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Abstract

Submodular maximization has attracted much attention due
to its wide application and attractive property. Previous works
mainly considered one single objective function, while there
can be multiple ones in practice. As the objectives are usu-
ally conflicting, there exists a set of Pareto optimal solutions,
attaining different optimal trade-offs among multiple objec-
tives. In this paper, we consider the problem of minimiz-
ing the regret ratio in multi-objective submodular maximiza-
tion, which is to find at most k solutions to approximate the
whole Pareto set as well as possible. We propose a new al-
gorithm RRMS by sampling representative weight vectors
and solving the corresponding weighted sums of objective
functions using some given α-approximation algorithm for
single-objective submodular maximization. We prove that the
regret ratio of the output of RRMS is upper bounded by
1−α+O(

√
d− 1·( d

k−d
)

1
d−1 ), where d is the number of ob-

jectives. This is the first theoretical guarantee for the situation
with more than two objectives. When d = 2, it reaches the
(1 − α + O(1/k))-guarantee of the only existing algorithm
POLYTOPE. Empirical results on the applications of multi-
objective weighted maximum coverage and Max-Cut show
the superior performance of RRMS over POLYTOPE.

Introduction
Submodular maximization tries to find a subset maximiz-
ing a submodular objective function (i.e., an objective func-
tion satisfying the natural diminishing returns property) un-
der some constraints. It arises in various real-world applica-
tions, such as influence maximization (Kempe, Kleinberg,
and Tardos 2003) and sensor placement (Krause, Singh,
and Guestrin 2008). The problems of maximizing submod-
ular functions are usually NP-hard, and many polynomial-
time algorithms with bounded approximation guarantees
have been proposed. For example, for maximizing a mono-
tone submodular function with a cardinality constraint, the
greedy algorithm achieves the optimal polynomial-time ap-
proximation guarantee of (1 − 1/e) (Nemhauser, Wolsey,
and Fisher 1978; Nemhauser and Wolsey 1978); for max-
imizing a non-monotone submodular function, the dou-
ble greedy algorithm achieves the optimal guarantee of
(1/2) (Buchbinder et al. 2015).

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Previous works mainly considered one single submod-
ular objective function, while there can be multiple ones
in several applications. For example, the variable selection
problem under parameter uncertainty (Krause et al. 2008)
tries to find a subset of observed variables which simultane-
ously maximizes information gains (which are submodular)
for all possible parameter values; the document summariza-
tion task (Lin and Bilmes 2011) is modeled by maximizing
two submodular objective functions, i.e., coverage and di-
versity; multi-objective weighted Max-Cut (Angel, Bampis,
and Gourvs 2006; Bhangale et al. 2018) is to find a sub-
set of vertices from a graph (where each edge has a weight
vector instead of only a single weight), maximizing the to-
tal weight vector of the edges between the selected subset
and its complement, each dimension of which corresponds
to one submodular objective function.

Multi-objective submodular maximization can be formu-
lated as

max (f1(X), f2(X), . . . , fd(X)) s.t. X ∈ C, (1)

where C is the feasible solution set, and ∀i : fi(X) is the i-th
submodular objective function to be maximized. As the ob-
jective functions can be conflicting, it is impossible to have
one solution (i.e., subset) which is optimal for all objectives,
while there is a set of Pareto optimal solutions, attaining dif-
ferent optimal trade-offs among multiple objectives.

However, it is often impractical to find the whole Pareto
set, whose size can be even exponentially large. A simpli-
fied alternative approach is to consider the robust formula-
tion (Krause et al. 2008; Udwani 2018; Anari et al. 2019):

argmax
X∈C

min
i∈{1,2,...,d}

fi(X), (2)

that is to find a solution maximizing the minimum of all
submodular objectives. Recently, Soma and Yoshida (2017)
considered the formulation of minimizing regret ratio:

argmin
S⊆C,|S|≤k

max
w∈Rd

+

maxX∈Cf
w(X)−maxX∈Sf

w(X)

maxX∈C fw(X)
, (3)

where R+ denotes the set of non-negative reals, and
fw(X) =

∑d
i=1 wifi(X) is the linear combination of ob-

jective functions w.r.t. the weight vector w. That is, the goal
is to select at most k solutions to approximate the whole
Pareto set as well as possible. In fact, robust submodular



maximization is a special case of regret ratio minimization.
By setting k = 1 and w ∈ {e1, e2, . . . , ed}, where ∀i : ei
is the basis vector with all entries equal to 0, except the i-th
entry, which is 1, Eq. (3) is specialized to

argmax
X∈C

min
i∈{1,2,...,d}

fi(X)

maxX∈C fi(X)
,

which is a normalized version of Eq. (2), and often consid-
ered in real-world robust submodular maximization applica-
tions, e.g., robust influence maximization (Chen et al. 2016).

Soma and Yoshida (2017) proposed a geometric algo-
rithm POLYTOPE for regret ratio minimization. Given an
α-approximation algorithm for single-objective submodular
maximization, POLYTOPE first gets an initial set of d solu-
tions by applying the α-approximation algorithm to solve
each objective function, and then iteratively generates new
solutions until finding k solutions in total. In each itera-
tion, POLYTOPE first computes the convex hull that contains
the objective vectors of solutions generated-so-far and the
boundary hyperplanes of the first quadrant; then uses the
non-negative normal vectors of the frontier facets of the con-
vex hull as the weight vectors to linearly combine the d ob-
jective functions; finally applies the α-approximation algo-
rithm to these new single-objective submodular functions to
generate new solutions. They proved that when the number
d of objectives is two, the set of k solutions output by POLY-
TOPE has a regret ratio upper bounded by 1− α+O(1/k).

Though the performance of POLYTOPE is theoretically
guaranteed for bi-objective (i.e., d = 2) submodular max-
imization, the number of objectives can be larger than two
in real-world multi-objective applications, e.g., (Matrosov
et al. 2015; Hierons et al. 2020). In this paper, we pro-
pose a new algorithm RRMS. The main idea is to sam-
ple representative weight vectors such that the distance be-
tween any weight vector and the nearest sampled one is
small, and then apply the α-approximation algorithm to
solve single-objective submodular functions generated by
linearly combining all objectives using the sampled weight
vectors. We prove that the set of k solutions output by
RRMS has a regret ratio upper bounded by 1 − α +

O(
√
d− 1 · ( d

k−d )
1

d−1 ). Note that this is the first theoret-
ical guarantee for d > 2. When d = 1, it reaches the
(1 − α)-guarantee of the α-approximation algorithm for
single-objective submodular maximization. When d = 2,
it reaches the (1 − α + O(1/k))-guarantee of POLYTOPE.
We also empirically compare RRMS with POLYTOPE on
the applications of multi-objective weighted maximum cov-
erage and Max-Cut with d from 2 to 7. The results show that
they perform similarly for small d, while RRMS becomes
better as d increases.

Preliminaries
Let R and R+ denote the set of reals and non-negative re-
als, respectively. Given a finite set V , we study the func-
tions f : 2V → R defined on subsets of V . A set function
f : 2V → R is monotone if ∀X ⊆ Y : f(X) ≤ f(Y ).
f is submodular (Nemhauser, Wolsey, and Fisher 1978) if
∀X ⊆ Y ⊆ V, v ∈ V \ Y : f(X ∪ {v}) − f(X) ≥

f(Y ∪ {v}) − f(Y ), which intuitively represents the “di-
minishing returns” property, i.e., adding an item to a set X
does not give a smaller benefit than adding the same item
to a superset of X . Any linear combination of submodular
functions is still submodular.

Let C denote the feasible solution set, i.e., the set of so-
lutions satisfying the constraints. Note that a solution corre-
sponds to a subset of V here. For any S ⊆ C, its regret ratio
w.r.t. a function f : 2V → R+ is

rrf,C(S) =
maxX∈C f(X)−maxX∈S f(X)

maxX∈C f(X)
(4)

= 1− maxX∈S f(X)

maxX∈C f(X)
.

Obviously, rrf,C(S) ∈ [0, 1], and the smaller the better.
Given d submodular functions f1, f2, . . . , fd : 2V → R+

and the feasible solution set C, multi-objective submodu-
lar maximization tries to find solutions from C maximizing
these d functions simultaneously, as shown in Eq. (1). The
objectives are usually conflicting, i.e., optimizing one ob-
jective alone will degrade the other ones, and thus it is im-
possible to have one solution that optimizes all objectives
simultaneously. Instead, there is a set of Pareto optimal so-
lutions (Deb et al. 2002; Qian, Yu, and Zhou 2013), attain-
ing different optimal tradeoffs among the d objectives. That
is, an optimal solution of the non-negative linear combina-
tion (denoted as fw) of f1, f2, . . . , fd w.r.t. any weight vec-
tor w ∈ Rd+ is a Pareto optimal solution. For any X ∈ C,
fw(X) =

∑d
i=1 wifi(X).

For any S ⊆ C, its regret ratio w.r.t. f1, f2, . . . , fd is

rrf1,f2,...,fd,C(S) = maxw∈Rd
+
rrfw,C(S), (5)

which intuitively characterizes the approximation degree of
S to the whole Pareto set. The smaller the regret ratio, the
better the approximation. The problem of regret ratio min-
imization is to find at most k solutions best approximating
the whole Pareto set, as presented in Definition 1. Note that
we consider non-negative functions and k > d.
Definition 1 (Regret Ratio Minimization (Soma and Yoshida
2017)). Given submodular functions f1, f2, . . . , fd : 2V →
R+ and the feasible solution set C, to find a solution set
S ⊆ C with size at most k minimizing the regret ratio
rrf1,f2,...,fd,C(S), i.e.,

argminS⊆C,|S|≤k rrf1,f2,...,fd,C(S). (6)

To compute the regret ratio in Eq. (5), one needs to enu-
merate all non-negative weight vectors. In fact, we only need
to consider all non-negative unit vectors, since the regret ra-
tio w.r.t. fw is equivalent to that w.r.t. f

w
‖w‖ .

Lemma 1. ∀S ⊆ C : rrfw,C(S) = rr
f

w
‖w‖ ,C

(S).

Proof. By Eq. (4), we have

rrfw,C(S)= 1−‖w‖ ·maxX∈S f
w
‖w‖ (X)

‖w‖ ·maxX∈C f
w
‖w‖ (X)

= rr
f

w
‖w‖ ,C

(S),

where the first equality holds by fw(X) =
∑d
i=1 wi ·

fi(X) = ‖w‖ ·
∑d
i=1

wi

‖w‖ · fi(X) = ‖w‖ · f
w
‖w‖ (X).



Thus, Eq. (6) is equivalent to

argmin
S⊆C,|S|≤k

max
w∈Rd

+,‖w‖=1
rrfw,C(S). (7)

The RRMS Algorithm
In this section, we propose a new algorithm, called RRMS,
for Regret Ratio Minimization by Sampling representa-
tive weight vectors and solving the corresponding weighted
sums of objective functions.

As presented in Algorithm 1, RRMS first applies an ex-
isting α-approximation algorithmA to solve each single ob-
jective function fi, and obtains d solutions. Note that each
single objective function fi can be viewed as the linear com-
bination fw w.r.t. w = ei, i.e., the basis vector. After that,
RRMS samples (k − d) unit weight vectors, and linearly
combines the d objective functions using these vectors. For
the linear combination fw w.r.t. each sampled unit weight
vector w, RRMS applies A to solve it, and obtains a solu-
tion. The resulting (k − d) solutions are combined with the
initial d solutions as the final output of RRMS.

Note that there have been many polynomial-time ap-
proximation algorithms for diverse single-objective sub-
modular maximization. For example, for maximizing a
non-monotone submodular function, simulated annealing
is a roughly 0.41-approximation algorithm (Gharan and
Vondrák 2011), and the double greedy algorithm is an (1/2)-
approximation algorithm (Buchbinder et al. 2015). Thus,
the α-approximation algorithm for single-objective submod-
ular maximization is left as a parameter of RRMS. An
α-approximation algorithm A w.r.t. a function f implies
that the solution X∗ output by A satisfies f(X∗) ≥ α ·
maxX∈C f(X).

Next, we introduce how to select the representative unit
weight vectors, which is inspired by (Agarwal, Har-Peled,
and Varadarajan 2004; Xie et al. 2018). Let the hypercube
Cd+ = {x | x ∈ [0, 1]d}, which has 2d facets. Consider
the d facets, denoted by F1, F2, . . . , Fd, which don’t con-
tain the origin. A hyperplane in a d-dimensional space is a
subspace with dimension d−1, which can be represented as
h(u, c) = {x ∈ Rd | uT ·x = c}where u is the unit normal
vector of the hyperplane and c is the offset. For each facet Fi,
where i ∈ {1, 2, . . . , d}, let ui and ci denote the unit normal
vector and offset, respectively, of the hyperplane containing
Fi. Thus, any hyperplane parallel to the hyperplane contain-
ing Fi can be represented as h(ui, c) for some constant c.

For each i ∈ {1, 2, . . . , d}, the facet Fi is uniformly
partitioned into md−1 small facets as follows. For any Fj
with j 6= i, we generate m hyperplanes {h(uj , lcj/m) |
l ∈ {1, 2, . . . ,m}} parallel to the hyperplane containing
Fj . Thus, (d − 1) · m hyperplanes {h(uj , lcj/m) | j ∈
{1, 2 . . . , d} \ {i}, l ∈ {1, 2, . . . ,m}} are generated, which
are then used to partition Fi into md−1 small facets. By re-
peating this process for each Fi, we get d·md−1 small facets
in total. The unit vector starting from the origin and passing
the central point of a small facet is selected as a representa-
tive unit weight vector. Thus, d ·md−1 unit weight vectors
are generated. These selected unit vectors are actually a good
approximation of the space of all unit vectors, since the dis-

Algorithm 1 RRMS Algorithm
Input: submodular objective functions f1, f2, . . . , fd :
2V → R+; feasible solution set C ⊆ 2V ; integer k > d
Parameter: α-approximation algorithm A for single-
objective submodular maximization
Output: a set of k solutions
Process:

1: for each i ∈ {1, 2, . . . , d} do
2: Xi ← the solution obtained by applying A to fi
3: end for
4: let S = {X1, X2, . . . , Xd};
5: apply Algorithm 2 to sample (k − d) unit vectors;
6: for each sampled unit vector w do
7: X ← the solution obtained by applying A to fw;
8: S = S ∪ {X}
9: end for

10: return S

Algorithm 2 Weight Vector Sampling Procedure
Output: (k − d) unit vectors
Process:

1: let m = b(k−dd )
1

d−1 c, P = ∅, and U = ∅;
2: for each i ∈ {1, 2, . . . , d} do
3: construct (d − 1) · m hyperplanes {h(uj , lcj/m) |

j ∈ {1, 2 . . . , d} \ {i}, l ∈ {1, 2, . . . ,m}}, where
uj and cj denote the unit normal vector and off-
set, respectively, of the hyperplane containing Fj , and
h(uj , lcj/m) = {x ∈ Rd | (uj)T · x = lcj/m};

4: partition Fi into md−1 small facets using these (d −
1) ·m hyperplanes;

5: add the central points of these small facets into P
6: end for
7: for each p ∈ P do
8: add the unit vector, which starts from the origin and

passes p, into U
9: end for

10: add (k − d− dmd−1) random unit vectors into U
11: return U

tance between any unit vector and the nearest selected one
is small, which will be proved in theoretical analysis.

RRMS requires to sample (k − d) unit weight vectors.
Thus, m is set to b(k−dd )

1
d−1 c, and the remaining (k − d −

dmd−1) unit weight vectors are randomly generated. The
whole procedure of sampling representative weight vectors
is presented in Algorithm 2.

Theoretical Analysis
In this section, we prove that the regret ratio of the solution
set generated by RRMS can be well upper bounded.
Theorem 1. For regret ratio minimization in Definition 1,
the solution set S generated by RRMS satisfies

rrf1,f2,...,fd,C(S) ≤ 1−α+O

(
√
d−1 ·

(
d

k−d

) 1
d−1

)
.



When d = 1, the upper bound on the regret ratio
by RRMS becomes 1 − α. This is reasonable, because
RRMS will degenerate to applying the α-approximation
algorithm A to solve the only objective f . Note that α-
approximation implies that the generated solution X∗ sat-
isfies f(X∗) ≥ α ·maxX∈C f(X), and thus the regret ratio
1−f(X∗)/maxX∈C f(X) ≤ 1−α. When d = 2, the upper
bound becomes 1−α+O(1/k), which is the same as that by
the only existing algorithm POLYTOPE (Soma and Yoshida
2017). When d ≥ 3, this is the first theoretical guarantee.

To prove Theorem 1, we first show in Lemma 2 that the set
U of unit vectors sampled by Algorithm 2 can approximate
the space of all unit vectors well. That is, for any unit vector
w, U must contain one unit vector close to w.
Lemma 2. Let U denote the set of unit vectors output by
Algorithm 2. For any unit vector w ∈ Rd+, there exists one
unit vector w′ ∈ U such that the angle between w and w′

is no greater than 2 · arcsin(
√
d−1
4 /b(k−dd )

1
d−1 c).

Proof. For any unit vector w ∈ Rd+, the ray starting from the
origin and going along w must have one intersection point
(denoted by s) with one of the dmd−1 small facets generated
in Algorithm 2. Let s′ denote the central point of this small
facet, and let w′ be the unit vector starting from the origin
and passing s′. By lines 7–9 of Algorithm 2, it holds that
w′ ∈ U . According to the analysis in (Agarwal, Har-Peled,
and Varadarajan 2004), we have ‖w −w′‖ ≤ ‖s− s′‖.

By the procedure of generating small facets in lines 3–4
of Algorithm 2, we know that the diameter (i.e., the longest
distance between any two points in the facet) of each small
facet is

√
d−1
m . This implies that in a small facet, the distance

between any point and the central point is at most
√
d−1
2m .

Thus, ‖s− s′‖ ≤
√
d−1
2m , implying ‖w −w′‖ ≤

√
d−1
2m .

By simple calculation, the angle between w and w′ is at
most 2 ·arcsin(

√
d−1
4m ). Because m = b(k−dd )

1
d−1 c as shown

in line 1 of Algorithm 2, the lemma holds.

Lemma 3 gives the relationship among the angles of three
vectors, which will also be used in the proof of Theorem 1.
Lemma 3. For any three non-zero vectors u,v,w ∈ Rd+, let
θ1 denote the angle between u and w, θ2 denote the angle
between v and w, and θ denote that between u and v. Then,

|θ1 − θ2| ≤ θ ≤ θ1 + θ2. (8)

Proof. Since cos(·) is decreasing in [0, π/2] and θ1, θ2, θ ∈
[0, π/2], |θ1−θ2| ≤ θ is equivalent to cos(θ1−θ2) ≥ cos(θ).
It is clear that θ1 + θ2 ∈ [0, π]. When θ1 + θ2 ≥ π/2, θ ≤
θ1 + θ2 trivially holds. Thus, we consider θ1 + θ2 < π/2. In
this case, θ1+θ2 ≥ θ is equivalent to cos(θ1+θ2) ≤ cos(θ).
Thus, to prove Eq. (8), we only need to prove cos(θ1+θ2) ≤
cos(θ) ≤ cos(θ1 − θ2), i.e.,

| cos(θ1) cos(θ2)− cos(θ)| ≤ sin(θ1) sin(θ2). (9)

Taking the square of both sides of Eq. (9), we are to prove

cos2(θ1) + cos2(θ2) + cos2(θ) (10)
− 2 cos(θ1) cos(θ2) cos(θ) ≤ 1.

Assume that ‖u‖ = 1, ‖v‖ = 1 and ‖w‖ = 1, because
scaling the length of vectors will not change the angles be-
tween them. Thus, cos(θ1) = wTu, cos(θ2) = wTv =
vTw, cos(θ) = uTv, and Eq. (10) can be rewritten as

wTuuTw +wTvvTw + uTvvTu (11)

− 2 ·wTuuTvvTw ≤ 1.

Because ‖w‖2 = wTw = 1, uTvvTu = wT ·(uTvvTu) ·
w, and wTuuTvvTw = wTvvTuuTw, Eq. (11) can be
rewritten as

wT · (uuT + vvT − uuTvvT − vvTuuT (12)

+ uTvvTu · Id − Id) ·w ≤ 0,

where Id denotes the identity matrix of size d.
Next, we are to show that Eq. (12) holds. We rotate the

coordinate system to make u = [1, 0, . . . , 0]T, which will
not change the angles. Let v̂ = [v2, v3, . . . , vd]

T, and 0p,q
denote the zero matrix of size p× q. By calculation, we can
derive that uuT + vvT − uuTvvT − vvTuuT is equal to

1− v21 0 . . . 0
0 v22 . . . v2vd
...

...
...

...
0 vdv2 . . . v2d

 =

[
1− v21 01,d−1
0d−1,1 v̂v̂T

]
,

and uTvvTu · Id − Id is equal to

(v21 − 1) · Id =
[
v21 − 1 01,d−1
0d−1,1 −v̂Tv̂ · Id−1

]
,

where the last equality holds because ‖v‖2 = vTv = v21 +
v̂Tv̂ = 1. Let ŵ = [w2, w3, . . . , wd]

T. Thus, the left side of
Eq. (12) is equal to[

w1, ŵ
T
] [ 0 01,d−1

0d−1,1 v̂v̂T

] [
w1

ŵ

]
−

[
w1, ŵ

T
] [ 0 01,d−1

0d−1,1 v̂Tv̂ · Id−1

] [
w1

ŵ

]
= ŵTv̂v̂Tŵ − v̂Tv̂ŵTŵ = (ŵTv̂)2 − ‖v̂‖2‖ŵ‖2,

which is obviously no greater than 0. Thus, Eq. (12) holds,
implying that the lemma holds.

Before proving Theorem 1, we briefly introduce the proof
idea. For any unit weight vector w, Lemma 2 shows that
there is a “neighbor” (denoted by u) in the unit vectors sam-
pled by line 5 of RRMS. That is, the angle between w and
u is small. RRMS applies an α-approximation algorithm to
solve the objective fu. As w and u are close, the result-
ing solution is also a good approximation solution for fw.
Thus, the regret ratio in Eq. (7), i.e., maxw∈Rd

+,‖w‖=1 1 −
maxX∈S f

w(X)
maxX∈C fw(X) , can be well upper bounded.

Proof of Theorem 1. Let S denote the solution set gener-
ated by RRMS. The regret ratio of S in Eq. (7) is

max
w∈Rd

+,‖w‖=1
rrfw,C(S) = max

w∈Rd
+,‖w‖=1

1− maxX∈S f
w(X)

maxX∈C fw(X)
.



For any unit weight vector w ∈ Rd+, let Xw
C and Xw

S
denote an optimal solution w.r.t. fw in C and S, respec-
tively. That is, Xw

C = argmaxX∈C f
w(X) and Xw

S =
argmaxX∈S f

w(X). By Lemma 2, there must exist one
unit vector u sampled in line 5 of Algorithm 1, sat-
isfying that the angle between w and u is at most
2 arcsin(

√
d−1
4 /b(k−dd )

1
d−1 c). Let Xu

C and Xu
S denote an

optimal solution w.r.t. fu in C and S, respectively. That is,
Xu
C =argmaxX∈C f

u(X) and Xu
S =argmaxX∈S f

u(X).
Next we utilize Xu

C and Xu
S to analyze

1− maxX∈S f
w(X)

maxX∈C fw(X)
= 1− fw(Xw

S )

fw(Xw
C )

. (13)

We use f(X) = [f1(X), f2(X), . . . , fd(X)]T to denote
the objective vector of a solutionX . Let θw denote the angle
between f(Xu

S ) and w, and θu denote that between f(Xu
S )

and u. Let γw denote the angle between f(Xw
C ) and w, and

γu denote that between f(Xw
C ) and u. We have

fw(Xw
S ) ≥ fw(Xu

S ) (14)
= fu(Xu

S )− fu(Xu
S ) + fw(Xu

S )

≥ α · fu(Xu
C )− fu(Xu

S ) + fw(Xu
S )

≥ α · fu(Xw
C )− fu(Xu

S ) + fw(Xu
S )

= α‖f(Xw
C )‖ cos(γu)−‖f(Xu

S )‖ cos(θu)+fw(Xu
S )

= αfw(Xw
C )

cos(γu)

cos(γw)
+ fw(Xu

S )

(
1− cos(θu)

cos(θw)

)
,

where the first inequality holds because Xw
S is an optimal

solution w.r.t. fw in S and Xu
S ∈ S, the second inequality

holds because an α-approximation algorithm is applied to
solve fu in Algorithm 1, the third inequality holds because
Xu
C is an optimal solution w.r.t. fu in C, the second equal-

ity holds because fu(Xw
C ) = uTf(Xw

C ) = ‖f(Xw
C )‖ ·

cos(γu) and fu(Xu
S ) = uTf(Xu

S ) = ‖f(Xu
S )‖ · cos(θu),

and the last holds because fw(Xw
C ) = wTf(Xw

C ) =
‖f(Xw

C )‖ · cos(γw) and fw(Xu
S ) = wTf(Xu

S ) =
‖f(Xu

S )‖ · cos(θw).
Applying Eq. (14) to Eq. (13) leads to

1− f
w(Xw

S )

fw(Xw
C )
≤ 1−α cos(γu)

cos(γw)
+
fw(Xu

S )

fw(Xw
C )

(
cos(θu)

cos(θw)
−1
)
.

Because the goal is to derive an upper bound, we pessimisti-
cally assume that cos(θu)/ cos(θw)− 1 ≥ 0. By the defini-
tion of Xw

C , i.e., Xw
C is an optimal solution w.r.t. fw in C, it

holds that fw(Xu
S ) ≤ fw(Xw

C ). Thus, we have

1− fw(Xw
S )

fw(Xw
C )
≤ 1− α cos(γu)

cos(γw)
+

cos(θu)

cos(θw)
− 1 (15)

= 1− α+ α

(
1− cos(γu)

cos(γw)

)
+

cos(θu)

cos(θw)
− 1.

We have known that the angle between w and u is at
most 2 arcsin(

√
d−1
4 /b(k−dd )

1
d−1 c), denoted by δ for conve-

nience. Because γw is the angle between f(Xw
C ) and w, and

γu is the angle between f(Xw
C ) and u, applying Lemma 3

leads to γu ≤ γw + δ. Similarly, we can get θw ≤ θu + δ.

Applying these two inequalities to Eq. (15), we have

1− fw(Xw
S )

fw(Xw
C )

(16)

≤ 1− α+ α

(
1− cos (γw + δ)

cos(γw)

)
+

cos(θu)

cos(θu + δ)
− 1

= 1− α+ α(1− cos(δ) + tan(γw) sin(δ))

+
1

cos(δ)− tan(θu) sin(δ)
− 1.

Let η =
√
d−1
4 /b(k−dd )

1
d−1 c. By δ = 2arcsin(η), we can

derive that cos(δ) = 1 − 2η2 and sin(δ) = 2η
√
1− η2 ≤

2η. Applying them to Eq. (16) leads to

1− fw(Xw
S )

fw(Xw
C )

≤ 1− α+ 2α(η2 + tan(γw)η) +
1

1
2η2+2 tan(θu)η − 1

.

As the number k of selected solutions is usually much larger
than the number d of objectives, η can be very small. Fur-
thermore, tan(γw) and tan(θu) are usually constantly large.
Thus, we have

1− fw(Xw
S )

fw(Xw
C )
≤ 1− α+O(η).

Because the above inequality holds for any w, we have
max

w∈Rd
+,‖w‖=1

rrfw,C(S) ≤ 1− α+O(η).

As η =
√
d−1
4 /b(k−dd )

1
d−1 c, the theorem holds. �

Empirical Study
In this section, we empirically compare RRMS with the
only existing algorithm POLYTOPE (Soma and Yoshida
2017) on the applications of multi-objective weighted maxi-
mum coverage and Max-Cut. The number d of objectives is
set from 2 to 7. For each d, the number k of selected solu-
tions is set from 2d to 26 with an interval of 2.

Note that for the solution set S output by an al-
gorithm, it is hard to directly compute the regret ratio
rrf1,f2,...,fd,C(S) = maxw∈Rd

+,‖w‖=1 rrfw,C(S), as all unit
weight vectors have to be considered. Soma and Yoshida
(2017) have provided a feasible way to compute it. Let
Cf (S) denote the convex hull of {f(X) | X ∈ S}, and
let P (S) = {x ∈ Rd+ | ∃y ∈ Cf (S) : x ≤ y},
where x ≤ y means ∀i : xi ≤ yi. They proved that
rrf1,f2,...,fd,C(S) = maxw rrfw,C(S), where w runs over
the non-negative unit normal vectors of all frontiers of P (S).

We also note that rrfw,C(S) = 1 − maxX∈S f
w(X)

maxX∈C fw(X) re-
quires the optimal value of fw, i.e., maxX∈C f

w(X), which
is usually NP-hard to be computed. As an α-approximation
algorithm is given, we can apply it to obtain a solution X∗
with fw(X∗)/α ≥ maxX∈C f

w(X) ≥ fw(X∗). Soma and
Yoshida (2017) used the lower bound fw(X∗) to approxi-
mate maxX∈C f

w(X), which will, however, make the esti-
mated regret ratio quite close to 0. In the experiments, we
use the upper bound fw(X∗)/α to approximate.
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Figure 1: Comparison among RRMS, POLYTOPE, RRMS* and SINGLEOBJ on multi-objective weighted maximum coverage
with the number d of objectives from 2 to 7. Estimated regret ratio: the smaller, the better.

Multi-objective Weighted Maximum Coverage
Given a set U of elements (where each element e has a
weight w(e)), a collection V = {S1, S2, . . . , Sn} of sub-
sets of U , and a budget b, the weighted maximum coverage
problem is to find at most b subsets from V maximizing the
weighted sum of covered elements, i.e.,

argmaxX⊆V
∑

e∈∪Si∈XSi

w(e) s.t. |X| ≤ b.

The objective function is monotone submodular. For multi-
objective weighted maximum coverage, each element e has
a weight vector w(e) = [w1(e), w2(e), . . . , wd(e)]

T, and
there are d objectives f1, f2, . . . , fd, where ∀i : fi(X) =∑
e∈∪Si∈XSi

wi(e). The goal is to maximize these d objec-
tives simultaneously with the feasible solution set C = {X |
X ⊆ V, |X| ≤ b}. This is the dual of the well-studied multi-
objective weighted set cover problem (Jaszkiewicz 2003;
Lust and Tuyttens 2014; Weerasena, Wiecek, and Soylu
2017). For the single-objective approximation algorithm A
employed by RRMS and POLYTOPE, we use the greedy al-
gorithm, which iteratively selects one subset with the largest
marginal gain. The greedy algorithm achieves the (1−1/e)-
approximation ratio (Nemhauser, Wolsey, and Fisher 1978),
and thus the parameter α in Algorithm 1 is 1− 1/e.

We use the real-world data set email-Eu-core from http:
//snap.stanford.edu/data/#email, which is a directed graph
with 1,005 vertices and 25,571 edges. We create a set for
each vertex that contains the vertex itself and its adjacent
vertices. Each weight of a vertex is uniformly randomly
sampled from [0, 1]. Here a vertex corresponds to an ele-
ment. The budget b is set to 100. As RRMS has a random

step (i.e., line 10 of Algorithm 2) when sampling weights,
we repeat the running ten times independently and report the
mean and standard deviation of the estimated regret ratio.

The results are plotted in Figure 1, showing that when the
number d of objectives is small, RRMS and POLYTOPE per-
form similarly; but as d continues to increase, the advantage
of RRMS becomes clear. This verifies the theoretical results
that the performance of RRMS is theoretically guaranteed
for any d while that of POLYTOPE is guaranteed only for
d = 2. As d increases, maybe POLYTOPE is more likely to
sample weight vectors nonuniformly, degrading its perfor-
mance. We can also observe that the estimated regret ratio
of both algorithms has the trend of decreasing with k but in-
creasing with d. This is expected because more solutions are
selected as k increases, and thus the approximation can be
better; while the problem becomes harder as d increases.

Multi-objective Weighted Max-Cut
Given an undirected graph G = (V,E), the weighted Max-
Cut problem is to find a subset X ⊆ V maximizing the
weighted sum of edges connecting X and V \X , i.e.,

argmaxX⊆V
∑

e∈(X,V \X)
w(e),

where (X,V \ X) denotes the set of edges whose two ver-
tices are inX and V \X , respectively. The objective function
is non-monotone submodular. For multi-objective weighted
Max-Cut (Angel, Bampis, and Gourvs 2006; Bhangale
et al. 2018), each edge e has a weight vector w(e) =
[w1(e), w2(e), . . . , wd(e)]

T, and there are d objectives
f1, f2, . . . , fd, where ∀i : fi(X) =

∑
e∈(X,V \X) wi(e).
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Figure 2: Comparison among RRMS, POLYTOPE, RRMS* and SINGLEOBJ on multi-objective weighted Max-Cut with the
number d of objectives from 2 to 7. Estimated regret ratio: the smaller, the better.

The goal is to maximize these d objectives simultaneously
with the feasible solution set C = 2V . The randomized algo-
rithm using semidefinite programming (Goemans 1995) is
employed as the single-objective approximation algorithm
A, which can achieve the 0.87856-approximation ratio in
expectation, and thus the parameter α = 0.87856.

We use the real-world data set American College foot-
ball from http://www-personal.umich.edu/∼mejn/netdata/,
which is an undirected graph with 115 vertices and 613
edges. Each edge weight is uniformly randomly sampled
from [0, 1]. As the employed single-objective approxima-
tion algorithm A is randomized, the running of RRMS and
POLYTOPE is repeated ten times independently, and we re-
port the mean and standard deviation of the estimated regret
ratio. The results in Figure 2 are similar to that observed
for multi-objective weighted maximum coverage. That is,
RRMS gets better as the number of objectives increases.

Discussion
When estimating the regret ratio, we pessimistically use the
upper bound fw(X∗)/α to approximate maxX∈C f

w(X),
where X∗ is the solution generated by applying the α-
approximation algorithmA to fw. Thus, the best regret ratio
for algorithms using A is 1 − α, which can be achieved by
applying A to each possible fw. For these two applications,
the values of (1 − α) are 1 − (1 − 1/e) ≈ 0.36788 and
1− 0.87856 = 0.12144, respectively. We can see from Fig-
ures 1-2 that the regret ratios achieved by RRMS are close
to them, implying that RRMS has performed quite well.

Before sampling unit weight vectors by Algorithm 2,
RRMS first solves each single objective function fi inde-
pendently, as shown in lines 1–3 of Algorithm 1. Each fi

can be viewed as the linear combination fw w.r.t. w = ei,
where ei is the basis vector with all entries equal to 0, ex-
cept the i-th entry, which is 1. RRMS employs this process,
because Algorithm 2 cannot generate these basis weight vec-
tors, which might, however, influence the performance sig-
nificantly. To verify the effectiveness of this process, we im-
plement the RRMS* algorithm which samples k unit weight
vectors directly by Algorithm 2. It can be observed from Fig-
ures 1-2 that RRMS* is almost always worse than RRMS
and POLYTOPE. A natural question is then whether the so-
lutions obtained by solving the single-objective functions
f1, f2, . . . , fd are sufficient. The corresponding estimated
regret ratios are denoted by SINGLEOBJ in Figures 1-2. We
can see that SINGLEOBJ almost always performs the worst.

Conclusion
In this paper, we study the regret ratio minimization prob-
lem in multi-objective submodular maximization. We pro-
pose the RRMS algorithm and prove that its performance
is theoretically guaranteed for any number d of objectives.
For d ≥ 3, this guarantee is the first theoretical one; for
d = 2, it reaches the guarantee of the only existing algo-
rithm POLYTOPE. Empirical results on the applications of
multi-objective weighted maximum coverage and Max-Cut
show that RRMS and POLYTOPE have similar performance
for small d, while RRMS performs better as d increases.

Both RRMS and POLYTOPE convert multi-objective
submodular maximization into single-objective one by
weighted sum. In the future, it is interesting to study the al-
gorithms based on Pareto dominance, e.g., (Friedrich and
Neumann 2015; Qian, Yu, and Zhou 2015; Qian et al. 2017,
2019), which solve the multi-objective problem directly.
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