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Abstract Evolutionary algorithms (EAs) are population-based general-purpose
optimization algorithms, and have been successfully applied in real-world opti-
mization tasks. However, previous theoretical studies often employ EAs with only
a parent or offspring population and focus on specific problems. Furthermore,
they often only show upper bounds on the running time, while lower bounds are
also necessary to get a complete understanding of an algorithm. In this paper, we
analyze the running time of the (µ+λ)-EA (a general population-based EA with
mutation only) on the class of pseudo-Boolean functions with a unique global
optimum. By applying the recently proposed switch analysis approach, we prove
the lower boundΩ(n lnn+µ+λn ln lnn/ lnn) for the first time. Particularly on
the two widely-studied problems, OneMax and LeadingOnes, the derived lower
bound reveals that the (µ+λ)-EA will be slower than the (1+1)-EA when the pop-
ulation size µ or λ is above a moderate order. Our results imply that the increase
of population size, while usually desired in practice, bears the risk of increasing
the lower bound of the running time and thus should be carefully considered.

1 Introduction

Evolutionary algorithms (EAs) [2] are a kind of population-based heuristic optimiza-
tion algorithm. They have been widely applied in industrial optimization problems.
However, the theoretical analysis is difficult due to their complexity and randomness.
In the recent decade, there has been a significant rise on the running time analysis
(one essential theoretical aspect) of EAs [1,16]. For example, Droste et al. [7] proved
that the expected running time of the (1+1)-EA on linear pseudo-Boolean functions is
Θ(n lnn); for the (µ+1)-EA solving several artificially designed functions, a large par-
ent population size µ was shown to be able to reduce the running time from exponential
to polynomial [13,17,19,20]; for the (1+λ)-EA solving linear functions, the expected
running time was proved to be O(n lnn + λn) [6], and a tighter bound up to lower
order terms was derived on the specific linear function OneMax [10].
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Previous running time analyses often consider EAs with only a parent or offspring
population, which do not fully reflect the population-based nature of real EAs. When
involving both parent and offspring populations, the running time analysis gets more
complex, and only a few results have been reported on the (λ+λ)-EA (i.e., a specific
version of the (µ+λ)-EA with µ = λ), which maintains λ solutions and generates λ
offspring solutions by only mutation in each iteration. He and Yao [12] compared the
expected running time of the (1+1)-EA and the (λ+λ)-EA on two specific artificial
problems, and proved that the introduction of a population can reduce the running time
exponentially. On the contrary side, Chen et al. [5] found that a large population size is
harmful for the (λ+λ)-EA solving the TrapZeros problem. Chen et al. [4] also proved
that the expected running time of the (λ+λ)-EA on the OneMax and LeadingOnes prob-
lems is O(λn ln lnn+n lnn) and O(λn lnn+n2), respectively. Later, a low selection
pressure was shown to be better for the (λ+λ)-EA solving a wide gap problem [3], and
a proper mutation-selection balance was proved to be necessary for the effectiveness of
the (λ+λ)-EA solving the SelPres problem [15].

The above-mentioned studies on the (λ+λ)-EA usually focus on specific test func-
tions, while EAs are general purpose optimization algorithms and can be applied to all
optimization problems where solutions can be represented and evaluated. Thus, it is
necessary to analyze EAs over large problem classes. Meanwhile, most previous run-
ning time analyses on population-based EAs only show upper bounds. Although upper
bounds are appealing for revealing the ability of an algorithm, lower bounds which
reveal the limitation are also necessary for a complete understanding of the algorithm.

In this paper, we analyze the running time of the (µ+λ)-EA solving the class of
pseudo-Boolean functions with a unique global optimum, named UBoolean, which
covers many P and NP-hard combinatorial problems. By applying the recently pro-
posed approach switch analysis [21], we prove that the expected running time is lower
bounded by Ω(n lnn + µ + λn ln lnn/ lnn). Particularly, when applying this lower
bound to the two specific problems, OneMax and LeadingOnes, we can have a more
complete understanding of the impact of the offspring population size λ. It was known
that the (µ+λ)-EA is always not asymptotically faster than the (1+1)-EA on these two
problems [14,18]. But it was left open that what is the range of λ where the (µ+λ)-
EA is asymptotically slower than the (1+1)-EA. Note that the expected running time of
the (1+1)-EA on OneMax and LeadingOnes is Θ(n lnn) and Θ(n2), respectively [7].
Thus, we can easily get that the (µ+λ)-EA is asymptotically slower than the (1+1)-EA
when λ ∈ ω( (lnn)
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ln lnn ) on OneMax and λ ∈ ω( n lnn
ln lnn ) on LeadingOnes. For the parent

population size µ, we easily get obvious ranges ω(n lnn) and ω(n2) for the (µ+λ)-EA
being asymptotically slower on OneMax and LeadingOnes, respectively.

The rest of this paper is organized as follows. Section 2 introduces some preliminar-
ies. Section 3 introduces the employed analysis approach. The running time analysis of
the (µ+λ)-EA on UBoolean is presented in Section 4. Section 5 concludes the paper.

2 Preliminaries

In this section, we first introduce the (µ+λ)-EA and the pseudo-Boolean problem class
studied in this paper, respectively, then describe how to model EAs as Markov chains.



Algorithm 1 (µ+λ)-EA
Given solution length n and objective function f , let every population, denoted by variable ξ,
contain µ solutions. The (µ+λ)-EA consists of the following steps:
1: let t← 0, and ξ0 ← µ solutions uniformly and randomly selected from {0, 1}n.
2: repeat until some criterion is met
3: for i = 1 to λ
4: select a solution s from ξt according to some selection mechanism.
5: create s′i by flipping each bit of s with probability 1/n.
6: end for
7: ξt+1 := select µ solutions from ξt ∪ {s′1, . . . , s′λ} according to some strategy.
8: let t← t+ 1.

2.1 (µ+λ)-EA

EAs [2] are used as general heuristic randomized optimization approaches. Starting
from an initial set of solutions (called a population), EAs try to improve the popula-
tion by a cycle of three stages: reproducing new solutions from the current population,
evaluating the newly generated solutions, and updating the population by removing bad
solutions. The (µ+λ)-EA as described in Algorithm 1 is a general population-based
EA with mutation only for optimizing pseudo-Boolean problems over {0, 1}n. It main-
tains µ solutions. In each iteration, one solution selected from the current population
is used to generate an offspring solution by bit-wise mutation (i.e., line 5); this process
is repeated independently for λ times; then µ solutions out of the parent and offspring
solutions are selected to be the next population. Note that the selection strategies for re-
producing new solutions and updating the population can be arbitrary. Thus, the consid-
ered (µ+λ)-EA is quite general, and covers most population-based EAs with mutation
only in previous theoretical analyses, e.g., [5,12,15].

The running time of EAs is usually defined as the number of fitness evaluations until
an optimal solution is found for the first time, since the fitness evaluation is the compu-
tational process with the highest cost of the algorithm [11,22]. Note that running time
analysis has been a leading theoretical aspect for randomized search heuristics [1,16].

2.2 Pseudo-Boolean Function Problems

The pseudo-Boolean function class is a large function class which only requires the
solution space to be {0, 1}n and the objective space to be R. It covers many typical P
and NP-hard combinatorial problems such as minimum spanning tree and minimum set
cover. We consider a subclass named UBoolean as shown in Definition 1, in which
every function has a unique global optimum. Note that maximization is considered since
minimizing f is equivalent to maximizing −f . For any function in UBoolean, we
assume without loss of generality that the optimal solution is 11 . . . 1 (briefly denoted
as 1n). This is because EAs treat the bits 0 and 1 symmetrically, and thus the 0-bits in
an optimal solution can be interpreted as 1-bits without affecting the behavior of EAs.
The expected running time of unbiased black-box algorithms and mutation-based EAs
on UBoolean has been proved to be Ω(n lnn) [14,18].



Definition 1 (UBoolean). A function f : {0, 1}n → R in UBoolean satisfies that

∃s ∈ {0, 1}n,∀s′ ∈ {0, 1}n − {s}, f(s′) < f(s).

Diverse pseudo-Boolean problems in UBoolean have been used for analyzing the
running time of EAs, and then to disclose properties of EAs. Here, we introduce the
LeadingOnes problem, which will be used in this paper. As presented in Definition 2,
it is to maximize the number of consecutive 1-bits starting from the left. It has been
proved that the expected running time of the (1+1)-EA on LeadingOnes is Θ(n2) [7].

Definition 2 (LeadingOnes). The LeadingOnes Problem of size n is to find an n bits
binary string s∗ such that, letting sj be the j-th bit of a solution s ∈ {0, 1}n,

s∗ = argmaxs∈{0,1}n

(
f(s) =

∑n

i=1

∏i

j=1
sj

)
.

2.3 Markov Chain Modeling

EAs can be modeled and analyzed as Markov chains, e.g., in [11,22]. Let X be the
population space and X ∗ ⊆ X be the optimal population space. Note that an optimal
population in X ∗ contains at least one optimal solution. Let ξt ∈ X be the population
after t generations. Then, an EA can be described as a random sequence {ξ0, ξ1, ξ2, . . .}.
Since ξi+1 can often be decided from ξi and the reproduction operator of the EA (i.e.,
P (ξi+1 | ξi, ξi−1, . . . , ξ0) = P (ξi+1 | ξi)), the random sequence forms a Markov
chain {ξt}+∞t=0 with state space X , denoted as “ξ ∈ X ” for simplicity. Note that all sets
considered in this paper are multisets, e.g., a population can contain several copies of
the same solution.

The goal of EAs is to reach the optimal space X ∗ from an initial population ξ0.
Given a Markov chain ξ ∈ X modeling an EA and t0 ≥ 0, we define τ as a random
variable such that τ = min{t ≥ 0 | ξt0+t ∈ X ∗}. That is, τ is the number of steps
needed to reach the optimal space for the first time when starting from time t0. The
mathematical expectation of τ , E[[τ | ξt0 = x]] =

∑∞
i=0 iP (τ = i), is called the con-

ditional first hitting time (CFHT) of the chain staring from ξt0 = x. If ξt0 is drawn
from a distribution πt0 , the expectation of the CFHT over πt0 , E[[τ | ξt0 ∼ πt0 ]] =∑
x∈X πt0(x)E[[τ | ξt0 = x]], is called the distribution-CFHT (DCFHT) of the chain

from ξt0 ∼ πt0 . Since the running time of EAs is counted by the number of fitness
evaluations, the cost of initialization and each generation should be considered. For
example, the expected running time of the (µ+λ)-EA is µ+ λ · E[[τ | ξ0 ∼ π0]].

A Markov chain ξ ∈ X is said to be absorbing, if ∀t ≥ 0 : P (ξt+1 ∈ X ∗ | ξt ∈
X ∗) = 1. Note that all Markov chains modeling EAs can be transformed to be absorb-
ing by making it unchanged once an optimal state has been found. This transformation
obviously does not affect its first hitting time.

3 The Switch Analysis Approach

To derive running time bounds of the (µ+λ)-EA on UBoolean, we first model the EA
process as a Markov chain, and then apply the switch analysis approach.



Switch analysis [21,23] as presented in Theorem 1 is a recently proposed approach
that compares the DCFHT of two Markov chains. Since the state spaces of the two
chains may be different, an aligned mapping function φ : X → Y as shown in Defini-
tion 3 is employed. Note that φ−1(y) = {x ∈ X | φ(x) = y}. Using switch analysis to
derive running time bounds of a given chain ξ ∈ X (i.e., modeling a given EA running
on a given problem), one needs to

1. construct a reference chain ξ′ ∈ Y for comparison and design an aligned mapping
function φ from X to Y;

2. analyze their one-step transition probabilities, i.e., P (ξt+1 | ξt) and P (ξ′t+1 | ξ′t),
the CFHT of the chain ξ′ ∈ Y , i.e., E[[τ ′ | ξ′t]], and the state distribution of the chain
ξ ∈ X , i.e., πt;

3. examine Eq. (1) to get the difference ρt between each step of the two chains;
4. sum up ρt to get a running time gap ρ of the two chains, and then bounds on

E[[τ | ξ0]] can be derived by combining E[[τ ′ | ξ′0]] with ρ.

Definition 3 (Aligned Mapping [21]). Given two spaces X and Y with target sub-
spaces X ∗ and Y∗, respectively, a function φ : X → Y is called
(a) a left-aligned mapping if ∀x ∈ X ∗ : φ(x) ∈ Y∗;
(b) a right-aligned mapping if ∀x ∈ X − X ∗ : φ(x) /∈ Y∗;
(c) an optimal-aligned mapping if it is both left-aligned and right-aligned.

Theorem 1 (Switch Analysis [21]). Given two absorbing Markov chains ξ ∈ X and
ξ′ ∈ Y , let τ and τ ′ denote the hitting events of ξ and ξ′, respectively, and let πt denote
the distribution of ξt. Given a series of values {ρt ∈ R}+∞t=0 with ρ =

∑+∞
t=0 ρt and a

right (or left)-aligned mapping φ : X → Y , if E[[τ | ξ0 ∼ π0]] is finite and

∀t :
∑

x∈X ,y∈Y
πt(x)P (ξt+1 ∈ φ−1(y) | ξt = x)E[[τ ′ | ξ′0 = y]]

≤ (or ≥)
∑
u,y∈Y

πφt (u)P (ξ
′
1 = y | ξ′0 = u)E[[τ ′ | ξ′1 = y]] + ρt,

(1)

where πφt (u) = πt(φ
−1(u)) =

∑
x∈φ−1(u) πt(x), we have

E[[τ | ξ0 ∼ π0]] ≤ (or ≥)E[[τ ′ | ξ′0 ∼ π
φ
0 ]] + ρ.

The idea of switch analysis is to obtain the difference ρ on the DCFHT of two chains
by summing up all the one-step differences ρt. Using Theorem 1 to compare two chains,
we can waive the long-term behavior of one chain, since Eq. (1) does not involve the
term E[[τ | ξt]]. Therefore, the theorem can simplify the analysis of an EA process by
comparing it with an easy-to-analyze one.

4 Running Time Analysis

In this section, we prove a lower bound on the expected running time of the (µ+λ)-EA
solving UBoolean, as shown in Theorem 2. Our proof is accomplished by using switch



analysis (i.e., Theorem 1). The target EA process we are to analyze is the (µ+λ)-EA run-
ning on any function in UBoolean. The constructed reference process for comparison
is the RLS 6= algorithm running on the LeadingOnes problem. RLS6= is a modification
of the randomized local search algorithm. It maintains only one solution s. In each it-
eration, a new solution s′ is generated by flipping a randomly chosen bit of s, and s′ is
accepted only if f(s′) > f(s). That is, RLS6= searches locally and only accepts a better
offspring solution.

Theorem 2. The expected running time of the (µ+λ)-EA on UBoolean is Ω(n lnn+
µ+ λn ln lnn/ lnn), when µ and λ are upper bounded by a polynomial in n.

We first give some lemmas that will be used in the proof of Theorem 2. Lemma 1
characterizes the one-step transition behavior of a Markov chain via CFHT. Lemma 2
gives the CFHT E[[τ ′ | ξ′t = y]] of the reference chain ξ′ (i.e., RLS 6= running on Leadin-
gOnes). In the following analysis, we will use Erls(j) to denote E[[τ ′ | ξ′t = y]] with
|y|0 = j, i.e., Erls(j) = nj.

Lemma 1 ([9]). Given a Markov chain ξ ∈ X and a target subspace X ∗ ⊂ X , we
have, for CFHT, ∀x ∈ X ∗ : E[[τ | ξt = x]] = 0,

∀x /∈ X ∗ : E[[τ | ξt = x]] = 1 +
∑

x′∈X
P (ξt+1 = x′ | ξt = x)E[[τ | ξt+1 = x′]].

Lemma 2 ([21]). For the chain ξ′ ∈ Y modeling RLS 6= running on the LeadingOnes
problem, the CFHT satisfies that ∀y ∈ Y = {0, 1}n : E[[τ ′ | ξ′t = y]] = n · |y|0, where
|y|0 denotes the number of 0-bits of y.

Lemma 3. For m ≥ i ≥ 0,
∑i
k=0

(
m
k

)
( 1n )

k(1− 1
n )
m−k decreases with m.

Proof. Let f(m) =
∑i
k=0

(
m
k

)
( 1n )

k(1− 1
n )
m−k. The goal is to show that f(m+1) ≤

f(m) for m ≥ i. Denote X1, . . . , Xm+1 as independent random variables, where Xj

satisfies that P (Xj = 1) = 1
n and P (Xj = 0) = 1 − 1

n . Then we can express f(m)

and f(m+1) as f(m) = P (
∑m
j=1Xj ≤ i) and f(m+1) = P (

∑m+1
j=1 Xj ≤ i). Thus,

f(m+ 1) = P (
∑m

j=1
Xj < i) + P (

∑m

j=1
Xj = i)P (Xm+1 = 0)

= P (
∑m

j=1
Xj < i) + P (

∑m

j=1
Xj = i)(1− 1

n
) ≤ f(m). �

Lemma 4. For λ ≤ nc where c is a positive constant, it holds that

n−1∑
i=0

(
i∑

k=0

(
n

k

)
(
1

n
)k(1− 1

n
)n−k

)λ
≥ n−

⌈
e(c+ 1) lnn

ln lnn

⌉
.

Proof. Let m = d e(c+1) lnn
ln lnn e. Denote X1, ..., Xn as independent random variables,

where P (Xj = 1) = 1
n and P (Xj = 0) = 1 − 1

n . Let X =
∑n
j=1Xj , then its

expectation E[[X]] = 1. We thus have

∀i ≥ m,
n∑
k=i

(
n

k

)
(
1

n
)k(1− 1

n
)n−k = P (X ≥ i) ≤ e(i−1)/ii, (2)



where the inequality is by Chernoff bound. Then, we have

n−1∑
i=0

(

i∑
k=0

(
n

k

)
(
1

n
)k(1− 1

n
)n−k)λ ≥

n−1∑
i=m−1

(

i∑
k=0

(
n

k

)
(
1

n
)k(1− 1

n
)n−k)λ

=

n−1∑
i=m−1

(1−
n∑

k=i+1

(
n

k

)
(
1

n
)k(1− 1

n
)n−k)λ

≥
n−1∑

i=m−1
(1− ei/(i+ 1)(i+1))λ ≥

n−1∑
i=m−1

(1− em−1/mm)λ,

where the second inequality is by Eq. (2), and the last inequality can be easily derived
because ei/(i+ 1)(i+1) decreases with i when i ≥ m− 1.

Then, we evaluate em−1/mm by taking logarithm to its reciprocal.

ln(mm/em−1) = m(lnm− 1) + 1

≥ e(c+ 1) lnn

ln lnn
(1 + ln(c+ 1) + ln lnn− ln ln lnn− 1) + 1

≥ e(c+ 1) lnn

ln lnn

1

e
ln lnn = (c+ 1) lnn ≥ lnλn. (by λ ≤ nc)

This implies that em−1/mm ≤ 1
λn . Thus, we have

n−1∑
i=0

(

i∑
k=0

(
n

k

)
(
1

n
)k(1− 1

n
)n−k)λ ≥

n−1∑
i=m−1

(1− 1

λn
)λ

≥
n−1∑

i=m−1
(1− 1

n
) ≥ n−m = n− de(c+ 1) lnn

ln lnn
e,

where the second inequality is by ∀0 ≤ xy ≤ 1, y ≥ 1 : (1− x)y ≥ 1− xy. �

Lemma 5 ([8]). Let H(ε) = −ε log ε− (1− ε) log(1− ε). It holds that

∀n ≥ 1, 0 < ε <
1

2
:

bεnc∑
k=0

(
n

k

)
≤ 2H(ε)n.

Proof of Theorem 2. We use switch analysis (i.e., Theorem 1) to prove it. Let ξ ∈
X model the analyzed EA process (i.e., the (µ+λ)-EA running on any function in
UBoolean). We use RLS 6= running on the LeadingOnes problem as the reference pro-
cess modeled by ξ′ ∈ Y . Then, Y = {0, 1}n, X = {{y1, y2, . . . , yµ} | yi ∈ {0, 1}n},
Y∗ = {1n} and X ∗ = {x ∈ X | maxy∈x |y|1 = n}, where |y|1 denotes the num-
ber of 1-bits of a solution y ∈ {0, 1}n. We construct a mapping φ : X → Y as that
∀x ∈ X : φ(x) = argmaxy∈x |y|1. It is easy to see that the mapping is an optimality-
aligned mapping, because φ(x) ∈ Y∗ iff x ∈ X ∗.

We investigate the condition Eq. (1) of switch analysis. For any x /∈ X ∗, suppose
that min{|y|0 | y ∈ x} = j > 0. Then, |φ(x)|0 = j. By Lemma 1 and 2, we have∑

y∈Y
P (ξ′1 = y | ξ′0 = φ(x))E[[τ ′ | ξ′1 = y]] = Erls(j)− 1 = nj − 1. (3)



For the reproduction of the (µ+λ)-EA (i.e., the chain ξ ∈ X ) on the population x, as-
sume that the λ selected solutions from x for reproduction have the number of 0-bits
j1, j2, ..., jλ, respectively, where j ≤ j1 ≤ j2 ≤ ... ≤ jλ ≤ n. If there are at most
i (0 ≤ i ≤ j1) number of 0-bits mutating to 1-bits for each selected solution and there
exists at least one selected solution which flips exactly i number of 0-bits, which hap-
pens with probability

∏λ
p=1(

∑i
k=0

(
jp
k

)
( 1n )

k(1− 1
n )
jp−k)−

∏λ
p=1(

∑i−1
k=0

(
jp
k

)
( 1n )

k(1−
1
n )
jp−k) (denoted by p(i)), the next population x′ satisfies that |φ(x′)|0 ≥ j1 − i. Fur-

thermore, Erls(i) = ni increases with i. Thus, we have

∑
y∈Y

P (ξt+1 ∈ φ−1(y) | ξt = x)E[[τ ′ | ξ′0 = y]] ≥
j1∑
i=0

p(i) · Erls(j1 − i)

≥
j∑
i=0

p(i) · Erls(j − i) = n

j−1∑
i=0

(
λ∏
p=1

(
i∑

k=0

(
jp
k

)
(
1

n
)k(1− 1

n
)jp−k)).

(4)

By comparing Eq. (3) with Eq. (4), we have ∀x /∈ X ∗,∑
y∈Y

P (ξt+1∈φ−1(y) | ξt=x)E[[τ ′|ξ′0=y]]−
∑
y∈Y

P (ξ′1=y | ξ′0=φ(x))E[[τ ′|ξ′1=y]]

≥ n(
j−1∑
i=0

(

λ∏
p=1

(

i∑
k=0

(
jp
k

)
(
1

n
)k(1− 1

n
)jp−k))− j) + 1

≥ n(
j−1∑
i=0

(

i∑
k=0

(
n

k

)
(
1

n
)k(1− 1

n
)n−k)λ − j) + 1

≥ n(
n−1∑
i=0

(

i∑
k=0

(
n

k

)
(
1

n
)k(1− 1

n
)n−k)λ − n) + 1,

where the 2nd ‘≥’ is because from Lemma 3,
∑i
k=0

(
m
k

)
( 1n )

k(1− 1
n )
m−k reaches the

minimum when m = n, and the last ‘≥’ is by (
∑i
k=0

(
n
k

)
( 1n )

k(1− 1
n )
n−k)λ ≤ 1.

When x ∈ X ∗, both Eq. (3) and Eq. (4) equal 0, because both chains are absorbing
and the mapping φ is optimality-aligned. Thus, Eq. (1) in Theorem 1 holds with ρt =
(n(
∑n−1
i=0 (

∑i
k=0

(
n
k

)
( 1n )

k(1− 1
n )
n−k)λ − n) + 1)(1− πt(X ∗)). By switch analysis,

E[[τ |ξ0 ∼ π0]] ≥E[[τ ′|ξ′0 ∼ π
φ
0 ]]

+ (n(

n−1∑
i=0

(

i∑
k=0

(
n

k

)
(
1

n
)k(1− 1

n
)n−k)λ − n) + 1)

+∞∑
t=0

(1− πt(X ∗)).

Since
∑+∞
t=0 (1− πt(X ∗)) = E[[τ |ξ0 ∼ π0]], we have

E[[τ |ξ0 ∼ π0]] ≥
E[[τ ′|ξ′0 ∼ π

φ
0 ]]

n(n−
n−1∑
i=0

(
i∑

k=0

(
n
k

)
( 1n )

k(1− 1
n )
n−k)λ)

≥ E[[τ ′|ξ′0 ∼ π
φ
0 ]]

nd e(c+1) lnn
ln lnn e

,
(5)

where the last inequality is by Lemma 4, since λ ≤ nc for some constant c.



We then investigate E[[τ ′|ξ′0 ∼ π
φ
0 ]]. Since each of the µ solutions in the initial pop-

ulation is selected uniformly and randomly from {0, 1}n, we have

∀0 ≤ j ≤ n : πφ0 ({y ∈ Y | |y|0 = j}) = π0({x ∈ X | min
y∈x
|y|0 = j})

=
(
∑n
k=j

(
n
k

)
)µ − (

∑n
k=j+1

(
n
k

)
)µ

2nµ
,

where
∑n
k=j

(
n
k

)
is the number of solutions with not less than j number of 0-bits. Then,

E[[τ ′|ξ′0 ∼ π
φ
0 ]] =

∑n

j=0
πφ0 ({y ∈ Y | |y|0 = j})Erls(j)

=
1

2nµ

n∑
j=1

((

n∑
k=j

(
n

k

)
)µ − (

n∑
k=j+1

(
n

k

)
)µ)nj =

n

2nµ

n∑
j=1

(

n∑
k=j

(
n

k

)
)µ

> n

bn4 c+1∑
j=1

(

n∑
k=j

(
n

k

)
/2n)µ >

n2

4
(

n∑
k=bn4 c+1

(
n

k

)
/2n)µ =

n2

4
(1−

bn4 c∑
k=0

(
n

k

)
/2n)µ

≥ n2

4
(1− 2H( 1

4 )n−n)µ ≥ n2

4
e
− µ

2
(1−H( 1

4
))n−1 >

n2

4
e−

µ
1.13n−1 ,

where the third inequality is by Lemma 5, the fourth inequality is by ∀0 < x < 1 :
(1− x)y ≥ e−

xy
1−x , and the last inequality is by 21−H( 1

4 ) > 1.13.
Applying the above lower bound on E[[τ ′|ξ′0 ∼ π

φ
0 ]] to Eq. (5), we get, noting that µ

is upper bounded by a polynomial in n,

E[[τ |ξ0 ∼ π0]] ≥
n

4d e(c+1) lnn
ln lnn e

e−
µ

1.13n−1 , i.e., Ω(
n ln lnn

lnn
).

Considering the µ number of fitness evaluations for the initial population and the λ num-
ber of fitness evaluations in each generation, the expected running time of the (µ+λ)-EA
on UBoolean is lower bounded byΩ(µ+ λn ln lnn

lnn ). Because the (µ+λ)-EA belongs to
mutation-based EAs, we can also directly use the general lower bound Ω(n lnn) [18].
Thus, the theorem holds. �

5 Conclusion

This paper analyzes the expected running time of the (µ+λ)-EA for solving a gen-
eral problem class consisting of pseudo-Boolean functions with a unique global op-
timum. We derive the lower bound Ω(n lnn + µ + λn ln lnn/ lnn) by applying the
recently proposed approach switch analysis. The results partially complete the run-
ning time comparison between the (µ+λ)-EA and the (1+1)-EA on the two well-studied
pseudo-Boolean problems, OneMax and LeadingOnes. We can now conclude that when
µ or λ is slightly large, the (µ+λ)-EA has a worse expected running time. The inves-
tigated (µ+λ)-EA only uses mutation, while crossover is a characterizing feature of
EAs. Therefore, we will try to analyze the running time of population-based EAs with
crossover operators in the future.
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6. Doerr, B., Künnemann, M.: Optimizing linear functions with the (1+λ) evolutionary algo-
rithm - different asymptotic runtimes for different instances. Theoretical Computer Science
561, 3–23 (2015)

7. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm.
Theoretical Computer Science 276(1-2), 51–81 (2002)

8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, New York, NY (2006)
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