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Abstract
As evolutionary algorithms (EAs) are general-purpose optimization algorithms, re-
cent theoretical studies have tried to analyze their performance for solving general
problem classes, with the goal of providing a general theoretical explanation of the
behavior of EAs. Particularly, a simple multi-objective EA, i.e., GSEMO, has been
shown to be able to achieve good polynomial-time approximation guarantees for
submodular optimization, where the objective function is only required to satisfy
some properties and its explicit formulation is not needed. Submodular optimiza-
tion has wide applications in diverse areas, and previous studies have considered
the cases where the objective functions are monotone submodular, monotone non-
submodular, or non-monotone submodular. To complement this line of research,
this paper studies the problem class of maximizing monotone approximately sub-
modular minus modular functions (i.e., g − c) with a size constraint, where g is a
so-called non-negative monotone approximately submodular function and c is a so-
called non-negative modular function, resulting in the objective function (g − c) be-
ing non-monotone non-submodular in general. Different from previous analyses,
we prove that by optimizing the original objective function (g−c) and the size simul-
taneously, the GSEMO fails to achieve a good polynomial-time approximation guar-
antee. However, we also prove that by optimizing a distorted objective function and
the size simultaneously, the GSEMO can still achieve the best-known polynomial-
time approximation guarantee. Empirical studies on the applications of Bayesian ex-
perimental design and directed vertex cover show the excellent performance of the
GSEMO.

Keywords
Submodular optimization, multi-objective evolutionary algorithms, running time
analysis, computational complexity, empirical study.

1 Introduction

As a kind of randomized metaheuristic optimization algorithm, evolutionary algo-
rithms (EAs) (Bäck, 1996) have been successfully applied to solve sophisticated op-
timization problems in diverse areas, e.g., data mining (Mukhopadhyay et al., 2013),
machine learning (Zhou et al., 2019), image processing (Liang et al., 2020) and con-
troller optimization (Qiao et al., 2020), to name a few. One main advantage of EAs is
the general-purpose property, i.e., EAs can be used to optimize any problem where
solutions can be represented and evaluated. Meanwhile, the theoretical analysis,
particularly running time analysis, of EAs has achieved progress during the past two
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decades. A lot of theoretical results (e.g., (Neumann and Witt, 2010; Auger and Doerr,
2011)) have been derived, helping us understand the practical behaviors of EAs.

Previous analyses, however, mainly focused on isolated problems, which cannot
reflect the general-purpose nature of EAs. To provide a general theoretical explana-
tion of the behavior of EAs, there are some recent efforts (Friedrich and Neumann,
2015; Qian et al., 2017a; Friedrich et al., 2018; Qian et al., 2019; Bian et al., 2020) study-
ing the running time complexity of EAs for solving general classes of submodular op-
timization problems.

Submodularity (Nemhauser et al., 1978) characterizes the diminishing returns
property of a set function f : 2V → R, i.e., ∀X ⊆ Y ⊆ V, v /∈ Y : f(X ∪ {v})− f(X) ≥
f(Y ∪ {v}) − f(Y ). It has several equivalent definitions, e.g., ∀X ⊆ Y ⊆ V :
f(Y ) − f(X) ≤

∑
v∈Y \X(f(X ∪ {v}) − f(X)). Submodular optimization has played

an important role in many areas such as machine learning, data mining, natural
language processing, computer vision, economics and operation research. On one
hand, many of their applications involve submodular objective functions, e.g., active
learning (Golovin and Krause, 2011), influence maximization (Kempe et al., 2003),
document summarization (Lin and Bilmes, 2011), image segmentation (Jegelka and
Bilmes, 2011) and maximum coverage (Feige, 1998). On the other hand, the submod-
ular property allows for polynomial-time approximation algorithms with theoretical
guarantees. For example, a celebrated result by Nemhauser et al. (1978) shows that for
maximizing monotone submodular functions with a size constraint, the greedy algo-
rithm, which iteratively adds one item with the largest marginal gain, can achieve an
approximation ratio of 1 − 1/e, which is optimal in general (Nemhauser and Wolsey,
1978). Note that a set function f : 2V → R is monotone if ∀X ⊆ Y ⊆ V : f(X) ≤ f(Y ),
and a size constraint requires the size of a subset to be no larger than a budget k.

Friedrich and Neumann (2015) first proved that for maximizing monotone sub-
modular functions with a size constraint, the GSEMO, a simple multi-objective EA
(MOEA) widely used in theoretical analyses, can achieve the optimal approximation
ratio, i.e., 1 − 1/e, in O(n2(log n + k)) expected running time, where n is the size of
the ground set V and k is the budget. They also considered a more general prob-
lem class, i.e., maximizing monotone submodular functions with m matroid con-
straints. Note that a size constraint is actually a uniform matroid constraint. The
(1+1)-EA, a simple single-objective EA with population size 1 and bit-wise muta-
tion only, has been shown to be able to achieve a ( 1

m+1/p+ε )-approximation ratio in

O( 1
εn

2p(m+1)+1m log n) expected running time, where p ≥ 1 and ε > 0.
Later, Qian et al. (2019) studied the problem class of maximizing monotone

and approximately submodular functions with a size constraint. That is, the ob-
jective function to be maximized is not necessarily submodular, but approximately
submodular, i.e., satisfies the submodular property to some extent. Several no-
tions of approximate submodularity (Krause and Cevher, 2010; Das and Kempe,
2011; Horel and Singer, 2016) have been proposed to measure to what extent a set
function f has the submodular property in different ways. For example, Das and
Kempe (2011) and Bian et al. (2017) introduced the submodularity ratio γ(f) =

minX⊆Y⊆V

∑
v∈Y \X(f(X∪{v})−f(X))

f(Y )−f(X) , and Zhang and Vorobeychik (2016) introduced an-

other oneα(f) = minX⊆Y,v/∈Y
f(X∪{v})−f(X)
f(Y ∪{v})−f(Y ) . For a monotone function f , γ(f) ∈ [0, 1],

α(f) ∈ [0, 1], and the larger γ(f) or α(f), the more close to submodularity f is. Using
different notions of approximate submodularity, Qian et al. (2019) proved that the
GSEMO can always achieve the best-known polynomial-time approximation guaran-
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tee, previously obtained by the greedy algorithm. Qian et al. (2017a) also considered
the case with a general cost constraint, that is, c(X) ≤ k, where c(·) is a monotone
function. They proved that the GSEMO can achieve the best-known approximation
ratio of (α/2)(1 − e−α), where α is the submodularity ratio of the objective function
f , but the required running time is unbounded. Bian et al. (2020) then proposed a
single-objective EA to optimize a surrogate objective integrating f and the cost func-
tion c, which can achieve this approximation ratio in O(n3) expected running time.

For non-monotone cases, Friedrich and Neumann (2015) studied a specific case,
i.e., symmetric functions. They proved that for maximizing symmetric submodu-
lar functions with m matroid constraints, the GSEMO can achieve a ( 1

(m+2)(1+ε) )-

approximation ratio in O( 1
εn

m+6 log n) expected running time. Qian et al. (2019) con-
sidered the problem class of maximizing submodular and approximately monotone
functions with a size constraint. A set function f is approximately monotone if
∀X ⊆ V, v /∈ X : f(X ∪ {v}) ≥ f(X) − ε, where ε ≥ 0 captures the degree of
approximate monotonicity. They proved that the GSEMO can find a subset X with
f(X) ≥ (1− 1/e) · (OPT− kε) in O(n2(log n+ k)) expected running time, where OPT
denotes the optimal function value. The general non-monotone case has been stud-
ied recently. Friedrich et al. (2018) and Qian et al. (2019) considered the problem class
of maximizing non-monotone submodular functions without constraints. Friedrich
et al. (2018) proved that the (1+1)-EA using a heavy-tailed mutation operator can
achieve an approximation ratio of ( 1

3−
ε
n ) inO( 1

εn
3 log n

ε +nβ) expected running time,
where ε > 0. The heavy-tailed mutation operator samples l ∈ {1, 2, . . . , n} according
to a power-law distribution with a parameter β > 1, and then flips l bits of a solution
chosen uniformly at random. Qian et al. (2019) proved that a variant of GSEMO, called
GSEMO-C, can also achieve the ( 1

3 −
ε
n )-approximation ratio inO( 1

εn
4 log n) expected

running time. The difference between the GSEMO and GSEMO-C is that the GSEMO
generates a new offspring solution by bit-wise mutation in each iteration, whereas
the GSEMO-C generates this new solution (i.e., set) as well as its complement.

The above mentioned works, showing the good general approximation ability of
EAs, are summarized in Table 1, where each work is categorized according to whether
the concerned objective functions satisfy the monotone and submodular property.
A natural question is then whether EAs can still achieve good polynomial-time ap-
proximation guarantees when the objective functions are neither monotone nor sub-
modular. In this paper, we thus consider the problem class of maximizing monotone
approximately submodular minus modular functions with a size constraint, i.e.,

arg maxX⊆V g(X)− c(X) s.t. |X| ≤ k, (1)

where g is a non-negative monotone approximately submodular function, and c is
a non-negative modular function, i.e., ∀X ⊆ V : c(X) =

∑
v∈X c({v}). The objec-

tive function (g − c) is non-submodular in general, and can be non-monotone and
take negative values. It is known that monotone approximately submodular max-
imization with a size constraint has various applications, such as Bayesian experi-
mental design (Krause et al., 2008), dictionary selection (Krause and Cevher, 2010)
and sparse regression (Das and Kempe, 2011). The considered problem Eq. (1) is
a natural extension by encoding a cost for each item. Harshaw et al. (2019) pro-
posed the distorted greedy algorithm and proved that it can find a subset X with
g(X) − c(X) ≥ (1 − e−γ) · g(X∗) − c(X∗), where X∗ denotes an optimal solution
of Eq. (1), and γ is the submodularity ratio of g measuring how close g is to submodu-
larity. Note that this is the best-known polynomial-time approximation guarantee.

Evolutionary Computation Volume x, Number x 3



C. Qian

Ta
b

le
1:

A
su

m
m

ar
y

o
f

th
e

w
o

rk
s

o
n

an
al

yz
in

g
th

e
ru

n
n

in
g

ti
m

e
o

f
E

A
s

fo
r

so
lv

in
g

p
ro

b
le

m
cl

as
se

s
o

f
su

b
m

o
d

u
la

r
o

p
ti

m
iz

at
io

n
,

w
h

er
e

ea
ch

w
o

rk
is

ca
te

go
ri

ze
d

ac
co

rd
in

g
to

th
e

p
ro

p
er

ty
o

fc
o

n
si

d
er

ed
o

b
je

ct
iv

e
fu

n
ct

io
n

s.

P
ro

p
er

ty
o

fo
b

je
ct

iv
es

P
ro

b
le

m
A

p
p

ro
xi

m
at

io
n

ra
ti

o
E

xp
ec

te
d

ru
n

n
in

g
ti

m
e

M
o

n
o

to
n

e
su

b
m

o
d

u
la

r

M
o

n
o

to
n

e
su

b
m

o
d

u
la

r
m

ax
im

iz
at

io
n

s.
t.

a
si

ze
co

n
st

ra
in

t(
Fr

ie
d

ri
ch

an
d

N
eu

m
an

n
,2

01
5)

1
−

1
/
e

O
(n

2
(l
o
g
n
+
k
))

M
o

n
o

to
n

e
su

b
m

o
d

u
la

r
m

ax
im

iz
at

io
n

s.
t.
m

m
at

ro
id

co
n

st
ra

in
ts

(F
ri

ed
ri

ch
an

d
N

eu
m

an
n

,2
01

5)
1
/
(m

+
1
/
p
+
ε)

O
(
1 ε
n
2
p
(m

+
1
)+

1
m

lo
g
n
)

M
o

n
o

to
n

e
n

o
n

-s
u

b
m

o
d

u
la

r

M
o

n
o

to
n

e
ap

p
ro

xi
m

at
el

y
su

b
m

o
d

u
la

r
m

ax
im

iz
at

io
n

s.
t.

a
si

ze
co

n
st

ra
in

t(
Q

ia
n

et
al

.,
20

19
)

1
−
e−

γ
O
(n

2
(l
o
g
n
+
k
))

M
o

n
o

to
n

e
ap

p
ro

xi
m

at
el

y
su

b
m

o
d

u
la

r
m

ax
im

iz
at

io
n

s.
t.

a
m

o
n

o
to

n
e

co
st

co
n

st
ra

in
t(

B
ia

n
et

al
.,

20
20

)
(α
/
2
)(
1
−
e−

α
)

O
(n

3
)

N
o

n
-m

o
n

o
to

n
e

su
b

m
o

d
u

la
r

Sy
m

m
et

ri
c

su
b

m
o

d
u

la
r

m
ax

im
iz

at
io

n
s.

t.
m

m
at

ro
id

co
n

st
ra

in
ts

(F
ri

ed
ri

ch
an

d
N

eu
m

an
n

,2
01

5)
1
/
((
m

+
2
)(
1
+
ε)
)

O
(
1 ε
n
m

+
6
lo
g
n
)

Su
b

m
o

d
u

la
r

ap
p

ro
xi

m
at

el
y

m
o

n
o

to
n

e
m

ax
im

iz
at

io
n

s.
t.

a
si

ze
co

n
st

ra
in

t(
Q

ia
n

et
al

.,
20

19
)

(1
−

1
/
e)
·(
O
P
T
−
k
ε)

O
(n

2
(l
o
g
n
+
k
))

N
o

n
-m

o
n

o
to

n
e

su
b

m
o

d
u

la
r

m
ax

im
iz

at
io

n
w

it
h

o
u

tc
o

n
st

ra
in

ts
(F

ri
ed

ri
ch

et
al

.,
20

18
;Q

ia
n

et
al

.,
20

19
)

1
/
3
−
ε/
n

O
(
1 ε
n
3
lo
g
n ε
+
n
β
)

O
(
1 ε
n
4
lo
g
n
)

N
o

n
-m

o
n

o
to

n
e

n
o

n
-s

u
b

m
o

d
u

la
r

M
o

n
o

to
n

e
ap

p
ro

xi
m

at
el

y
su

b
m

o
d

u
la

r
m

in
u

s
m

o
d

u
la

r
m

ax
im

iz
at

io
n

s.
t.

a
si

ze
co

n
st

ra
in

t(
T

h
is

w
o

rk
)

(1
−
e−

γ
)
·g

(X
∗
)
−
c(
X

∗
)

O
(n

2
(l
o
g
n
+
k
))

N
o

te
s:
n

is
th

e
p

ro
b

le
m

si
ze

,k
is

th
e

b
u

d
ge

to
fa

si
ze

co
n

st
ra

in
t|
X
|≤

k
,m

is
th

e
n

u
m

b
er

o
fm

at
ro

id
co

n
st

ra
in

ts
,p
≥

1
,ε
>

0
,γ
,α
∈
[0
,1
]

ar
e

th
e

su
b

m
o

d
u

la
ri

ty
ra

ti
o

s,
β
>

1
,O

P
T

an
d
X

∗
d

en
o

te
th

e
o

p
ti

m
al

fu
n

ct
io

n
va

lu
e

an
d

an
o

p
ti

m
al

so
lu

ti
o

n
,r

es
p

ec
ti

ve
ly

.

4 Evolutionary Computation Volume x, Number x



Maximizing Monotone Approximately Submodular Minus Modular Functions

In this paper, we analyze the approximation performance of the GSEMO for solv-
ing Eq. (1). We prove that by maximizing a distorted objective (1 − γ/k)k−|X|g(X) −
c(X) + (|X|/k)c(V ) and minimizing the subset size |X| simultaneously, the GSEMO
can obtain a subset X with |X| ≤ k and g(X) − c(X) ≥ (1 − e−γ) · g(X∗) − c(X∗) in
O(n2(log n+k)) expected running time. Thus, the last row of Table 1 is filled. Our anal-
ysis together with (Friedrich and Neumann, 2015; Friedrich et al., 2018; Qian et al.,
2019) show that a simple MOEA, i.e., GSEMO, can achieve good polynomial-time ap-
proximation guarantees for diverse submodular optimization problems, disclosing
the general-purpose property of EAs. Note that our analysis is different from previ-
ous ones. In previous analyses, the original objective function is often treated as one
objective to be optimized in the bi-objective reformulation (Friedrich and Neumann,
2015; Friedrich et al., 2018; Qian et al., 2019), while we use a distorted one here. In fact,
we prove that by maximizing the original objective function (g(X)− c(X)) and mini-
mizing |X| simultaneously, the GSEMO fails to achieve the approximation guarantee
g(X)− c(X) ≥ (1− e−γ) · g(X∗)− c(X∗) in polynomial running time.

As the distorted greedy algorithm is the existing algorithm with the best-known
approximation guarantee (Harshaw et al., 2019), we empirically compare the GSEMO
with it as well as its stochastic version on the applications of Bayesian experimental
design and directed vertex cover. The results show that the GSEMO can perform sig-
nificantly better by using more running time. Compared with the running time bound
(i.e., the worst-case running time) derived in the theoretical analysis, the GSEMO
can be relatively efficient in practice. We also run the stochastic distorted greedy
algorithm multiple times independently until the running time reaches that of the
GSEMO. By comparing with the best solution found in the multiple runs, we find that
the GSEMO is still significantly better.

To examine whether employing more advanced MOEAs can further bring per-
formance improvement, we use the popular NSGA-II algorithm (Deb et al., 2002) to
maximize the distorted objective function and minimize the subset size simultane-
ously. Surprisingly, we observe that the GSEMO performs better. One reason may be
that the population of the NSGA-II can contain dominated solutions, leading to the
low efficiency, while the population of the GSEMO contains only non-dominated so-
lutions. Another reason may be that in our experiments, the NSGA-II uses a much
smaller probability of performing mutation than the GSEMO. Thus, an interesting
future work is to investigate whether the NSGA-II can be better by varying its param-
eters, e.g., the population size and the probability of performing mutation.

Furthermore, we run the GSEMO to maximize the original objective function
(g(X) − c(X)) and minimize the subset size |X| simultaneously. We observe that it
can achieve good performance in most cases, but can even be worse than the dis-
torted greedy algorithm sometimes. This verifies the theoretical analysis that using
(g(X) − c(X)) directly cannot guarantee a good approximation, i.e., can lead to bad
performance in worst cases.

The rest of this paper is organized as follows. Section 2 introduces the considered
problem class. Sections 3 to 5 present the GSEMO, theoretical analysis and empirical
study, respectively. Section 6 concludes the paper.

2 Maximizing Monotone Approximately Submodular Minus Modular
Functions with a Size Constraint

Let R and R+ denote the set of reals and non-negative reals, respectively. Given a
ground set V = {v1, v2, . . . , vn} of items, a set function f : 2V → R is defined on
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subsets of V , and maps any subset to a real value. A set function f : 2V → R is
monotone if ∀X ⊆ Y ⊆ V : f(X) ≤ f(Y ), implying that the function value will not
decrease as a set extends.

Definition 1 (Submodularity (Nemhauser et al., 1978)). A set function f : 2V → R is
submodular if

∀X,Y ⊆ V : f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ); (2)

or equivalently

∀X ⊆ Y ⊆ V, v /∈ Y : f(X ∪ {v})− f(X) ≥ f(Y ∪ {v})− f(Y ); (3)

or equivalently

∀X ⊆ Y ⊆ V : f(Y )− f(X) ≤
∑

v∈Y \X

(
f(X ∪ {v})− f(X)

)
. (4)

Eq. (2) implies that the sum of the function values of any two sets is at least as
large as that of their union and intersection. Eq. (3) intuitively represents the dimin-
ishing returns property, i.e., the benefit of adding an item to a set will not increase
as the set extends. Eq. (4) implies that the benefit by adding a set of items to a set
X is no larger than the combined benefits of adding its individual items to X. A set
function f : 2V → R is modular if Eq. (2), Eq. (3) or Eq. (4) holds with equality. For a
modular function f , it holds that ∀X ⊆ V : f(X) =

∑
v∈X f({v}); it is non-negative

iff ∀v ∈ V : f({v}) ≥ 0.
For a general set function f : 2V → R, several notions of approximate submodu-

larity (Krause and Cevher, 2010; Das and Kempe, 2011; Zhang and Vorobeychik, 2016;
Horel and Singer, 2016; Zhou and Spanos, 2016) have been introduced to measure to
what extent f has the submodular property. Among them, the submodularity ratio as
presented in Definition 2 has been used most widely.

Definition 2 (Submodularity Ratio (Das and Kempe, 2011)). Let f : 2V → R be a set
function. The submodularity ratio of f w.r.t. a set X ⊆ V and a parameter l ≥ 1 is

γX,l(f) = min
L⊆X,S:|S|≤l,S∩L=∅

∑
v∈S(f(L ∪ {v})− f(L))

f(L ∪ S)− f(L)
.

The submodularity ratio is actually defined based on Eq. (4), and captures how
much more f can increase by adding any set S of size at most l to any subset L of X,
compared with the combined benefits of adding the individual items of S to L. For
a monotone set function f , it holds that (1) ∀X ⊆ V, l ≥ 1 : γX,l(f) ∈ [0, 1]; (2) f is
submodular iff ∀X ⊆ V, l ≥ 1 : γX,l(f) = 1. The submodularity ratio has been used
to measure the closeness of the objective function to submodularity in diverse non-
submodular applications, e.g., sparse regression (Das and Kempe, 2011), low rank op-
timization (Khanna et al., 2017), sparse support selection (Elenberg et al., 2018), and
determinantal function maximization (Qian et al., 2018c), where the corresponding
lower bounds of γX,l(f) have been derived.

In this paper, we will use a slightly different definition of submodularity ratio as
in (Bian et al., 2017; Bogunovic et al., 2018; Harshaw et al., 2019), i.e.,

γ(f) = min
X⊆Y⊆V

∑
v∈Y \X(f(X ∪ {v})− f(X))

f(Y )− f(X)
. (5)
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It is easy to see that ∀X ⊆ V, l ≥ 1 : γX,l(f) ≥ γ(f). For a monotone set function f , it
holds that (1) γ(f) ∈ [0, 1], and (2) f is submodular iff γ(f) = 1.

The studied problem class is presented in Definition 3. The goal is to find a sub-
set of size at most k maximizing a given objective function, which is the difference
between a non-negative monotone approximately submodular function g and a non-
negative modular function c. The approximately submodular degree of g is charac-
terized by its submodularity ratio γ(g), which will be represented as γ for short.

Definition 3 (Maximizing Monotone Approximately Submodular Minus Modular
Functions with a Size Constraint). Given a non-negative monotone approximately
submodular function g : 2V → R+, a non-negative modular function c : 2V → R+,
and a budget k, to find a subset X ⊆ V of size at most k such that

arg maxX⊆V g(X)− c(X) s.t. |X| ≤ k. (6)

This is a natural extension of the widely studied problem of maximizing mono-
tone approximately submodular functions with a size constraint (Das and Kempe,
2018) by considering the cost (modeled by the modular function c) for each item.
Note that the objective function (g − c) is non-submodular in general, because oth-
erwise g is submodular, making a contradiction. It is easy to see that (g − c) can be
non-monotone and take negative values.

For submodular optimization, it is well known that the greedy algorithm, which
iteratively adds one item with the largest marginal gain on the objective function, is
a good approximation solver in many cases. Harshaw et al. (2019), however, showed
that the greedy algorithm fails to obtain an approximation guarantee for the consid-
ered problem Eq. (6), and thus, proposed the distorted greedy algorithm as presented
in Algorithm 1. In the i-th iteration, rather than maximizing the marginal gain on g−c,
i.e., g(Xi∪{v})− c(Xi∪{v})− (g(Xi)− c(Xi)) = (g(Xi∪{v})−g(Xi))− c({v}), it max-

imizes a distorted one,
(
1− γ

k

)k−(i+1)
(g(Xi ∪ {v})− g(Xi))− c({v}), which gradually

increases the importance of g. It has been proved that the distorted greedy algorithm
outputs a subsetX with g(X)−c(X) ≥ (1−e−γ) ·g(X∗)−c(X∗), whereX∗ denotes an
optimal solution of Eq. (6). Note that this polynomial-time approximation guarantee
is the best known one. Though its optimality is not yet known, the factor (1 − e−γ)
w.r.t. g(X∗) is optimal, because Harshaw et al. (2019) have proved that when the cost
for each item is 0, i.e., the objective function is just g, no polynomial-time algorithm
can achieve (1− e−γ + ε)-approximation, where ε > 0.

For acceleration, Harshaw et al. (2019) further proposed the stochastic distorted
greedy algorithm by adopting the random sampling technique (Mirzasoleiman et al.,
2015). As presented in Algorithm 2, in each iteration, it selects an item from a random
sample of size dnk ln( 1

ε )e, instead of the whole set V . Thus, the running time (counted
by the number of function evaluations) is reduced fromO(kn) toO(n log 1

ε ), while the
output subsetX can keep an approximation guarantee as E(g(X)−c(X)) ≥ (1−e−γ−
ε) · g(X∗)− c(X∗), where E(·) denotes the expectation of a random variable.

These two algorithms require the submodularity ratio γ of the function g. In cases
where the exact value of γ is unknown, lower bounds of γ can be used, and the approx-
imation guarantees change accordingly, i.e., γ is replaced by its lower bound. Note
that the value oracle model is assumed, i.e., for a subsetX, an algorithm can query an
oracle to obtain its function value.
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Algorithm 1 Distorted Greedy Algorithm

Input: monotone approximately submodular g : 2V → R+ with the submodularity
ratio γ, modular c : 2V → R+, and budget k
Process:

1: Let X0 = ∅;
2: for i = 0 to k − 1 do
3: vi ← arg maxv∈V

(
1− γ

k

)k−(i+1)
(g(Xi ∪ {v})− g(Xi))− c({v});

4: if
(
1− γ

k

)k−(i+1)
(g(Xi ∪ {vi})− g(Xi))− c({vi}) > 0 then

5: Xi+1 ← Xi ∪ {vi}
6: else
7: Xi+1 ← Xi

8: end if
9: end for

10: return Xk

Algorithm 2 Stochastic Distorted Greedy Algorithm

Input: monotone approximately submodular g : 2V → R+ with the submodularity
ratio γ, modular c : 2V → R+, budget k, and ε > 0
Process:

1: Let X0 = ∅;
2: for i = 0 to k − 1 do
3: Vi ← dnk ln( 1

ε )e items uniformly sampled from V with replacement;

4: vi ← arg maxv∈Vi

(
1− γ

k

)k−(i+1)
(g(Xi ∪ {v})− g(Xi))− c({v});

5: if
(
1− γ

k

)k−(i+1)
(g(Xi ∪ {vi})− g(Xi))− c({vi}) > 0 then

6: Xi+1 ← Xi ∪ {vi}
7: else
8: Xi+1 ← Xi

9: end if
10: end for
11: return Xk

3 Multi-objective Evolutionary Algorithms

To examine the approximation performance of EAs optimizing the problem class in
Definition 3, we consider the GSEMO, a simple MOEA widely used in previous theo-
retical analyses (Laumanns et al., 2004; Friedrich et al., 2010; Neumann et al., 2011;
Qian et al., 2013). As presented in Algorithm 3, the GSEMO is used for maximizing
multiple pseudo-Boolean objective functions simultaneously. Note that a subset X
of V can be represented by a Boolean vector x ∈ {0, 1}n, where the i-th bit xi = 1
if vi ∈ X, otherwise xi = 0. Thus, a pseudo-Boolean function f : {0, 1}n → R nat-
urally characterizes a set function f : 2V → R. In the following, x ∈ {0, 1}n and its
corresponding subset will not be distinguished for notational convenience.

Different from the scenario of single-objective optimization, solutions may be
incomparable in multi-objective maximization max (f1, f2, . . . , fm), due to the con-
flicting of objectives. The domination-based comparison is usually adopted.

Definition 4 (Domination). For two solutions x and x′,
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Algorithm 3 GSEMO Algorithm

Input: m pseudo-Boolean functions f1, f2, . . . , fm, where fi : {0, 1}n → R
Process:

1: Choose x ∈ {0, 1}n uniformly at random;
2: P ← {x};
3: repeat
4: Choose x from P uniformly at random;
5: Create x′ by flipping each bit of xwith probability 1/n;
6: if @z ∈ P such that z � x′ then
7: P ← (P \ {z ∈ P | x′ � z}) ∪ {x′}
8: end if
9: until some criterion is met

10: return arg maxx∈P,|x|≤k g(x)− c(x)

1. xweakly dominates x′ (i.e., x is better than x′, denoted by x � x′) if ∀1 ≤ i ≤ m :
fi(x) ≥ fi(x′);

2. x dominates x′ (i.e., x is strictly better than x′, denoted by x � x′) if x � x′ ∧ ∃i :
fi(x) > fi(x

′);

3. x and x′ are incomparable if neither x � x′ nor x′ � x.

As presented in Algorithm 3, the GSEMO starts from a random initial solution
(lines 1–2), and iteratively improves the quality of solutions in the population P
(lines 3–9). In each iteration, a parent solution x is selected from P uniformly at
random (line 4), and used to generate an offspring solution x′ by bit-wise mutation
(line 5), which flips each bit of x independently with probability 1/n. The offspring
solution x′ is then used to update the population P (lines 6–8). If x′ is not dominated
by any parent solution in P (line 6), it will be included into P , and meanwhile those
parent solutions weakly dominated by x′ will be deleted (line 7). By this updating
procedure, the solutions contained in the population P are always incomparable.

To employ the GSEMO, the problem Eq. (6) is transformed into a bi-objective
maximization problem

arg maxx∈{0,1}n (f1(x), f2(x)), (7)

where

{
f1(x) = (1− γ

k )k−|x|g(x)− c(x) + |x|
k c(1),

f2(x) = −|x|.

Note that 1 denotes the all-1s vector (i.e., the whole set V ), implying that c(1) =
c(V ) =

∑
v∈V c({v}) is a constant. Thus, the GSEMO is to maximize the distorted

objective function f1 and minimize the subset size |x| =
∑n
i=1 xi simultaneously. The

setting of f1 is inspired by the distorted greedy algorithm (i.e., Algorithm 1). In line 10
of the GSEMO, the best solution w.r.t. the original single-objective constrained prob-
lem Eq. (6) will be selected from the resulting population P as the final solution; that
is, the solution with the largest (g − c) value satisfying the size constraint in P (i.e.,
arg maxx∈P,|x|≤k g(x)− c(x)) will be returned.

Note that bi-objective reformulation here is an intermediate process for solving
single-objective constrained optimization problems, which has been shown helpful
in several cases (Neumann and Wegener, 2006; Friedrich et al., 2010; Neumann et al.,
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2011; Qian et al., 2015). What we focus on is still the quality of the best solution w.r.t.
the original single-objective problem, in the population found by the GSEMO, rather
than the quality of the population w.r.t. the reformulated bi-objective problem. Thus,
the running time of the GSEMO is measured by the number of function evaluations
until the best solution w.r.t. the original single-objective problem in the population
reaches some approximation guarantee for the first time.

4 Theoretical Analysis

In this section, we first prove the approximation guarantee of the GSEMO in Theo-
rem 1, showing that the returned solution can obtain at least (1 − e−γ) as much g as
an optimal solution by paying the same cost. This reaches the best known guaran-
tee, obtained by the distorted greedy algorithm (Harshaw et al., 2019). As in previous
analyses for non-monotone submodular optimization, e.g., (Buchbinder et al., 2014;
Friedrich et al., 2019), we may assume that there is a setD of k “dummy” items whose
marginal contribution to any set is 0, i.e., ∀X ⊆ V : g(X) = g(X \D)∧c(X) = c(X \D).
Otherwise, we can add k such dummy items to the ground set V , and delete them
from the returned solution of the GSEMO, effecting neither the objective value of an
optimal solution, nor the objective value of the GSEMO’s returned solution.

Theorem 1. For maximizing monotone approximately submodular minus modular
functions with a size constraint, i.e., solving the problem Eq. (6), the expected running
time of the GSEMO until finding a solution xwith |x| ≤ k and g(x)− c(x) ≥ (1− e−γ) ·
g(x∗) − c(x∗) is O(n2(log n + k)), where γ denotes the submodularity ratio of g as in
Eq. (5), and x∗ denotes an optimal solution of Eq. (6).

In the proof, we first derive the expected running time upper bound O(n2 log n)
of the GSEMO until finding the special solution 0, as shown in Lemma 1. The result
actually can be applied to any situation where the GSEMO maximizes a bi-objective
pseudo-Boolean problem with (−|x|) being one objective, and has been used in pre-
vious analyses, e.g., Theorem 2 of (Friedrich and Neumann, 2015) and Theorem 1
of (Qian et al., 2019). Here, we still give the proof for completeness.

Lemma 1. For maximizing monotone approximately submodular minus modular
functions with a size constraint, i.e., solving the problem Eq. (6), the expected running
time of the GSEMO until finding the all-0s solution 0 is O(n2 log n).

Proof. According to the procedure of updating the population P in the GSEMO, the
solutions maintained in P must be incomparable. Because two solutions with the
same value on one objective are comparable, P contains at most one solution for
each value of one objective. As f2(x) = −|x| can take values 0,−1, . . . ,−n, it holds
that |P | ≤ n+ 1.

Let i = min{|x| | x ∈ P} denote the minimum number of 1-bits of the solutions
in the population P , and x denote the corresponding solution, i.e., |x| = i. First, iwill
not increase, because solutions with more 1-bits cannot dominate x. Second, i can
decrease in one iteration by selecting x in line 4 of Algorithm 3 and flipping only one
1-bit ofx in line 5, occurring with probability (1/|P |)·(i/n)(1−1/n)n−1 ≥ i/(en(n+1))
due to uniform selection and bit-wise mutation. Note that the generated offspring
solution x′ has (i − 1) number of 1-bits, and will be included into P , implying that
i decreases by 1. Thus, the expected running time until i = 0 (i.e., finding the all-0s
vector) is at most

∑n
i=1 en(n+ 1)/i = O(n2 log n).

After finding the all-0s solution 0, we analyze the expected running time of the
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GSEMO until finding a solution with the desired approximation guarantee. This proof
part is inspired by the analysis of the distorted greedy algorithm in (Harshaw et al.,
2019), and relies on Lemma 2, that for any x ∈ {0, 1}n with |x| < k, there always ex-
ists one item, whose inclusion can improve the objective f1 by at least some quantity
relating to g(x∗) and c(x∗).

Lemma 2. For any x ∈ {0, 1}n with |x| < k, there exists one item v /∈ x such that

f1(x ∪ {v})− f1(x) ≥ γ

k

(
1− γ

k

)k−|x|−1
g(x∗) +

1

k
(c(1)− c(x∗)),

where f1 is defined in Eq. (7), and k is the size constraint.

Proof. Let v∗ = arg maxv∈V \x(1− γ/k)k−|x|−1(g(x ∪ {v})− g(x))− c({v}). Due to the
existence of k dummy items and |x| < k, it holds that (1 − γ/k)k−|x|−1(g(x ∪ {v∗}) −
g(x))− c({v∗}) ≥ 0. Note that |x∗| ≤ k. Thus, we have

k ·
((

1− γ

k

)k−|x|−1
(g(x ∪ {v∗})− g(x))− c({v∗})

)
≥ |x∗| ·

((
1− γ

k

)k−|x|−1
(g(x ∪ {v∗})− g(x))− c({v∗})

)
≥
∑
v∈x∗

((
1− γ

k

)k−|x|−1
(g(x ∪ {v})− g(x))− c({v})

)
=
(

1− γ

k

)k−|x|−1 ∑
v∈x∗

(g(x ∪ {v})− g(x))− c(x∗)

≥ γ
(

1− γ

k

)k−|x|−1
(g(x ∪ x∗)− g(x))− c(x∗)

≥ γ
(

1− γ

k

)k−|x|−1
(g(x∗)− g(x))− c(x∗),

where the second inequality holds by the definition of v∗ and ∀v ∈ x : (1 −
γ/k)k−|x|−1(g(x ∪ {v}) − g(x)) − c({v}) = −c({v}) ≤ 0, the equality holds by the
modularity of c, the third inequality holds by the definition of γ in Eq. (5) and the
monotonicity of g, and the last inequality holds by x∗ ⊆ x ∪ x∗ and the monotonicity
of g. This implies that(

1− γ

k

)k−|x|−1
(g(x ∪ {v∗})− g(x))− c({v∗}) (8)

≥ γ

k

(
1− γ

k

)k−|x|−1
(g(x∗)− g(x))− 1

k
c(x∗).

According to the definition of f1 in Eq. (7), we have

f1(x ∪ {v∗})− f1(x)

=
(

1− γ

k

)k−|x∪{v∗}|
g(x ∪ {v∗})− c(x ∪ {v∗}) +

|x ∪ {v∗}|
k

c(1)

−
((

1− γ

k

)k−|x|
g(x)− c(x) +

|x|
k
c(1)

)
=
(

1− γ
k

)k−|x|−1
(g(x ∪ {v∗})− g(x))− c({v∗}) +

1

k
c(1) +

γ

k

(
1− γ

k

)k−|x|−1
g(x)
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≥ γ

k

(
1− γ

k

)k−|x|−1
g(x∗) +

1

k
(c(1)− c(x∗)),

where the second equality holds by |x ∪ {v∗}| = |x| + 1 and the modularity of c, and
the inequality holds by Eq. (8). Thus, the lemma holds.

Proof of Theorem 1. After finding the solution 0, it will always be kept in the popula-
tion P . This is because 0 has the largest f2 value (i.e., f2(0) = 0), and no solution can
weakly dominate it. To analyze the expected running time until reaching the desired
approximation guarantee, we consider a quantity Jmax, which is defined as

Jmax = max {j ∈ {0, 1, . . . , k} | ∃x ∈ P : |x| ≤ j

∧ f1(x) ≥
(

1− γ

k

)k−j (
1−

(
1− γ

k

)j)
· g(x∗) +

j

k
(c(1)− c(x∗))

}
.

It can be seen that Jmax = k implies that there exists one solution x in P satisfying
that |x| ≤ k and

f1(x) ≥
(

1− γ

k

)k−k (
1−

(
1− γ

k

)k)
· g(x∗) +

k

k
(c(1)− c(x∗)) (9)

≥ (1− e−γ) · g(x∗) + c(1)− c(x∗).

According to the definition of f1 in Eq. (7) and |x| ≤ k, we have

f1(x) =
(

1− γ

k

)k−|x|
g(x)− c(x) +

|x|
k
c(1) (10)

≤ g(x)− c(x) + c(1).

Combining Eqs. (9) and (10) leads to

g(x)− c(x) ≥ (1− e−γ) · g(x∗)− c(x∗).

Thus, Jmax = k implies that there exists one solution x in P satisfying that |x| ≤ k and
g(x)− c(x) ≥ (1− e−γ) · g(x∗)− c(x∗); that is, the desired approximation guarantee is
reached. Next, we only need to analyze the expected running time until Jmax = k.

As the population P contains the solution 0, which satisfies that |0| = 0 and
f1(0) = (1 − γ/k)kg(0) ≥ 0, Jmax is at least 0. Assume that currently Jmax = i < k,
implying that P contains solutions satisfying that |x| ≤ i and

f1(x) ≥
(

1− γ

k

)k−i(
1−

(
1− γ

k

)i)
· g(x∗) +

i

k
(c(1)− c(x∗)). (11)

Let x̂ be the one with the largest f1 value among these solutions, which is actually the
solution with size at most i and the largest f1 value in P . First, Jmax will not decrease.
If x̂ is deleted from P in line 7 of Algorithm 3, the newly included solution x′ must
weakly dominate x̂, implying that |x′| ≤ |x̂| and f1(x′) ≥ f1(x̂).

Second, we analyze the expected time required to increase Jmax. We consider
such an event in one iteration of Algorithm 3: x̂ is selected for mutation in line 4, and
only one specific 0-bit corresponding to the item v in Lemma 2 is flipped in line 5.
This event is called “a successful event”, occurring with probability (1/|P |) · (1/n)(1−
1/n)n−1 ≥ 1/(en(n + 1)) due to uniform selection and bit-wise mutation. Note that
the size |P | of population is always no larger than n + 1, as shown in the proof of
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Lemma 1. According to Lemma 2, the offspring solution x′ generated by a successful
event satisfies

f1(x′)− f1(x̂) ≥ γ

k

(
1− γ

k

)k−|x̂|−1
g(x∗) +

1

k
(c(1)− c(x∗)). (12)

We next consider two cases according to the value of |x̂|, satisfying |x̂| ≤ i.
(1) |x̂| = i. Combining Eqs. (11) and (12) leads to

f1(x′) ≥
(

1− γ

k

)k−i(
1−

(
1− γ

k

)i)
· g(x∗) +

i

k
(c(1)− c(x∗)) (13)

+
γ

k

(
1− γ

k

)k−i−1
g(x∗) +

1

k
(c(1)− c(x∗))

=
(

1− γ

k

)k−i−1(
1−

(
1− γ

k

)i+1
)
· g(x∗) +

i+ 1

k
(c(1)− c(x∗)).

Note that |x′| = |x̂| + 1 = i + 1. Then, x′ will be added into P ; otherwise, x′ must be
dominated by one solution in P (line 6 of Algorithm 3), and this implies that Jmax has
already been larger than i, contradicting the assumption Jmax = i. After including x′,
Jmax ≥ i+ 1, i.e., Jmax increases.

(2) |x̂| < i. It holds that |x′| = |x̂|+ 1 ≤ i, and by Eq. (12),

f1(x′)− f1(x̂) ≥ γ

k

(
1− γ

k

)k−1
g(x∗) +

1

k
(c(1)− c(x∗)). (14)

Note that x′ will be added into P ; otherwise, x′ must be dominated by one solution
in P , contradicting the definition of x̂, which is the solution with size at most i and
the largest f1 value in P . If f1(x′) ≥ (1 − γ/k)k−i−1(1 − (1 − γ/k)i+1) · g(x∗) + ((i +
1)/k)(c(1) − c(x∗)), Jmax increases. Otherwise, the solution x̂ now becomes x′, and
f1(x̂) increases by at least (γ/k)(1 − γ/k)k−1g(x∗) + (1/k)(c(1) − c(x∗)) according to
Eq. (14).

Based on the above analysis, a successful event will either increase Jmax directly
or increase f1(x̂) by at least (γ/k)(1− γ/k)k−1g(x∗) + (1/k)(c(1)− c(x∗)). It is easy to
see that f1(x̂) will not decrease due to the domination-based comparison. It is also
known from Eq. (13) that f1(x̂) needs to increase at most (γ/k)(1− γ/k)k−i−1g(x∗) +
(1/k)(c(1)−c(x∗)) for increasing Jmax. Thus, the number of successful events required
to increase Jmax is at most⌈

(γ/k)(1− γ/k)k−i−1g(x∗) + (1/k)(c(1)− c(x∗))
(γ/k)(1− γ/k)k−1g(x∗) + (1/k)(c(1)− c(x∗))

⌉
(15)

≤
⌈

(γ/k)(1− γ/k)k−i−1g(x∗)

(γ/k)(1− γ/k)k−1g(x∗)

⌉
=

⌈(
1− γ

k

)−i⌉
.

A successful event occurs with probability at least 1/(en(n + 1)) in one iteration, im-
plying that the expected time of one successful event is at most en(n+1). Thus, the ex-
pected time to make Jmax ≥ i+1 (i.e., increase Jmax) is at most d(1−γ/k)−ie·en(n+1).

To make Jmax = k, it is sufficient to increase Jmax from 0 to k step-by-step, imply-
ing that the expected running time until Jmax = k is at most

k−1∑
i=0

⌈(
1− γ

k

)−i⌉
· en(n+ 1) ≤ en(n+ 1) ·

k−1∑
i=0

((
1− γ

k

)−i
+ 1

)
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≤ en(n+ 1) · (ek + 1) = O(n2k).

Lemma 1 gives the expected running time O(n2 log n) of the GSEMO for finding
the solution 0. Thus, the total expected running time of the GSEMO for finding a
solution xwith |x| ≤ k and g(x)− c(x) ≥ (1− e−γ) · g(x∗)− c(x∗) is O(n2(log n+ k)).
The theorem holds. �

From the proof, we can find the reason of adding (|x|/k) · c(1) into f1 in Eq. (7).
The term (|x|/k) · c(1) can increase the benefit of adding a single item, and make
the derived lower bound of the benefit in Lemma 2 positive. Without this term, the
lower bound of the benefit in Lemma 2 will become (γ/k)(1 − γ/k)k−|x|−1g(x∗) −
c(x∗)/k ≥ (γ/k)(1−γ/k)k−1g(x∗)−c(x∗)/k, which is not necessarily positive, and the
required increment on f1 for Jmax increasing from i to (i + 1) will become (γ/k)(1 −
γ/k)k−i−1g(x∗)− c(x∗)/k; thus, the analysis of Eq. (15) will fail.

4.1 GSEMO Fails When f1 = g − c
We have proved that by using the distorted objective function, i.e., f1(x) = (1 −
γ
k )k−|x|g(x) − c(x) + |x|

k c(1), the GSEMO can find a solution x with |x| ≤ k and
g(x) − c(x) ≥ (1 − e−γ) · g(x∗) − c(x∗), in O(n2(log n + k)) expected running time.
A natural question is whether the GSEMO using the original objective function (i.e.,
f1(x) = g(x)− c(x)) can obtain the same polynomial-time approximation guarantee.
To answer this question, we first introduce the application, i.e., directed vertex cover
with costs, of the considered general problem in Definition 3.

Definition 5 (Directed Vertex Cover with Costs (Harshaw et al., 2019)). Given a di-
rected graph G = (V,E) with non-negative vertex weights w : V → R+ and costs
c : V → R+, and a budget k, to find a subset X ⊆ V of at most k vertices such that

arg maxX⊆V g(X)− c(X) s.t. |X| ≤ k,

where g(X) =
∑
v∈N(X)∪X w(v), N(X) = {(u, v) ∈ E | u ∈ X} is the set of vertices

pointed to by X, and c(X) =
∑
v∈X c(v).

It is easy to verify that g is non-negative, monotone and submodular, i.e., γ = 1.
Note that this problem is actually the dual norm of vertex cover, but we still use this
name for consistency with (Harshaw et al., 2019).

Next, we give a negative answer by proving that the GSEMO with f1 = g − c re-
quires exponential expected running time to achieve the desired approximation guar-
antee on a specific example of directed vertex cover with costs.

Example 1. The parameters of directed vertex cover with costs in Definition 5 are set as:
the directed graph G = (V,E) is shown in Figure 1, the weights satisfy ∀v ∈ V : w(v) =
1, the costs satisfy c(v1) = n− 3n/ log n, ∀i ≥ 2 : c(vi) = 1/ log n, and the budget k = n,
where the base of the logarithm is 2.

The objective function (g(X)−c(X)) of this example can be calculated as follows:

∀X ⊆ V, g(X)− c(X) =

{
(3n− |X|+ 1)/ log n if v1 ∈ X,
|X| · (1− 1/ log n) otherwise.

(16)

Thus, when v1 ∈ X, the best solution is {v1}, which has the objective value 3n/ log n;
when v1 /∈ X, the best solution is V \ {v1}, which has the objective value (n − 1)(1 −
1/ log n). Assume that n ≥ 64. We then have (n− 1)(1− 1/ log n) > 3n/ log n, implying
that the optimal solution x∗ is V \ {v1}.
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𝑣1

𝑣2

𝑣3

𝑣𝑛

Figure 1: An example graph of directed vertex cover with costs.

Theorem 2 shows that for this example, the GSEMO using f1 = g − c fails to find
a solution x with |x| ≤ k and g(x) − c(x) ≥ (1 − e−γ) · g(x∗) − c(x∗) in polynomial
expected time. The proof idea is that the GSEMO has some probability to start from
the specific solution {v1}, which requires to be flipped by many bits simultaneously
in mutation for making improvement, and thus leads to exponential running time.

Theorem 2. For Example 1 with n ≥ 64, when using f1 = g − c, the expected running
time until the GSEMO finding a solution x with |x| ≤ k and g(x) − c(x) ≥ (1 − e−γ) ·
g(x∗)− c(x∗) is at least 2n.

Proof. For convenience of analysis, assume that 3n/ log n is an integer. Consider
that the initial solution of the GSEMO is {v1}, occurring with probability 1/2n due
to uniform selection. By Eq. (16), f1({v1}) = 3n/ log n, and for any X with X 6=
{v1} ∧ |X| ≤ 3n/ log n, f1(X) < f1({v1}). This implies that in the bi-objective for-
mulation (f1(X) = g(X) − c(X), f2(X) = −|X|), the solution {v1} dominates any
solution with size no larger than 3n/ log n, except the empty solution 0 and {v1} itself.
Thus, to generate a solution X with f1(X) = g(X) − c(X) > 3n/ log n, it is neces-
sary to flip at least 3n/ log n bits simultaneously when mutating a solution in line 5
of the GSEMO. As the probability of flipping at least 3n/ log n bits simultaneously in
mutation is at most

(
n

3n/ logn

)
/n3n/ logn ≤ 2n/23n = 1/22n, the expected running time

of the GSEMO until finding a solution X with g(X) − c(X) > 3n/ log n, when start-
ing from {v1}, is at least 22n. Combining the probability 1/2n of the initial solution
being {v1}, the expected running time of the GSEMO until finding a solution X with
g(X)− c(X) > 3n/ log n is at least 2n.

As the optimal solution x∗ is V \ {v1}, we have g(x∗) = n − 1 and c(x∗) = (n −
1)/ log n. Thus, 3n/ log n = Θ(1/ log n)·g(x∗)−c(x∗). Because γ = 1 for the application
of directed vertex cover with costs, it must require more running time for the GSEMO
to find a solution X with g(X)− c(X) ≥ (1− e−γ) · g(x∗)− c(x∗) than g(X)− c(X) >
3n/ log n. Thus, the theorem holds.

The above analysis relies on a specific initialization with the solution 10n−1, i.e.,
{v1}. Though the occurring probability is only 1/2n, it is sufficient to prove the ex-
ponential expected running time of the GSEMO. We also note that with a constant
probability, the initial solution x satisfies that x1 = 0 (i.e., v1 is not selected) and
|x| > 3n/((log n) − 1). It is known from Eq. (16) that for any x with x1 = 0 and
|x| > 3n/((log n)− 1), g(x)− c(x) = |x| · (1− 1/ log n) > 3n/ log n, implying that such
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an x is incomparable with 10n−1 (which has g(10n−1)−c(10n−1) = 3n/ log n) in the bi-
objective reformulation. In fact, any solution xwith x1 = 0 and |x| > 3n/((log n)− 1)
is Pareto optimal, which cannot be dominated by other solutions. Let x̂ denote the
solution with the largest number of 1-bits in the population. Thus, in this case, the
GSEMO can find Pareto optimal solutions with more 1-bits by selecting x̂ and flip-
ping only some of its 0-bits except the first one. By repeating this process, the GSEMO
can efficiently find a solution x with x1 = 0 and |x| ≥ (1 − 1/e)(n − 1), satisfying
g(x)−c(x) = |x|·(1−1/ log n) ≥ (1−1/e)(n−1)−(n−1)/ log n = (1−e−γ)·g(x∗)−c(x∗),
i.e., reaching the desired approximation guarantee.

5 Empirical Study

In this section, we empirically examine the performance of the GSEMO by comparing
it with the following algorithms:
• DG (Harshaw et al., 2019) is the distorted greedy algorithm, as presented in Al-
gorithm 1. It is the previous algorithm, achieving the best known polynomial-time
approximation guarantee.
• SDG (Harshaw et al., 2019) is the stochastic version of DG, as presented in Algo-
rithm 2. The SDG with ε ∈ {0.1, 0.2}will be compared, which are denoted by SDG(0.1)
and SDG(0.2), respectively.
• Multi-SDG runs the SDG multiple times independently, and returns the best found
solution. For each independent run of the SDG, the value of parameter ε is uniformly
sampled from [0.1, 0.5] at random.
• GSEMOg−c is similar to the GSEMO. The only difference is the setting of f1. The
GSEMOg−c sets f1(x) as the original objective function g(x)− c(x), while the GSEMO
adopts the distorted objective function, i.e., f1(x) = (1− γ

k )k−|x|g(x)− c(x) + |x|
k c(1).

• NSGA-II is similar to the GSEMO except the employed MOEA. Here, the popular
NSGA-II (Deb et al., 2002) instead of the GSEMO is employed to optimize the refor-
mulated bi-objective problem Eq. (7).

Note that when implementing the MOEA-based algorithms (i.e., GSEMO,
GSEMOg−c and NSGA-II), the solutions with size at least (k + 3) (i.e., the overly in-
feasible solutions) are excluded by setting their first objective f1 to −∞, in order to
improve the efficiency. The number of iterations of the GSEMO is set to dek2ne. The
GSEMO performs one function evaluation in each iteration. For the fairness of com-
parison, the Multi-SDG, GSEMOg−c and NSGA-II run until the number of function
evaluations reaches dek2ne, so that the same computational budget is used. For the
NSGA-II, we employ the bit-wise mutation and uniform crossover operators, and use
the parameter setting: the population size is 100, and the probabilities of performing
mutation and crossover in each iteration are 0.1 and 1.0, respectively. The 100 initial
solutions of the NSGA-II are randomly generated. Note that the initial solution of the
GSEMO and GSEMOg−c is set to the all-0s solution 0 in the experiments.

We compare these algorithms on two applications of the considered problem
Eq. (6): Bayesian experimental design with costs, and directed vertex cover with costs,
where the function g is approximately and exactly submodular, respectively. Because
all the algorithms except DG are randomized algorithms, we repeat the run 20 times
independently, and report the average (g − c) values and the standard deviation.

5.1 Bayesian Experimental Design with Costs

Let V = [v1,v2, . . . ,vn] ∈ Rd×n denote a measurement matrix, and VX ∈ Rd×|X| de-
note the submatrix of V with its columns indexed by X ⊆ {1, 2, . . . , n}. In Bayesian
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experimental design, the goal is to select measurements VX to maximize the quality
of parameter estimation. Krause et al. (2008) considered the Bayesian A-optimality
objective function, in order to maximally reduce the variance of the posterior distri-
bution over parameters in linear models, i.e., yX = VT

Xθ + ζX , where θ ∈ Rd and
ζX ∈ R|X| are the parameter and noise vectors, respectively. Each measurement vi
corresponds to one experiment, which can be performed to obtain a noisy linear ob-
servation, but also introduces a cost ci. To have a low cost, Harshaw et al. (2019) con-
sidered the problem of Bayesian experimental design with costs, presented as follows.

Definition 6 (Bayesian Experimental Design with Costs (Harshaw et al., 2019)). Given
a measurement matrix V = [v1,v2, . . . ,vn] ∈ Rd×n, a linear model yX = VT

Xθ +
ζX , costs c1, c2, . . . , cn, and a budget k, where θ has a Gaussian prior distribution θ ∼
N (0,Σ), the Gaussian i.i.d. noise ζX ∼ N (0, σ2I|X|), and I|X| denotes the identity
matrix of size |X|, to find a submatrix VX of at most k columns such that

arg maxX⊆{1,2,...,n} g(X)− c(X) s.t. |X| ≤ k,

where g(X) = tr(Σ)− tr((Σ−1 +σ−2VXVT
X)−1) is the Bayesian A-optimality function,

tr(·) denotes the trace of a matrix, and c(X) =
∑
i∈X ci is the cost function.

It has been shown (Harshaw et al., 2019) that g is non-negative, monotone,
and approximately submodular with γ ≥ (1 + (s2/σ2)λmax(Σ))−1, where s =
maxi∈{1,2,...,n} ‖vi‖2, and λmax(·) denotes the largest eigenvalue of a square matrix.
Note that as the exact computation of γ is difficult, this lower bound of γ will be used
in the implementation of the compared algorithms.

We use two data sets1: housing and segment. The former has 506 instances and
14 features, i.e., n = 506 and d = 14, and the latter has 2,310 instances and 19 features,
i.e., n = 2, 310 and d = 19. Each feature vector is normalized to have mean 0 and
variance 1. The covariance matrix Σ of the Gaussian prior distribution of θ is set to
ADAT, where each entry of A is randomly drawn from the standard Gaussian distri-
butionN (0, 1) and D is a diagonal matrix with the i-th entry on the diagonal equal to
(i/d)2. The cost ci is set to α · g({i}), where α = 0.8.

For the housing data set, we use σ ∈ {3d, 4d, 7d} to generate three instances
with the lower bound of γ equal to 0.456, 0.567 and 0.800, respectively, represent-
ing different approximately submodular degrees. For the segment data set, we use
σ ∈ {6d, 11d, 20d} to generate three instances with the lower bound of γ equal to 0.281,
0.621 and 0.840, respectively. The budget k is set from 5 to 20. Note that Harshaw et al.
(2019) also used the housing data set in their experiments, and our experimental set-
ting is similar to theirs, except that we use different values of σ in order to generate
instances with different approximately submodular degrees.

The results are plotted in Figures 2 and 3. Note that the standard deviation of
some algorithms (e.g., the GSEMO in Figure 2(b)) can be very small, which is because
almost the same good solutions are found in 20 runs of one algorithm. As expected,
the DG is better than the SDG, and the SDG becomes worse as ε increases. This is
because to decrease the running time, a smaller set of candidate items is examined
for selection in each iteration of the SDG, which may degrade the performance. The
Multi-SDG is also better than the SDG, because the Multi-SDG outputs the best solu-
tion found in multiple independent runs of the SDG.

It can be clearly observed that the MOEA-based algorithms (i.e., GSEMO,
GSEMOg−c and NSGA-II) are better than the greedy-style algorithms (i.e., DG,

1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
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(a) γ = 0.456 (b) γ = 0.567 (c) γ = 0.800

Figure 2: Comparison on the application of Bayesian experimental design with costs.
The data set housing (506#inst, 14#feat) is used to generate three problem instances
with different values of γ.

5 10 15 20
Budget k

0.6

0.7

0.8

0.9

1

O
bj

ec
tiv

e 
va

lu
e

DG SDG(0.1) SDG(0.2) Multi-SDG GSEMO GSEMOg-c NSGA-II

5 10 15 20
Budget k

1.5

2

2.5

O
bj

ec
tiv

e 
va

lu
e

5 10 15 20
Budget k

0.4

0.5

0.6

0.7

0.8

0.9

1

O
bj

ec
tiv

e 
va

lu
e

5 10 15 20
Budget k

0.05

0.1

0.15

0.2

0.25

0.3

0.35

O
bj

ec
tiv

e 
va

lu
e

(a) γ = 0.281 (b) γ = 0.621 (c) γ = 0.840

Figure 3: Comparison on the application of Bayesian experimental design with costs.
The data set segment (2,310#inst, 19#feat) is used to generate three problem instances
with different values of γ.

SDG(0.1), SDG(0.2) and Multi-SDG), showing the advantage of bi-objective reformu-
lation. Compared with the GSEMO, the NSGA-II performs worse in most cases. As the
solutions with size at least (k + 3) are excluded in the optimization process, the pop-
ulation can contain at most (k + 3) non-dominated solutions, corresponding to the
subset size {0, 1, . . . , k + 2}, respectively. Note that any two solutions with the same
size are comparable. We test the budget k from 5 to 20, while the population size of
the NSGA-II is 100. This implies that the population of the NSGA-II may contain many
redundant dominated solutions, thus leading to the bad performance. The GSEMO
will not encounter this issue, because it always contains only non-dominated solu-
tions generated-so-far. Another possible reason for the inferior performance of the
NSGA-II is the relatively low probability (which is 0.1) of employing mutation in each
iteration. Compared with the GSEMOg−c using the original objective function (g − c)
as f1, the GSEMO using the distorted objective function as f1 does not show the ad-
vantage, and can even be a little worse sometimes. Note that this does not contradict
the theoretical analysis, because the GSEMOg−c may not encounter the worst-case
examples in practice.

The above experiments compare the algorithms under different values of the
budget k. By fixing k = 15, we then consider different values of α ∈ {0, 0.1, . . . , 1},
which is used to construct the costs ci = α · g({i}). The results on the data sets hous-
ing and segment are shown in Tables 2 and 3, respectively. To compare the algorithms,
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Table 2: The objective values (mean+std.) of the compared algorithms on the appli-
cation of Bayesian experimental design with costs, using the data set housing with
k = 15, γ ∈ {0.456, 0.567, 0.800} and α ∈ {0, 0.1, . . . , 1}. For each α, the largest values
are bolded. In the rows of “#best”, the largest values are bolded. The average rank of
each algorithm on all α is computed, where the smallest values are bolded. The “#di-
rect win” denotes the number of α on which the GSEMO has a larger objective value
than the corresponding algorithm (1 tie is counted as 0.5 win), where significant cells
by the sign-test (Demšar, 2006) with confidence level 0.05 are bolded.

γ = 0.456

α GSEMO DG SDG(0.1) SDG(0.2) Multi-SDG GSEMOg−c NSGA-II
0 12.894±0.000 12.894 12.378±0.285 12.068±0.318 12.578±0.188 12.894±0.000 12.872±0.025

0.1 10.786±0.000 10.786 10.429±0.160 10.224±0.230 10.621±0.094 10.786±0.000 10.773±0.018
0.2 8.761±0.000 8.761 8.532±0.094 8.304±0.178 8.628±0.075 8.761±0.000 8.756±0.009
0.3 6.877±0.000 6.877 6.648±0.109 6.480±0.124 6.785±0.057 6.876±0.002 6.874±0.005
0.4 5.250±0.003 5.250 4.998±0.093 4.894±0.111 5.125±0.041 5.250±0.002 5.250±0.005
0.5 3.784±0.008 3.794 3.606±0.077 3.532±0.072 3.716±0.037 3.789±0.007 3.790±0.008
0.6 2.645±0.008 2.518 2.427±0.071 2.400±0.076 2.573±0.022 2.646±0.006 2.648±0.004
0.7 1.719±0.028 1.575 1.505±0.094 1.471±0.102 1.629±0.021 1.728±0.022 1.728±0.020
0.8 0.972±0.031 0.866 0.789±0.061 0.723±0.082 0.915±0.011 0.990±0.024 0.980±0.022
0.9 0.402±0.011 0.371 0.268±0.054 0.267±0.057 0.376±0.006 0.409±0.006 0.397±0.011
1 0.004±0.002 0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.006±0.001 0.000±0.000

#best 5 6 0 0 0 8 3
average rank 2.455 3.273 5.909 6.818 4.636 1.909 3.000

GSEMO: #direct win 7.5 11 11 11 3 6.5

γ = 0.567

α GSEMO DG SDG(0.1) SDG(0.2) Multi-SDG GSEMOg−c NSGA-II
0 15.578±0.000 15.578 14.657±0.382 14.298±0.371 15.201±0.227 15.578±0.000 15.571±0.027

0.1 13.363±0.000 13.363 12.763±0.205 12.358±0.351 13.076±0.192 13.363±0.000 13.362±0.003
0.2 11.179±0.000 11.179 10.742±0.183 10.411±0.271 10.911±0.173 11.179±0.000 11.178±0.006
0.3 9.041±0.000 9.041 8.645±0.188 8.406±0.258 8.783±0.146 9.041±0.000 9.040±0.004
0.4 6.943±0.000 6.942 6.625±0.143 6.509±0.175 6.783±0.085 6.943±0.000 6.941±0.004
0.5 5.053±0.000 5.033 4.801±0.097 4.760±0.095 4.942±0.048 5.053±0.000 5.050±0.007
0.6 3.446±0.003 3.385 3.138±0.075 3.104±0.097 3.311±0.027 3.448±0.002 3.435±0.012
0.7 2.138±0.009 2.000 1.857±0.083 1.811±0.112 1.975±0.019 2.133±0.004 2.129±0.013
0.8 1.120±0.013 0.983 0.894±0.066 0.851±0.070 1.00±0.010 1.132±0.003 1.102±0.024
0.9 0.432±0.014 0.386 0.316±0.038 0.298±0.046 0.409±0.004 0.443±0.005 0.416±0.026
1 0.002±0.001 0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.004±0.000 0.000±0.000

#best 7 4 0 0 0 10 0
average rank 1.818 3.455 5.909 6.818 4.818 1.545 3.636

GSEMO: #direct win 9 11 11 11 4 11

γ = 0.800

α GSEMO DG SDG(0.1) SDG(0.2) Multi-SDG GSEMOg−c NSGA-II
0 8.688±0.000 8.688 8.392±0.165 8.070±0.270 8.545±0.105 8.688±0.000 8.680±0.018

0.1 7.510±0.000 7.510 7.189±0.192 7.047±0.246 7.434±0.073 7.510±0.000 7.506±0.011
0.2 6.339±0.000 6.339 6.122±0.094 6.024±0.137 6.243±0.062 6.339±0.000 6.334±0.010
0.3 5.181±0.000 5.181 5.030±0.084 4.887±0.161 5.126±0.042 5.181±0.000 5.180±0.001
0.4 4.075±0.000 4.075 3.962±0.050 3.821±0.079 4.017±0.036 4.075±0.000 4.075±0.001
0.5 3.046±0.000 2.895 2.738±0.053 2.710±0.079 2.839±0.033 3.046±0.000 3.046±0.000
0.6 2.095±0.000 1.856 1.714±0.051 1.697±0.049 1.806±0.026 2.095±0.000 2.091±0.006
0.7 1.274±0.003 1.050 0.963±0.051 0.944±0.043 1.031±0.013 1.277±0.000 1.269±0.004
0.8 0.650±0.008 0.520 0.463±0.026 0.461±0.023 0.509±0.006 0.656±0.000 0.640±0.008
0.9 0.216±0.004 0.165 0.128±0.017 0.122±0.022 0.165±0.003 0.226±0.000 0.213±0.007
1 0.000±0.000 0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

#best 8 6 1 1 1 11 3
average rank 2.182 3.182 5.818 6.727 4.864 1.909 3.318

GSEMO: #direct win 8 10.5 10.5 10.5 4 9.5

we employ several criteria: the number of best (i.e., #best), the number of direct win
(i.e., #direct win) that is a pairwise comparison followed by the sign-test (Demšar,
2006), and the rank (Demšar, 2006). From the rows of “#best”, we can observe that the
GSEMO and GSEMOg−c achieve the best performance in most cases. From the rows
of “average rank”, it can be observed that the compared algorithms have a similar
performance rank as in Figures 2 and 3. The SDG algorithms are the worst, between
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Table 3: The objective values (mean+std.) of the compared algorithms on the appli-
cation of Bayesian experimental design with costs, using the data set segment with
k = 15, γ ∈ {0.281, 0.621, 0.840} and α ∈ {0, 0.1, . . . , 1}. For each α, the largest values
are bolded. In the rows of “#best”, the largest values are bolded. The average rank of
each algorithm on all α is computed, where the smallest values are bolded. The “#di-
rect win” denotes the number of α on which the GSEMO has a larger objective value
than the corresponding algorithm (1 tie is counted as 0.5 win), where significant cells
by the sign-test (Demšar, 2006) with confidence level 0.05 are bolded.

γ = 0.281

α GSEMO DG SDG(0.1) SDG(0.2) Multi-SDG GSEMOg−c NSGA-II
0 29.738±0.000 29.738 28.688±0.528 27.873±0.839 29.122±0.248 29.738±0.000 29.564±0.110

0.1 24.886±0.000 24.886 23.852±0.440 23.330±0.873 24.467±0.256 24.886±0.000 24.779±0.099
0.2 20.489±0.000 20.489 19.706±0.368 19.146±0.419 20.113±0.195 20.489±0.000 20.417±0.081
0.3 16.302±0.000 16.272 15.473±0.482 15.329±0.474 16.066±0.147 16.302±0.000 16.255±0.064
0.4 12.685±0.090 12.563 11.973±0.296 11.870±0.359 12.544±0.113 12.648±0.090 12.657±0.093
0.5 9.426±0.139 9.259 8.881±0.388 8.808±0.323 9.390±0.080 9.443±0.136 9.520±0.086
0.6 6.636±0.062 6.536 5.871±0.371 5.947±0.431 6.608±0.036 6.599±0.071 6.638±0.060
0.7 4.279±0.025 4.242 3.813±0.430 3.548±0.427 4.243±0.018 4.281±0.020 4.289±0.028
0.8 2.448±0.012 2.414 1.872±0.347 1.667±0.246 2.419±0.011 2.451±0.009 2.444±0.013
0.9 1.074±0.006 1.057 0.748±0.196 0.716±0.196 1.044±0.006 1.074±0.006 1.063±0.013
1 0.001±0.001 0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.003±0.000 0.001±0.001

#best 6 3 0 0 0 7 3
average rank 2.045 3.864 6.045 6.773 4.591 2.000 2.682

GSEMO: #direct win 9.5 11 11 11 4.5 7.5

γ = 0.621

α GSEMO DG SDG(0.1) SDG(0.2) Multi-SDG GSEMOg−c NSGA-II
0 10.152±0.000 10.152 9.409±0.543 8.896±0.633 9.880±0.147 10.152±0.000 10.127±0.037

0.1 8.804±0.000 8.804 8.275±0.381 7.900±0.426 8.616±0.112 8.804±0.000 8.785±0.029
0.2 7.479±0.000 7.479 7.095±0.238 6.570±0.534 7.321±0.105 7.479±0.000 7.445±0.034
0.3 6.173±0.000 6.173 5.876±0.160 5.620±0.298 6.051±0.060 6.173±0.000 6.164±0.011
0.4 4.941±0.000 4.941 4.641±0.143 4.461±0.246 4.816±0.060 4.941±0.090 4.924±0.018
0.5 3.740±0.000 3.740 3.459±0.145 3.360±0.167 3.668±0.050 3.740±0.136 3.738±0.005
0.6 2.645±0.000 2.521 2.331±0.073 2.257±0.112 2.459±0.035 2.645±0.071 2.643±0.004
0.7 1.713±0.001 1.490 1.361±0.059 1.281±0.097 1.454±0.020 1.713±0.001 1.712±0.002
0.8 0.938±0.002 0.747 0.643±0.062 0.600±0.105 0.731±0.008 0.939±0.000 0.927±0.015
0.9 0.349±0.004 0.285 0.223±0.055 0.211±0.050 0.283±0.002 0.360±0.001 0.347±0.003
1 0.000±0.000 0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

#best 9 7 1 1 1 11 1
average rank 2.091 2.909 5.818 6.727 4.909 1.909 3.636

GSEMO: #direct win 7.5 10.5 10.5 10.5 4.5 10.5

γ = 0.840

α GSEMO DG SDG(0.1) SDG(0.2) Multi-SDG GSEMOg−c NSGA-II
0 2.208±0.000 2.208 2.017±0.102 1.804±0.155 2.113±0.059 2.208±0.000 2.197±0.016

0.1 1.966±0.000 1.966 1.764±0.101 1.655±0.196 1.877±0.057 1.966±0.000 1.960±0.009
0.2 1.725±0.000 1.725 1.546±0.113 1.478±0.107 1.664±0.050 1.725±0.000 1.722±0.004
0.3 1.484±0.000 1.484 1.354±0.087 1.186±0.135 1.446±0.024 1.484±0.000 1.480±0.006
0.4 1.245±0.000 1.245 1.143±0.058 1.060±0.096 1.192±0.034 1.245±0.000 1.242±0.004
0.5 1.006±0.000 0.952 0.872±0.046 0.753±0.073 0.917±0.018 1.006±0.000 1.003±0.006
0.6 0.768±0.000 0.623 0.516±0.049 0.468±0.060 0.594±0.017 0.768±0.000 0.767±0.002
0.7 0.531±0.000 0.392 0.317±0.032 0.299±0.051 0.377±0.013 0.531±0.000 0.530±0.003
0.8 0.306±0.000 0.187 0.141±0.024 0.117±0.031 0.179±0.006 0.306±0.000 0.300±0.006
0.9 0.116±0.000 0.054 0.038±0.010 0.031±0.014 0.054±0.000 0.118±0.000 0.104±0.006
1 0.000±0.000 0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

#best 10 6 1 1 1 11 1
average rank 2.000 3.136 5.818 6.727 4.864 1.909 3.545

GSEMO: #direct win 8 10.5 10.5 10.5 5 10.5

which the SDG(0.1) is better than the SDG(0.2). The DG and Multi-SDG perform bet-
ter than the SDG, but are clearly worse than the GSEMO and GSEMOg−c. The NSGA-II
is worse than the GSEMO and GSEMOg−c, and can even be worse than the DG. By the
sign-test with confidence level 0.05, the GSEMO is significantly better than the SDG
and Multi-SDG in all cases, significantly better than the DG in 2/6 cases, and signif-
icantly better than the NSGA-II in 4/6 cases. The GSEMO and GSEMOg−c have no
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(a) γ = 0.456 (b) γ = 0.567 (c) γ = 0.800

Figure 4: Performance vs. running time (i.e., #objective evaluations) of the GSEMO
on Bayesian experimental design with costs using the data set housing, where k = 20.
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Figure 5: Performance vs. running time (i.e., #objective evaluations) of the GSEMO
on Bayesian experimental design with costs using the data set segment, where k = 20.

significant difference in all cases.
The GSEMO requiresO(n2(log n+ k)) expected number of iterations in theory as

shown in Theorem 1, and runs for dek2ne iterations in the experiments. Note that one
iteration of the GSEMO costs one objective function evaluation. We want to examine
how efficient the GSEMO can be in practice. Thus, we select the DG and SDG for the
baseline, and plot the curve of objective value over the running time for the GSEMO,
as shown in Figures 4 and 5. The budget k is set to 20. Note that the running time
is considered in the number of objective function evaluations, and one unit on the
x-axis corresponds to kn evaluations, the running time of the DG. We can observe
that the GSEMO quickly obtains a better (g − c) value, implying that the GSEMO can
be efficient in practice. We also examine the running time in CPU seconds. For the
GSEMO, we record the running time until finding a solution at least as good as that
obtained by the DG. The results are shown in Figures 6 and 7. As expected, the SDG
is the fastest, and becomes more and more faster as ε increases. The GSEMO is not so
efficient as observed in Figures 4 and 5, because the objective function evaluation is
very fast in our experiments, and thus the cost of performing mutation and updating
the population cannot be neglected but increases the running time substantially.

5.2 Directed Vertex Cover with Costs

Next, we want to compare the algorithms in cases where the function g is submod-
ular. For this purpose, we use the application of directed vertex cover with costs (as
presented in Definition 5), where the function g is exactly submodular. As g is sub-
modular, γ = 1 is used when implementing the algorithms.
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Figure 6: CPU running time of the DG, SDG(0.1), SDG(0.2) and GSEMO on Bayesian
experimental design with costs using the data set housing, where k = 20.
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Figure 7: CPU running time of the DG, SDG(0.1), SDG(0.2) and GSEMO on Bayesian
experimental design with costs using the data set segment, where k = 20.

We use three graphs2. email-Eu-core is a directed graph with 1,005 vertices and
25,571 edges, generated using email data from a large European research institution.
Each vertex represents one person, and edge (u, v) means that person u sent at least
one email to person v. frb45-21-mis and frb53-24-mis are two benchmark graphs for
vertex cover. Each of them contains five instances, and we use the first one. frb45-21-
mis contains 945 vertices and 59,186 edges, and frb53-24-mis contains 1,272 vertices
and 94,227 edges. For these two benchmark graphs, each edge is treated as two di-
rected edges. The weight of each vertex v is set to 1, i.e., ∀v ∈ V : w(v) = 1. The cost
of each vertex v is set to 1 + max{d(v)− q, 0}, i.e., ∀v ∈ V : c(v) = 1 + max{d(v)− q, 0},
where d(v) denotes the out-degree of v. Note that Harshaw et al. (2019) also used the
email-Eu-core data set in their experiments, and our setting is as same as theirs.

By fixing q = 6, the comparison results under different values of the budget
k ∈ {10, 20, . . . , 100} are plotted in Figure 8. By fixing k = 60, the results under differ-
ent values of q ∈ {1, 2, . . . , 12} are shown in Table 4. We can observe the similar perfor-
mance rank of the algorithms as observed for the application of Bayesian experimen-
tal design with costs, except that the performance of the GSEMOg−c degrades largely
sometimes. On the frb53-24-mis data set, the GSEMOg−c is significantly worse than
the GSEMO by the sign-test with confidence level 0.05 in Table 4. In fact, it can be ob-
served from Figure 8(c) that the GSEMOg−c is even worse than the DG. This empirical
observation verifies our theoretical analysis that the GSEMOg−c fails to achieve an ap-
proximation guarantee as good as the GSEMO, i.e., the GSEMOg−c can perform badly
in worst cases. Furthermore, the advantage of the GSEMO over other algorithms is
more clear for this application. For example, the GSEMO is always significantly better

2https://snap.stanford.edu/data/ and https://turing.cs.hbg.psu.edu/txn131/
vertex_cover.html
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Figure 8: Comparison on the application of directed vertex cover with costs. The three
data sets email-Eu-core, frb45-21-mis and frb53-24-mis are used to generate three
problem instances. Note that γ is always 1.
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Figure 9: Performance vs. running time (i.e., #objective evaluations) of the GSEMO
on directed vertex cover with costs, where k = 20.
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Figure 10: CPU running time of the DG, SDG(0.1), SDG(0.2) and GSEMO on directed
vertex cover with costs, where k = 20.

than the DG, SDG, Multi-SDG and NSGA-II in Table 4. We also examine the actual
running time of the GSEMO to be better than the DG in Figures 9 and 10. Compared
with that observed in the experiments of Bayesian experimental design with costs
(i.e., in Figures 4-7), the GSEMO requires more running time. However, it still takes
much less time than the running time upper boundO(n2(log n+k)) derived in theory.

6 Conclusion

In this paper, we analyze the approximation performance of the GSEMO for solving
the problem arg maxX⊆V g(X) − c(X) s.t. |X| ≤ k, where g(X) is a non-negative
monotone approximately submodular function and c(X) is a non-negative modu-
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Table 4: The objective values (mean+std.) of the compared algorithms on the appli-
cation of directed vertex cover with costs, using the data sets email-Eu-core, frb45-21-
mis and frb53-24-mis with q ∈ {1, 2, . . . , 12}. For each q, the largest values are bolded.
In the rows of “#best”, the largest values are bolded. The average rank of each algo-
rithm on all q is computed, where the smallest values are bolded. The “#direct win”
denotes the number of q on which the GSEMO has a larger objective value than the
corresponding algorithm (1 tie is counted as 0.5 win), where significant cells by the
sign-test (Demšar, 2006) with confidence level 0.05 are bolded.

email-Eu-core
q GSEMO DG SDG(0.1) SDG(0.2) Multi-SDG GSEMOg−c NSGA-II
1 60.00±0.000 42 40.35±1.014 38.35±1.711 41.40±1.020 60.00±0.000 59.40±0.490
2 118.70±0.557 115 90.35±2.798 83.55±4.183 91.15±6.239 118.20±1.030 115.60±1.530
3 169.40±0.860 166 142.15±3.825 130.85±4.564 142.35±6.725 169.60±0.663 166.70±1.552
4 196.85±0.910 191 168.20±3.995 159.05±3.905 173.90±6.098 196.30±1.100 192.90±1.546
5 227.65±1.014 222 199.25±4.170 190.3±4.681 199.05±8.743 228.15±1.152 224.30±1.833
6 261.70±1.382 253 233.05±3.598 222.10±6.640 233.30±7.721 262.05±1.244 257.70±1.764
7 298.95±0.805 289 266.35±5.102 256.10±4.795 269.70±8.379 297.85±1.526 295.75±2.321
8 328.85±1.526 321 295.70±4.473 285.80±7.298 297.00±10.640 328.30±1.735 326.10±2.468
9 360.35±1.152 351 323.95±5.581 313.05±5.268 324.00±7.918 359.50±1.987 356.90±1.814

10 391.15±0.792 386 352.00±4.919 335.95±7.871 354.80±10.921 390.00±1.643 386.70±2.124
11 417.65±1.652 412 373.70±6.543 362.25±8.526 379.60±10.519 416.60±2.853 412.65±1.768
12 445.40±1.428 432 396.45±6.217 383.70±6.092 399.40±11.872 443.55±2.179 439.35±3.103

#best 9 0 0 0 0 4 0
average rank 1.292 4.000 5.917 7.000 5.083 1.708 3.000

GSEMO: #direct win 12 12 12 12 8.5 12

frb45-21-mis
q GSEMO DG SDG(0.1) SDG(0.2) Multi-SDG GSEMOg−c NSGA-II
1 9.25±0.536 8 5.30±0.843 4.95±0.589 7.20±0.510 9.55±0.497 7.10±0.768
2 18.60±0.663 18 12.60±1.463 12.70±1.584 16.65±0.853 19.15±0.726 17.50±1.072
3 29.35±0.572 28 22.15±1.711 21.00±1.924 27.40±0.800 29.90±0.436 29.20±1.122
4 41.15±1.108 37 31.35±2.475 30.50±2.802 38.20±1.288 41.05±0.865 40.10±1.375
5 53.30±0.954 52 42.35±2.700 41.40±2.458 49.70±1.345 52.80±1.077 52.45±0.865
6 65.80±1.208 65 54.30±3.051 52.15±2.725 61.95±1.658 66.45±1.658 65.80±1.778
7 78.05±0.973 77 64.30±3.132 64.15±2.971 73.60±1.715 78.20±2.337 78.15±1.314
8 91.35±0.654 88 76.95±3.248 74.45±4.068 86.85±1.982 91.75±1.410 90.25±1.374
9 105.20±0.872 102 89.35±4.175 86.55±4.904 99.60±2.010 105.00±1.844 105.15±0.963

10 119.65±0.910 118 102.85±2.886 98.25±4.097 111.65±2.515 117.000±2.470 119.30±1.187
11 130.90±1.091 127 111.40±4.398 110.50±4.006 124.60±2.888 129.00±1.581 129.65±1.388
12 144.15±0.910 141 126.35±4.246 122.65±5.597 136.40±2.035 142.75±2.586 142.80±1.288

#best 6 0 0 0 0 6 0
average rank 1.625 3.833 6.083 6.917 4.833 1.917 2.792

GSEMO: #direct win 12 12 12 12 6 12

frb53-24-mis
q GSEMO DG SDG(0.1) SDG(0.2) Multi-SDG GSEMOg−c NSGA-II
1 10.00±0.000 10 6.95±0.589 7.00±0.548 8.95±0.384 10.30±0.458 8.50±0.742
2 20.45±0.497 19 16.45±1.161 15.85±1.236 19.65±0.477 21.10±0.539 19.20±0.872
3 33.60±0.490 33 27.00±1.517 26.25±1.997 31.60±0.663 33.50±0.806 32.50±1.396
4 48.50±0.742 46 39.05±2.692 37.25±1.920 45.75±1.090 47.10±0.943 47.55±1.244
5 60.95±0.865 58 49.15±2.351 47.80±2.502 56.15±1.062 58.95±0.865 59.10±1.136
6 74.75±1.220 73 62.90±3.223 59.55±3.584 68.60±1.562 71.30±1.520 72.95±1.658
7 89.60±0.490 87 75.55±2.765 74.00±3.479 83.05±1.802 85.70±2.002 88.65±1.682
8 105.50±0.592 104 90.20±3.234 89.45±3.612 98.55±2.269 102.05±1.631 104.05±1.161
9 122.60±0.583 121 107.45±2.655 102.75±3.223 114.40±1.772 118.45±1.936 119.85±1.276

10 140.75±0.829 136 124.30±3.148 118.75±3.998 130.80±2.462 136.10±2.844 138.25±1.894
11 157.95±0.218 157 137.95±4.006 133.70±4.371 147.15±3.054 153.30±2.170 156.70±1.487
12 172.60±1.068 168 151.60±3.555 143.65±4.567 160.30±3.084 167.40±1.985 170.85±1.652

#best 10 0 0 0 0 2 0
average rank 1.208 3.125 6.083 6.917 4.750 3.083 2.833

GSEMO: #direct win 11.5 12 12 12 10 12

lar function, and thus (g(X) − c(X)) can be non-monotone and non-submodular
in general. We prove that by maximizing the distorted objective function (1 −
γ/k)k−|X|g(X) − c(X) + (|X|/k)c(V ) and the subset size |X| simultaneously, the
GSEMO within O(n2(log n + k)) expected running time can find a subset X satis-
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fying that |X| ≤ k and g(X) − c(X) ≥ (1 − e−γ) · g(X∗) − c(X∗), where γ is the
submodularity ratio of g and X∗ denotes an optimal subset. This reaches the best-
known polynomial-time approximation guarantee, previously obtained by the dis-
torted greedy algorithm. Furthermore, we prove that by maximizing the original ob-
jective function (g(X) − c(X)) and |X| simultaneously, the GSEMO fails to achieve
such an approximation guarantee in polynomial running time. Experimental results
on the applications of Bayesian experimental design and directed vertex cover show
the superior performance of the GSEMO over several distorted greedy-based algo-
rithms and the popular NSGA-II algorithm. They also show that the performance of
the GSEMO using the original objective function (g(X) − c(X)) can degrade largely
sometimes, verifying the theoretical analysis.

Submodular optimization is originally defined for set functions, where a solution
is a subset. Now it has been extended to the situations where a solution is a multiset
or a sequence. Thus, it is expected to examine the performance of EAs for these exten-
sions of submodular optimization. There has been some preliminary efforts toward
this direction, e.g., (Qian et al., 2018a,b,d). It is also interesting to study the behav-
ior of EAs for submodular optimization under uncertain environments. For example,
it has been proved that the GSEMO can maintain the approximation guarantee effi-
ciently under dynamic constraints (Roostapour et al., 2019; Do and Neumann, 2021),
and can be robust against noise (Qian et al., 2017b; Qian, 2020).
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