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Abstract

This paper considers the multiset selection problem with
size constraints, which arises in many real-world applica-
tions such as budget allocation. Previous studies required
the objective function f to be submodular, while we relax
this assumption by introducing the notion of the submodular-
ity ratios (denoted by αf and βf ). We propose an anytime
randomized iterative approach POMS, which maximizes the
given objective f and minimizes the multiset size simultane-
ously. We prove that POMS using a reasonable time achieves
an approximation guarantee of max{1 − e−βf , (αf/2)(1 −
e−αf )}. Particularly, when f is submdoular, this bound is at
least as good as that of the previous greedy-style algorithms.
In addition, we give lower bounds on the submodularity ratio
for the objectives of budget allocation. Experimental results
on budget allocation as well as a more complex application,
namely, generalized influence maximization, exhibit the su-
perior performance of the proposed approach.

Introduction
The subset selection problem, which selects a subset of
size at most k from a total set of n items for maximiz-
ing some given objective function f , arises in many ap-
plications, e.g., maximum coverage (Feige 1998), sensor
placement (Krause, Singh, and Guestrin 2008) and influ-
ence maximization (Kempe, Kleinberg, and Tardos 2003).
It is generally NP-hard. When the objective function f sat-
isfies the monotone and submodular property, the greedy
algorithm can achieve a tight approximation guarantee of
1− 1/e (Nemhauser, Wolsey, and Fisher 1978).

However, in many practical applications such as budget
allocation (Alon, Gamzu, and Tennenholtz 2012) and wel-
fare maximization (Kapralov, Post, and Vondrák 2013), a
generalization of subset selection, i.e., multiset selection,
has to be considered. That is, an item can be selected by
multiple times instead of only once, and the objective func-
tion is defined over a multiset instead of a subset. Moreover,
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many subset selection problems can be naturally generalized
to this framework. For example, for sensor placement, the
number of times of selecting one sensor can correspond to
the energy level of the sensor (Soma and Yoshida 2015).

Previous studies on multiset selection assumed that the
objective function is submodular. Note that for functions de-
fined over a multiset, submodularity does not imply the di-
minishing return property, called DR-submodularity (Soma
and Yoshida 2016). The latter is stronger, although they are
equivalent for functions over a subset. Soma et al. (2014)
first proved that for monotone DR-submodular objective
functions, the greedy algorithm, which iteratively selects
one item with the largest marginal gain, can achieve a (1 −
1/e)-approximation guarantee. When the objective function
is relaxed to be monotone submodular, Alon et al. (2012)
showed that the generalized greedy algorithm, which can se-
lect multiple copies of the same item simultaneously in one
iteration, achieves a (1/2)(1− 1/e)-approximation guaran-
tee. This can be further improved to (1−1/e) by partial enu-
merations, but with an impractical computation time (Soma
et al. 2014). Note that the runtime of these algorithms is
polynomial w.r.t. the budget k. In (Soma and Yoshida 2016),
algorithms with runtime polynomial w.r.t. log k were devel-
oped, but with a loss ε > 0 on the approximation ratio.

Besides size constraints, more complex constraints (e.g.,
knapsack and polymatroid) were also studied in (Soma et
al. 2014; Soma and Yoshida 2016). Recently, multiset se-
lection without constraints has been considered. Gottschalk
and Peis (2015) proposed a (1/3)-approximation algorithm
for maximizing submodular functions; while for maximiz-
ing DR-submodular functions, a (1/(2 + ε))-approximation
algorithm was provided in (Soma and Yoshida 2017).

This paper relaxes the assumption on submodularity. We
study the problem of Multiset Selection with size con-
straints, where the objective function is only required to be
monotone, not necessarily submodular. We propose a Pareto
Optimization method for this problem, briefly called POMS.
The POMS method first reformulates the original problem
as a bi-objective optimization problem that maximizes the
given objective f and minimizes the multiset size simulta-
neously, then employs a randomized iterative algorithm to
solve it, and finally selects the best solution satisfying the
size constraint from the produced set of solutions.

We theoretically investigate the performance of POMS.



The main contributions can be summarized as follows:

• We introduce the notion of the submodularity ratio αf ∈
[0, 1] and the DR-submodularity ratio βf ∈ [0, 1] (i.e., Def-
initions 7 and 8), which characterize how close a general
function f is to submodularity and DR-submodularity, re-
spectively. Note that αf ≥ βf . To introduce αf , we build
an equivalent relation between submodularity and a weak
version of DR-submodularity (i.e., Lemma 2).

• We prove that POMS using a reasonable time can
achieve an approximation guarantee of max{1 −
e−βf , (αf/2)(1− e−αf )} (i.e., Theorem 1).

• When f is DR-submodular (where αf = βf =1), the ap-
proximation bound of POMS becomes 1−1/e, which is
as same as the best known one, previously obtained by the
greedy algorithm (Soma et al. 2014). When f is submodu-
lar (where αf =1), the bound becomes max{1−e−βf , (1−
1/e)/2}, which is at least as good as that of the general-
ized greedy algorithm (i.e., (1− 1/e)/2 (Alon, Gamzu,
and Tennenholtz 2012)). For the submodular real-world
application, budget allocation, we further provide lower
bounds on the DR-submodularity ratio βf of the corre-
sponding objective functions (i.e., Lemmas 5 and 6).

We also empirically investigate the actual performance of
POMS. We compare it with the greedy-style algorithms on
budget allocation and a more complex application, gener-
alized influence maximization. The experimental results on
real-world data sets show the better performance of POMS.

The rest of the paper first introduces the studied problem,
and then presents the proposed method, its theoretical anal-
ysis and empirical study. Finally we conclude this paper.

Preliminaries
The General Problem. Let R, R+ and Z+ denote the set of
reals, non-negative reals and non-negative integers, respec-
tively. Given a finite set V = {v1, v2, . . . , vn}, we study
the functions f : ZV+ → R over the integer lattice ZV+ , or
equivalently over multisets of V . Note that a multiset can be
naturally represented by a vector x ∈ ZV+ , where for the i-th
entry xi of x, xi > 0 means that the item vi appears xi times
in the multiset, and xi = 0 means that vi does not appear.

We give some notations. Let x ∧ y and x ∨ y denote the
coordinate-wise minimum and maximum, respectively, that
is, x ∧ y = (min{x1, y1}, . . . ,min{xn, yn}) and x ∨ y =
(max{x1, y1}, . . . ,max{xn, yn}). We denote the size of a
multiset by |x| =

∑n
i=1 xi. The i-th unit vector is denoted

by χi, that is, the i-th entry of χi is 1 and others are 0; the
all-zeros and all-ones vectors are denoted by 0 (i.e., ∅) and
1, respectively. Let [n] denote the set {1, 2, . . . , n}.

A function f : ZV+ → R is monotone if for any x ≤ y,
f(x) ≤ f(y). Without loss of generality, we assume that
monotone functions are normalized, i.e., f(0) = 0. For a
function f : ZV+ → R, submodularity (as presented in Def-
inition 1) does not imply the diminishing return property
(called DR-submodularity as presented in Definition 2). DR-
submodularity is stronger than submodularity, that is, a DR-
submodular function is submodular, but not vice versa. Note
that for a set function f : 2V → R, they are equivalent.

Definition 1 (Submodular (Soma et al. 2014)). A function
f : ZV+ → R is submodular if for any x,y ∈ ZV+ ,

f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y).

Definition 2 (DR-Submodular (Soma and Yoshida 2016)).
A function f : ZV+ → R is DR-submodular if for any x ≤ y
and i ∈ [n],

f(x+ χi)− f(x) ≥ f(y + χi)− f(y).

Our studied problem as presented in Definition 3 is to
maximize a monotone function f with an upper limit on
|x|. Note that c limits the maximum value on each entry
of x. If c = 1, x ∈ {0, 1}n actually represents a subset of
V . When the objective function f is DR-submodular, Soma
et al. (2014) proved that the greedy algorithm can obtain a
(1 − 1/e)-approximation guarantee. The greedy algorithm
iteratively selects one item with the largest improvement on
f . When f is submodular, the generalized greedy algorithm
was shown able to achieve a (1 − 1/e)/2-approximation
guarantee (Alon, Gamzu, and Tennenholtz 2012). In each
iteration, it selects a combination (vi, j) such that the aver-
age marginal gain by adding j copies of vi (i.e., xi = xi+j)
is maximized; the better of the found multiset x and the best
jχi is finally returned. Note that by partial enumerations, the
generalized greedy algorithm can even achieve a (1− 1/e)-
approximation guarantee, but the runtime is impractical.

Definition 3 (The General Problem). Given a monotone ob-
jective function f : ZV+ → R+, a vector c ∈ ZV+ and a
budget k ∈ Z+, it is to find a multiset x ∈ ZV+ such that

argmaxx≤c f(x) s.t. |x| ≤ k. (1)

Here are some examples, that will be investigated.
Budget Allocation. Let a bipartite graph G = (V, T ;E)
represent a social network, where each source node in V is
a marketing channel, each target node in T is a customer,
and E ⊆ V × T is the edge set. The goal of budget allo-
cation is to distribute the budget k among the source nodes
such that the expected number of target nodes that get acti-
vated is maximized (Alon, Gamzu, and Tennenholtz 2012).
The allocation of the budget k can be represented by a vector
x ∈ ZV+ , where xi is the budget allocated on vi ∈ V . Each
source node vi (i ∈ [n]) has a capacity ci (i.e., xi ≤ ci) and
probabilities p(j)i ∈ [0, 1] for j ∈ {1, 2, . . . , ci}. If xi > 0,
the source node vi will make xi independent trials to acti-
vate each neighboring target node t, where the probability
of activating t in the j-th trial is p(j)i . Thus, the probability
that a target node t ∈ T gets activated is

ft(x) = 1−
∏

i:(vi,t)∈E

xi∏
j=1

(1− p(j)i ). (2)

By the linearity of expectation, the expected number of ac-
tive target nodes is

∑
t∈T ft(x), which is monotone and sub-

modular (Alon, Gamzu, and Tennenholtz 2012). When p(j)i
is nonincreasing with j (i.e., p(j)i ≥ p

(j+1)
i ), the objective∑

t∈T ft(x) is DR-submodular (Soma et al. 2014).



Definition 4 (Budget Allocation). Given a bipartite graph
G = (V, T ;E), capacities ci (i ∈ [n]), probabilities p(j)i
(i ∈ [n], j ∈ {1, 2, . . . , ci}), and a budget k, it is to find a
multiset x ∈ ZV+ such that

argmaxx≤c
∑

t∈T
ft(x) s.t. |x| ≤ k,

where ft(x) is defined as Eq. (2).

Budget Allocation with a Competitor. In (Soma et al.
2014), budget allocation is extended to the two-player case:
a competitor against an advertiser. The budget of the com-
petitor is allocated in advance, and the advertiser aims at al-
locating the budget such that the expected number of target
nodes activated by its trials is maximized. The competitor
and the advertiser propagate in a discrete time step; in each
trial of propagation, the competitor performs before the ad-
vertiser. Let x ∈ ZV+ denote the budget allocation of the ad-
vertiser. For the advertiser in the j-th trial, each source node
vi with xi ≥ j will activate each neighboring target node
t with probability p(j)i if t is inactive and with probability
q
(j)
i (q

(j)
i ≤ p

(j)
i ) if t has been activated by the competitor.

Let Et,l denote the event that the target node t is activated
by the competitor in the l-th trial. Thus, conditioned on Et,l,
the probability that a target node t ∈ T gets activated by the
advertiser is

ft,l(x) = 1−
∏

i:(vi,t)∈E

min{xi,l−1}∏
j=1

(1−p(j)i )

xi∏
j=l

(1−q(j)i ). (3)

We denote the probability of Et,l by λt,l. Then, the ex-
pected number of target nodes activated by the advertiser
is
∑
t∈T

∑
l λt,lft,l(x), which is monotone and submodu-

lar (Soma et al. 2014). When p(j)i and q(j)i are nonincreasing
with j (i.e., p(j)i ≥ p

(j+1)
i and q(j)i ≥ q

(j+1)
i ), the objective∑

t∈T
∑
l λt,lft,l(x) is DR-submodular (Soma et al. 2014).

Definition 5 (Budget Allocation with a Competitor). Given
a bipartite graph G = (V, T ;E), capacities ci (i ∈ [n]),
probabilities p(j)i , q

(j)
i (i ∈ [n], j ∈ {1, 2, . . . , ci}, q(j)i ≤

p
(j)
i ), and a budget k, it is to find a multiset x∈ZV+ such that

argmaxx≤c
∑

t∈T

∑
l
λt,lft,l(x) s.t. |x| ≤ k,

where ft,l(x) is defined as Eq. (3).

The Proposed Approach
In this section, we propose a new approach based on Pareto
Optimization (Qian, Yu, and Zhou 2015) for the Multiset Se-
lection problem with size constraints, briefly called POMS.
Note that Pareto optimization is a recently emerged frame-
work that uses bi-objective optimization as an intermedi-
ate step to solve single-objective optimization problems. It
has been successfully applied to the subset selection prob-
lem (Friedrich and Neumann 2015; Qian, Yu, and Zhou
2015; Qian et al. 2017c; 2017b) as well as the problem of
selecting k pairwise disjoint subsets (Qian et al. 2017a).

POMS reformulates the original problem Eq. (1) as a bi-
objective maximization problem

argmaxx≤c
(
f1(x), f2(x)

)
,

where f1(x) =
{
−∞, |x| ≥ 2k

f(x), otherwise
, f2(x) = −|x|.

That is, POMS maximizes the objective function f and min-
imizes the multiset size |x| simultaneously.

In the bi-objective setting, both the two objective values
have to be considered for comparing two solutions x and
x′. x weakly dominates x′ (i.e., x is better than x′, denoted
as x � x′) if f1(x) ≥ f1(x

′) and f2(x) ≥ f2(x
′); x

dominates x′ (i.e., x is strictly better than x′, denoted as
x � x′) if x � x′ and either f1(x) > f1(x

′) or f2(x) >
f2(x

′). But if neither x is better than x′ nor x′ is better than
x, they are incomparable.

The procedure of POMS is described in Algorithm 1. It
starts from the all-zeros solution 0 representing the empty
set (line 1), and then iteratively tries to improve the quality of
the solutions in the archive P (lines 3-10). In each iteration,
a new solution x′ is generated by randomly perturbing an
archived solution x selected from the current P (lines 4-5);
if x′ is not dominated by any previously archived solution
(line 6), it will be added into P , and meanwhile those pre-
viously archived solutions weakly dominated by x′ will be
removed (line 7). Note that the domination-based updating
procedure makes P always contain incomparable solutions.

Definition 6 (Random Perturbation). Given a solution 0 ≤
x ≤ c, the random perturbation operator generates a new
solution x′ by independently flipping each position of x with
probability 1/n, where the flipping on one position changes
the current value to a different value selected uniformly at
random. That is, for all j ∈ [n],

x′j =

{
xj , with probability 1− 1/n

i, otherwise
,

where i is uniformly chosen from {0, 1, . . . , ci} \ {xj}.
POMS repeats for T iterations. The value of T is a pa-

rameter, which could affect the quality of the produced solu-
tion. Their relationship will be analyzed in the next section,
and we will use the theoretically derived T value in the ex-
periments. After running T iterations, the best solution (i.e.,
having the largest f value) satisfying the size constraint in
P is selected as the final solution (line 11).

Note that in the bi-objective transformation, the goal of
setting f1 to −∞ is to exclude overly infeasible solutions,
the size of which is at least 2k. These infeasible solutions
having f1 = −∞ and f2 ≤ −2k are dominated by any
feasible solution (e.g., the solution 0 having f1 = 0 and
f2 = 0), and therefore never introduced into the archive P .

Theoretical Analysis
In this section, we prove the general approximation bound
of POMS, which are characterized by the introduced sub-
modularity and DR-submodularity ratio, and apply it to the
submodular cases.



Algorithm 1 POMS Algorithm
Input: a monotone function f : ZV+ → R+, a vector c ∈ ZV+
and a budget k ∈ Z+

Parameter: the number T of iterations
Output: a multiset x ∈ ZV+ with x ≤ c and |x| ≤ k
Process:

1: Let x = 0 and P = {x}.
2: Let t = 0.
3: while t < T do
4: Select x from P uniformly at random.
5: x′ = RandomPerturbation(x).
6: if @z ∈ P such that z � x′ then
7: P = (P \ {z ∈ P | x′ � z}) ∪ {x′}.
8: end if
9: t = t+ 1.

10: end while
11: return argmaxx∈P :|x|≤k f(x)

Submodularity and DR-Submodularity Ratio
In (Soma and Yoshida 2016), it was shown that DR-
submodularity is stronger than submodularity. Here, we
prove that submodularity is actually equivalent to a weak
version of DR-submodularity, as shown in Lemma 2. Note
that this equivalent relation has recently been proved over
the continuous domain (Bian et al. 2017), but we prove it
over the integer lattice independently and differently. Com-
pared with DR-submodularity (i.e., Definition 2), this weak
version only requires the diminishing return property (i.e.,
Eq. (4)) to hold with any i ∈ [n] with xi = yi instead of
any i ∈ [n]. Note that they are equivalent for a set function
f : 2V → R, since for any x ≤ y ∈ 2V (i.e., {0, 1}n),
the position i which can be added by 1 must satisfy that
xi = yi = 0. According to Lemma 2 and Definition 2,
we define the submodulairty ratio in Definition 7 as well
as the DR-submodularity ratio in Definition 8, which mea-
sure to what extent a general function f has submodular
and DR-submodular properties, respectively. When f is a
set function, they are equivalent, and are consistent with that
in (Zhang and Vorobeychik 2016).

Lemma 1. (Soma et al. 2014) Let f : ZV+ → R be a sub-
modular function. For any x and y, we have

f(x ∨ y) ≤ f(x) +
∑

i∈[n]:yi−xi>0

(f(x+(yi−xi)χi)− f(x)).

Lemma 2. A function f : ZV+ → R is submodular if and
only if for any x ≤ y and i ∈ [n] with xi = yi,

f(x+ χi)− f(x) ≥ f(y + χi)− f(y). (4)

Proof. We first prove the ‘only if ’ case. That is, we need
to prove Eq. (4) by using the submodularity of f . For any
x ∈ ZV+ , i, j ∈ [n] and a, b ∈ Z+, if i 6= j, we have

f(x+ aχi + bχj)− f(x+ aχi) (5)
= f(x+ aχi + bχj)− f(x)− (f(x+ aχi)− f(x))
≤ f(x+ bχj)− f(x),

where the inequality can be derived by Lemma 1, since x+
aχi + bχj can be equivalently represented by x ∨ ((xi +
a)χi+ (xj + b)χj). For any x ≤ y, let I = {i ∈ [n] : yi >
xi}. We denote the elements in I by i1, i2, . . . , im, where
|I| = m. For any i ∈ [n] with xi = yi, obviously i /∈ I , i.e.,
i is not equal to any ij ∈ I . Then, we have

f(x+ χi)− f(x)
≥ f(x+ (yi1 − xi1)χi1 + χi)− f(x+ (yi1 − xi1)χi1)
≥ · · ·

≥f
(
x+

m∑
j=1

(yij−xij )χij+χi
)
−f
(
x+

m∑
j=1

(yij−xij )χij
)

= f(y + χi)− f(y),
where the inequalities are derived by repeatedly applying
Eq. (5). Thus, the ‘only if ’ case holds.

Then, we prove the ‘if ’ case. According to Definition 1,
we only need to prove that for any x and y,

f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y).

We first extend Eq. (4). For any x ≤ y, i ∈ [n] with xi = yi,
and a ∈ Z+, we have

f(x+ aχi)− f(x) (6)

=
∑a

j=1
f(x+ jχi)− f(x+ (j − 1)χi)

≥
∑a

j=1
f(y + jχi)− f(y + (j − 1)χi)

= f(y + aχi)− f(y),

where the inequality can be derived by Eq. (4), since x +
(j − 1)χi ≤ y + (j − 1)χi and xi + j − 1 = yi + j − 1.
For any x and y, let I = {i ∈ [n] : xi > yi}. We denote the
elements in I by i1, i2, . . . , im. Then, we have

f(x)−f(x∧y) =
m∑
l=1

(
f
(
(x∧y)+

∑l

j=1
(xij−yij )χij

)
−f
(
(x∧y)+

∑l−1

j=1
(xij−yij )χij

))
≥

m∑
l=1

(
f
(
y +

∑l

j=1
(xij − yij )χij

)
−f
(
y +

∑l−1

j=1
(xij − yij )χij

))
= f(x ∨ y)− f(y).

Note that the inequality is derived by Eq. (6). This is because
(x∧y)+

∑l−1
j=1(xij −yij )χij ≤ y+

∑l−1
j=1(xij −yij )χij ;

for any 1 ≤ l ≤ m, xil > yil , then the il-th entry of x ∧ y
must be equal to yil . Thus, the ‘if ’ case holds.

Definition 7 (Submodularity Ratio). The submodularity ra-
tio of a function f : ZV+ → R is defined as

αf = min
x≤y,i∈[n]:xi=yi

f(x+ χi)− f(x)
f(y + χi)− f(y)

.



Definition 8 (DR-Submodularity Ratio). The DR-
submodularity ratio of a function f : ZV+ → R is
defined as

βf = min
x≤y,i∈[n]

f(x+ χi)− f(x)
f(y + χi)− f(y)

.

It is easy to see that βf ≤ αf . Note that (f(x + χi) −
f(x))/(f(y + χi) − f(y)) reaches 1 by letting x = y, so
βf ≤ αf ≤ 1. For a monotone function f , we make the
following observations:
Remark 1. For a monotone function f : ZV+ → R+, it holds
that 1) 0 ≤ βf ≤ αf ≤ 1; 2) f is submodular iff αf = 1; 3)
f is DR-submodular iff βf = αf = 1.

Approximation Guarantee
We prove the general approximation bound of POMS in
Theorem 1, where E[T ] denotes the expected number of it-
erations and OPT denotes the optimal function value. Let
cmax = max{ci | i ∈ [n]}. The idea is to prove two approx-
imation guarantees of (1−e−βf ) and (αf/2)(1−e−αf ), re-
spectively, the larger value of which leads to the desired ap-
proximation bound. To prove the (1− e−βf )-approximation
guarantee, we need Lemma 3, that for any multiset, there al-
ways exists one item, the inclusion of which can bring an
improvement on f proportional to the current distance to
the optimum. To prove the (αf/2)(1−e−αf )-approximation
guarantee, we need a similar lemma, i.e., Lemma 4, which
is about the average gain by adding multiple copies of one
item instead of the gain by adding one item.
Lemma 3. Let f : ZV+ → R+ be a monotone function. For
any x ∈ ZV+ , there exists i ∈ [n] such that

f(x+ χi)− f(x) ≥
βf
k
(OPT − f(x)).

Proof. For any x ≤ y, i ∈ [n] and a ∈ Z+, we have
f(y + aχi)− f(y) (7)

=
∑a

j=1
f(y + jχi)− f(y + (j − 1)χi)

≤ a

βf
(f(x+ χi)− f(x)),

where the inequality is by the definition of the DR-
submodularity ratio (i.e., Definition 8). Let x∗ be an optimal
solution, i.e., f(x∗) = OPT . For any x, let I = {i ∈ [n] :
x∗i >xi}. We denote the elements in I by i1, i2, . . . , im. Let
i∗=argmaxi∈[n] f(x+χi)−f(x). Then, we have

f(x∗)− f(x) ≤ f(x∗ ∨ x)− f(x) (8)

=

m∑
l=1

(
f
(
x+

∑l

j=1
(x∗ij − xij )χij

)
−f
(
x+

∑l−1

j=1
(x∗ij − xij )χij

))
≤

m∑
l=1

x∗il − xil
βf

(f(x+ χil)− f(x))

≤ k

βf
(f(x+ χi∗)− f(x)),

where the first inequality is by the monotonicity of f , the
second inequality is by Eq. (7), and the last is by

∑m
l=1(x

∗
il
−

xil) ≤
∑m
l=1 x

∗
il
≤ |x∗| ≤ k. Thus, the lemma holds.

Lemma 4. Let f : ZV+ → R+ be a monotone function. For
any x ∈ ZV+ , there exists i ∈ [n] and j ≤ k − xi such that

f(x+ jχi)− f(x)
j

≥ αf
k
· (OPT − f(x)).

Proof. For any x ≤ y, i ∈ [n] with xi = yi, and a ∈ Z+,

f(x+ aχi)− f(x) ≥ αf (f(y + aχi)− f(y)). (9)

The analysis is as same as Eq. (6), except that the definition
of the submodularity ratio (i.e., Definition 7) is applied to
derive the inequality. Then, by applying Eq. (9) to the for-
mula at the right of ‘=’ in Eq. (8), we get

f(x∗)− f(x) ≤
m∑
l=1

1

αf
(f(x+ (x∗il − xil)χil)− f(x)).

The conditions of Eq. (9) are easily verified, since x ≤
x +

∑l−1
j=1(x

∗
ij
− xij )χij and xil must be equal to the

il-th entry of x +
∑l−1
j=1(x

∗
ij
− xij )χij . Let (i∗, j∗) =

argmaxi∈[n],j≤k−xi
f(x+jχi)−f(x)

j . Note that x∗il − xil ≤
|x∗| − xil ≤ k − xil . Thus, we have

f(x∗)− f(x) ≤
m∑
l=1

x∗il − xil
j∗αf

(f(x+ j∗χi∗)− f(x))

≤ k

j∗αf
(f(x+ j∗χi∗)− f(x)),

which implies that the lemma holds.

Theorem 1. For the problem in Definition 3, POMS with
E[T ]≤2ecmaxk

2n finds a multiset x∈ZV+ with x≤c, |x|≤
k and f(x) ≥ max{1− e−βf , (αf/2)(1− e−αf )} ·OPT.

Proof. [Part I] We first prove that POMS with E[T ] ≤
2ecmaxk

2n can obtain the (1−e−βf )-approximation bound.
Let Jmax denote the maximum value of j ∈ {0, . . . , k}
such that in the archive set P , there exists a solution x with
|x| ≤ j and f(x) ≥ (1− (1− βf

k )j) ·OPT . That is,

Jmax = max{j ∈ {0, . . . , k} | ∃x ∈ P, |x| ≤ j
∧ f(x) ≥ (1− (1− βf/k)j) ·OPT}.

We then only need to analyze the expected number of itera-
tions until Jmax = k. This is because Jmax = k implies that
there exists one solution x in P satisfying that |x| ≤ k and
f(x) ≥ (1− (1− βf

k )k) ·OPT ≥ (1− e−βf ) ·OPT .
The initial value of Jmax is 0, since POMS starts from 0.

Assume that currently Jmax = j < k. Let x be a corre-
sponding solution with the value j, i.e., |x| ≤ j and

f(x) ≥ (1− (1− βf/k)j) ·OPT. (10)

It is easy to see that Jmax cannot decrease because deleting
x from P (line 7 of Algorithm 1) implies that x is weakly



dominated by the newly generated solution x′, which must
satisfy |x′| ≤ |x| and f(x′) ≥ f(x). By Lemma 3, we
know that adding a specific item into x can generate a new
solution x′ = x+ χi, which satisfies that f(x′)− f(x) ≥
βf
k (OPT − f(x)). Then, by using Eq. (10), we get

f(x′) ≥ (1− (1− βf/k)j+1) ·OPT.

Since |x′| = |x+χi| = |x|+1 ≤ j+1, x′ will be included
into P ; otherwise, x′ must be dominated by one solution in
P (line 6 of Algorithm 1), and this implies that Jmax has al-
ready been larger than j, which contradicts with the assump-
tion Jmax = j. After including x′, Jmax ≥ j + 1. Let Pmax

denote the largest size of P during the run of POMS. Thus,
Jmax can increase by at least 1 in one iteration with proba-
bility at least 1

Pmax
· 1
nci

(1− 1
n )
n−1 ≥ 1

enciPmax
, where 1

Pmax

is a lower bound on the probability of selecting x in line 4 of
Algorithm 1 due to uniform selection, and 1

nci
(1− 1

n )
n−1 is

the probability of changing xi to xi +1 while keeping other
positions unchanged by the random perturbation operator (as
shown in Definition 6). Then, it needs at most enciPmax it-
erations in expectation to increase Jmax. After k · enciPmax

expected number of iterations, Jmax must have reached k.
By the procedure of POMS, we know that the solutions

maintained in P must be incomparable. Thus, each value of
one objective can correspond to at most one solution in P .
Because the solutions with |x| ≥ 2k are excluded from P ,
|x| must belong to {0, 1, . . . , 2k − 1}, which implies that
Pmax ≤ 2k. Furthermore, ci ≤ cmax. Hence, the expected
number of iterations E[T ] for obtaining the (1 − e−βf )-
approximation guarantee is at most 2ecmaxk

2n.
[Part II] We then prove that POMS with

E[T ] ≤ 2ecmaxk
2n can obtain the (αf/2)(1 − e−αf )-

approximation bound. We also analyze a quantity Jmax,
which is defined as

Jmax = max{j ∈ {0, . . . , k} | ∃x ∈ P, |x| ≤ j
∧f(x) ≥

(
1−

(
1− αf j

km

)m) ·OPT for some m ∈ Z+}.
The initial value of Jmax is 0. Assume that currently
Jmax = j ≤ k. Let x be a corresponding solution with the
value j, i.e., |x| ≤ j and f(x) ≥ (1−(1−αf j

km )m) ·OPT
for some m. As the analysis in Part I, Jmax cannot decrease.
By Lemma 4, we know that for some i ∈ [n] and l ≤ k−xi,
increasing xi by l can generate a new solution x′ = x+ lχi
satisfying that f(x′) − f(x) ≥ αf

l
k (OPT − f(x)). By

applying the lower bound on f(x) to this inequality, we get

f(x′) ≥
(
1−

(
1− αf j

km

)m(
1− αf lk

))
·OPT

≥
(
1−

(
1− αf j+l

k(m+1)

)m+1
)
·OPT,

where the second inequality is by applying the AM-GM in-
equality. Note that |x′| = |x|+ l ≤ j + l. As the analysis in
Part I,x′ will be included into P , which makes Jmax ≥ j+l.
Thus, Jmax can increase by at least l in one iteration with
probability at least 1

Pmax
· 1
nci

(1 − 1
n )
n−1 ≥ 1

2ecmaxkn
.

That is, it needs at most 2ecmaxkn expected number of
iterations to increase Jmax by at least l ≥ 1. After at most
k · 2ecmaxkn expected number of iterations, Jmax cannot
increase, i.e., Jmax + l > k. This implies that there exists

one solution x in P satisfying that |x| ≤ Jmax ≤ k and for
some i ∈ [n] and k − Jmax < l ≤ k − xi,

f(x+ lχi) ≥
(
1−

(
1− αf Jmax+l

k(m+1)

)m+1
)
·OPT

>
(
1−

(
1− kαf

k(m+1)

)m+1
)
·OPT ≥

(
1− 1

eαf

)
·OPT.

Let y = argmaxi∈[n],j≤k f(jχi). We then have

f(x+ lχi) = f(x) + (f(x+ lχi)− f(x))
≤ f(x) + (f(xiχi + lχi)− f(xiχi))/αf
≤ f(x) + f(y)/αf ≤ (f(x) + f(y))/αf ,

where the first inequality is by Eq. (9), the second inequal-
ity is by f(xiχi) ≥ 0 and xi + l ≤ k, and the last is by
αf ∈ [0, 1]. Thus, after at most 2ecmaxk2n iterations in ex-
pectation, P will contain a solution x with |x| ≤ k and

f(x) + f(y) ≥ αf (1− e−αf ) ·OPT.

Note that 0 will always be in P , since it has the smallest
size 0 and no other solutions can dominate it. Without loss of
generality, we assume that y = j∗χi∗ . Thus, y can be gener-
ated in one iteration by selecting 0 in line 4 of Algorithm 1
and changing its i∗-th entry from 0 to j∗ in line 5, whose
probability is at least 1

Pmax
· 1
nci∗

(1 − 1
n )
n−1 ≥ 1

2ecmaxkn
.

That is, y will be generated in at most 2ecmaxkn expected it-
erations. According to the updating procedure of P (lines 6-
8), we know that once y is produced, P will always contain
a solution z � y, i.e., |z| ≤ |y| ≤ k and f(z) ≥ f(y).

By line 11 of Algorithm 1, the best solution satisfying the
size constraint will be finally returned. Thus, POMS using
E[T ] ≤ 2ecmaxk

2n finds a solution with the f value at least

max{f(x), f(y)} ≥ (αf/2) · (1− e−αf ) ·OPT.

Taking the better of the two approximation bounds (i.e.,
1−e−βf and αf (1−e−αf )/2) derived in Parts I and II leads
to the desired approximation bound. The required number of
iterations is 2ecmaxk2n. It is clear that the random perturba-
tion operator makes any produced solution x in the run of
POMS satisfy 0 ≤ x ≤ c. Thus, the theorem holds.

Applications of Approximation Guarantee
We have shown that POMS can achieve an approximation
guarantee of max{1 − e−βf , αf (1 − e−αf )/2}. A natural
question is then how good this approximation bound can
be. We apply it to the submodular cases. According to Re-
mark 1, we make the following observations:
Remark 2. When the objective f is DR-submodular, the ap-
proximation bound of POMS is 1− e−1; when f is submod-
ular, the bound is max{1− e−βf , (1− e−1)/2}.

For f being DR-submodular, the best known approx-
imation bound is 1 − e−1, which was obtained by the
greedy algorithm (Soma et al. 2014). For f being sub-
modular, the generalized greedy algorithm obtains an (1 −
e−1)/2-approximation bound (Alon, Gamzu, and Tennen-
holtz 2012). Note that although this bound can be improved
to 1 − e−1 by partial enumerations, the runtime is imprac-
tical (Soma et al. 2014). Thus, the approximation bound of
POMS is at least as good as that of the greedy-style methods.



To further show that the derived approximation guaran-
tee of POMS is applicable to real-world multiset selection
tasks, we consider budget allocation and that with a com-
petitor. Their objective functions are known to be submodu-
lar (Soma et al. 2014). Thus, αf = 1 and the approximation
bound is max{1 − e−βf , (1 − e−1)/2}. We then only need
to give lower bounds on the DR-submodularity ratio βf , as
shown in Lemmas 5 and 6. When p(j)i and q(j)i are nonin-
creasing with j, it is easy to verify that βf = 1 in both tasks,
that is, the objective functions are DR-submodular. This is
consistent with the previous result in (Alon, Gamzu, and
Tennenholtz 2012). Due to space limitation, the proofs of
Lemma 5 and 6 are provided in the supplementary material.
Lemma 5. For budget allocation in Definition 4, the DR-
submodularity ratio can be lower bounded as

βf ≥ min
i∈[n],1≤j≤r≤ci

p
(j)
i /p

(r)
i .

Lemma 6. For budget allocation with a competitor in Defi-
nition 5, the DR-submodularity ratio can be lower bounded
as

βf ≥ min
i∈[n],1≤j≤r≤ci

min{p(j)i /p
(r)
i , q

(j)
i /q

(r)
i }.

Experiments
In this section, we empirically compare POMS with the
greedy algorithm (Soma et al. 2014) and the generalized
greedy algorithm (Alon, Gamzu, and Tennenholtz 2012) on
the applications of budget allocation and generalized influ-
ence maximization. These two greedy methods are briefly
called Greedy and G-Greedy, respectively. The number T of
iterations of POMS is set to 2ecmaxk

2n as suggested by The-
orem 1. As POMS is a randomized algorithm, we repeat the
run 10 times independently and report the average results.

Budget Allocation. We use one real-world data set Ya-
hoo! Search Marketing Advertiser Bidding Data1, which is a
bipartite graph representing “which customers are interested
in which keywords”. It contains n = 1,000 source nodes
(i.e., keywords), 10,475 target nodes (i.e., customers) and
52,567 edges. For each influence probability p

(j)
i of each

source node vi, we use a randomly generated value between
0 and 0.5. The capacities ci are set to 5 (thus cmax = 5). The
budget k is set from 10 to 100. For the case with a competi-
tor, the probability q(j)i is set to 0.2 · p(j)i , and the budget of
the competitor is set to 100, which is allocated to the top 100
highest degree source nodes in advance.

Generalized Influence Maximization. Let a directed
graph G = (V,E) represent a social network, where each
node is a user and each edge (vi, vj) ∈ E has a probability
pi,j representing the influence strength from user vi to vj .
Given a budget k, influence maximization is to find a subset
x ∈ 2V of size k such that the expected number of nodes ac-
tivated by propagating from x is maximized (Kempe, Klein-
berg, and Tardos 2003). As it is natural to assign different
budgets to different users in practice, we introduce the gen-
eralized influence maximization problem, which allows to

1https://webscope.sandbox.yahoo.com/
catalog.php?datatype=a
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Figure 1: Budget allocation on the Yahoo! data set.
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Figure 2: Generalized influence maximization.

select one user multiple times. That is, we are to select a
multiset x ∈ ZV+ , and xi is the budget allocated to the user
vi. Each user vi with the budget xi > 0 will make xi inde-
pendent trials of diffusion. The set of nodes to propagate in
the l-th trial is Xl = {vi | xi ≥ l}. Each Xl will propagate
independently using probabilities pi,j , and the set of nodes
that get activated is denoted as A(Xl), which is a random
variable. Generalized influence maximization is to maxi-
mize the expected total number of nodes that get activated in
at least one propagation process. The Independent Cascade
propagation model (Goldenberg, Libai, and Muller 2001) is
used. The objective function f(x) = E

[
|
⋃
l≥1A(Xl)|

]
is

monotone submodular, the proof of which is shown in the
supplementary material due to space limitation.

We use two real-world data sets: ego-Facebook2 (4,039
nodes, 88,234 edges) and Weibo (5,000 nodes, 65,148
edges). Weibo is crawled from a Chinese microblogging site
Weibo.com like Twitter. On each network, the probability
of one edge from vi to vj is estimated by weight(vi,vj)

indegree(vj)
, as

widely used in (Chen, Wang, and Yang 2009; Goyal, Lu, and
Lakshmanan 2011). The capacities ci are set to 5. The bud-
get k is set from 5 to 10. To estimate the expected number
of active nodes, we simulate the diffusion process 30 times
independently and use the average as an estimation. But for
the final output solutions of the algorithms, we average over
10,000 times for more accurate estimation.

Results. The results are plotted in Figures 1 and 2, which
show that POMS is never worse. On generalized influence
maximization, POMS performs much better in most cases.
This is expected. POMS maintains multiple solutions in the
optimization process; in each iteration, it can add differ-
ent items simultaneously and can also delete some selected

2http://snap.stanford.edu/data/index.html
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Figure 3: Performance v.s. runtime of POMS.

items. These characteristics may make POMS easier than
Greedy and G-Greedy to escape from local optima. We also
note that on budget allocation, the performances of POMS
and G-Greedy are almost same. This may be because G-
Greedy has already been nearly optimal, due to the simple
network structure (i.e., a bipartite graph) of the budget allo-
cation problem.

Considering the runtime (in the number of objective eval-
uations), Greedy and G-Greedy take the time in the or-
der of kn and cmaxkn, respectively; POMS is set to use
2ecmaxk

2n time according to the theoretical upper bound
(i.e., the worst-case time) for POMS being good. By select-
ing Greedy and G-Greedy as the baseline, we plot the curve
of the objective f over the time for POMS on generalized in-
fluence maximization with k=7, as shown in Figure 3. We
can see that the time of POMS to obtain a better performance
is much less than the worst-case time 2ecmaxk

2n≈ 190kn.
This implies that POMS can be efficient in practice.

Conclusion
In this paper, we consider the multiset selection prob-
lem with size constraints. We relax the submodularity as-
sumption of previous studies, and propose a new algorithm
POMS, which can achieve a good approximation guarantee,
characterized by the introduced submodularity ratio. The ex-
perimental results on two real-world applications show the
superior performance of POMS.
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