.004
letter-ah .013±.005 .021±.006• .023±.008• .015±.006• .012±.006 .015±.006 .017±.007• .014±.005 .017±.006•
letter-br .046±.008 .059±.013• .078±.012• .048±.012 .048±.014 .048±.012 .057±.014• .048±.009 .053±.011•
letter-oq .043±.009 .049±.012• .078±.017• .046±.011 .042±.011 .042±.010 .046±.011 .041±.010 .044±.011
optdigits .035±.006 .038±.007• .095±.008• .036±.006 .035±.005 .036±.005 .037±.006• .035±.006 .035±.006
satimage-12v57 .028±.004 .029±.004 .052±.006• .029±.004 .028±.004 .029±.004 .029±.004 .029±.004 .029±.004
satimage-2v5 .021±.007 .023±.009 .033±.010• .023±.007 .022±.007 .021±.008 .026±.010• .022±.008 .021±.008
sick .015±.003 .018±.004• .018±.004• .016±.003 .017±.003• .016±.003• .017±.003• .016±.003 .017±.004•
sonar .248±.056 .266±.052 .310±.051• .267±.053• .249±.059 .250±.048 .268±.055• .257±.056 .251±.041
spambase .065±.006 .068±.007• .093±.008• .066±.006 .066±.006 .066±.006 .068±.007• .065±.006 .066±.006
tic-tac-toe .131±.027 .164±.028• .212±.028• .135±.026 .132±.023 .132±.026 .145±.022• .129±.026 .138±.020
vehicle-bo-vs .224±.023 .228±.026 .257±.025• .226±.022 .233±.024• .234±.024• .244±.024• .234±.026• .230±.024
vehicle-b-v .018±.011 .027±.014• .024±.013• .020±.011 .019±.012 .020±.011 .021±.011• .019±.013 .026±.013•
vote .044±.018 .047±.018 .046±.016 .044±.017 .041±.016 .043±.016 .045±.014 .043±.019 .045±.015
count of the best 12 2 0 2 7 1 0 5 5

PEP: count of direct win 17 20 15.5 12.5 17 20 12.5 15.5
Ensemble Size

australian 10.6±4.2 – – 12.5±6.0 14.7±12.6 11.0±9.7 8.5±14.8 11.7±4.7 41.9±6.7•
breast-cancer 8.4±3.5 – – 8.7±3.6 26.1±21.7• 8.8±12.3 7.8±15.2 9.2±3.7 44.6±6.6•
disorders 14.7±4.2 – – 13.9±4.2 24.7±16.3• 15.3±10.6 17.7±20.0 13.9±5.9 42.0±6.2•
heart-statlog 9.3±2.3 – – 11.4±5.0• 17.9±11.1• 13.2±8.2• 13.6±21.1 11.3±2.7• 44.2±5.1•
house-votes 2.9±1.7 – – 3.9±4.0 5.5±3.3• 4.7±4.4• 5.9±14.1 4.1±2.7• 46.5±6.1•
ionosphere 5.2±2.2 – – 7.9±5.7• 10.5±6.9• 8.5±6.3• 10.7±14.6• 8.4±4.3• 48.8±5.1•
kr-vs-kp 4.2±1.8 – – 5.8±4.5 10.6±9.1• 9.6±8.6• 7.2±15.2 7.1±3.9• 45.9±5.8•
letter-ah 5.0±1.9 – – 7.3±4.4• 7.1±3.8• 8.7±4.7• 11.0±10.9• 7.8±3.6• 42.5±6.5•
letter-br 10.9±2.6 – – 15.1±7.3• 13.8±6.7• 12.9±6.8 23.2±17.6• 11.3±3.5 38.3±7.8•
letter-oq 12.0±3.7 – – 13.6±5.8 13.9±6.0 12.3±4.9 23.0±15.6• 13.7±4.9 39.3±8.2•
optdigits 22.7±3.1 – – 25.0±9.3 25.2±8.1 21.4±7.5 46.8±23.9• 25.0±8.0 41.4±7.6•
satimage-12v57 17.1±5.0 – – 20.8±9.2• 22.1±10.3• 21.2±10.0• 37.6±24.3• 18.1±4.9 42.7±5.2•
satimage-2v5 5.7±1.7 – – 6.8±3.2 7.6±4.2• 10.9±7.0• 26.2±28.1• 7.7±3.5• 44.1±4.8•
sick 6.9±2.8 – – 7.5±3.9 10.9±6.0• 11.5±10.0• 8.3±13.6 11.6±6.7• 44.7±8.2•
sonar 11.4±4.2 – – 11.0±4.1 20.6±9.3• 13.9±7.1 20.6±20.7• 14.4±5.9• 43.1±6.4•
spambase 17.5±4.5 – – 18.5±5.0 20.0±8.1 19.0±9.9 28.8±17.0• 16.7±4.6 39.7±6.4•
tic-tac-toe 14.5±3.8 – – 16.1±5.4 17.4±6.5 15.4±6.3 28.0±22.6• 13.6±3.4 39.8±8.2•
vehicle-bo-vs 16.5±4.5 – – 15.7±5.7 16.5±8.2 11.2±5.7◦ 21.6±20.4 13.2±5.0◦ 41.9±5.6•
vehicle-b-v 2.8±1.1 – – 3.4±2.1 4.5±1.6• 5.3±7.4 2.8±3.8 4.0±3.9 48.0±5.6•
vote 2.7±1.1 – – 3.2±2.7 5.1±2.6• 5.4±5.2• 6.0±9.8 3.9±2.5• 47.8±6.1•
count of the best 12 – – 2 0 2 3 3 0

PEP: count of direct win – – 17 19.5 18 17.5 16 20

On Binary Classification
Some of the binary data sets are generated from the origi-
nal multiclass data sets: from letter, letter-ah classifies ‘a’
against ‘h’, and alike letter-br and letter-oq; optdigits clas-
sifies ‘0∼4’ against ‘5∼9’; from satimage, satimage-12v57
classifies labels ‘1’ and ‘2’ against ‘5’ and ‘7’, and alike
satimage-2v5; from vehicle, vehicle-bo-vs classifies ‘bus’
and ‘opel’ against ‘van’ and ‘saab’, and alike vehicle-b-v.

Table 1 lists the detailed results. Since it is improper to
have a single summarization criterion over multiple data sets
and methods, we employ the number of best, number of di-
rect win that is a pairwise comparison followed by the sign-
test (Demšar 2006), the t-test for pairwise comparison on
each data set, and the rank (Demšar 2006). PEP achieves

the smallest test error (or size) on 60% (12/20) of the data
sets, while the other methods are less than 35% (7/20). By
the sign-test with confidence level 0.05, PEP is significantly
better than all the compared methods on size and all the
methods except Kappa and DREP on test error, indicated
by the rows “PEP: count of direct win”. Though the sign-
test shows that Kappa and DREP are comparable, PEP is
still better on more than 60% (12.5/20) data sets. From the
t-test with significance level 0.05, of which significant better
and worse are indicated by ‘•’ and ‘◦’, respectively, PEP is
never significantly worse than the compared methods on test
error, and has only two losses on size (on vehicle-bo-vs to
CP and DREP). We also compute the rank of each method
on each data set as in (Demšar 2006), which are stacked in

0

50

100

150

a
g

g
re

g
a

te
d

 r
a

n
k

 o
n

 e
rr

o
r

PE
P

B
ag

gi
ng B

I
R

E

K
ap

pa
C

P
M

D

D
R

E
P

E
A

50

128.5

172

85.5 88.5

69 67.5

144

95

0

50

100

150

a
g

g
re

g
a

te
d

 r
a

n
k

 o
n

 s
iz

e

PE
P

R
E

K
ap

pa
C

P
M

D

D
R

E
P

E
A

139

32

56
62

75

9997

(a) on 20 binary data sets

0

20

40

60

80

a
g
g
re

g
a
te

d
 r

a
n

k
 o

n
 e

rr
o
r

PE
P

B
ag

gi
ng B

I
R

E

K
ap

pa
C

P
M

D

D
R

E
P

E
A

20.5

75.5

83

32

24.5

30

75.5

60.5

48.5

0

10

20

30

40

50

60

70

a
g
g
re

g
a
te

d
 r

a
n

k
 o

n
 s

iz
e

PE
P

R
E

K
ap

pa
C

P
M

D

D
R

E
P

E
A

15.5

22.5

43.5

30

64

41.5

63

(b) on 10 multiclass data sets

Figure 1: The aggregated rank on the test error and on the
size for each method (the smaller the better).

Figure 1(a).
All the criteria agree that BI is the worst on test error,

which coincides with the fact that ensemble is usually better
than a single classifier. Compared with RE, which greedily
minimizes the validation error, PEP minimizes the valida-
tion error and the size simultaneously. PEP achieves signif-
icant improvement on the test error as well as the ensem-
ble size. This observation supports the theoretical analysis
that PEP is more powerful than OEP. As a type of SEP,
EA produces ensembles with large sizes, which has been
observed in previous studies (Zhou, Wu, and Tang 2002;
Li and Zhou 2009). This also confirms our theoretical re-
sult that PEP/OEP can be better than SEP. Kappa, CP and
MD are also OEP methods but optimizing diversity-like ob-
jectives. These methods leave the validation error alone. But
since we find that the base classifiers have similar perfor-
mance as the average coefficient of variation (i.e., the ra-
tio of the standard deviation to the mean) for the valida-
tion errors of 100 base classifiers is 0.203, optimizing the
diversity may work alone. DREP is an OEP method opti-
mizing a combined error and diversity objective, which is
shown to be better than the OEP methods optimizing only
the diversity-like objectives, in both test error and ensem-
ble size from Figure 1(a). PEP is better than DREP and the
diversity-optimization methods, which may be because PEP
achieves smaller sizes that prevent the overfitting problem.

Figure 2 investigates the effect of the original Bagging
size n. We can observe that PEP always has the smallest
error and size; and the ranking order of the methods is con-
sistent with Figure 1(a).

On Multiclass Classification
We then compare these methods on 10 multiclass UCI data
sets. Note that Kappa, CP, MD and DREP are originally de-
signed for binary classification, we extend them for multi-
class classification by generalizing their “equal” and “un-

60 80 100 120 140
40

60

80

100

120

140

160

180

orginal ensemble size

a
g
g

re
g

a
te

d
 r

a
n

k
 o

n
 e

rr
o

r

60 80 100 120 140
20

40

60

80

100

120

140

orginal ensemble size

a
g
g

re
g

a
te

d
 r

a
n

k
 o

n
 s

iz
e

PEP

Bagging

BI

RE

Kappa

CP

MD

DREP

EA

(a) test error (b) size

Figure 2: The aggregated rank of each method pruning the
Bagging of {60, . . . , 140} base classifiers on 20 binary data
sets (the smaller the better).

equal” tests on multiple classes.
The detailed results are shown in Table 2. The overall per-

formance is shown in Figure 1(b). We can observe that the
compared methods have the similar performance rank as in
binary classification except DREP. DREP performs much
worse in multiclass classification than in binary classifica-
tion, which may be because its performance is proved only
in the binary classification scenario (Li, Yu, and Zhou 2012).

Application to Mobile Human Activity
Recognition

We then apply PEP to the task of Mobile Human Activity
Recognition (MHAR) using smartphones. As smartphones
have become more and more popular and essential in every-
day life, human body signals can be easily retrieved from
embedded inertial sensors. Learning from these informa-
tion can help us better monitor user health and understand
user behaviors. Specifically, MHAR using smartphones is to
identify the actions carried out by a person according to the
context information gathered by smartphones. Besides the
accuracy of the classifier, it is also important to consider that
smartphones only have limited storage and computation re-
sources for doing predictions. Therefore, ensemble pruning
is particularly appealing in the MHAR task.

We employ a lately available MHAR data set, published
in (Anguita et al. 2012). The data set is collected from 30
volunteers wearing the smartphone on the waist who per-
formed 6 activities (walking, upstairs, downstairs, stand-
ing, sitting, laying). The embedded 3D-accelerometer and
3D-gyroscope of a Samsung Galaxy S2 smartphone were
used to collect data at a constant rate of 50 Hz. Then the
records build a multiclass classification data set with 10299
instances and 561 attributes. The data set was further ran-
domly partitioned into two parts: 70% as the training set and
30% as the test set. For evaluating the performance of one
pruning method on MHAR, we repeat 30 independent runs.
In each run, we fix the test set and randomly split the training
set into two parts: 75% as the training and 25% as the vali-
dation. Bagging of 100 C4.5 decision trees are firstly trained
on the training set, then pruned by the pruning methods us-
ing the validation set, and finally tested on the test set.

Figure 3(a) depicts the improvement ratio of the prun-
ing methods to the test error of the full Bagging, and Fig-
ure 3(b) shows the reduction percentage of the number
of classifiers from the full Bagging. It is clear that PEP
achieves the best accuracy, about 3 times more than the

Table 2: The test errors and the sizes (mean+std.) of the compared methods on 10 multiclass data sets. In each data set, the
smallest values are bolded, and ‘•/◦’ denote respectively that PEP is significantly better/worse than the corresponding method
by the t-test with confidence level 0.05. In the rows of the count of the best, the largest values are bolded. The count of direct
win denotes the number of data sets on which PEP has a smaller test error/size than the corresponding method (1 tie is counted
as 0.5 win), where significant cells by the sign-test (Demšar 2006) with confidence level 0.05 are bolded.

Test Error
Data set PEP Bagging BI RE Kappa CP MD DREP EA
anneal .017±.006 .032±.013• .020±.008• .018±.006 .018±.006 .017±.007 .027±.010• .020±.008• .025±.010•
audiology .360±.036 .403±.044• .403±.043• .365±.040 .370±.035• .364±.036 .401±.045• .385±.037• .383±.036•
balance-scale .162±.018 .170±.020• .240±.027• .165±.026 .160±.018 .165±.021 .174±.023• .167±.020 .166±.023
glass .307±.049 .322±.051 .377±.054• .310±.053 .308±.046 .309±.051 .334±.056• .331±.048• .312±.041
lymph .231±.044 .254±.052• .264±.035• .235±.045 .221±.040 .227±.039 .255±.052• .252±.037• .251±.050•
primary-tumor .604±.031 .618±.039• .655±.036• .610±.032 .612±.038 .610±.030 .615±.038• .622±.035• .604±.039
soybean .096±.019 .127±.022• .150±.021• .100±.019• .101±.015• .101±.020 .125±.023• .120±.025• .106±.019•
vehicle .280±.021 .281±.024 .340±.031• .277±.027 .275±.022 .277±.023 .280± .025 .279±.021 .277±.022
vowel .200±.030 .222±.030• .396±.028• .203±.028 .203±.028 .205±.027 .224±.030• .214±.027• .206±.028•
zoo .129±.047 .175±.045• .150±.038• .132±.042 .125±.052 .135±.048 .177±.052• .144±.038• .160±.042•
count of the best 6 0 0 0 4 1 0 0 1

PEP: count of direct win 10 10 9 6 7.5 9.5 9 8.5
Ensemble Size

anneal 3.3±1.8 – – 3.0±2.5 7.0±6.0• 4.8±3.8• 12.0±12.2• 5.1±7.3 45.5±7.0•
audiology 7.8±3.0 – – 11.2±7.5• 14.9±11.9• 13.0±10.9• 25.5±27.1• 12.0±14.5 45.3±4.5•
balance-scale 16.3±3.0 – – 18.3±6.1 26.2±7.7• 19.9±10.5• 48.6±28.0• 30.2±17.1• 44.7±6.7•
glass 11.9±3.5 – – 13.1±6.1 22.2±15.6• 13.6±7.4 27.4±20.6• 19.4±17.3• 42.0±5.2•
lymph 6.9±1.9 – – 7.7±3.2 9.9±4.6• 9.2±5.3• 18.3±24.5• 7.7±10.0 46.0±4.7•
primary-tumor 17.8±4.8 – – 18.4±8.2 48.5±21.0• 19.6±13.2 44.4±24.8• 25.1±24.4 41.5±6.2•
soybean 14.4±3.4 – – 14.8±6.0 12.9±4.9 13.6±6.5 48.5±30.6• 24.8±17.1• 42.3±7.4•
vehicle 20.6±4.7 – – 19.5±5.7 20.6±9.5 17.8±10.1 49.1±29.9• 38.3±26.6• 41.4±6.4•
vowel 24.9±4.0 – – 26.8±6.5 34.8±10.5• 25.4±9.8 61.4±22.8• 44.6±21.6• 39.6±5.1•
zoo 3.5±1.7 – – 3.8±3.8 7.0±5.6• 7.5±7.0• 19.6±22.6• 6.9±8.2• 47.1±5.4•
count of the best 7 – – 1 1 1 0 0 0

PEP: count of direct win – – 8 8.5 8 10 10 10

PEP MD DREP EACPKappaREBI

-0.02

-0.01

0

0.01

0.02

0.03

0.04

im
p

ro
v
em

en
t

ra
ti

o

0.012

-0.004

-0.009

0.016

0.139

0.014

0.040

0.009

-0.513 p
re

ce
n

ta
g
e

o
f

si
ze

 r
ed

u
ct

io
n

(a) test error improvement ratio (b) size reduction

Figure 3: Average performance improvement and size reduc-
tion from the Bagging of 100 base classifiers for the MHAR
task (the larger the better).

runner-up on the improvement ratio. Meanwhile, PEP has
the best ensemble size reduction, which saves more than
20% (i.e., (17.4−13.8)/17.4) storage space than the runner-
up. Furthermore, compared with the previous reported accu-
racy 89.3% achieved by the multiclass SVM (Anguita et al.
2012), PEP achieves a better one 90.4%.

Conclusion
Ensemble pruning can further improve the generalization
performance of an ensemble, while reducing the cost for
storage and running the ensemble model. There are natu-
rally two goals in ensemble pruning, minimizing the error
and minimizing the size. Most previous ensemble pruning
approaches solve objectives that mix the two goals, which

are conflicting when being pushed to the limit. In this work,
we study solving the explicit bi-objective formulation, and
propose a Pareto optimization approach, PEP.

Firstly, we derive theoretical results revealing the advan-
tage of PEP over the ordering-based pruning methods as
well as the single-objective heuristic optimization methods.
We then conduct experiments, which disclose the superiority
of PEP over the compared state-of-the-art pruning methods.
Finally, we apply PEP in the application of mobile human
activity recognition, where the prediction accuracy gets im-
proved while the cost of storage gets saved.

There could be several directions to explore in the future.
On the Pareto optimization algorithm, more effective opera-
tors can be employed, such as crossover that has been proved
useful (Qian, Yu, and Zhou 2013). On the ensemble prun-
ing, as diversity has been recognized as an important factor,
it is necessary to investigate combining diversity into PEP.
Moreover, since many machine learning tasks naturally in-
volve multiple objectives, it is interesting to investigate new
learning approaches by solving the multi-objective formula-
tion explicitly using evolutionary algorithms, with theoreti-
cal and empirical advantages expected.

References
Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; and Reyes-Ortiz, J. L.
2012. Human activity recognition on smartphones using a multi-
class hardware-friendly support vector machine. In Proceedings
of the 4th International Workshop on Ambient Assisted Living and
Home Care, 216–223.

Auger, A., and Doerr, B. 2011. Theory of Randomized Search
Heuristics: Foundations and Recent Developments. Singapore:
World Scientific.
Bäck, T. 1996. Evolutionary Algorithms in Theory and Prac-
tice: Evolution Strategies, Evolutionary Programming, Genetic Al-
gorithms. Oxford, UK: Oxford University Press.
Banfield, R. E.; Hall, L. O.; Bowyer, K. W.; and Kegelmeyer, W. P.
2005. Ensemble diversity measures and their application to thin-
ning. Information Fusion 6(1):49–62.
Blake, C. L.; Keogh, E.; and Merz, C. J. 1998.
UCI Repository of machine learning databases.
[http://www.ics.uci.edu/∼mlearn/MLRepository.html].
Breiman, L. 1996. Bagging predictors. Machine Learning
24(2):123–140.
Brown, G.; Wyatt, J.; Harris, R.; and Yao, X. 2005. Diversity
creation methods: A survey and categorisation. Information Fusion
6(1):5–20.
Caruana, R.; Niculescu-Mizil, A.; Crew, G.; and Ksikes, A. 2004.
Ensemble selection from libraries of models. In Proceedings of the
21st International Conference on Machine Learning, 18–25.
Castro, P. D.; Coelho, G. P.; Caetano, M. F.; and Von Zuben, F. J.
2005. Designing ensembles of fuzzy classification systems: An
immune-inspired approach. In Proceedings of the 4th International
Conference on Artificial Immune Systems, 469–482.
Demšar, J. 2006. Statistical comparisons of classifiers over multi-
ple data sets. Journal of Machine Learning Research 7:1–30.
He, J., and Yao, X. 2001. Drift analysis and average time complex-
ity of evolutionary algorithms. Artificial Intelligence 127(1):57–85.
Hernández-Lobato, D.; Martı́nez-Muñoz, G.; and Suárez, A.
2011. Empirical analysis and evaluation of approximate tech-
niques for pruning regression bagging ensembles. Neurocomputing
74(12):2250–2264.
Li, N., and Zhou, Z.-H. 2009. Selective ensemble under regulariza-
tion framework. In Proceedings of the 8th International Workshop
on Multiple Classifier Systems, 293–303.
Li, N.; Yu, Y.; and Zhou, Z.-H. 2012. Diversity regularized ensem-
ble pruning. In Proceedings of the 23rd European Conference on
Machine Learning, 330–345.
Lin, S., and Kernighan, B. W. 1973. An effective heuristic al-
gorithm for the traveling-salesman problem. Operations Research
21(2):498–516.
Margineantu, D. D., and Dietterich, T. G. 1997. Pruning adaptive
boosting. In Proceedings of the 14th International Conference on
Machine Learning, 211–218.
Martı́nez-Muñoz, G.; Hernández-Lobato, D.; and Suárez, A. 2009.
An analysis of ensemble pruning techniques based on ordered ag-
gregation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 31(2):245–259.
Oliveto, P. S., and Witt, C. 2011. Simplified drift analysis for
proving lower bounds in evolutionary computation. Algorithmica
59(3):369–386.
Partalas, I.; Tsoumakas, G.; and Vlahavas, I. 2012. A study on
greedy algorithms for ensemble pruning. Technical report, Aristo-
tle University of Thessaloniki, Greece.
Qian, C.; Yu, Y.; and Zhou, Z.-H. 2013. An analysis on recombi-
nation in multi-objective evolutionary optimization. Artificial In-
telligence 204:99–119.
Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. San
Francisco, CA: Morgan kaufmann.

Tsoumakas, G.; Partalas, I.; and Vlahavas, I. 2009. An ensemble
pruning primer. In Applications of Supervised and Unsupervised
Ensemble Methods, volume 245 of Studies in Computational Intel-
ligence. Berlin, Germany: Springer. 1–13.
Yu, Y.; Yao, X.; and Zhou, Z.-H. 2012. On the approximation
ability of evolutionary optimization with application to minimum
set cover. Artificial Intelligence 180-181:20–33.
Zhang, Y.; Burer, S.; and Street, W. N. 2006. Ensemble pruning
via semi-definite programming. Journal of Machine Learning Re-
search 7:1315–1338.
Zhou, Z.-H.; Wu, J.; and Tang, W. 2002. Ensembling neural
networks: Many could be better than all. Artificial Intelligence
137(1):239–263.
Zhou, Z.-H. 2012. Ensemble Methods: Foundations and Algo-
rithms. Boca Raton, FL: Chapman & Hall/CRC.

