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Abstract

The subset selection problem that selects a few
items from a ground set arises in many applica-
tions such as maximum coverage, influence max-
imization, sparse regression, etc. The recently pro-
posed POSS algorithm is a powerful approxima-
tion solver for this problem. However, POSS re-
quires centralized access to the full ground set, and
thus is impractical for large-scale real-world ap-
plications, where the ground set is too large to be
stored on one single machine. In this paper, we pro-
pose a distributed version of POSS (DPOSS) with
a bounded approximation guarantee. DPOSS can
be easily implemented in the MapReduce frame-
work. Our extensive experiments using Spark,
on various real-world data sets with size ranging
from thousands to millions, show that DPOSS can
achieve competitive performance compared with
the centralized POSS, and is almost always bet-
ter than the state-of-the-art distributed greedy algo-
rithm RANDGREEDI.

1 Introduction
The subset selection problem, which aims to select a subset
of size at most k from a ground set of n items for maximizing
some given objective function f , captures a wide variety of
real-world applications, such as maximum coverage [Feige,
1998], influence maximization [Kempe et al., 2003], sparse
regression [Miller, 2002], active set selection [Rasmussen,
2004] and exemplar-based clustering [Dueck and Frey, 2007],
to name a few. It is generally NP-hard, but the simple
greedy algorithm, which iteratively selects one item with the
largest marginal gain, was shown to be a good approxima-
tion solver. For examples, for a monotone submodular func-
tion f , the greedy algorithm achieves the optimal approx-
imation guarantee of (1 − 1/e) [Nemhauser et al., 1978;
Nemhauser and Wolsey, 1978]; for sparse regression where
f can be non-submodular, it obtains the best-so-far approxi-
mation guarantee of (1−e−γ) [Das and Kempe, 2011], where
γ is the submodularity ratio.

Recently, a new approach Pareto Optimization for Subset
Selection (POSS) has been shown superior to the greedy algo-
rithm [Qian et al., 2015; 2017b]. The idea of POSS is to refor-
mulate the original subset selection problem as a bi-objective
optimization problem that requires maximizing the given ob-
jective f and minimizing the subset size simultaneously. To
solve this bi-objective problem, a randomized iterative proce-
dure is employed, which randomly generates a new solution
(i.e., subset) in each iteration. POSS was proved to achieve
the same general approximation guarantee as the greedy al-
gorithm, and was shown better on some subclasses [Das and
Kempe, 2008]. Furthermore, it has achieved significantly bet-
ter empirical performance on the applications of influence
maximization and sparse regression.

To achieve a good performance, POSS requires running
2ek2n (e ≈ 2.71828 is Euler’s number) iterations, which
could be unsatisfactory for large k and n. Qian et al. [2016]
thus further proposed a parallel version of POSS (called
PPOSS), which generates multiple new solutions in parallel
in each iteration instead of generating only one new solution.
PPOSS can achieve linear speedup in the number of iterations
while preserving the solution quality.

Note that the subset selection applications often come with
massive data sets, e.g., the number of social network users in
influence maximization and the number of variables in sparse
regression can be millions. However, both POSS and PPOSS
require centralized access to the full data set, which makes
them impractical for large-scale real-world applications. The
large-scale data set cannot be stored on one single machine,
and must be distributed among a set of machines.

In this paper, we propose a distributed version of POSS
(called DPOSS), which has a bounded approximation guar-
antee for subset selection with monotone objective functions.
DPOSS uses a two-round divide and conquer strategy and can
be easily implemented in the MapReduce framework. We
conducted experiments using Spark on maximum coverage
and sparse regression, two typical applications with the objec-
tive function being submodular and non-submodular, respec-
tively. The results on real-world data sets with size ranging
from thousands to millions show that DPOSS achieves per-
formance close to the centralized POSS (the average approx-
imation ratios on the two applications are at least 99.6% and



98.6%, respectively), and clearly outperforms the state-of-
the-art distributed greedy algorithm RANDGREEDI [Mirza-
soleiman et al., 2013; Barbosa et al., 2015].

We start the rest of the paper by introducing the subset
selection problem and the POSS algorithm, respectively. In
Section 4, we propose the DPOSS algorithm and give the the-
oretical analysis. Section 5 presents the empirical studies.
The final section concludes this paper.

2 Subset Selection
Given a ground set V = {v1, v2, . . . , vn}, we study the func-
tions f : 2V → R over subsets of V . A set function f is
monotone if for any S ⊆ T , f(S) ≤ f(T ). Without loss of
generality, we assume that monotone functions are normal-
ized, i.e., f(∅) = 0. A set function f : 2V → R is submodu-
lar [Nemhauser et al., 1978] if for any S ⊆ T ⊆ V ,

f(T )− f(S) ≤
∑
v∈T\S

(
f(S ∪ v)− f(S)

)
, (1)

or equivalently, for any S ⊆ T ⊆ V and v /∈ T ,

f(S ∪ v)− f(S) ≥ f(T ∪ v)− f(T ). (2)

Note that we represent a singleton set {v} by v for simplicity.
We then give two notions of “approximate submodularity”,

which measure to what extent a general set function f has the
submodular property. The γ- and α-submodularity ratios are
defined based on Eqs. (1) and (2), respectively. For a mono-
tone set function f , it is easy to see that 0 ≤ γS,l(f) ≤ 1,
0 ≤ αf ≤ 1, and f is submodular iff γS,l(f) = αf = 1. For
some concrete monotone non-submodular functions, lower
bounds on γ and α were derived [Das and Kempe, 2011;
Elenberg et al., 2016; Bian et al., 2017; Qian et al., 2018].
When f is clear, we will use γS,l and α for short.

Definition 1 (γ-Submodularity Ratio [Das and Kempe,
2011]). The submodularity ratio of a set function f : 2V →
R with respect to a set S ⊆ V and a parameter l ≥ 1 is

γS,l(f) = min
L⊆S,T :|T |≤l,T∩L=∅

∑
v∈T (f(L ∪ v)− f(L))
f(L ∪ T )− f(L)

.

Definition 2 (α-Submodularity Ratio [Zhang and Vorobey-
chik, 2016; Qian et al., 2017a]). The submodularity ratio of
a set function f : 2V → R is

αf = min
S⊆T⊆V,v/∈T

f(S ∪ v)− f(S)
f(T ∪ v)− f(T )

.

The subset selection problem as presented in Definition 3
is to select a subset S of V such that a given objective f is
maximized with the size constraint |S| ≤ k, where | · | de-
notes the size of a set. For a monotone objective function f ,
the greedy algorithm, which iteratively adds one item with the
largest marginal gain until k items are selected, can achieve
an approximation guarantee of (1−e−γS,k) [Das and Kempe,
2011], where S is the subset output by the greedy algorithm.
Particularly, when f is submodular (i.e., γS,k = 1), the ap-
proximation guarantee becomes 1− e−1, which is optimal in
general [Nemhauser and Wolsey, 1978].

Definition 3 (Subset Selection). Given all items V =
{v1, v2, . . . , vn}, an objective function f and a budget k, it
is to find a subset of at most k items maximizing f , i.e.,

argmaxS⊆V f(S) s.t. |S| ≤ k. (3)

Here are two applications of subset selection, that will be
investigated in this paper. Given a family of sets that cover
a universe of elements, maximum coverage [Feige, 1998] as
presented in Definition 4 is to select at most k sets whose
union is maximal. It is easy to verify that f is monotone and
submodular. Sparse regression [Miller, 2002] as presented in
Definition 5 is to find a sparse approximation solution to the
linear regression problem. Note that we do not distinguish
S and its index set {i | vi ∈ S} for notational convenience,
and we assume without loss of generality that all variables
are normalized to have expectation 0 and variance 1. The
objective function R2

z,S is monotone, but not necessarily sub-
modular [Das and Kempe, 2011].
Definition 4 (Maximum Coverage). Given a set U of ele-
ments, a collection V = {v1, v2, . . . , vn} of subsets of U ,
and a budget k, it is to find at most k sets from V maximizing
the number of covered elements, i.e.,

argmaxS⊆V f(S) =
∣∣⋃

vi∈Svi
∣∣ s.t. |S| ≤ k.

Definition 5 (Sparse Regression). Given all observation vari-
ables V = {v1, v2, . . . , vn}, a predictor variable z and a
budget k, it is to find at most k variables from V max-
imizing the squared multiple correlation [Diekhoff, 1992;
Johnson and Wichern, 2007], i.e.,

argmaxS⊆V R
2
z,S = 1−MSEz,S s.t. |S| ≤ k,

where MSEz,S denotes the mean squared error, i.e.,

MSEz,S = minα∈R|S| E
[(
z −

∑
i∈Sαivi

)2]
.

3 The POSS Algorithm
Qian et al. [2015] proposed a new subset selection method by
Pareto optimization, briefly called POSS. Let a binary vector
s ∈ {0, 1}n represent a subset S of V , where si = 1 if S
contains the item vi and si = 0 otherwise. We will not distin-
guish s ∈ {0, 1}n and its corresponding subset for notational
convenience. The POSS algorithm reformulates the original
problem Eq. (3) as a bi-objective minimization problem

argmins∈{0,1}n (f1(s), f2(s)),

where
f1(s) =

{
+∞, |s| ≥ 2k

−f(s), otherwise
, f2(s) = |s|.

That is, POSS maximizes the original objective function f
and minimizes the subset size |s| simultaneously. Note that
setting f1 to +∞ is to exclude overly infeasible solutions
(i.e., subsets), the size of which is at least 2k.

To compare two solutions in the bi-objective setting, both
the two objective values have to be considered. For two so-
lutions s and s′, s weakly dominates s′ (i.e., s is better than
s′, denoted as s � s′) if f1(s) ≤ f1(s

′) ∧ f2(s) ≤ f2(s
′);

s dominates s′ (i.e., s is strictly better, denoted as s ≺ s′) if



Algorithm 1 POSS Algorithm
Input: all items V = {v1, v2, . . . , vn}, an objective function
f : 2V → R and a budget k
Parameter: the number T of iterations
Output: a subset of V with at most k items
Process:

1: Let s = {0}n and P = {s}.
2: Let t = 0.
3: while t < T do
4: Select s from P uniformly at random.
5: Generate s′ by flipping each bit of s with prob. 1/n.
6: if @z ∈ P such that z ≺ s′ then
7: P = (P \ {z ∈ P | s′ � z}) ∪ {s′}.
8: end if
9: t = t+ 1.

10: end while
11: return argmaxs∈P,|s|≤k f(s)

s � s′ and either f1(s) < f1(s
′) or f2(s) < f2(s

′). But if
neither s � s′ nor s′ � s, they are incomparable.

As described in Algorithm 1, POSS uses a randomized it-
erative procedure to solve the bi-objective problem. It starts
from the solution {0}n representing an empty set (line 1) and
then iteratively tries to improve the solutions in the archive
P (lines 3-10). In each iteration, a new solution s′ is gen-
erated by randomly flipping bits of an archived solution s
(line 5), which is uniformly randomly selected from the cur-
rent P (line 4); if s′ is not dominated by any archived solution
in P (line 6), it will be added into P , and meanwhile those
archived solutions weakly dominated by s′ will be removed
from P (line 7). After running T iterations, the best solution
w.r.t. the original problem Eq. (3) is selected from P , i.e., the
solution with the largest f value among those satisfying the
size constraint in P is selected (line 11).

For subset selection with monotone objective functions,
POSS using E[T ] ≤ 2ek2n was proved to achieve the
same general approximation guarantee as the greedy algo-
rithm [Qian et al., 2015; 2017b]. Note that we use E[·] to
denote the expectation of a random variable. On some ex-
amples of maximum coverage and sparse regression, it was
shown that POSS using polynomial iterations can find an op-
timal solution while the greedy algorithm cannot. Since the
required number 2ek2n of iterations is impractical for large
k and n, Qian et al. [2016] further proposed the PPOSS algo-
rithm by generating multiple solutions in parallel in each it-
eration instead of generating only one solution. They proved
that PPOSS can achieve linear speedup in the number of iter-
ations without sacrificing the solution quality. However, both
POSS and PPOSS require centralized access to the ground set
V , since randomly generated subsets of V have to be evalu-
ated on one single machine. Thus, they are not readily appli-
cable to large-scale subset selection applications, where the
ground set V is too large to be stored on one single machine.

4 The DPOSS Algorithm
In this section, we propose a distributed version of POSS,
called DPOSS. As shown in Algorithm 2, DPOSS is a sim-

Algorithm 2 DPOSS Algorithm
Input: all items V = {v1, v2, . . . , vn}, an objective function
f : 2V → R, a budget k and the number m of machines
Parameter: T1, T2, . . . , Tm, Tm+1

Output: a subset of V with at most k items
Process:

1: Partition V into m sets V1, V2, . . . , Vm arbitrarily so that
each Vi can fit on one machine.

2: Run POSS with T = Ti on each Vi to find a subset si.
3: Merge the m resulting subsets into a set U = ∪mi=1si.
4: Run POSS with T = Tm+1 on U to find a subset sm+1.
5: return argmaxs∈{s1,s2,...,sm+1} f(s)

ple two-round algorithm. In the first round, it arbitrarily dis-
tributes the ground set V over m machines, and then each
machine runs POSS to find a subset si (1 ≤ i ≤ m) in paral-
lel. In the second round, the m resulting subsets are merged
on one machine, and then POSS is run on ∪mi=1si to find an-
other subset sm+1. The final returned subset is the best one
among these m+1 subsets. The number of iterations in each
run of POSS is a parameter, which could affect the quality of
the final output subset. Their relation will be analyzed later.

Note that when the size of the union∪mi=1si exceeds the ca-
pacity of one machine in the second round of DPOSS, the al-
gorithm will break down. But DPOSS can be easily extended
to multi-round to address this issue. The idea is to continue
to distribute the union of the partial subsets over several ma-
chines after each round, until the union can fit on one single
machine. Note that if we have extra machines, we can also
run PPOSS instead of POSS for further acceleration.

Then, we theoretically analyze the approximation perfor-
mance of DPOSS for subset selection with monotone objec-
tive functions. Let OPT denote the optimal function value
of Eq. (3). For an arbitrary partition {V1, V2, . . . , Vm} of
the ground set V , let ni = |Vi| and nmax = max{ni |
1 ≤ i ≤ m}. Theorem 1 gives the approximation guaran-
tee of DPOSS. The proof is inspired from that of Theorem 1
in [Qian et al., 2015], and it relies on the following two lem-
mas. For 1 ≤ i ≤ m, let oi ∈ argmaxs⊆Vi:|s|≤k f(s) denote
an optimal subset of Vi. Lemma 1 gives a lower bound on the
f value of the best oi. Its proof is inspired from that of The-
orem 3 in [Mirzasoleiman et al., 2016]. Lemma 2 shows that
for any subset s ⊆ Vi, there exists another item, the inclusion
of which can improve f by at least a quantity proportional to
the current distance to the optimum.

Lemma 1. For any partition of V , it holds that

max{f(oi) | 1 ≤ i ≤ m} ≥ max
{
α/m, γ∅,k/k

}
·OPT.

Proof. We first prove that max{f(oi)|1≤ i≤m}≥ α
mOPT .

Let o denote an optimal subset of V , i.e., f(o) = OPT . For
1 ≤ i ≤ m, let Ai = o ∩ Vi. Thus, ∪mi=1Ai = o and for any
i 6= j, Ai ∩Aj = ∅. Then, we have

f(o) = f(∪mi=1Ai) =
m∑
i=1

f(∪ij=1Aj)− f(∪i−1j=1Aj).

Let {vi1, vi2, . . . , vi|Ai|} denote the items in Ai. Then, for any



1 ≤ i ≤ m, it holds that

f(∪ij=1Aj)− f(∪i−1j=1Aj)

=
|Ai|∑
l=1

f(∪i−1j=1Aj∪{v
i
1, . . . , v

i
l})−f(∪i−1j=1Aj∪{v

i
1, . . . , v

i
l−1})

≤ 1

α

|Ai|∑
l=1

f({vi1, . . . , vil})−f({vi1, . . . , vil−1})=
f(Ai)

α
,

where the inequality is by the definition of α-submodularity
ratio (i.e., Definition 2) since {vi1, . . . , vil−1} ⊆ ∪

i−1
j=1Aj ∪

{vi1, . . . , vil−1}. Note that for any 1 ≤ i ≤ m, f(oi) ≥
f(Ai), since Ai ⊆ Vi and |Ai| ≤ |o| ≤ k. Thus, we get

OPT = f(o) ≤ 1

α

m∑
i=1

f(Ai) ≤
1

α

m∑
i=1

f(oi),

which leads to max{f(oi) | 1 ≤ i ≤ m} ≥ α
m ·OPT .

We then prove that max{f(oi)|1 ≤ i ≤m} ≥
γ∅,k
k OPT .

By the definition of γ-submodularity ratio (i.e., Definition 1),
f(o) ≤

∑
v∈o f(v)/γ∅,k. Let v∗ ∈ argmaxv∈o f(v). Then

f(v∗) ≥ γ∅,kf(o)

|o| ≥ γ∅,k
k · OPT . Since {V1, V2, . . . , Vm} is

a partition of V , v∗ must belong to one of these m sets. Thus,
max{f(oi) | 1 ≤ i ≤ m} ≥ f(v∗) ≥

γ∅,k
k ·OPT .

Lemma 2. [Qian et al., 2016] For any s ⊆ Vi (1 ≤ i ≤ m),
there exists one item v ∈ Vi \ s such that

f(s ∪ v)− f(s) ≥ (γs,k/k) · (f(oi)− f(s)).
Theorem 1. For subset selection with a monotone objective
function f , DPOSS using E[max{Ti | 1 ≤ i ≤ m}] =
O(k2nmax(1 + logm)) finds a subset s with |s| ≤ k and

f(s) ≥ (1− e−γmin) ·max
{
α/m, γ∅,k/k

}
·OPT,

where γmin = mins⊆V :|s|=k−1 γs,k.

Proof. In the first round of DPOSS, we analyze the maximum
number of iterations (i.e., max{Ti | 1 ≤ i ≤ m}) on each
machine until f(si) ≥ (1− e−γmin) · f(oi) for each 1 ≤ i ≤
m. For the machine running POSS on Vi (1 ≤ i ≤ m), let
J imax denote the maximum value of j ∈ {0, 1, . . . , k} such
that in the archive P , there exists a solution s with |s| ≤ j
and f(s) ≥ (1− (1− γmin

k )j) · f(oi). That is,

J imax = max{j ∈ {0, 1, . . . , k} | ∃s ∈ P,
|s| ≤ j ∧ f(s) ≥ (1− (1− γmin/k)

j) · f(oi)}.
We then only need to analyze max{Ti | 1 ≤ i ≤ m} until
min{J imax | 1 ≤ i ≤ m} = k, since J imax = k implies
that for POSS running on Vi, there exists one solution s in P
satisfying that |s| ≤ k and f(s) ≥ (1−(1− γmin

k )k)·f(oi) ≥
(1− e−γmin) · f(oi), thus f(si) ≥ (1− e−γmin) · f(oi).

The initial value of min{J imax | 1≤ i≤m} is 0, since for
any 1 ≤ i ≤ m, POSS running on Vi starts from {0}n, and
then J imax = 0. Assume that currently min{J imax | 1 ≤ i ≤
m}= j < k and the number of J imax = j is l (1 ≤ l ≤ m),
i.e., |{J imax = j | 1≤ i≤m}| = l. For POSS running on Vi,
let zi be a corresponding solution with the value J imax, i.e.,
|zi| ≤ J imax and

f(zi) ≥
(
1− (1− γmin/k)

Ji
max
)
· f(oi). (4)

It is easy to see that J imax cannot decrease because cleaning zi
from P (line 7 of Algorithm 1) implies that zi is weakly dom-
inated by the newly generated solution, which must have a
smaller size and a larger f value. Thus, we can conclude that
j never decreases and the corresponding l never increases.

By Lemma 2, we know that for any 1 ≤ i ≤ m, flipping
one specific 0 bit of zi (i.e., adding a specific item) can gen-
erate a new solution s′, which satisfies that f(s′)− f(zi) ≥
γzi,k

k (f(oi)− f(zi)). Then, if J imax < k, we have
f(s′) ≥ (1− γzi,k/k) f(zi) + (γzi,k/k) · f(oi)

≥
(
1− (1− γmin/k)

Ji
max+1

)
· f(oi),

where the last inequality is by Eq. (4) and γzi,k ≥ γmin,
which can be easily derived from |zi| ≤ J imax < k and γs,k
decreasing with s. Since |s′| = |zi| + 1 ≤ J imax + 1, s′
will be included into P ; otherwise, s′ must be dominated
by one solution in P (line 6 of Algorithm 1), which makes
a contradiction with the definition of J imax. After includ-
ing s′, J imax increases by at least 1. Let Pmax denote the
largest size of P during the run of POSS. Thus, J imax can in-
crease by at least 1 in one iteration with probability at least

1
Pmax

· 1
ni
(1 − 1

ni
)ni−1 ≥ 1

eniPmax
, where 1

Pmax
is a lower

bound on the probability of selecting zi in line 4 of Algo-
rithm 1 and 1

ni
(1− 1

ni
)ni−1 is the probability of flipping only

a specific bit of zi in line 5. By the procedure of POSS, we
know that the solutions maintained in P must be incompara-
ble. Thus, each value of one objective can correspond to at
most one solution in P . Because the solutions with |s| ≥ 2k
have +∞ value on the first objective, they must be excluded
from P . Thus, Pmax ≤ 2k, which implies that J imax can in-
crease by at least 1 in one iteration with probability at least

1
2ekni

. We then get that after one iteration in the first round of
DPOSS, l can decrease by at least 1 with probability at least

1−
∏
i:Ji

max=j

(
1− 1

2ekni

)
≥ 1−

(
1− 1

2eknmax

)l
,

since it is sufficient that at least one of those J imax = j in-
creases. Thus, the expected number of iterations until j in-
creases (i.e., l decreases to 0) is at most

m∑
l=1

1

1−(1− 1
2eknmax

)
l =

m∑
l=1

1 + 1
1

(1− 1
2eknmax )

l−1

≤
m∑
l=1

1 + 2eknmax−1
l = m+ (2eknmax − 1)Hm,

where the inequality is by 1
(1− 1

2eknmax
)l
=(1+

1
2eknmax

1− 1
2eknmax

)l ≥

1+
l

2eknmax

1− 1
2eknmax

= 1+ l
2eknmax−1 , and Hm is the m-th har-

monic number. Then, the expected number of iterations until
min{J imax | 1≤ i≤m}= k (i.e., j increases to k) is at most
(m+ (2eknmax − 1)Hm)k = O(k2nmax(1 + logm)), i.e.,

E[max{Ti | 1 ≤ i ≤ m}] = O(k2nmax(1 + logm)).

Since min{J imax | 1 ≤ i ≤ m} = k implies that f(si) ≥
(1−e−γmin)·f(oi) for any 1 ≤ i ≤ m, the f value of the final
output subset satisfies that max{f(si) | 1 ≤ i ≤ m + 1} ≥
(1 − e−γmin) ·max{f(oi) | 1 ≤ i ≤ m}. By Lemma 1, the
theorem holds.
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Figure 1: The comparison between DPOSS and RANDGREEDI on 8 regular-scale data sets of maximum coverage (f : the number of covered
elements, the larger the better). For each data set, n denotes the total number of subsets.

Data set DPOSS RANDGREEDI
accident (n=340, 183) 175±1 170.6±1.34
kosarak (n=990, 002) 9263±0 9263±0

Table 1: The f value (mean±std.) of DPOSS and RANDGREEDI
on large-scale data sets of maximum coverage (f : the number of
covered elements, the larger the better).
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Figure 2: The approximation ratio of DPOSS compared to the cen-
tralized POSS, averaged over all regular-scale data sets.

5 Experiments
In this section, we empirically evaluate the effectiveness of
DPOSS on maximum coverage and sparse regression, two
applications of subset selection with submodular and non-
submodular objective functions, respectively. All of the ex-
periments are coded in Python 2.7.14 and run on an identi-
cal configuration: a cluster of 10 quad-core machines run-
ning Spark 2.0.2. We compare DPOSS with the state-of-
the-art distributed greedy algorithm RANDGREEDI [Mirza-
soleiman et al., 2013; Barbosa et al., 2015; Mirrokni and
Zadimoghaddam, 2015; Lucic et al., 2016; Khanna et al.,
2017] on regular-scale as well as large-scale data sets. By
regular-scale data sets, we can examine how well DPOSS
performs compared with the centralized POSS. To imple-
ment DPOSS, each machine runs POSS for 2ek2N iterations,
where N is the number of items allocated to that machine, as
suggested in [Qian et al., 2015; 2017b].
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Figure 3: The runtime speedup of DPOSS compared to the central-
ized POSS on maximum coverage.

Maximum Coverage. We use 8 regular-scale and 2 large-
scale data sets1. Note that some data sets are given by graphs,
and we create a set for each node which contains the node
itself and its adjacent nodes. The budget k is set to 8. For
regular-scale data sets, we set the number m of reducers to
{1, 2, . . . , 10}. For each data set and eachm > 1, we perform
the partition by assigning items uniformly randomly to the re-
ducers. We run DPOSS and RANDGREEDI on the same 10
partitions generated independently and report the average re-
sults. When m = 1, we also repeat the run of the centralized
POSS 10 times independently, since it is a randomized algo-
rithm. Note that DPOSS with m = 1 is just the centralized
POSS. The results are plotted in Figure 1. We can observe
that DPOSS is almost always better than RANDGREEDI, and
the only loss is for m = 1 on the frb59-26-mis data set. Note
that on the retail data set, the standard deviation of the f value
by DPOSS is 0, which is because DPOSS always finds the
same good solution in 10 runs for each m. For large-scale
data sets, m is set to 300, and each machine carries out a set

1The data sets are downloaded from http://fimi.ua.
ac.be/data/, https://snap.stanford.edu/data/,
https://turing.cs.hbg.psu.edu/txn131/vertex_
cover.html and http://sites.nlsde.buaa.edu.cn/
˜kexu/benchmarks/graph-benchmarks.htm.
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Figure 4: The comparison between DPOSS and RANDGREEDI on 8 regular-scale data sets of sparse regression (f : the squared multiple
correlation R2, the larger the better). For each data set, n denotes the total number of observation variables.

Data set DPOSS RANDGREEDI
Gas-sensor-flow (n=120, 432) .818±.005 .710±.017
Twin-gas-sensor (n=480, 000) .601±.014 .470±.025
Gas-sensor-sample (n=1, 950, 000) .289±.029 .245±.018

Table 2: The f value (mean±std.) of DPOSS and RANDGREEDI
on large-scale data sets of sparse regression (f : the squared multiple
correlation R2, the larger the better).

of reduce tasks in sequence. The results are shown in Table 1.
We can observe that DPOSS performs the same as RAND-
GREEDI on the kosarak data set and is better on the other
data set accident. The same performance on kosarak may be
because RANDGREEDI has already been nearly optimal on
this data set, as observed in [Barbosa et al., 2015].

For regular-scale data sets, we also compute the approxi-
mation ratio of DPOSS compared to the centralized POSS.
For each m = i ∈ {2, . . . , 10}, the approximation ratio is
calculated through dividing the f value for m = i by that
for m = 1. Figure 2(a) plots the average approximation ra-
tios over all data sets, which are at least 99.6%, implying that
DPOSS can achieve performance very close to the centralized
POSS. From Figure 1, we can also observe that in some cases
(e.g., m = 3 on the hamming data set), DPOSS can even be
better than the centralized POSS, which may be because the
partition of the full data set luckily avoids the local optimum.

Figure 3 shows the runtime speedup of DPOSS com-
pared to the centralized POSS on two data sets hamming and
frb100-40-mis. For each m= i∈{2, . . . , 10}, the speedup is
calculated as the ratio of the runtime form=1 andm= i. For
m= 1, the centralized POSS runs for 2ek2n iterations. For
m > 1, the number of iterations of DPOSS consists of two
parts: nearly 2ek2n/m on each machine in the first round
due to uniform random partition, and 2ek2 · (mk) in the sec-
ond round. Thus, when m is much smaller than

√
n/k, the

runtime of the second round can be neglected and DPOSS can
achieve nearly linear speedup; when m continues to increase,
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Figure 5: The runtime speedup of DPOSS compared to the central-
ized POSS on sparse regression.

the runtime of the second round will gradually dominate the
whole runtime and the speedup will be far away from linear
speedup. The results in Figure 3 are consistent with the analy-
sis. For hamming,

√
n/k = 11.3 and thus we cannot observe

linear speedup as m approaches to 10; while for frb100-40-
mis,

√
n/k = 22.4 is much larger than the maximumm = 10

and thus DPOSS always achieves nearly linear speedup.
Sparse Regression. We use 8 regular-scale and 3 large-

scale data sets2. Note that some classification data sets are
used for regression, and all variables are normalized to have
mean 0 and variance 1. We use the same setting as that for
maximum coverage. The results on regular-scale and large-
scale data sets are shown in Figure 4 and Table 2, respec-
tively. We can see that DPOSS is always better than RAND-
GREEDI. Figure 2(b) plots the average approximation ratios
of DPOSS compared to the centralized POSS over all regular-
scale data sets, which are at least 98.6%. We also plot the
runtime speedup of DPOSS on two data sets MicroMass and
leukemia in Figure 5, which is similar to that we have ob-
served for maximum coverage.

2The data sets are downloaded from https://archive.
ics.uci.edu/ml/datasets.html and https://www.
csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.



6 Conclusion
Subset selection is a fundamental problem in many areas, and
the POSS algorithm has been shown to be a powerful approx-
imation solver. However, POSS requires centralized access to
the full data set, restricting its large-scale applications. In this
paper, we propose a distributed version of POSS (DPOSS)
with a bounded approximation guarantee. Extensive experi-
ments using Spark on the applications of maximum coverage
and sparse regression show that DPOSS can achieve compet-
itive performance to the centralized POSS; can scale well to
very large data sets; and can clearly outperform the state-of-
the-art distributed greedy algorithm RANDGREEDI.
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