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Detailed Proofs
This part aims to provide some detailed proofs, which are
omitted in our original paper due to space limitation.

Proof of Lemma 5. By the definition of the DR-
submodularity ratio (i.e., Definition 8 in the original paper),
we have

βf = min
x≤y,i∈[n]

f(x+ χi)− f(x)
f(y + χi)− f(y)

≥ min
x≤y,i∈[n]

f(x+ χi)− f(x)
f(x+(yi−xi)χi+χi)− f(x+(yi−xi)χi)

= min
x∈ZV

+ ,i∈[n],1≤m≤ci−xi

f(x+ χi)− f(x)
f(x+mχi)− f(x+(m−1)χi)

,

(1)
where the first inequality is by Lemma 2 since f is submod-
ular. We then calculate f(x +mχi) − f(x + (m − 1)χi)
for any 1 ≤ m ≤ ci − xi. By the definition of the objective
function f (i.e., Definition 4 in the original paper), we get

f(x+mχi)− f(x+ (m− 1)χi)

=
(
pxi+m
i

m−1∏
j=1

(1−p(xi+j)
i )

) ∑
t:(vi,t)∈E

∏
r:(vr,t)∈E

xr∏
j=1

(1−p(j)r ).

Note that in the above equality, x+mχi and x+(m−1)χi

are different only on the budget of the source node vi, and
thus only the probabilities of activating those target nodes
adjacent to vi will be affected. By applying this equality to
Eq. (1), we get

βf ≥ min
x∈ZV

+ ,i∈[n],1≤m≤ci−xi

p
(xi+1)
i

p
(xi+m)
i

∏m−1
j=1 (1− p(xi+j)

i )

≥ min
x∈ZV

+ ,i∈[n],1≤m≤ci−xi

p
(xi+1)
i

p
(xi+m)
i

= min
i∈[n],1≤j≤r≤ci

p
(j)
i

p
(r)
i

.
�

Proof of Lemma 6. It is easy to see that the analysis on βf
(i.e., Eq. (1)) in the proof of Lemma 5 still holds here, since
it only relies on the submodularity of f . We then calculate

f(x+mχi)−f(x+(m−1)χi) for any 1 ≤ m ≤ ci−xi. By
the definition of the objective function f (i.e., Definition 5
in the original paper), we get

f(x+mχi)− f(x+ (m− 1)χi)

=
∑
t∈T

∑
l

λt,lft,l(x+mχi)−
∑
t∈T

∑
l

λt,lft,l(x+(m−1)χi)

=
∑

t:(vi,t)∈E

∑
l

λt,l(ft,l(x+mχi)−ft,l(x+(m−1)χi)),

where the second equality is because for x+mχi and x+
(m − 1)χi, only the probabilities of activating those target
nodes adjacent to vi are different. We then calculate ft,l(x+
mχi)−ft,l(x+(m−1)χi) by the definition of ft,l(x) (i.e.,
Eq. (3) in the original paper). For notational convenience, we
denote x+mχi and x+(m−1)χi by y and z, respectively.
Then, we have

ft,l(x+mχi)− ft,l(x+(m−1)χi) = ft,l(y)− ft,l(z)

=
∏

r:(vr,t)∈E

min{zr,l−1}∏
j=1

(1− p(j)r )

zr∏
j=l

(1− q(j)r )

−
∏

r:(vr,t)∈E

min{yr,l−1}∏
j=1

(1− p(j)r )

yr∏
j=l

(1− q(j)r )

=
∏

r:(vr,t)∈E

min{zr,l−1}∏
j=1

(1− p(j)r )

zr∏
j=l

(1− q(j)r )

− (1−ξi,m,l)
∏

r:(vr,t)∈E

min{zr,l−1}∏
j=1

(1− p(j)r )

zr∏
j=l

(1− q(j)r )

= ξi,m,l

∏
r:(vr,t)∈E

min{zr,l−1}∏
j=1

(1− p(j)r )

zr∏
j=l

(1− q(j)r )

= ξi,m,lηi,m,l

∏
r:(vr,t)∈E

min{xr,l−1}∏
j=1

(1−p(j)r )

xr∏
j=l

(1−q(j)r ),

where for the third equality, ξi,m,l is defined as

ξi,m,l =

{
q
(xi+m)
i , xi +m ≥ l
p
(xi+m)
i , otherwise

,



and for the last equality, ηi,m,l is the product of m− 1 terms
in the form of either 1 − p(j)i or 1 − q(j)i (where xi + 1 ≤
j ≤ xi + m − 1), since the only difference between z =
x+(m− 1)χi and x is the i-th entry, i.e., zi = xi+m− 1.

Let δt,l = λt,l
∏

r:(vr,t)∈E

min{xr,l−1}∏
j=1

(1−p(j)r )
xr∏
j=l

(1−q(j)r ).

By applying the calculation result of f(x+mχi)− f(x+
(m− 1)χi) to Eq. (1), we can get

βf ≥ min
x∈ZV

+ ,i∈[n],1≤m≤ci−xi

∑
t:(vi,t)∈E

∑
l ξi,1,lηi,1,lδt,l∑

t:(vi,t)∈E
∑

l ξi,m,lηi,m,lδt,l

≥ min
x∈ZV

+ ,i∈[n],1≤m≤ci−xi

∑
t:(vi,t)∈E

∑
l ξi,1,lδt,l∑

t:(vi,t)∈E
∑

l ξi,m,lδt,l
,

where the second inequality is by ηi,1,l = 1 and ηi,m,l ≤ 1
for m ≥ 1. According to the definition of ξi,m,l, we can
divide

∑
t:(vi,t)∈E

∑
l ξi,1,lδt,l and

∑
t:(vi,t)∈E

∑
l ξi,m,lδt,l

into three parts, respectively. That is,

∑
t:(vi,t)∈E

∑
l

ξi,1,lδt,l = q
(xi+1)
i

∑
t:(vi,t)∈E

xi+1∑
l=1

δt,l+

p
(xi+1)
i

∑
t:(vi,t)∈E

xi+m∑
l=xi+2

δt,l + p
(xi+1)
i

∑
t:(vi,t)∈E

∑
l>xi+m

δt,l;

∑
t:(vi,t)∈E

∑
l

ξi,m,lδt,l = q
(xi+m)
i

∑
t:(vi,t)∈E

xi+1∑
l=1

δt,l+

q
(xi+m)
i

∑
t:(vi,t)∈E

xi+m∑
l=xi+2

δt,l + p
(xi+m)
i

∑
t:(vi,t)∈E

∑
l>xi+m

δt,l.

Note that the corresponding ratios of these three parts are
q
(xi+1)
i /q

(xi+m)
i , p(xi+1)

i /q
(xi+m)
i and p

(xi+1)
i /p

(xi+m)
i ,

respectively. Since their minimum must be not larger than
the ratio of the sum of the three parts, we have∑
t:(vi,t)∈E

∑
l

ξi,1,lδt,l∑
t:(vi,t)∈E

∑
l

ξi,m,lδt,l
≥min

{
q
(xi+1)
i

q
(xi+m)
i

,
p
(xi+1)
i

q
(xi+m)
i

,
p
(xi+1)
i

p
(xi+m)
i

}

= min

{
q
(xi+1)
i

q
(xi+m)
i

,
p
(xi+1)
i

p
(xi+m)
i

}
,

where the equality is by the setting q(j)i ≤ p
(j)
i of the prob-

lem in Definition 5. Thus, we get

βf ≥ min
x∈ZV

+ ,i∈[n],1≤m≤ci−xi

min

{
q
(xi+1)
i

q
(xi+m)
i

,
p
(xi+1)
i

p
(xi+m)
i

}

= min
i∈[n],1≤j≤r≤ci

min

{
p
(j)
i

p
(r)
i

,
q
(j)
i

q
(r)
i

}
.
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For the generalized influence maximization problem as
presented in Definition 1, we prove in Proposition 1 that

the objective function f(x) = E
[
|
⋃

l≥1A(Xl)|
]

is mono-
tone submodular, if the fundamental propagation model In-
dependence Cascade (Goldenberg, Libai, and Muller 2001)
is used. For the Independence Cascade model as shown in
Definition 2, it starts from a seed set A0 = X and uses a
set At to record the nodes activated at time t; at time t + 1,
each inactive neighbor vj of vi ∈ At becomes active with
probability pi,j ; this process is repeated until no nodes get
activated at some time.

Definition 1 (Generalized Influence Maximization). Given
a directed graph G = (V,E), capacities ci (i ∈ [n]), edge
probabilities pi,j ((vi, vj) ∈ E), and a budget k, it is to find
a multiset x ∈ ZV

+ such that

argmaxx≤c E
[
|
⋃

l≥1
A(Xl)|

]
s.t. |x| ≤ k,

whereXl = {vi | xi ≥ l} andA(Xl) is the number of nodes
activated by propagating from Xl.

Definition 2 (Independence Cascade). (Goldenberg, Libai,
and Muller 2001) Given a directed graph G = (V,E) with
edge probabilities pi,j for any (vi, vj) ∈ E and a seed set
X ⊂ V , it propagates as follows:
1. let A0 = X and t = 0.
2. repeat until At = ∅
3. for each edge (vi, vj) with vi∈At and vj ∈V \

⋃
r≤tAr

4. vj is added into At+1 with probability pi,j .
5. let t = t+ 1.

Proposition 1. If the Independence Cascade propaga-
tion model is used, the objective function f(x) =
E
[
|
⋃

l≥1A(Xl)|
]

of generalized influence maximization is
monotone and submodular.

Proof. The monotonicity of f is trivial. We are to prove its
submodularity. According to Lemma 2 in the original paper,
we only need to prove that for any x ≤ y and i ∈ [n] with
xi = yi,

f(x+ χi)− f(x) ≥ f(y + χi)− f(y).

Let Xl = {vj | xj ≥ l}. According to the definition of the
objective function f , we get

f(x+ χi)− f(x)

= E
[
|A(Xxi+1 ∪ {vi}) ∪

⋃
l 6=xi+1

A(Xl)|
]

− E
[
|A(Xxi+1) ∪

⋃
l 6=xi+1

A(Xl)|
]
.

Let G′ = (V,E′) denote a subgraph of G = (V,E), which
is generated by preserving each edge (vi, vj) ∈ E with
probability pi,j . Then, the set of nodes reachable from Xl

in G′ actually corresponds to A(Xl). Note that G′ is ran-
dom. For each fixed G′, it is easy to see that A(Xxi+1) ⊆
A(Xxi+1 ∪ {vi}), since Xxi+1 ⊆ Xxi+1 ∪ {vi}. Let S =⋃

l 6=xi+1A(Xl). Thus, we have

f(x+χi)−f(x)=E
[
|A(Xxi+1∪{vi}) \A(Xxi+1) \ S|

]
.



Let Yl = {vj | yj ≥ l} and T =
⋃

l 6=yi+1A(Yl). We can
similarly get

f(y+χi)−f(y)=E
[
|A(Yyi+1∪{vi}) \A(Yyi+1) \ T |

]
.

Since xi = yi, T is actually
⋃

l 6=xi+1A(Yl), and

f(y+χi)−f(y)=E
[
|A(Yxi+1∪{vi}) \A(Yxi+1) \ T |

]
.

Note thatXl ⊆ Yl, since x ≤ y. Thus, for any l, it holds that
A(Xl) ⊆ A(Yl) for each fixed subgraph. This implies that
S ⊆ T . Furthermore, for each fixed subgraph, A(Yxi+1 ∪
{vi}) \ A(Yxi+1) ⊆ A(Xxi+1 ∪ {vi}) \ A(Xxi+1), since
A(Xxi+1) ⊆ A(Yxi+1). Thus, we can get

(f(x+ χi)− f(x))− (f(y + χi)− f(y)) ≥ 0.

Thus, the proposition holds.
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