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Abstract
Layer-wise magnitude-based pruning (LMP) is a
very popular method for deep neural network
(DNN) compression. However, tuning the layer-
specific thresholds is a difficult task, since the space
of threshold candidates is exponentially large and
the evaluation is very expensive. Previous methods
are mainly by hand and require expertise. In this
paper, we propose an automatic tuning approach
based on optimization, named OLMP. The idea is
to transform the threshold tuning problem into a
constrained optimization problem (i.e., minimiz-
ing the size of the pruned model subject to a con-
straint on the accuracy loss), and then use power-
ful derivative-free optimization algorithms to solve
it. To compress a trained DNN, OLMP is con-
ducted within a new iterative pruning and adjust-
ing pipeline. Empirical results show that OLMP
can achieve the best pruning ratio on LeNet-style
models (i.e., 114 times for LeNet-300-100 and 298
times for LeNet-5) compared with some state-of-
the-art DNN pruning methods, and can reduce the
size of an AlexNet-style network up to 82 times
without accuracy loss.

1 Introduction
Deep neural networks (DNNs) have achieved outstanding
performance in recent years [Krizhevsky et al., 2012; Le-
Cun et al., 2015]. However, DNNs usually suffer from their
enormous number of parameters, which makes them pro-
hibitive to be deployed on platforms with limited memory
and processing units, e.g., mobile phones [Kim et al., 2016].
To overcome this obstacle, a variety of approaches have
been developed to compress those trained DNNs with over-
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parameterized structures [Denil et al., 2013; Han et al., 2015;
Molchanov et al., 2017].

Layer-wise magnitude-based pruning (LMP) is an effective
DNN compression method and has achieved significant re-
sults in many applications [Han et al., 2015; Guo et al., 2016;
See et al., 2016]. The idea is to prune connections in each
layer separately by removing the connections with absolute
weight values lower than a layer-specific threshold. Given a
threshold for each layer, LMP can prune connections in par-
allel, which is especially useful for DNNs with millions or
billions connections. With well chosen pruning thresholds,
LMP can achieve a significant reduction in the number of pa-
rameters, while maintaining a relatively low accuracy loss.

A main difficulty in applying LMP is tuning the prun-
ing thresholds. Such a threshold tuning problem is non-
trivial for two reasons. First, the solution space of all thresh-
old combinations can be very large even for a moderate-
sized DNN. Suppose a DNN has L layers and each layer
has W connections, then the possible combinations of all
layer-specific thresholds will be of size (W + 1)L. Sec-
ond, the evaluation of each candidate threshold combination
is very time consuming, because it needs to evaluate the per-
formance loss of the pruned model over the training set, e.g.,
the accuracy loss after retraining. The commonly used ap-
proach to tune the thresholds is by hand [Guo et al., 2016;
Han et al., 2015], which highly relies on expertise. In order
to facilitate non-professional users to use LMP, an automatic
threshold adjusting method is required.

It is an appealing idea to tune the thresholds of LMP from
an optimization point of view. However, the performance
measure of the thresholds is usually a discontinuous and non-
differentiable function, which prevents the direct use of off-
the-shelf optimization techniques such as gradient descent
methods. An alternative way is to use derivative-free op-
timization methods [Goldberg, 1989; Brochu et al., 2010;
Qian et al., 2015; Yu et al., 2016], which do not require the
problem to be either continuous or differentiable.

In this paper, we propose an optimization based approach,
namely Optimization based LMP (OLMP), to automatically
tune the pruning thresholds for LMP. Concretely, the thresh-
old tuning problem is formulated as a constrained optimiza-



tion problem, which requires minimizing the size (i.e., the
number of connections) of the pruned network, subject to a
constraint on the accuracy loss. Then, a powerful derivative-
free optimization algorithm is employed to solve this prob-
lem. To deal with the costly evaluation of accuracy loss,
OLMP evaluates the accuracy loss of the pruned model on
a randomly sampled small data set instead of the whole data
set. Note that to compress a trained DNN, OLMP is con-
ducted within a new iterative pruning and adjusting pipeline.

To empirically evaluate the performance of OLMP, a re-
cently proposed powerful derivative-free optimization algo-
rithm, negatively correlated search (NCS) [Tang et al., 2016],
is adopted. Without incurring any accuracy loss on test
data, OLMP can prune 99.66% parameters of LeNet-5 and
99.12% parameters of LeNet-300-100, which are the best
results in comparison to a number of state-of-the-art ap-
proaches [Han et al., 2015; Guo et al., 2016; Ullrich et al.,
2017; Molchanov et al., 2017]. We also apply OLMP to prune
an AlexNet-style deep model and 98.78% parameters can be
removed without sacrificing accuracy.

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 introduces the proposed
OLMP algorithm. Section 4 presents the empirical studies.
Section 5 finally concludes the paper.

2 Related Work
Pruning methods [LeCun et al., 1989; Hassibi and Stork,
1992] are widely used for compressing trained DNNs. They
usually use some metrics to measure the saliency of parame-
ters and then set thresholds to abandon parameters with low
saliency. There are typically two types of pruning meth-
ods: neuron pruning [He et al., 2014] and connection prun-
ing [Hassibi and Stork, 1992; LeCun et al., 1989]. This paper
focuses on connection pruning.

LMP extends magnitude-based pruning (MP) [LeCun et
al., 1989] with respect to the multi-layer nature of DNNs.
Given a set of connections and a positive threshold, MP
prunes connections with absolute weight values smaller than
the threshold. Considering the non-linear connected nature of
DNNs, LMP applies MP with different thresholds to different
layers. Popular LMP methods always tune the thresholds by
experience, e.g., iterative pruning and retraining (ITR) [Han
et al., 2015], dynamic surgery (DS) [Guo et al., 2016] and
layer-wise optimal brain surgeon [Dong et al., 2017].

There also exist some connection pruning methods without
the need of tuning layer-specific thresholds. SWS [Ullrich et
al., 2017] extends the idea of soft weight-sharing [Nowlan
and Hinton, 1992] to DNN compression. It fits a mixture of
multiple Gaussian models over the weights with one Gaussian
model fixed to zero mean, and then prunes the weights which
are under the zero-mean distribution. Sparse VD [Molchanov
et al., 2017] uses a technique called variational dropout, whi-
ch provides Bayesian interpretation to Gaussian dropout. It
assigns an individual dropout rate to each weight and explores
all possible values of dropout rates to find a sparse model.

Pruning followed by adjusting is a popular approach to get-
ting better performance than applying pruning alone. For ex-
ample, ITR and DS both use an additional model adjusting

phase after pruning. DS first prunes the network drastically
based on a variant of LMP, and then retrains the pruned model
and randomly recovers the incorrectly removed connections
by an operation called splicing. ITR iteratively applies LMP
and then retrains the pruned model until the model cannot re-
trieve the original accuracy. Similar ideas of ITR can also be
found in [Castellano et al., 1997].

The proposed OLMP adopts a heuristic optimization al-
gorithm NCS [Tang et al., 2016] to optimize the pruning
thresholds. Heuristic optimization algorithms have been used
to evolve the network structure [Yao and Liu, 1997], and
to prune the connections [Reed, 1993]. However, most of
them are effective only for shallow networks, and are com-
putational impossible for DNNs with millions of parameters.
Recently, Google Research [Real et al., 2017] successfully
applied genetic algorithms to design the structures of DNNs
by using clusters of GPU servers.

3 The Proposed Approach
In this section, we introduce OLMP, the whole framework of
DNN compression with OLMP, and a realistic implementa-
tion of OLMP, respectively.

3.1 OLMP
Suppose a trained DNN model with L+ 1 layers can be rep-
resented as W = {W l

i,j |W l
i,j 6= 0, 1 ≤ l ≤ L, 1 ≤ i ≤ nl, 1

≤ j ≤ nl+1}, where W l
i,j denotes the connection weight be-

tween the ith neuron in layer l and the jth neuron in layer l+1,
and nl denotes the number of neurons in layer l. Note that
W l
i,j = 0 indicates that the corresponding connection does

not exist. Let f(W ) denote the evaluation function which
measures the accuracy of modelW , and let δ denote the user-
defined tolerance on accuracy loss. ForW , the task of finding
the best pruned model with respect to δ can be formulated as

W ∗ = argmin
W ′⊆W

|W
′
| s.t. f(W )− f(W

′
) ≤ δ. (1)

Note that W
′

is a subset of W (namely a pruned model),
|W ′ | denotes the size ofW

′
, andW ∗ denotes the best pruned

model with the smallest size while satisfying the constraint.
In LMP, the generation of the pruned model W ′ is decided

by the pruning thresholds at each layer. That is, the pruning in
layer l ofW is described by MP(W, l, εl) = {W l

i,j | |W l
i,j | ≥

εl, 1 ≤ i ≤ nl, 1 ≤ j ≤ nl+1}, where |W l
i,j | denotes the

absolute value of W l
i,j and εl denotes the pruning threshold

at layer l. For many LMP methods, εl is always determined
by a heuristic function g which contains hyper-parameters to
be tuned. Here, we only consider one hyper-parameter cl to
be tuned for each layer l, denoted as εl = g(cl). Therefore,
the pruned model by LMP can be represented as follows:

LMP(W, c) =

L⋃
l=1

MP(W, l, g(cl)), (2)

where c = (c1, c2, . . . , cL). By combining Eqs. (1) and (2),
the optimization based LMP (OLMP) can be formulated as:
c∗ = argmin

c∈RL,W ′=LMP(W,c)

|W ′| s.t. f(W )− f(W ′) ≤ δ.

(3)
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Figure 1: Illustration of DNN compression with OLMP, given an accuracy constraint δ, and a reference model as inputs. The Right part
presents the compression process in which pruning and adjusting are conducted iteratively until the stopping criterion is fulfilled. The
pruning step adopts OLMP to generate a pruned model, while the adjusting step recovers the accuracy loss of the pruned model. In each loop
of pruning and adjusting, it will fetch a small set of data with K batches from the whole data set D, and use one batch for pruning while
the rest for adjusting. The Left part illustrates the structure of OLMP using NCS. In OLMP, the threshold tuning problem is formulated as
a single-objective optimization problem with an accuracy constraint δ, and then optimized using NCS to get the best found thresholds. After
that, a pruned model can be derived by applying LMP on the reference model with the obtained thresholds.

The formulated problem Eq. (3) is usually difficult, which
can be discontinuous and non-differentiable. Thus, we need
to employ a powerful derivative-free optimization algorithm
to solve it. After getting the output hyper-parameter vector
c∗, we can get a corresponding pruned model LMP(W, c∗).
Note that OLMP can be used in DNN compression together
with other techniques, like accuracy adjustment.

3.2 DNN Compression with OLMP
To apply OLMP in DNN compression, we use a new iterative
pruning and adjusting pipeline, as shown in the right part of
Figure 1. Suppose the whole data set D contains |D| batches
of data, and is split into |D|/K small sets, where each set
contains K batches. In each iteration of the pipeline, one
split data set is selected for pruning and adjusting. OLMP is
first used to prune the reference model based on one batch
extracted from the selected split data set, and then the pruned
model is adjusted on the rest batches of the split data set to
recover its accuracy. Note that the adjusting phase utilizes
retraining with splicing to recover the incorrect pruned con-
nections just the same as DS does [Guo et al., 2016]. The
adjusting will last one epoch on the K − 1 batches of the
split data set and the refined model will then be treated as a
new reference model for pruning in the next loop. This pro-
cedure will be repeated until a limit number of loops (denoted
as pruning loops) is reached. Finally, the pruned model will
be retrained with splicing on the whole data until it converges.

One thing should be noted here is how to combine splicing
into the pipeline. In DS, for a layer l, there are two parameters
(al, bl) where al is the pruning threshold and bl controls the
splicing operation. Through an investigation of the released

code, we find that
{
al = 0.9×max{θl + clσl, 0}
bl = 1.1×max{θl + clσl, 0},

where

θl and σl are the mean of absolute values and standard devi-
ation of weights in layer l, and cl is a layer-specific hyper-

parameter. We use the same value for the pruning threshold
g(cl) in OLMP and the pruning threshold al in splicing, i.e.,
g(cl) = al. Thus, the hyper-parameter tuning of splicing is
unified into the optimization of Eq. (3).

The iterative pipeline used in the framework is a combi-
nation of ITR and DS with the layer-wise hyper-parameters
tuned by OLMP. Instead of using the whole data set in adjust-
ing of each iteration (e.g., ITR), the proposed pipeline only
uses a fraction of data for speeding up the compression. By
adopting different optimization algorithms for OLMP or se-
lecting different values for hyper-parameters (i.e., δ, K and
pruning loops), this framework of DNN compression can
have different implementations.

3.3 OLMP Implementation
In this subsection, we are to provide an effective implementa-
tion of the proposed DNN compression framework by using
a powerful derivative-free optimization algorithm for OLMP
and giving some guidelines on hyper-parameter tuning.

Here, an instantiated OLMP method based on NCS [Tang
et al., 2016] is established. NCS is a population-based heuris-
tic optimization algorithm which achieves the state-of-the-
art performance on many multimodal optimization problems,
and does not require derivative information. It uses negative
correlations to increase diversities among solutions and to en-
courage them to search different areas of the solution space.

To use NCS to solve the problem Eq. (3), a fitness func-
tion is needed to evaluate the qualities of solutions. A sim-
ple and direct choice is to maximize the following function{
|W\W

′
|

|W | , if f(W )− f(W ′
) ≤ δ

0, otherwise
. That is, the fitness of

infeasible solutions (i.e., the constraint is violated) is assigned

by the worst value 0. Note that maximizing |W\W
′
|

|W | is equiv-

alent to minimizing |W ′ | in Eq. (3). However, such a fit-
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Figure 2: Landscape of solutions for iterative pruning and retraining.
Left to right are results of the first to the second iteration. Each layer
was pruned 10%, 20%, ..., 90%, separately. In this figure, the first
layer is fixed to 90% reduced. Axis x and y indicate the percentage
of reduction in layer 2 and 3, and axis z indicates the fitness values
of solutions. Solutions with larger values of z are better.
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Figure 3: Transformation of the landscape by adding punishment to
infeasible solutions. The left plot is the original landscape shown in
Figure 2, the right plot is the landscape of function eval. It can be
found that there is an obvious bias in the search space that can help
the optimization algorithm to jump out of the infeasible area quickly.

ness function is usually difficult to be solved. Taking pruning
LeNet-300-100 as an example, Figure 2 shows the landscape
of solutions, when iterative pruning and retraining is applied.
We can observe that the optimal solution is surrounded by
some “plateau” structures on the landscape, which cannot
provide useful searching information. Thus, we propose to
minimize the fitness function Eq. (4), which prefers infeasi-
ble solutions with less constraint violation degree instead of
directly assigning them by the same worst value.

fitness(c) = −eval(LMP(W, c)),

eval(W
′
) =

 |W\W
′
|

|W | , if f(W )− f(W ′
) ≤ δ

− f(W )−f(W
′
)

δ , otherwise
.

(4)
Figure 3 shows the negative fitness landscape of Eq. (4),
which becomes less flat and will be easier to be optimized.

The procedure of OLMP with NCS is shown in the left of
Figure 1. A reference model W , a user defined δ and a sam-
pled data set are packed into a fitness evaluation module. In
each iteration, for newly generated alternatives of c, the eval-
uation module prunes the reference model by LMP(W, c)
and returns the fitness values; NCS then searches for new so-
lutions based on these solutions and their fitness values.

As NCS is adopted, its hyper-parameters are involved into
the compression process. Although NCS contains adaptive
settings for its parameters, we find some manual selections
for initial parameter values can speed up the search process.
The parameters of NCS that we tune are σ, popN and Tmax

where σ decides the stride in searching solutions, popN de-
cides the number of search directions and Tmax decides the
epochs of NCS. Therefore, the overall hyper-parameters con-
sist of those used by the proposed framework (i.e., δ,K and
pruning loops) and those introduced by the employed opti-
mization algorithms (e.g., σ, popN and Tmax for NCS).

In practice, we can first fix δ and σ to a small value (e.g.,
0.1) and tune other parameters. The sequence of tuning was
K → pruning loops → Tmax → popN . For each parame-
ter, we can use grid search to get a value at which the perfor-
mance stops increasing. Finally, we can tune δ and σ based
on the sensitivity analysis, as provided in Section 4.3.

4 Experiments
In this section, we empirically investigate the performance of
OLMP. Firstly, we compare OLMP with some state-of-the-
art connection pruning methods on LeNet-5 and LeNet-300-
100 [Han et al., 2015], which are commonly used by all com-
parative methods. Secondly, OLMP is applied to compress a
real deep network, i.e., an AlexNet [Krizhevsky et al., 2012]
style model called AlexNet-Caltech. Thirdly, we perform a
sensitivity analysis of hyper-parameters. Finally, we study
how OLMP performs without the proposed iterative pipeline.

For the data sets and models, LeNet-5 and LeNet-300-100
are trained on MNIST, and AlexNet-Caltech is trained on
Caltech-256 [Griffin et al., 2006]. Note that the output dimen-
sion of AlexNet-Caltech is 257 instead of 1000 in AlexNet,
since Caltech-256 contains 257 classes (one class for unrec-
ognized images); and this is the only difference in structures
compared with original AlexNet.

In the context of all experiments, pruning ratio (PR) indi-
cates |W ||W ′ | , i.e., the ratio between the number of connections
of the reference model and the pruned model. All of the ex-
periments are based on Caffe [Jia et al., 2014] and released
projects of DS and NCS, and run on a workstation with one
Titan X pascal and dual Intel E5-2683 v3@2.0 GHz CPUs.

4.1 Comparison on LeNet-Style Models
In this subsection, we are to show that OLMP can achieve the
best performance on DNN compression. We use the refer-
ence modes of LeNet-300-100 and LeNet-5 that were used
in testing DS [Guo et al., 2016]. Besides, SGD with the
same experimental settings (e.g., base learning rate and batch
size) in training these reference models is used to retrain the
pruned models in the adjusting phase of OLMP. The final
pruned models need to be retrained with splicing for addi-
tional 15, 000 iterations to converge. In this experiment, we
set the hyper-parameters (K, pruning loops, popN , Tmax)
to (1000, 15, 10, 160). For LeNet-300-100, (δ, σ) is set to
(8%, 5); for LeNet-5, δ is set to 5%, and σ is set to 5 in the
first 10 pruning loops and 0.5 since then.

The results are shown in Table 1. We can observe that
OLMP achieves the best PRs on LeNet-300-100 and LeNet-
5 without degrading test accuracy. Note that ITR [Han et
al., 2015] and DS [Guo et al., 2016] are two LMP methods
which manually set pruning thresholds; and SWS [Ullrich et
al., 2017] and Sparse VD [Molchanov et al., 2017] are two
non-LMP connection pruning methods.



Model Method Top-1 Error (%) Accuracy Improve PR

ITR 1.64→1.59 +0.05 12
DS 2.28→1.99 +0.29 56

LeNet- SWS 1.89→1.94 -0.05 23
300-100 Sparse VD 1.64→1.92 -0.28 68

OLMP 2.28→2.18 +0.1 114

ITR 0.80→0.77 +0.03 12
DS 0.91→0.91 0 108

LeNet-5 SWS 0.88→0.97 -0.09 200
Sparse VD 0.80→0.75 +0.05 280

OLMP 0.91→0.91 0 298

Table 1: Comparison results on LeNet-style models. OLMP gets the
best PRs without accuracy loss. For each model, the best value in
each column is bolded. All the results of comparative methods are
the best reported ones in their original work with different reference
modes. Note that OLMP and DS use the same reference models.

4.2 Application to AlexNet
In this subsection, we apply OLMP to prune a real deep net-
work, AlexNet-Caltech with 58.33 million parameters. The
reference model is trained from scratch for 10, 000 iterations
using SGD which mainly follows the experimental settings
in [Zeiler and Fergus, 2014] except that the batch size is 256
here; and the same settings of SGD are also used during re-
training. The reference model achieves a validation accu-
racy of 40.18% which is similar to [Zeiler and Fergus, 2014]
(i.e., 38.8 ± 1.4%). The final pruned model needs to be re-
trained with splicing for additional 5, 000 iterations to con-
verge. (K, pruning loops, popN , Tmax, δ) is set to (250, 40
, 8, 200, 8%), and σ is set to 5 in the first 28 pruning loops
and 0.5 since then.

The results are shown in Table 2. We can see that OLMP
can achieve the PR value of 82 without accuracy loss. We
also give the the reduction in each layer, as shown in Table 3.
We can observe that the percentages of remaining parameters
in the first two layers and the last layer are much larger than
that in other layers, which suggests that these three layers are
less redundant than other layers.

For the computational cost, it takes 108 minutes to train the
reference model, and 605 minutes to compress (433 minutes
for OLMP and 172 minutes for adjusting), which is 5.6 (i.e.,
605/108) times than training the reference model. Note that
NCS can be easily implemented in parallel, and the cost of
NCS can be reduced by a factor of popN , i.e., the cost of 433
minutes can be reduced to 54 (i.e., 433/8) minutes if enough
GPUs are available.

Model Top-1 error(%) Parameters PR

AlexNet-Caltech-ref 59.82 58.3M 1
AlexNet-Caltech-pruned 59.42 0.7M 82

Table 2: Compression results on AlexNet-Caltech. OLMP can dra-
matically reduce the number of parameters without accuracy loss.
Note that “*-ref” indicates the reference model and “*-pruned” in-
dicates the model pruned by OLMP. “M” indicates millions.

4.3 Analysis of Sensitivities to δ and σ
In this subsection, we investigate the impact of (δ, σ) on the
performance of OLMP. LeNet-300-100 with the same set-

Layer conv1 conv2 conv3 conv4 conv5 fc1 fc2 fc3 Total

Param 35K 307K 885K 664K 443K 38M 17M 1M 58.33M
Remain(%) 13.9 31.92 1.68 4.70 4.04 0.85 0.57 11.67 1.22

Table 3: Reductions in each layer of the pruned AlexNet-Caltech
after applying OLMP. The total number of parameters in the refer-
ence model is 58.33 million and only 1.22% of the parameters are
remained after compression. “K” indicates thousands.

tings as in subsection 4.1 is used as an example. We use δ ∈
{1%, 6%, 11%, . . . , 51%} and σ ∈ {0.05, 5.05, 10.05, . . . ,
50.05}, and prune the model with each possible setting of
(δ, σ). There are totally 121 settings of (δ, σ). For each set-
ting, we independently run OLMP 30 times and record the
number of pruned models which can recover accuracy (i.e.,
no accuracy loss compared with the reference model). Mean-
while, for those models which can recover accuracy, we also
record their average PR. The results are shown in Table 4.

From the distribution of bold values (i.e., the largest PR in
each row) in Table 4, the PRs keep to a small value (i.e., 6)
and the pruned model can always restore accuracy, when σ
is very low (i.e., σ = 0.05). When σ is not very low (i.e.,
σ ≥ 5.05), we can see that a larger δ value will possibly lead
to a larger PR value. This is expected since a larger δ value
implies a larger feasible solution space and thus a better op-
timal objective function value, i.e., a larger PR value. How-
ever, a large δ may also make the pruned model difficult to re-
cover accuracy, which means that users need to rerun OLMP
many times for finding a pruned model without accuracy loss.
Thus, a large δ is prohibitive for DNNs with expensive com-
putational cost. When δ is not very large (i.e., δ ≤ 36%),
the relationship between the performance of OLMP and σ is
relatively stable for different δ values. That is, as σ increases,
the PR tends to decrease while the number of pruned models
without accuracy loss keeps within a certain range.

The above observations give us some practical guidance
on tuning δ and σ. First, a suitable σ can be selected with
a small fixed δ value, since the pattern between σ and the
performance of OLMP is stable for small δ values. Then, we
can carefully select δ for a large PR. Thus, combining with
the analysis in subsection 3.3, we have shown how to tune
the hyper-parameters of OLMP.

4.4 OLMP without Iterative Pruning
In this subsection, we test OLMP without iterative pruning
and adjusting, to show the process of optimization in a sin-
gle pruning. We also compare it with the baseline algorithm
MP [LeCun et al., 1989] to investigate whether optimization
really brings some benefit.

Different from previous experiments, all the models used
here are trained on a training set from scratch, pruned on a
validation set and tested on an unseen test set. Since MNIST
and Caltech-256 only have two separate data sets, a manual
division is applied. For MNIST, a validation set containing
6, 000 samples is selected from the training set (60, 000 in
total) uniformly at random; the remaining samples form the
new training set; the test set is untouched (10, 000 in total).
For Caltech-256, the training set is untouched (15, 420 in to-
tal) while the validation set (15, 187 in total) is uniformly ran-



σ
δ 1% 6% 11% 16% 21% 26% 31% 36% 41% 46% 51%

0.05 6—30 6—30 6—30 6—30 6—30 6—30 6—30 6—30 6—30 6—30 6—30
5.05 26—30 59—29 84—23 87—20 91—14 94—9 89—11 99—3 83—1 0—0 0—0
10.05 22—30 54—29 73—28 75—23 81—17 86—17 82—12 92—6 102—3 0—0 0—0
15.05 18—30 48—29 67—26 75—24 74—18 78—13 85—9 96—9 89—4 83—2 76—2
20.05 17—30 49—30 71—29 77—25 71—21 77—19 87—12 93—6 74—5 90—5 82—2
25.05 17—30 52—30 56—30 70—26 71—23 75—15 82—18 86—12 55—3 101—3 52—1
30.05 14—30 41—30 57—26 56—25 71—27 73—17 81—17 84—7 86—8 61—3 65—3
35.05 17—30 38—30 58—27 58—25 67—21 72—21 80—13 82—13 77—11 86—6 85—2
40.05 15—30 37—30 51—30 64—26 73—25 68—23 80—17 82—15 84—6 99—6 88—2
45.05 15—30 34—28 53—28 70—25 73—26 76—20 87—19 74—10 93—6 90—11 100—4
50.05 13—30 33—30 50—30 51—25 66—26 68—19 80—15 68—8 79—9 66—4 74—5

Table 4: Compression results of OLMP on LeNet-300-100 with different settings of (δ, σ). In each cell of the table, the value is represented
as “Average PR—number of pruned models without accuracy loss”. Underline values are those with the maximum PRs in each column. Bold
values are those with largest PRs in each row.
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Figure 4: Visualization of the optimization process of OLMP with-
out iterative pruning and adjusting, using LeNet-5 as the demonstra-
tion. The circles in the figures represent the corresponding results
of the best found solution in each iteration. The left plot shows the
variation of model accuracy and the right plot shows the evolution
of −fitness (the larger the better).

domly divided into a new validation set (7, 530 in total) and
a new test set (7, 657 in total). All the settings of training
the reference models are the same as those used in subsec-
tions 4.1 and 4.2.

During pruning, δ is set to 1%. MP tests 100 thresholds
which prune 0%, 1%, . . . , 99% parameters of the reference
model, respectively, and then selects the pruned model with
the largest PR among those without accuracy loss. For OLMP
without iterative pruning and adjusting, (popN , σ, Tmax) is
set to (4, 5, 400). Figure 4 shows the optimization process
of OLMP which involves both the model accuracy and the
−fitness value (i.e., the value of eval in Eq. (4)) of the best so-
lution (i.e., the solution with the smallest fitness value) found
in each iteration of NCS. Table 5 summarizes the results.

From the right plot in Figure 4, we can observe that OLMP
can gradually improve the solution quality. To be specific,
in the early stage, the found solutions always fit the accuracy
constraint and the fitness values continue to increase. In the
later stage, the trend of the solution quality is still becoming
better, while the solutions can suddenly become worse (i.e.,
the curve decreases) sometimes. The reason might be that,
at the early stage of pruning, the model has a lot of redun-
dant connections and thus better solutions are easily gener-
ated; while as the optimization goes forward, the model is
less redundant and it becomes easier to prune some important
connections that will dramatically decrease the fitness value.

Model Method Val acc(%) Val loss(%) Test acc(%) Test loss(%) PR

None 97 0 97.88 0 1
LeNet- MP 96.0 1 97.69 0.19 6.25
300-100 OLMP 96.04±0.03 0.96±0.03 96.93±0.03 0.95±0.03 6.41±0.06

None 98.47 0 98.42 0 1
LeNet-5 MP 97.67 0.8 97.72 0.7 4.76

OLMP 97.5±0.03 0.97±0.03 98.06±0.08 0.36±0.08 9.13±0.72

None 40.52 0 39.91 0 1
AlexNet- MP 39.64 0.88 39.04 0.87 4.17
Caltech OLMP 39.58±0.04 0.94±0.04 38.64±0.02 1.27±0.02 4.95±0.11

Table 5: Comparison between the baseline MP and OLMP without
iterative pruning and adjusting. “None” indicates the performance
of the reference model. “Val/Test acc” indicates the model accuracy
on validation/test set. “Val/Test loss” indicates the accuracy of the
reference model minus the accuracy of the pruned model on vali-
dation/test set. The pruned model is the best found one under the
accuracy constraint 1%. Results for OLMP consist of “mean±std”
which are computed from 5 independent runs. Note that pruning
only considers the accuracy constraint on the validation set. Bold
values are the best PR for pruning each DNN.

From Table 5, we can see that OLMP without iterative
pruning and adjusting always achieves better PRs than MP,
which implies that introducing optimization can lead to better
performance. For the accuracy loss, neither OLMP nor MP
has significant larger loss in testing than in validation, which
shows that the pruned models on the validation data set can
generalize well on the unseen test set.

5 Conclusion
State-of-the-art LMP based DNN compression methods re-
quire to manually select the pruning thresholds on each layer,
and thus are hard to be applied in practice, particularly for
end-users with limited expertise. This paper proposes OLMP,
an optimization based LMP method which can choose thresh-
olds automatically. OLMP first formulates the task of thresh-
old selection as a constrained optimization problem, i.e.,
maximizing the pruning ratio under a constraint on the accu-
racy loss, and then uses a derivative-free optimization algo-
rithm to solve the problem. To compress DNNs exhaustively,
OLMP is applied within a new iterative pruning and adjust-
ing pipeline. Empirical results show the superiority of OLMP
over several state-of-the-art connection pruning methods.
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