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Abstract
Evolution Strategies (ES) are a class of black-
box optimization algorithms and have been widely
applied to solve problems, e.g., in reinforcement
learning (RL), where the true gradient is unavail-
able. ES estimate the gradient of an objective func-
tion with respect to the parameters by randomly
sampling search directions and evaluating param-
eter perturbations in these directions. However, the
gradient estimator of ES tends to have a high vari-
ance for high-dimensional optimization, thus re-
quiring a large number of samples and making ES
inefficient. In this paper, we propose a new ES al-
gorithm SGES, which utilizes historical estimated
gradients to construct a low-dimensional subspace
for sampling search directions, and adjusts the im-
portance of this subspace adaptively. We prove that
the variance of the gradient estimator of SGES can
be much smaller than that of Vanilla ES; mean-
while, its bias can be well bounded. Empirical re-
sults on benchmark black-box functions and a set of
popular RL tasks exhibit the superior performance
of SGES over state-of-the-art ES algorithms.

1 Introduction
In many real-world optimization tasks, e.g., model optimiza-
tion with discrete stochastic variables [Oord et al., 2017]
and policy optimization in RL [Lillicrap et al., 2016], the
gradient information of objective functions can be unavail-
able. In such cases, first-order optimization methods such as
gradient descent may fail, whereas zeroth-order optimization
methods such as ES [Schwefel, 1984; Wierstra et al., 2014;
Hansen, 2016; Salimans et al., 2017] can perform well.

ES are known as a class of black-box optimization algo-
rithms, which iteratively try to improve the parameters of
the optimization problem. In each iteration, ES estimate
the gradient of the given objective function by evaluating
parameter perturbations in search directions and then up-
date the parameters using the estimated gradient. ES have
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been successfully applied in a variety of RL tasks [Salimans
et al., 2017; Choromanski et al., 2018; Conti et al., 2018;
Mania et al., 2018], due to the advantages of invariance to
delayed rewards, tolerance to long time horizons, and good
parallelization capability. Other applications include hyper-
parameter tuning [Friedrichs and Igel, 2005], deep neural net-
work model design [Vidnerova and Neruda, 2017], and meta-
learning [Song et al., 2019].

Vanilla ES [Wierstra et al., 2014; Salimans et al., 2017]
samples the search directions from the isotropic multivariate
Gaussian distribution in the entire space (i.e., full parameter
space). However, when the dimensionality of the optimiza-
tion problem becomes high, the gradient estimator tends to
have a high variance, which requires a large number of sam-
ples to be robust [Nesterov and Spokoiny, 2017]. To reduce
the variance of the gradient estimator, Maheswaranathan et
al. [2019] recently proposed the Guided ES algorithm, which
elongates the search distribution along a subspace spanned
by the surrogate gradients, i.e., directions that are correlated
with the true gradient but may be biased. However, it is not
yet clear how to obtain the surrogate gradients in general, and
the tradeoff between the entire space and the subspace is also
hard to be determined. Choromanski et al. [2019] proposed
the ASEBO algorithm, which seeks an active subspace from
accumulated descent directions by applying principal compo-
nent analysis (PCA). However, obtaining the active subspace
requires decomposing an n × n matrix (where n is the prob-
lem dimensionality, i.e., the number of parameters), which is
computationally expensive and thus limits its application.

In this paper, inspired by the promising performance of
using historical gradients in first-order optimization meth-
ods such as momentum SGD [Sutskever et al., 2013] and
Adam [Kingma and Ba, 2015], we propose a Self-Guided ES
algorithm with historical estimated gradients, briefly called
SGES. SGES dynamically maintains a gradient subspace,
spanned by the recent k historical estimated gradients. Note
that obtaining the subspace requires decomposing an n × k
matrix, which turns out to be very efficient, as k � n. The
search directions are sampled from a hybrid probabilistic dis-
tribution characterized by the gradient subspace and its or-
thogonal complement, corresponding to exploitation and ex-
ploration, respectively. The tradeoff between these two sub-
spaces is adaptively adjusted, based on the goodness of the
search directions sampled from them in the last iteration. We



prove that the variance of the gradient estimator of SGES
can be bounded and much smaller than that of Vanilla ES;
meanwhile, its bias can be well bounded. Empirical results
on black-box functions from the open-sourced Nevergrad li-
brary [Rapin and Teytaud, 2018] as well as a set of popu-
lar RL tasks from the OpenAI Gym library [Brockman et al.,
2016], show that SGES is efficient, and can achieve better op-
timization performance than state-of-the-art ES algorithms.

2 Related Work

ES generate a descent direction via finite differences over ran-
domly sampled search directions [Schwefel, 1984; Nesterov
and Spokoiny, 2017]. They were traditionally used in low-
dimensional regimes and considered ill-equipped for high-
dimensional problems [Nesterov and Spokoiny, 2017]. How-
ever, a flurry of recent research that combines ES with several
effective heuristics, i.e., filtering, normalization, and efficient
exploration, has shown that ES can scale better than previ-
ously believed [Salimans et al., 2017; Mania et al., 2018;
Conti et al., 2018]. Particularly, Salimans et al. [2017] have
applied ES to solve high-dimensional RL problems, achiev-
ing empirical performance comparable to state-of-the-art pol-
icy gradient algorithms.

However, the intrinsic high variance of the gradient esti-
mator of ES in high-dimensional optimization leads to high
sample complexity [Nesterov and Spokoiny, 2017]. By far,
how to reduce the high variance is still a challenging problem.
A well-known variant of ES for this purpose is Covariance
Matrix Adaptation ES (CMA-ES) [Auger and Hansen, 2012;
Hansen, 2016], which adapts the search distribution over pa-
rameters with historical search directions. However, it needs
to maintain a full n × n matrix, limiting its application to
high-dimensional optimization. Other works include combin-
ing random orthogonal with Quasi-Monte Carlo finite differ-
ences [Choromanski et al., 2018], and combining surrogate
gradient information with random search [Maheswaranathan
et al., 2019; Choromanski et al., 2019].

Our work is inspired by the recent two algorithms, Guided
ES [Maheswaranathan et al., 2019] and ASEBO [Choroman-
ski et al., 2019]. Guided ES reduces the variance of the gra-
dient estimation in ES by defining a search distribution that is
elongated along a subspace spanned by the surrogate gradi-
ents. However, how to obtain the surrogate gradients in gen-
eral is unclear, and it is also not easy to determine the trade-
off between the entire space and the subspace. ASEBO seeks
an active subspace from accumulated descent directions by
applying PCA, but with the cost of high computational com-
plexity. Our proposed algorithm SGES utilizes the historical
estimated gradients, adjusts the importance of the gradient
subspace adaptively, and can perform efficiently.

Note that there are also some works using gradients in con-
cert with traditional evolutionary algorithms (EA), which ap-
ply mutation and recombination operators to update param-
eters. For example, gradients are used to maintain safe mu-
tations to avoid EA falling into local optima [Lehman et al.,
2018b], and help EA solve RL problems [Khadka and Tumer,
2018; Colas et al., 2018; Pourchot and Sigaud, 2019].

3 Evolution Strategies
In this section, we briefly introduce the procedure of ES.
Consider the problem of minimizing a black-box function
f : Rn → R, where the gradient ∇f is unavailable. A pop-
ular approach for estimating the gradient is to use Gaussian
Smoothing [Nesterov and Spokoiny, 2017] to make the func-
tion smooth. The Gaussian smoothed version of f is

fσ(θ) = Eε∈N (0,In) [f(θ + σε)]

= (2π)−n/2
∫
Rnf(θ + σε)e−‖ε‖

2/2dε,

where σ > 0 is the smoothing parameter, and In is the iden-
tity matrix of size n. The gradient of fσ is given by the for-
mula [Wierstra et al., 2014]:

∇fσ(θ) = (1/σ) · Eε∈N (0,In) [f(θ + σε)ε] .

Though intractable in practice, this gradient can be estimated
by various Monte Carlo estimators. The most two popular
ones are: vanilla ES gradient estimator [Wierstra et al., 2014]

∇̂fvσ (θ) =
1

σP

P∑
i=1

f(θ + σεi)εi;

antithetic ES gradient estimator [Choromanski et al., 2018]

∇̂faσ (θ) =
1

2σP

P∑
i=1

(f(θ + σεi)− f(θ − σεi)) εi, (1)

where {ε1, . . . , εP } are called search directions and sampled
from some distribution, and P is the sample size. It has been
shown that the antithetic estimator has a smaller variance than
the vanilla estimator [Choromanski et al., 2018].

ES try to minimize the Gaussian smoothed objective func-
tion by directly using stochastic gradient descent, with the
antithetic ES gradient estimator. In each iteration, ES first
sample search directions {ε1, . . . , εP } from some distribu-
tion and estimate the gradient by Eq. (1); then update the cur-
rent parameters using the estimated gradient. For Vanilla ES,
the search directions are sampled from the isotropic multi-
variate Gaussian distribution N (0, In).

4 The SGES Algorithm
In this section, we introduce the proposed algorithm SGES, as
presented in Algorithm 1. The key of SGES is reflected in two
aspects. First, SGES dynamically maintains a gradient sub-
space, which is used to encode a hybrid probabilistic distribu-
tion for sampling search directions (see Section 4.1). Second,
to harness different optimization stages, SGES employs an
adaptive sampling strategy to sample promising search direc-
tions from this distribution (see Section 4.2). We summarize
the algorithm implementations in Section 4.3. Finally, we
provide theoretical results on variance reduction for the gra-
dient estimator of SGES in Section 4.4.

4.1 Gradient Subspace
During the optimization process, though the true gradient
may be unavailable, one can estimate the gradient by Eq. (1).
SGES collects the recent k estimated gradients, which are
usually linearly independent as k � n, and constructs two



subspaces. Let Gt ∈ Rn×k denote the gradient matrix in it-
eration t, which consists of the k estimated gradients obtained
in iterations t−k to t−1. SGES generates two subspaces, the
gradient subspace (denoted by LG) and its orthogonal com-
plement (denoted by L⊥G), by decomposing Gt.

Intuitively, LG is an informative subspace capturing the in-
trinsic structure of the optimization problem. Thus, utilizing
LG in the process of sampling search directions can improve
the quality of the gradient estimator (e.g., reduce the variance
as we will show later), especially in high-dimensional opti-
mization where the curse-of-dimensionality occurs.

To sample search directions, SGES leverages these two dis-
entangled subspaces, i.e., LG and L⊥G, to encode a hybrid
probabilistic distribution

P =

{
ε ∼ N (0, ILG

) with probability α,
ε ∼ N (0, IL⊥

G
) with probability 1− α. (2)

That is, with probability α, the search directions are sampled
from a multivariate Gaussian distribution with the covariance
matrix obtained from LG, corresponding to exploitation; oth-
erwise, they are sampled from a multivariate Gaussian distri-
bution with the covariance matrix obtained from L⊥G (which
can also be replaced by the entire space), corresponding to ex-
ploration. The parameter α ∈ (0, 1) characterizes the tradeoff
of exploitation versus exploration during optimization.

Unlike Guided ES [Maheswaranathan et al., 2019] which
mixes a subspace and the entire space linearly, SGES samples
from the gradient subspace and its orthogonal complement
probabilistically, making it possible to measure the goodness
of these two subspaces and adjust their tradeoff adaptively, as
we will show in the next subsection.

4.2 Adaptive Sampling
When sampling search directions from the hybrid probabilis-
tic distribution, using a fixed sampling strategy (i.e., a fixedα)
may be inefficient since it cannot harness different optimiza-
tion stages. For example, an ideal algorithm should sample
search directions from the gradient subspace greedily when it
is far from global optima, while it should sample more uni-
formly when it gets stuck into local optima. Thus, SGES em-
ploys an adaptive sampling strategy, i.e., uses an adaptive α.

Let xLG
and xL⊥

G
denote the projection of a vector x

on the gradient subspace LG and its orthogonal complement
L⊥G, respectively. The optimal tradeoff between LG and L⊥G
(i.e., exploitation versus exploration) in iteration t of SGES
can be measured by αt = ‖∇f(θt)LG

‖/‖∇f(θt)L⊥
G
‖. If αt

is close to 1, the gradient subspace is well informative, where
concentrating search directions can make the algorithm con-
verge faster. If αt is close to 0, the representation of the gra-
dient subspace is insufficient, and thus more exploration is
needed. However, αt cannot be computed exactly since the
true gradient is typically unknown in practice.

SGES employs a straightforward way to adjust the value
of α adaptively. Divide the search directions in the last it-
eration (i.e., iteration t − 1) into two parts: {ε1, . . . , εM}
which were sampled from the gradient subspace LG, and
{εM+1, . . . , εP } which were sampled from its orthogonal
complement L⊥G. Let r̂G and r̂⊥G denote the average of the

function evaluations on search directions sampled from LG

and L⊥G, respectively. That is,

r̂G =
1

M

M∑
i=1

min{f(θt−1 + σεi), f(θt−1 − σεi)},

r̂⊥G =
1

P−M
P∑

i=M+1

min{f(θt−1 + σεi), f(θt−1 − σεi)}.

Note that for each search direction, there are two perturba-
tions, where the minimum function evaluation is taken. SGES
uses r̂G and r̂⊥G to measure the goodness of the two subspaces
LG and L⊥G in the current iteration, respectively. By compar-
ing r̂G with r̂⊥G, SGES adaptively increases or decreases the
value of α as follows:

αt =

{
min{δαt−1, κ1} if r̂G does not exist or r̂G < r̂⊥G,
max{ 1δαt−1, κ2} if r̂⊥G does not exist or r̂G ≥ r̂⊥G,

(3)
where δ > 1 is a scaling factor, κ1 and κ2 are upper and
lower bounds of α, respectively. Intuitively, when the gra-
dient subspace r̂G is better, i.e., r̂G < r̂⊥G, SGES increases
the probability (i.e., α) of sampling from it; otherwise, the
probability is decreased. Note that when r̂G does not exist, it
implies that the probability of sampling from r̂G is too small,
and thus the probability is increased; when r̂⊥G does not exist,
the probability is decreased accordingly.

4.3 The Algorithm
A general flow of SGES is shown in Algorithm 1. It first
initializes an archive G with queue properties and a maxi-
mum capacity of k, which is used to store the estimated gra-
dients in the last k iterations. In the warmup phase, SGES
behaves as same as Vanilla ES. In each subsequent iteration,
SGES obtains a gradient matrix G by stacking together the
estimated gradients in the archive G and computes the eigen-
vectors of G by decomposition, e.g., SVD. The orthogonal
basis of the gradient subspace LG and its orthogonal comple-
ment L⊥G are generated by stacking together the correspond-
ing eigenvectors. Afterwards, SGES samples search direc-
tions {ε1, ..., εP } from the hybrid probabilistic distribution,
i.e., Eq. (2), and normalizes them such that ‖εi‖2 satisfies
the chi-square distribution χ2(n). These search directions
are then used to estimate the gradient by Eq. (1), which is
applied to update the parameters. Finally, SGES adaptively
adjusts the value of α by Eq. (3), according to the results of
function evaluations in computing Eq. (1).

4.4 Variance Reduction
In this subsection, we will show that the bias of the gradient
estimator of SGES can be well bounded, and the variance can
be much smaller than that of Vanilla ES.

For Vanilla ES, the search direction is sampled from the
isotropic multivariate Gaussian distribution N (0, In), while
for SGES, it is sampled from the hybrid probabilistic distri-
bution P , i.e., Eq. (2). The covariance matrix of P is

Σ = Eε∼P
[
εε>

]
= αUU> + (1− α)U⊥(U⊥)>,

where U is an n × k matrix obtained by stacking together
some orthogonal basis of LG, and U⊥ ∈ Rn×(n−k) is ob-
tained similarly.



Algorithm 1 SGES Algorithm
Require: Initial parameters θ0, objective function f , learning
rate η, hyper-parameters α, σ, k, total iterations T , warmup
iterations Tw ≥ k
Process:

1: Initialize an archive G of maximum capacity k;
2: for t = 0 : T − 1 do
3: if t < Tw then
4: Sample search directions ε1, ..., εP from N (0, In)
5: else
6: Obtain gradient matrix G ∈ Rn×k from G;
7: Generate subspaces LG and L⊥G;
8: Sample search directions ε1, ..., εP from Eq. (2);
9: Normalize these search directions

10: end if
11: Compute gradient estimate ∇̂faσ (θt) by Eq. (1);
12: Update parameters via gradient descent:

θt+1 = θt − η∇̂faσ (θt);
13: Add the gradient estimate ∇̂faσ (θt) to G;
14: if t ≥ Tw then
15: Adaptively adjust α by Eq. (3)
16: end if
17: end for

For convenience of analysis, only one search direction is
sampled (i.e., the parameter P in Eq. (1) is 1) in gradient
estimation. Let ĝves and ĝsges denote the gradient estimator
of Vanilla ES and SGES, respectively. Thus, we have

ĝves =
f(θ + σε)− f(θ − σε)

2σ
ε, ε ∈ N (0, In); (4)

ĝsges = Σ−1
f(θ + σε)− f(θ − σε)

2σ
ε, ε ∈ P. (5)

By assuming the regularity of f (i.e., Assumptions 1 and 2)
and small enough σ (i.e., Assumption 3), Choromanski et
al. [2019] proved in Theorem 1 that the expectation of the
gradient estimator ĝves of Vanilla ES is close to the true gra-
dient (i.e., the bias is small), and the variance Var [ĝves] is
close to (n+ 1)‖∇f(θ)‖2. Note that Var [ĝves] here denotes
the sum of the variance of each dimension of ĝves.

Assumption 1. f is L-Lipschitz, i.e., for all θ,θ′ ∈ Rn,
|f(θ)− f(θ′)| ≤ L · ‖θ − θ′‖.
Assumption 2. f has a τ -smooth third derivative tensor,
i.e., f(θ + σε) = f(θ) + σε>∇f(θ) + 1

2σ
2ε>H(θ)ε +

1
6σ

3vv>f ′′′(θ)v, where H(θ) denotes the Hessian matrix of
f , f ′′′(θ) denotes the third derivative of f , and v ∈ [0, ε]
satisfies τ‖v‖3 ≥ |vv>f ′′′(θ)v|.

Assumption 3. σ < 1
35

√
εmin{α,1−α}
τn3 max{L,1} for some precision

parameter ε > 0.

Theorem 1. [Choromanski et al., 2019] Under Assump-
tions 1 to 3, we have

‖Eε∼N (0,In) [ĝves]−∇f(θ)‖ ≤ ε,
|Var [ĝves]− (n+ 1)‖∇f(θ)‖2| ≤ ε.

Their proof idea is to apply the τ -smooth third derivative
tensor of f in Assumption 2 to Eq. (4), and then derive the ex-
pectation and variance by algebraic calculation. By applying
the τ -smooth third derivative tensor to Eq. (5) and follow-
ing their calculation process, we can prove in Theorem 2 that
the bias of the gradient estimator ĝsges of SGES is also well
bounded and the variance is close to Ω in Eq. (6). The proof
is similar to that of Lemma 3.1 and Theorem 3.2 in [Choro-
manski et al., 2019].
Theorem 2. Under Assumptions 1 to 3, we have

‖Eε∼P [ĝsges]−∇f(θ)‖ ≤ ε,
|Var [ĝsges]− Ω| ≤ ε,

where Ω = ((k + 2)/α) · ‖U>∇f(θ)‖2 − ‖∇f(θ)‖2

+ ((n− k + 2)/(1− α)) · ‖(U⊥)>∇f(θ)‖2. (6)

To compare the variances of ĝves and ĝsges, we can
compare their approximation, i.e., (n + 1)‖∇f(θ)‖2 and
Ω, according to the above two theorems. As shown
in Eq. (6), Ω depends on the parameter α in Eq. (2).
By simple calculation, we can derive that when α =√

‖U>∇f(θ)‖2(k+2)√
‖U>∇f(θ)‖2(k+2)+

√
‖(U⊥)>∇f(θ)‖2(n−k+2)

, Ω reaches the

minimum O(pn + k − 2pk) · ‖∇f(θ)‖2, where p =
‖(U⊥)>∇f(θ)‖2/‖∇f(θ)‖2. When p = o(1) and k =
o(n), it holds that Ω � (n + 1)‖∇f(θ)‖2, implying that
Var [ĝsges] � Var [ĝves]. Thus, when the tradeoff α be-
tween the two subspaces LG and L⊥G is well controlled and
the representation of the gradient subspace is sufficient (i.e.,
p = o(1)), the variance of the gradient estimator of SGES can
be much smaller than that of Vanilla ES.

5 Experiments
To examine the performance of SGES, we conduct exper-
iments on different high-dimensional tasks, including four
black-box functions from the recently open-sourced Never-
grad library [Rapin and Teytaud, 2018], and the continuous
MuJoCo locomotion tasks (which are widely studied in the
RL community) from the OpenAI Gym library [Brockman et
al., 2016]. For these two types of tasks, the warmup iterations
Tw of SGES is set to k and 2k, respectively. For fair com-
parisons, we use identical random seeds (2016, 2017, 2018,
2019, and 2020) for all tasks and algorithms. Note that it is
not yet clear how to obtain the surrogate gradients (e.g., on
RL tasks) for Guided ES; thus, we adopt the recent k esti-
mated gradients as the surrogate gradients, to make the com-
parison between SGES and Guided ES fair. The initial value
of α in SGES is set to 0.5.

5.1 Nevergrad Black-box Functions
First, we empirically compare SGES, Vanilla ES [Salimans
et al., 2017], CMA-ES1 [Hansen, 2016], ASEBO2 [Choro-
manski et al., 2019], and Guided ES3 [Maheswaranathan et

1https://github.com/CMA-ES/pycma
2https://github.com/jparkerholder/ASEBO
3https://github.com/brain-research/guided-evolutionary-

strategies



Figure 1: Comparison of the curves averaged over five random seeds for different algorithms on four Nevergrad black-box functions.

(a) (b) (c)

Figure 2: (a) Cosine similarity between the estimated gradient and the true gradient for different algorithms (except for CMA-ES which does
not estimate the gradient) on the Sphere function. (b) Variance of the gradient estimator of Vanilla ES and SGES on the Sphere function. (c)
Influence of k for the performance of SGES on the Sphere function.

al., 2019] on four black-box functions: Sphere, Rosenbrock,
Rastrigin, and Lunacek, all of which are 1000-dimensional.
The smoothing parameter σ is set to a small value 0.01, since
there is no noise in function evaluation. For the influence of
σ in ES, see [Lehman et al., 2018a]. The learning rate η is
chosen properly from {0.5, 0.1, 0.01, 0.001}. To compare all
algorithms as fairly as possible on one function, their com-
mon hyper-parameters are set to identical values.

Convergence Speed. Figure 1 shows the mean-curves for
different algorithms on black-box functions. We can observe
that SGES achieves the best performance across all test func-
tions. The curves of SGES, Guided ES, ASEBO, and Vanilla
ES are overlapped at the beginning. This is expected because,
in the warmup phase, SGES, Guided ES, and ASEBO behave
as same as Vanilla ES. After that, the three algorithms con-
verge faster than Vanilla ES, showing the usefulness of histor-
ical gradient information. Note that the superior performance
of ASEBO over Vanilla ES and CMA-ES is consistent with
that observed in [Choromanski et al., 2019]. ASEBO is worse
than SGES and Guided ES, which indicates that the repre-
sentation of the active subspace may be insufficient. SGES
converges faster than Guided ES, disclosing the effectiveness
of our adaptive sampling strategy. Note that the loss curve
of CMA-ES increases suddenly after about 60k evaluations,
which has also been observed in [Choromanski et al., 2019].

Accuracy of Gradient Estimation. To explain why SGES
can perform better, we observe the cosine similarity between
the estimated gradient and the true gradient on the Sphere
function. The larger the cosine similarity, the more accurate
the estimated gradient. The results are shown in Figure 2(a).
It can be observed that the cosine similarity of SGES is the
largest and that of Guided ES is the runner-up, which is con-

Function Vanilla ES CMA-ES ASEBO Guided ES SGES
Sphere 0.48 90.59 136.54 1.51 1.23

Rosenbrock 0.50 92.00 134.34 1.53 1.27
Rastrigin 0.75 90.84 131.40 1.78 1.49
Lunacek 1.33 91.06 132.37 2.44 2.15

Table 1: Average running time (in seconds) over five random seeds
for different algorithms on four Nevergrad black-box functions.

sistent with their performance rank in Figure 1. Note that
the cosine similarity of ASEBO is a little smaller than that
of Vanilla ES, but ASEBO achieves better performance, as
observed in Figure 1. This is mainly because ASEBO re-
duces the number of samples in each iteration via its active
subspace, thereby able to use more updates than Vanilla ES.

Variance Reduction. To verify whether SGES can effec-
tively reduce the variance of the gradient estimator, we plot
the variance curves of Vanilla ES and SGES on the Sphere
function, as shown in Figure 2(b). It can be observed that the
variance of the gradient estimator of SGES is much smaller
than that of Vanilla ES, consistent with our theoretical analy-
sis in Section 4.4.

Influence of k. We also examine the influence of the gradi-
ent subspace dimension k, i.e., the number of previously es-
timated gradients used to construct the subspace. The results
of SGES with different values of k on the Sphere function are
shown in Figure 2(c). We can see that when k is not too small,
the convergence speed of SGES is good and not sensitive to
the value of k. But if k is set too large, the warmup phase
is long and will slow down the entire optimization process.
Furthermore, a too large k will make the decomposition of an
n× k matrix in gradient subspace construction computation-
ally expensive. For all test functions, k is set to 20.



Figure 3: Comparison of the training curves averaged over five random seeds for SGES, Vanilla ES, and Guided ES on four MuJoCo
locomotion tasks.

Environment Timesteps TRPO PPO Vanilla ES Guided ES SGES
HalfCheetah-v2 107 2385 2876 4729 4032 5038

Swimmer-v2 5 · 105 72 43 236 318 355
Ant-v2 2 · 107 2037 2376 3260 2685 3927

Humanoid-v2 3 · 107 2867 1325 3867 1765 4023

Table 2: Median-returns obtained across five random seeds for different algorithms on four MuJoCo locomotion tasks. The second column
indicates the employed timesteps of the algorithms on each task.

Running Time Analysis. Table 1 shows the average run-
ning time of each algorithm on four functions. We can see
that Vanilla ES, Guided ES, and SGES are the most efficient,
taking a similar running time. As expected, CMA-ES and
ASEBO are much slower than other algorithms. Their av-
erage running time is about two orders of magnitude longer
than others in all tasks. This is because both CMA-ES and
ASEBO require computing an n× n matrix in each iteration.
Thus, we will only compare Vanilla ES, Guided ES and SGES
in RL tasks due to limited computing resources.

5.2 Reinforcement Learning Tasks
Next, we empirically examine the performance of SGES on
four MuJoCo locomotion tasks from the OpenAI Gym library:
HalfCheetah-v2, Swimmer-v2, Ant-v2, and Humanoid-v2. We
also compare SGES with two popular on-policy deep RL al-
gorithms, TRPO [Schulman et al., 2015] and PPO [Schul-
man et al., 2017], whose OpenAI baseline implementation
is used. The linear policy structure is employed, since it
is sufficient to capture diverse behaviors on the MuJoCo
tasks [Mania et al., 2018]. The techniques of fitness shaping
and state normalization are performed, since they are widely
used in various RL related works [Salimans et al., 2017;
Mania et al., 2018]. For each task, we choose the learning
rate η, the smoothing parameter σ, and the sample size P , as
recommended by Mania et al. [2018]; the gradient subspace
dimension k is set to about half of P ; the common hyper-
parameters of all algorithms are set to identical values.

Figure 3 demonstrates the training curves of SGES, Vanilla
ES, and Guided ES. We can observe that SGES outperforms
Vanilla ES and Guided ES across all the tasks. Furthermore,
the shadow (indicating the standard deviation) of SGES is
smaller in most tasks, showing that SGES is more robust
against random seeds. Particularly, on the Swimmer-v2 and
Humanoid-v2 tasks, Vanilla ES and Guided ES are very sus-
ceptible to random seeds, respectively. Table 2 records the
median-returns over five random seeds for all the five algo-
rithms on each task, showing that SGES is still the best.

(a) (b)

Figure 4: For SGES on the HalfCheetah-v2 task: (a) Adaptive α vs.
fixed α; (b) Change curve of adaptive α.

Finally, we examine the effectiveness of adaptive sampling
by comparing SGES with fixed α ∈ {0.2, 0.5, 0.8, 1.0} and
adaptive α in Eq. (3) on the HalfCheetah-v2 task. A larger
α implies sampling search directions from the gradient sub-
space with a higher probability. Figure 4(a) shows that a
smaller α is better, which may be because there are many sub-
optimal behaviors (e.g., swaying forward and flipping over)
on HalfCheetah-v2 [Plappert et al., 2018], and thus more ex-
ploration is needed. The change curve of adaptive α in Fig-
ure 4(b) shows that the adaptive sampling strategy makes α
do adjustments automatically and stabilize towards a small
value, thus leading to the best performance in Figure 4(a).

6 Conclusion
To mitigate the issue of high variance of the gradient estima-
tor of ES in high-dimensional optimization, we propose a new
ES algorithm SGES, which uses the recently estimated gra-
dients to construct a low-dimensional subspace. The search
directions for estimating the gradient are sampled from this
gradient subspace and its orthogonal complement probabilis-
tically, and the tradeoff between these two subspaces is ad-
justed adaptively. We prove that compared with Vanilla ES,
SGES can reduce the variance effectively. Empirical results
on benchmark black-box functions as well as MuJoCo loco-
motion tasks show the excellent performance of SGES.
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