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Abstract
The problem of selecting a sequence of items from
a universe that maximizes some given objective
function arises in many real-world applications.
In this paper, we propose an anytime randomized
iterative approach POSEQSEL, which maximizes
the given objective function and minimizes the se-
quence length simultaneously. We prove that for
any previously studied objective function, POSE-
QSEL using a reasonable time can always reach or
improve the best known approximation guarantee.
Empirical results exhibit the superior performance
of POSEQSEL.

1 Introduction
The subset selection problem, which selects a subset of size
at most k from a total set of n items for maximizing some
given objective function f , arises in many applications, such
as document summarization [Lin and Bilmes, 2011], influ-
ence maximization [Kempe et al., 2003] and sensor place-
ment [Krause et al., 2008], to name a few. This general
NP-hard problem has been studied extensively, and many al-
gorithms with bounded approximation guarantees have been
proposed [Krause and Golovin, 2014]. For example, a well-
known result is that when the objective function f is mono-
tone submodular, the greedy algorithm, which iteratively adds
one item with the largest marginal gain, can achieve the opti-
mal approximation guarantee of (1−e−1) [Nemhauser et al.,
1978; Nemhauser and Wolsey, 1978].

However, in many practical applications such as rec-
ommendations in online shopping [McAuley et al., 2015],
paper reading [Shahaf et al., 2012] and course learn-
ing [Parameswaran et al., 2011], it is often desired to output
a sequence instead of a subset. That is, the items cannot be
treated independently, and the objective function f depends
on the order of items. In this paper, we study the sequence
selection problem, i.e., the goal is to select a sequence of at
most k items that will maximize some given objective func-
tion f .

Note that the search space is exponentially larger by con-
sidering sequences instead of subsets, thus sequence selec-

tion can be harder than subset selection. To the best of
our knowledge, only three pieces of studies have been re-
ported on sequence selection. Alaei and Malekian [2010]
first extended the notions of monotonicity and submodular-
ity from subsets to sequences, and proved that for sequence
monotone submodular objective functions, the GREEDY al-
gorithm, which iteratively appends one item with the largest
marginal gain to the end of the current sequence, can achieve
a (1 − e−1)-approximation guarantee. When the objective
function is relaxed to be string monotone submodular (which
is weaker than sequence monotone submodular), Zhang et
al. [2016] showed that GREEDY achieves a (1/σ)(1 − e−σ)-
approximation guarantee, where σ is the curvature charac-
terizing the degree of submodularity. Recently, Tschiatschek
et al. [2017] considered a new class of objective functions,
which does not necessarily satisfy the sequence submodular
or string submodular property. They proved that GREEDY
fails to achieve a constant approximation guarantee, and then
proposed a new algorithm OMEGA with an approximation
guarantee of (1− e− 1

2∆ ), where ∆ ≥ 2.
In this paper, we propose a Pareto Optimization method for

Sequence Selection, briefly called POSEQSEL. It first refor-
mulates the original problem as a bi-objective optimization
problem that maximizes the given objective f and minimizes
the sequence length simultaneously, then employs a random-
ized iterative procedure to solve it, and finally selects the best
sequence satisfying the length constraint from the produced
set of sequences. To theoretically investigate the performance
of POSEQSEL, we consider each class of previously studied
objective functions. We prove that POSEQSEL within poly-
nomial time can always reach or improve the best known ap-
proximation guarantee. The concrete theoretical results are:

• For sequence monotone submodular objective functions,
POSEQSEL achieves an approximation guarantee of (1 −
e−1) (Theorem 1), which reaches that of GREEDY [Alaei
and Malekian, 2010].

• For string monotone submodular objective functions,
POSEQSEL achieves an approximation guarantee of
(1/σ)(1 − e−σ) (Theorem 2), which reaches that of
GREEDY [Zhang et al., 2016].

• For a special class of objective functions (not necessarily



sequence or string submodular), POSEQSEL achieves an
approximation guarantee of 1 − e− 1

2 (Theorem 3), which
is better than that of OMEGA [Tschiatschek et al., 2017].

The experimental results also show the better performance of
POSEQSEL over GREEDY and OMEGA.

The rest of the paper first introduces the studied problem,
and then presents the proposed algorithm, its theoretical anal-
ysis and empirical study. Finally we conclude this paper.

2 Preliminaries
Let R, R+ and Z+ denote the set of reals, non-negative re-
als and non-negative integers, respectively. Given a finite set
V = {v1, v2, . . . , vn} of items, we study the functions f :
S → R defined on sequences of items from V . A sequence is
represented by s ∈ S = {(s1, s2, . . . , sl) | si ∈ V, l ∈ Z+},
where l = 0 represents the empty sequence ∅. The sequence
selection problem as presented in Definition 1 is to select a se-
quence s such that a given objective f is maximized with the
constraint |s| ≤ k, where |·| denotes the length of a sequence.
In this paper, we will use s ⊕ t to denote the concatenation
of two sequences s and t, and represent a singleton sequence
(v) by v for simplicity.

Definition 1 (Sequence Selection). Given all items V =
{v1, v2, . . . , vn}, an objective function f : S → R and a
budget k ∈ Z+, it is to find a sequence of at most k items
maximizing f , i.e.,

arg maxs∈S f(s) s.t. |s| ≤ k. (1)

In [Alaei and Malekian, 2010], sequence monotone sub-
modular objective functions were considered. As presented
in Definition 2, the monotonicity and the submodularity (i.e.,
the diminishing return property) hold with the subsequence
relationship (denoted by vseq). The GREEDY algorithm it-
eratively appends one item with the largest improvement on
f to the end of the current sequence, and was proved able
to achieve a (1 − e−1)-approximation guarantee [Alaei and
Malekian, 2010]. In this paper, we always assume that mono-
tone functions are normalized, i.e., f(∅) = 0.

Definition 2 (Sequence Monotone Submodular [Alaei and
Malekian, 2010]). For two sequences s, t ∈ S , s vseq t if
s is a subsequence of t. Then a sequence function f : S → R
is sequence monotone submodular if
(1) f is sequence monotone, i.e., ∀s vseq t : f(s) ≤ f(t);
(2) f is sequence submodular, i.e.,

∀s vseq t, v ∈ V : f(s⊕ v)− f(s) ≥ f(t⊕ v)− f(t).

In [Zhang et al., 2016], a more general class of objec-
tive functions called string monotone submodular was con-
sidered. As presented in Definition 3, the monotonicity
and the submodularity hold with the prefix relationship (de-
noted by vstr). Note that prefix is a special case of sub-
string, which is a special case of subsequence. Thus, string
monotone submodular is weaker than sequence monotone
submodular, i.e., a sequence monotone submodular function
must be string monotone submodular. By utilizing the no-
tion of string curvature as presented in Definition 4, it was

proved that GREEDY achieves an approximation guarantee of
(1/σo,k(f))(1− e−σo,k(f)) [Zhang et al., 2016], where o de-
notes an optimal sequence of Eq. (1).

Definition 3 (String Monotone Submodular [Zhang et al.,
2016]). For two sequences s, t ∈ S , s vstr t if s is a prefix
of t. Then a sequence function f : S → R is string monotone
submodular if
(1) f is string monotone, i.e., ∀s vstr t : f(s) ≤ f(t);
(2) f is string submodular, i.e.,

∀s vstr t, v ∈ V : f(s⊕ v)− f(s) ≥ f(t⊕ v)− f(t).

Definition 4 (String Curvature [Zhang et al., 2016]). Let
f : S → R+ be a string monotone submodular function.
The string curvature of f with respect to a sequence s and a
parameter m ≥ 1 is

σs,m(f) = max
t∈S,0<|t|≤m

{
1− f(t⊕ s)− f(s)

f(t)

}
. (2)

The string curvature characterizes the degree of string sub-
modularity. When f is clear, we will use σs,m for short. We
then make the following observations:

Remark 1. σs,m increases with m for any s; and σs,m ≥ 0
for any s and m ≥ |s| − 1, since by letting t in Eq. (2) be
(s1, . . . , s|s|−1), we have

f(t⊕ s)− f(t)

=
∑|s|

i=1
f(t⊕ (s1, . . . , si))− f(t⊕ (s1, . . . , si−1))

≤
∑|s|

i=1
f((s1, . . . , si))− f((s1, . . . , si−1)) = f(s),

where the inequality is by the string submodularity of f since
for any 1 ≤ i ≤ |s|, (s1, . . . , si−1) vstr t⊕ (s1, . . . , si−1).

In [Tschiatschek et al., 2017], a special class of objec-
tive functions called DAG monotone submodular was con-
sidered. As presented in Definition 5, it is assumed that there
exists a directed acyclic graph G = (V,E) (if not counting
self-cycles) capturing the ordered preferences among items,
where an edge (vi, vj) ∈ E means that there is an additional
utility when selecting vi before vj ; and the function f value
of a sequence s can be determined by the set of edges induced
by s and a corresponding monotone submodular set function
h : 2E → R+. Note that a DAG monotone submodular func-
tion does not necessarily satisfy the sequence submodular or
string submodular property, and the items in a sequence can-
not be repeated here, i.e., S = {(s1, s2, . . . , sl) | si ∈ V, l ∈
Z+,∀i 6= j : si 6= sj} [Tschiatschek et al., 2017]. For this
special class of sequence functions, GREEDY fails to achieve
a constant approximation guarantee, while the OMEGA al-
gorithm, which greedily picks an edge instead of an item,
can achieve an approximation guarantee of 1− e− 1

2∆ [Tschi-
atschek et al., 2017], where ∆ = min{∆in,∆out}, and ∆in,
∆out are the largest indegree and outdegree of the items in the
graph G, respectively.

Definition 5 (DAG Monotone Submodular [Tschiatschek et
al., 2017]). Given a directed acyclic graph (DAG) G =



(V,E) modeling the ordered preferences among items, a se-
quence function f : S → R is DAG monotone submodular if
∀s ∈ S,

f(s) = h(E(s)),

where h : 2E → R+ is a monotone submodular set function,
and E(s) = {(si, sj) | (si, sj) ∈ E, i ≤ j} is the set of
edges induced by the sequence s.

Note that the size of the search space is
(
n
k

)
for selecting a

subset with k items, while by considering sequences instead
of subsets, the search space becomes much larger. The size
is nk if allowing repeated items in a sequence, and is k!

(
n
k

)
if

not, either of which is exponentially larger w.r.t. k.

3 The POSEQSEL Algorithm
In this section, we propose a new approach based on Pareto
Optimization [Qian et al., 2015a] for the Sequence Selec-
tion problem, briefly called POSEQSEL. Note that Pareto
optimization is a recently emerged framework that uses bi-
objective optimization as an intermediate step to solve single-
objective optimization problems. It has been successfully
applied to the subset selection problem [Friedrich and Neu-
mann, 2015; Qian et al., 2015a; 2017b], the multiset selection
problem [Qian et al., 2018] as well as the problem of select-
ing several pairwise disjoint subsets [Qian et al., 2017a].

POSEQSEL reformulates the original problem Eq. (1) as a
bi-objective maximization problem

arg maxs∈S
(
f1(s), f2(s)

)
,

where f1(s) =

{
−∞, |s| ≥ 2k

f(s), otherwise
, f2(s) = −|s|.

That is, POSEQSEL maximizes the objective function f and
minimizes the sequence length |s| simultaneously. Note that
the goal of setting f1 to −∞ is to exclude overly infeasible
sequences, the length of which is at least 2k.

In the bi-objective setting, both the two objective values
have to be considered for comparing two sequences s and s′.
s weakly dominates s′ (i.e., s is better than s′, denoted as
s � s′) if f1(s) ≥ f1(s′) and f2(s) ≥ f2(s′); s dominates s′
(i.e., s is strictly better than s′, denoted as s � s′) if s � s′

and either f1(s) > f1(s′) or f2(s) > f2(s′). But if neither s
is better than s′ nor s′ is better than s, they are incomparable.

The procedure of POSEQSEL is described in Algorithm 1.
Starting from the empty sequence ∅ (line 1), it iteratively
tries to improve the quality of the sequences in the archive
P (lines 2-13). In each iteration, a new sequence s′ is gener-
ated from an archived sequence s, which is randomly selected
from the current P (lines 3-8); if s′ is not dominated by any
archived sequence (line 9), it will be added into P , and mean-
while those archived sequences weakly dominated by s′ will
be removed (line 10). Note that the domination-based com-
parison makes P always contain incomparable sequences.

To generate a new sequence s′ from s (lines 4-8), it applies
the insertion or deletion operator uniformly at random and re-
peats this process r times independently, where the number r
is determined by the Poisson distribution with λ = 1. Note
that for the empty sequence, the deletion operator will keep

Algorithm 1 POSEQSEL Algorithm
Input: all items V = {v1, v2, . . . , vn}, a sequence function
f : S → R and a budget k ∈ Z+

Parameter: the number T of iterations
Output: a sequence s ∈ S with |s| ≤ k
Process:

1: Let P = {∅} and t = 0.
2: while t < T do
3: Select a sequence s from P uniformly at random.
4: r = a random number sampled from the Poisson dis-

tribution with λ = 1.
5: s′ = s.
6: for i = 1 to r
7: s′ = insert(s′) or delete(s′), each with prob. 1/2.
8: end for
9: if @ t ∈ P such that t � s′ then

10: P = (P \ {t ∈ P | s′ � t}) ∪ {s′}.
11: end for
12: t = t+ 1.
13: end while
14: return arg maxs∈P :|s|≤k f(s)

it unchanged; when not allowing repeated items, the inser-
tion operator will keep a sequence of length n unchanged.
Such a reproduction behavior is inspired from the muta-
tion operator in genetic programming [Durrett et al., 2011;
Qian et al., 2015b].
Definition 6 (Insertion). Given a sequence s ∈ S , if al-
lowing repeated items, the insertion operator first randomly
selects an item v from V and then inserts v into a ran-
domly chosen position of s. That is, a new sequence
(s1, . . . , si−1, v, si, . . . , s|s|) is generated, where v is uni-
formly chosen from V at random, and i is uniformly chosen
from {1, 2, . . . , |s| + 1} at random. If not allowing repeated
items, the item v is randomly selected from V \ V (s), where
V (s) denotes the set of items appearing in the sequence s.
Definition 7 (Deletion). Given a sequence s ∈ S , the dele-
tion operator deletes a randomly chosen item of s. That is,
a new sequence (s1, . . . , si−1, si+1, . . . , s|s|) is generated,
where i is uniformly chosen from {1, 2, . . . , |s|} at random.

The number T of iterations of POSEQSEL could affect the
quality of the produced sequence. Their relationship will be
analyzed in the theoretical analysis, and we will use the theo-
retically derived T value in the experiments. After running T
iterations, the best sequence (i.e., having the largest f value)
satisfying the length constraint in P is returned (line 14).

4 Theoretical Analysis
In this section, we examine the theoretical performance of
POSEQSEL for the sequence selection problem with each
class of previously studied objective functions.

4.1 Sequence Monotone Submodular
We prove in Theorem 1 that for sequence monotone submod-
ular objective functions, POSEQSEL can achieve a (1−e−1)-
approximation guarantee, which reaches the best known one



previously obtained by GREEDY [Alaei and Malekian, 2010].
Let OPT denote the optimal function value of Eq. (1), and
let E[T ] denote the average number T of iterations to reach
the guarantee. The proof relies on Lemma 1, i.e., for any se-
quence s, there always exists one item, whose addition to the
end of s brings an increment on f proportional to the current
distance to the optimum.
Lemma 1. Let f : S → R+ be a sequence monotone sub-
modular function. For any sequence s ∈ S, there exists one
item v ∈ V such that

f(s⊕ v)− f(s) ≥ (OPT − f(s))/k.

Proof. Let o be an optimal sequence of Eq. (1), i.e., f(o) =
OPT . Then, for any s ∈ S,

f(s⊕ o)− f(s) (3)

=
∑|o|

i=1
f(s⊕ (o1, . . . , oi))− f(s⊕ (o1, . . . , oi−1))

≤
∑|o|

i=1
f(s⊕ oi)− f(s),

where the inequality is by the sequence submodularity of
f since s vseq s ⊕ (o1, . . . , oi−1). Let V (o) denote the
set of items appearing in the sequence o, and let v∗ ∈
arg maxv∈V (o) f(s⊕ v). Then, we have

f(s⊕ v∗)− f(s) ≥ (f(s⊕ o)− f(s))/|o|
≥ (f(s⊕ o)− f(s))/k,

(4)

where the last inequality is by |o| ≤ k and f(s⊕ o)− f(s) ≥
0, since f is sequence monotone and s vseq s⊕ o. Since f is
sequence monotone and o vseq s⊕ o, we also have

f(s⊕ o) ≥ f(o) = OPT, (5)

and thus the lemma holds.

Theorem 1. For the sequence selection problem with se-
quence monotone submodular objective functions, POSE-
QSEL with E[T ] ≤ 2ek2(k + 1)n finds a sequence s ∈ S
with |s| ≤ k and f(s) ≥ (1− e−1) ·OPT .

Proof. Let Jmax denote the maximum value of j ∈
{0, 1, . . . , k} such that in the archive P of POSEQSEL (i.e.,
Algorithm 1), there exists a sequence s with |s| ≤ j and
f(s) ≥ (1− (1− 1

k )j) ·OPT . That is,

Jmax = max{j ∈ {0, 1, . . . , k} | ∃s ∈ P,
|s| ≤ j ∧ f(s) ≥ (1− (1− 1/k)j) ·OPT}.

We then only need to analyze the expected number of it-
erations until Jmax = k, since it implies that there exists
one sequence s in P satisfying that |s| ≤ k and f(s) ≥
(1− (1− 1

k )k) ·OPT ≥ (1− e−1) ·OPT .
The initial value of Jmax is 0, since POSEQSEL starts from

the empty sequence ∅. Assume that currently Jmax = i < k.
Let s be a corresponding sequence with the value i, i.e.,

|s| ≤ i ∧ f(s) ≥ (1− (1− 1/k)i) ·OPT. (6)

It is easy to see that Jmax cannot decrease because deleting
s from P (line 10 of Algorithm 1) implies that s is weakly

dominated by the newly generated sequence s′, which must
satisfy that |s′| ≤ |s| and f(s′) ≥ f(s). By Lemma 1, we
know that appending a specific item to the end of s can gen-
erate a new sequence s′ with f(s′)−f(s) ≥ 1

k (OPT−f(s)).
By applying Eq. (6) to this inequality, we get

f(s′) ≥ (1− (1− 1/k)i+1) ·OPT.

Since |s′| = |s| + 1 ≤ i + 1, s′ will be included into
P ; otherwise, s′ must be dominated by one sequence in P
(line 9 of Algorithm 1), and this implies that Jmax has al-
ready been larger than i, which contradicts with the assump-
tion Jmax = i. After including s′ into P , Jmax ≥ i + 1. Let
Pmax denote the largest size of P during the run of POSE-
QSEL. Thus, Jmax can increase by at least 1 in one iteration
with probability at least

1

Pmax
· 1

e
· 1

2
· 1

n
· 1

|s|+ 1
≥ 1

2e(i+ 1)nPmax
,

where 1
Pmax

is a lower bound on the probability of selecting
s in line 3 of Algorithm 1 due to uniform selection, 1

e is the
probability of r = 1 (i.e, line 7 is implemented once) by the
Poisson distribution with λ = 1, 1

2 is the probability of per-
forming insertion, and 1

n ·
1
|s|+1 is the probability of selecting a

specific item from V and adding it to the end of s in insertion
(i.e., Definition 6). Then, it needs at most 2e(i + 1)nPmax

iterations in expectation to increase Jmax. We thus get that
the expected number of iterations until Jmax = k is at most∑k−1

i=0
2e(i+ 1)nPmax = ek(k + 1)nPmax.

By the procedure of POSEQSEL, we know that the se-
quences maintained in P must be incomparable. Thus, each
value of one objective can correspond to at most one sequence
in P . Because the sequences with |s| ≥ 2k have −∞ value
on the first objective, they must be excluded from P . Thus,
Pmax ≤ 2k, and the expected number of iterations E[T ] for
finding a desired solution is at most 2ek2(k + 1)n.

4.2 String Monotone Submodular
We prove in Theorem 2 that for string monotone sub-
modular objective functions, POSEQSEL can achieve a
(1/σo,k−1)(1 − e−σo,k−1)-approximation guarantee, which
reaches the best known one previously obtained by
GREEDY [Zhang et al., 2016]. Note that o denotes an optimal
sequence of Eq. (1) (i.e., f(o) = OPT ), and σo,k−1 ≥ 0 by
Remark 1 since |o| ≤ k. The proof of Theorem 2 is similar
to that of Theorem 1. The main difference is that a different
inductive inequality on f is used in the definition of the quan-
tity Jmax. For concise illustration, we will mainly show the
difference in the proof of Theorem 2.

Lemma 2. Let f : S → R+ be a string monotone submod-
ular function. For any sequence s ∈ S , there exists one item
v ∈ V such that

f(s⊕ v)− f(s) ≥ (OPT − σo,|s| · f(s))/k.

Proof. The proof is similar to that of Lemma 1. It is easy to
verify that Eq. (3) still holds since the inequality in Eq. (3)



holds by the string submodularity of f and s vstr s ⊕
(o1, . . . , oi−1); Eq. (4) still holds since f(s⊕ o)− f(s) ≥ 0
holds by the string monotonicity of f and s vstr s ⊕ o. But
Eq. (5) does not hold now, since o may not be a prefix of
s ⊕ o, and we cannot use the string monotonicity of f to de-
rive f(s ⊕ o) ≥ f(o). By the definition of string curvature
(i.e., Definition 4), we get

σo,|s|= max
t∈S,

0<|t|≤|s|

{
1− f(t⊕ o)−f(o)

f(t)

}
≥1− f(s⊕ o)−f(o)

f(s)
,

which leads to f(s⊕o) ≥ f(o)+(1−σo,|s|)f(s). By applying
this inequality to Eq. (4), the lemma holds. Note that σo,|s| is
not defined for s = ∅, but the lemma still holds by applying
f(∅) = 0 to Eq. (4).

Theorem 2. For the sequence selection problem with string
monotone submodular objective functions, POSEQSEL with
E[T ] ≤ 2ek2(k + 1)n finds a sequence s ∈ S with |s| ≤ k
and f(s) ≥ (1/σo,k−1)(1− e−σo,k−1) ·OPT .

Proof. The proof is similar to that of Theorem 1. We use a
different Jmax, which is defined as

Jmax = max{j ∈ {0, 1, . . . , k} | ∃s ∈ P,
|s| ≤ j ∧ f(s) ≥ 1

σo,k−1

(
1−

(
1− σo,k−1

k

)j) ·OPT} .
It is easy to verify that Jmax = k implies that the desired
approximation guarantee is reached, since there must exist
one sequence s in P satisfying that |s| ≤ k and f(s) ≥

1
σo,k−1

(1 − (1 − σo,k−1

k )k) · OPT ≥ 1
σo,k−1

(1 − e−σo,k−1) ·
OPT . Assume that currently Jmax = i < k and s is a corre-
sponding sequence, i.e., |s| ≤ i and

f(s) ≥ 1

σo,k−1

(
1−

(
1− σo,k−1

k

)i)
·OPT. (7)

We then only need to show that appending one specific item
to the end of s can generate a new sequence s′ with f(s′) ≥

1
σo,k−1

(1− (1− σo,k−1

k )i+1) ·OPT . By Lemma 2, we know
that there exists one specific item, the addition of which to the
end of s can generate a new sequence s′, which satisfies that
f(s′)−f(s) ≥ 1

k (OPT −σo,|s|f(s)). By applying Eq. (7) to
this inequality and using σo,|s| ≤ σo,k−1 (since |s| ≤ i < k
and σo,m increases with m), we get

f(s′) ≥ 1

σo,k−1

(
1−

(
1− σo,k−1

k

)i+1
)
·OPT.

Thus, the theorem holds.

4.3 DAG Monotone Submodular
For a DAG monotone submodular objective function f , we
know from Definition 5 that there exists a DAG G = (V,E)
(not counting self-cycles) and a monotone submodular set
function h : 2E → R+ such that for any s ∈ S , f(s) =
h(E(s)), where E(s) = {(si, sj) | (si, sj) ∈ E, i ≤ j} is
the set of edges induced by s on G. In this case, the sequence
submodular or string submodular property is not necessarily
satisfied, and GREEDY fails to achieve a good approxima-
tion guarantee. Tschiatschek et al. [2017] then developed the

OMEGA algorithm by exploiting the DAG property of the
graphG, i.e., for each set of items, its optimal ordering can be
computed by first computing a topological ordering of G and
then sorting the set of items according to that order. OMEGA
obtains the best known approximation guarantee of 1−e− 1

2∆ ,
where ∆ = min{∆in,∆out}, and ∆in, ∆out are the largest in-
degree and outdegree of the items in G, respectively.

Let V (s) denote the set of items present in a sequence
s ∈ S , and let REORDER(·) denote the optimal sequence for
a set of items. In the implementation of POSEQSEL, we also
utilize the DAG property of the graph G: when computing
f(s), we directly use the f value of the optimal ordering for
V (s), i.e., f(s) = h(E(REORDER(V (s)))); when the algo-
rithm terminates, we output REORDER(V (s)) instead of s.
We prove in Theorem 3 that POSEQSEL can achieve an ap-
proximation guarantee of (1− e− 1

2 ), which is better than the
best known one, i.e., 1 − e− 1

2∆ [Tschiatschek et al., 2017],
since ∆ is usually much larger than 1. The proof relies on
Lemma 3, that for any s ∈ S, there always exist one or two
items, the insertion of which into s can bring an improvement
on f proportional to the current distance to the optimum.
Lemma 3. Let f : S → R+ be a DAG monotone submodular
function. For any sequence s ∈ S , there exists one item v ∈
V \ V (s) or two items u, v ∈ V \ V (s) such that inserting v
or u, v into any positions of s leads to a sequence s′ with

f(s′)− f(s) ≥ (OPT − f(s))/k.

Proof. The proof relies on an auxiliary set function g : 2E →
R. Let V (X) denote the set of items covered by an edge
set X ⊆ E. We define g as for any X ⊆ E, g(X) =
h(E(REORDER(V (X)))). Note that g is monotone and sub-
modular, as proved in Lemma 1 of [Tschiatschek et al., 2017].

Let o be an optimal sequence of Eq. (1), and let X∗ ∈
arg minX⊆E,V (X)=V (o) |X|, i.e., X∗ is the smallest edge set
which covers the item set V (o). It is easy to see that |X∗| ≤
k, since |o| ≤ k and one edge can cover at least one item.
Then, for any s ∈ S,

g(X∗)− g(E(s)) ≤ g(E(s) ∪X∗)− g(E(s))

≤
∑

e∈X∗\E(s)
g(E(s) ∪ e)− g(E(s)),

where the first inequality is by the monotonicity of g, i.e,
∀X ⊆ Y , g(X) ≤ g(Y ), and the second is by the submod-
ularity of g, i.e, ∀X ⊆ Y , g(Y ) − g(X) ≤

∑
e∈Y \X g(X ∪

e) − g(X). Let e∗ ∈ arg maxe∈X∗\E(s) g(E(s) ∪ e). Since
|X∗ \ E(s)| ≤ |X∗| ≤ k, we have

g(E(s) ∪ e∗)− g(E(s)) ≥ (g(X∗)− g(E(s)))/k.

By the definitions of f and g, we easily verify that for any
X ⊆ E and s ∈ S, if V (X) = V (s), g(X) = f(s). Thus,

g(E(s)) = f(s) ∧ g(X∗) = f(o) = OPT,

since V (E(s)) = V (s) and V (X∗) = V (o). Let s′ be any
sequence with V (s′) = V (E(s) ∪ e∗). Then,

f(s′) = g(E(s) ∪ e∗).
Since V (s′) = V (E(s) ∪ e∗) = V (s) ∪ V (e∗) and e∗ intro-
duces one or two new items, the lemma holds.



Theorem 3. For the sequence selection problem with DAG
monotone submodular objective functions, POSEQSEL with
E[T ] ≤ 4ek2n2 finds a sequence s ∈ S with |s| ≤ k and
f(s) ≥ (1− e− 1

2 ) ·OPT .

Proof. The proof is similar to that of Theorem 1. We use a
different Jmax, which is defined as

Jmax = max{j ∈ {0, 1, . . . , k} | ∃s ∈ P,
|s| ≤ j ∧ f(s) ≥ (1− (1− 1/k)dj/2e) ·OPT}.

We analyze the expected number of iterations until Jmax ≥
k − 1, which implies that there exists one sequence s in P
satisfying that |s| ≤ k and f(s) ≥ (1 − (1 − 1

k )d(k−1)/2e) ·
OPT ≥ (1−e− k−1

2k )·OPT , which is nearly (1−e− 1
2 )·OPT

for sufficiently large k.
As the analysis in the proof of Theorem 1, Jmax is initially

0 and never decreases. Assume that currently Jmax = i <
k − 1 and s is a corresponding sequence, i.e., |s| ≤ i and

f(s) ≥ (1− (1− 1/k)di/2e) ·OPT. (8)

By Lemma 3, we know that there exist one or two items, the
insertion of which into s can generate a new sequence s′,
which satisfies that f(s′) − f(s) ≥ 1

k (OPT − f(s)). By
applying Eq. (8) to this inequality, we get

f(s′) ≥ (1− (1− 1/k)d(i+2)/2e) ·OPT.

Note that |s′| ≤ |s| + 2 ≤ i + 2. Thus, s′ will be included
into P , which makes Jmax ≥ i + 2. The probability of in-
serting one specific item into s is obviously larger than that
of inserting two specific items into s, which is at least

1

Pmax
· 1

2e
· 1

22
· 2

(n− |s|)(n− |s| − 1)
≥ 1

4en2Pmax
,

where 1
Pmax

is a lower bound on the probability of selecting
s in line 3 of Algorithm 1, 1

2e is the probability of r = 2

(i.e, line 7 is implemented twice), 1
22 is the probability of

performing insertion twice, and 2
(n−|s|)(n−|s|−1) is the prob-

ability of selecting the two specific items for insertion. Note
that Pmax ≤ 2k. Thus, Jmax can increase by at least 2 in one
iteration with probability at least 1

8ekn2 . We then get that the
expected number of iterations until Jmax ≥ k − 1 is at most

8ekn2 · d(k − 1)/2e ≤ 4ek2n2.

Thus, the theorem holds.

5 Experiments
In this section, we investigate the empirical performance of
POSEQSEL by synthetic experiments.

String Monotone Submodular. We consider the applica-
tion of selecting a sequence of actions to maximize the ex-
pected fraction of accomplished tasks [Zhang et al., 2016].
Given m tasks, n actions and a sequence s = (s1, s2, . . . , sl)
of actions, the objective function is f(s) = 1

m

∑m
i=1(1 −∏l

j=1(1 − pji (sj))), where pji (sj) is the probability of ac-
complishing task i by performing action sj at stage j. We set
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Figure 1: The comparison between POSEQSEL and GREEDY for
string monotone submodular objective functions.
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Figure 2: The comparison between POSEQSEL, OMEGA and
GREEDY for DAG monotone submodular objective functions.

m = 50, n = 500, and each probability pji (sj) is randomly
sampled from [0, 0.2]. We compare POSEQSEL with the pre-
vious best algorithm GREEDY. The number T of iterations
of POSEQSEL is set to 2ek2(k + 1)n as suggested by Theo-
rem 2. The budget k is set as {10, 12, . . . , 30}. We randomly
generate 50 problem instances, and report the average results,
as shown in Figure 1(a). Similarly, Figure 1(b) shows the re-
sults for fixed k = 20 and varying m ∈ {50, 100, . . . , 500}.
We can observe that POSEQSEL and GREEDY achieve nearly
the same performance, which verifies our theoretical analysis.
The results are also consistent with that the optimal f value
increases with k while decreases with m in expectation.

DAG Monotone Submodular. We use the same setting
as in [Tschiatschek et al., 2017]. The graph G = (V,E)
is constructed as follows: for each item vi ∈ V , randomly
select a subset of size min{d, n − i} from {vi+1, . . . , vn}
and set an edge from vi to each item in the selected subset
and also to itself (i.e., a self-cycle). By assigning a weight
to each edge, two set functions h : 2E → R are consid-
ered: h(X) =

∑
(vi,vj)∈X wi,j and h(X) =

∑
vj∈V (X)(1−∏

(vi,vj)∈X(1 − wi,j)), which are modular and submodular,
respectively. Note that V (X) denotes the item set covered by
the edge set X ⊆ E. For modular h, each weight wi,j is ran-
domly sampled from [0, 1]; for submodular h, each weight
wi,j with i < j is randomly sampled from [0, 1] and each
weightwi,i is randomly sampled from [0, 0.1]. We set n = 30
and k = 5. We compare POSEQSEL with the previous best
algorithm OMEGA as well as GREEDY. The number T of it-
erations of POSEQSEL is set to 4ek2n2 as suggested by The-
orem 3. For each d ∈ {1, 2, . . . , 10}, we randomly generate
50 problem instances, and report the average results. By com-
puting the optimum using exhaustive enumeration, Figure 2
shows the approximation ratio of the output sequence of each
algorithm. We can observe that POSEQSEL performs the best
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Figure 3: Performance v.s. runtime of POSEQSEL.

and almost finds the optimum, while GREEDY is the worst.
Thus, these empirical results verify the theoretical analysis.

Runtime. Considering the runtime (in the number of ob-
jective function evaluations), GREEDY and OMEGA take the
time in the order of kn and kd|E| (where |E| is the number
of edges of G), respectively; POSEQSEL is set to use the the-
oretical upper bounds (i.e., the worst-case time), which are
2ek2(k + 1)n and 4ek2n2 for the two tested cases, respec-
tively. We also empirically examine how effective POSE-
QSEL is in practice. For the DAG monotone submodular
case with d = 5, we plot the curve of the approximation
ratio over the time for POSEQSEL and select GREEDY and
OMEGA as the baselines. We can see from Figure 3 that
POSEQSEL quickly obtains a better performance, which im-
plies that POSEQSEL can be efficient in practice.

6 Conclusion
This paper studies the sequence selection problem, i.e., se-
lecting a sequence with limited length that maximizes some
objective function f . We propose a new method POSEQSEL,
and prove that for any previously studied f , POSEQSEL can
always reach or improve the best known approximation guar-
antee. Empirical results verify the theoretical analysis.
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