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Abstract

Bayesian optimization (BO) is a popular approach
for expensive black-box optimization, with appli-
cations including parameter tuning, experimental
design, and robotics. BO usually models the ob-
jective function by a Gaussian process (GP), and
iteratively samples the next data point by maximiz-
ing an acquisition function. In this paper, we pro-
pose a new general framework for BO by generat-
ing pseudo-points (i.e., data points whose objective
values are not evaluated) to improve the GP model.
With the classic acquisition function, i.e., upper
confidence bound (UCB), we prove that the cumu-
lative regret can be generally upper bounded. Ex-
periments using UCB and other acquisition func-
tions, i.e., probability of improvement (PI) and ex-
pectation of improvement (EI), on synthetic as well
as real-world problems clearly show the advantage
of generating pseudo-points.

1 Introduction
One often needs to solve an optimization problem: x∗ ∈
arg maxx∈X f(x), where X ⊆ Rd is the solution space, f :
X → R is the objective function, and x∗ is an optimal solu-
tion. Usually, it is assumed that f has a known mathematical
expression, is convex, or cheap to evaluate at least. Increas-
ing evidences, however, show that f may not satisfy these
assumptions, but is an expensive black-box model [Brochu et
al., 2010]. That is, f can be non-convex, or even the closed-
form expression of f is unknown; meanwhile, evaluating f
can be noisy and computationally very expensive.

Expensive black-box optimization is involved in many
real-world decision making problems. For example, in ma-
chine learning, one has to tune hyper-parameters to maxi-
mize the performance of a learning algorithm [Snoek et al.,
2012]; in physical experiments, one needs to set proper pa-
rameters of the experimental environment to obtain an ideal
product [Brochu et al., 2010]. More applications can been
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found in robotic control [Martinez-Cantin et al., 2007], com-
puter vision [Denil et al., 2012], sensor placing [Garnett et
al., 2010], and analog circuit design [Lyu et al., 2018].

BO [Mockus, 1994] has been a type of powerful algorithm
to solve expensive black-box optimization problems. The
main idea is to build a model, usually by a GP, for the ob-
jective f based on the observation data, and then sample the
next data point by maximizing an acquisition function. Many
BO algorithms have been proposed, with the goal of reaching
the optima using as few objective evaluations as possible.

Most existing works focus on designing effective acqui-
sition functions, e.g., PI [Kushner, 1964], EI [Jones et al.,
1998], and UCB [Srinivas et al., 2012]. Recently, Wang et
al. [2016] proposed the EST function by directly estimat-
ing x∗, which automatically and adaptively trades off ex-
ploration and exploitation in PI and UCB. Another major
type of acquisition function is based on information entropy,
including entropy search (ES) [Hennig and Schuler, 2012],
predictive ES [Hernández-Lobato et al., 2014], max-value
ES [Wang and Jegelka, 2017], FITBO [Ru et al., 2018], etc.
As BO is a sequential algorithm, some parallelization tech-
niques have been introduced for acceleration, e.g., [Azimi et
al., 2010; Desautels et al., 2014; Shah and Ghahramani, 2015;
González et al., 2016]. There is also a sequence of works
addressing the difficulty of BO for high-dimensional opti-
mization, e.g., [Wang et al., 2013; Kandasamy et al., 2015;
Wang et al., 2017; Mutny and Krause, 2018].

For any BO algorithm with a specific acquisition function,
the GP model becomes increasingly accurate with the obser-
vation data augmenting. However, the number of data points
to be evaluated is often limited due to the expensive objective
evaluation. In this paper, we propose a general framework for
BO by generating pseudo-points to improve the GP model.
That is, before maximizing the acquisition function to select
the next point in each iteration, some pseudo-points are gen-
erated and added to update the GP model. The pseudo-points
are neighbors of the observed data points, and take the same
function values as the observed ones. Without increasing the
evaluation cost, the generation of pseudo-points can reduce
the variance of the GP model, while introducing little accu-
racy loss under the Lipschitz assumption. This framework is
briefly called BO-PP.

Theoretically, we study the performance of BO-PP w.r.t.
the acquisition function UCB, called UCB-PP. We prove a



Algorithm 1 BO Framework
Input: iteration budget T
Process:

1: let D0 = ∅;
2: for t = 1 : T do
3: xt = arg maxx∈X acq(x);
4: evaluate f at xt to obtain yt;
5: augment the data Dt = Dt−1 ∪ {(xt, yt)} and update

the GP model
6: end for

general upper bound of UCB-PP on the cumulative regret,
i.e.,

∑T
t=1(f(x∗) − f(xt)), where xt denotes the sampled

point in the t-th iteration. It is shown to be a generalization
of the known bound [Srinivas et al., 2012] of UCB. Empiri-
cally, we compare BO-PP with BO on synthetic benchmark
functions as well as real-world optimization problems. The
acquisition functions UCB, PI and EI are used. The results
clearly show the superior performance of BO-PP.

2 Background
The general framework of BO is shown in Algorithm 1. It
sequentially optimizes a given objective function f(x) with
assumptions on a prior distribution, i.e., a probabilistic model,
over f(x). In each iteration, BO selects a point x by maxi-
mizing an acquisition function acq(·), evaluates its objective
value f(x), and updates the prior distribution with the new
data point.

2.1 GPs
A GP [Rasmussen and Williams, 2006] is commonly used
as the prior distribution, which regards the f value at each
data point as a random variable, and assumes that all of them
satisfy a joint Gaussian distribution specified by the mean
value function m(·) and the covariance function k(·, ·). For
convenience, m(·) is set to zero. Assume that the objective
evaluation is subject to i.i.d. additive Gaussian noise, i.e.,
y = f(x) + ε, where ε ∼ N (0, σ2). Let [t] denote the set
{1, 2, . . . , t}.

Given an observation data Dt = {(xi, yi)}ti=1, we can ob-
tain the posterior mean

µt(x) = kt(x)T(Kt + σ2I)−1y1:t, (1)

and the posterior variance

σ2
t (x) = k(x,x)− kt(x)T(Kt + σ2I)−1kt(x), (2)

where kt(x) = [k(xi,x)]ti=1, Kt = [k(xi,xj)]i,j∈[t] and
y1:t = [y1; y2; . . . ; yt]. For a GP, the log likelihood of ob-
served data Dt is

log Pr(y1:t | {xi}ti=1,θ) = −(1/2)yT
1:t(Kt + σ2I)−1y1:t

− (1/2) log det(Kt + σ2I)− (t/2) log 2π,

where θ denote the hyper-parameters of k(·, ·), and det(·)
denotes the determinant of a matrix. When updating the GP
model in line 5 of Algorithm 1, the hyper-parameters θ can be
updated by maximizing the log likelihood of the augmented
data, or treated to be fully Bayesian.

2.2 Acquisition Functions
The data point to be evaluated in each iteration is selected
by maximizing an acquisition function, which needs to trade
off exploration, i.e., large posterior variances, and exploita-
tion, i.e., large posterior means. Many acquisition functions
have been proposed, and we introduce three typical ones, i.e.,
PI [Kushner, 1964], EI [Jones et al., 1998] and UCB [Srinivas
et al., 2012], which will be examined in this paper.

Let x+ be the best point generated in the first (t − 1) it-
erations, and Z = (µt−1(x) − f(x+))/σt−1(x). Let Φ and
φ denote the cumulative distribution and probability density
functions of standard Gaussian distribution, respectively. PI
selects the point by maximizing the probability of improve-
ment, i.e.,

PI(x) = Pr(f(x) > f(x+)) = Φ(Z). (3)

EI selects the data point by maximizing the expectation of
improvement, i.e.,

EI(x) =


(µt−1(x)− f(x+))Φ(Z) + σt−1(x)φ(Z)

if σt−1(x) > 0,

0 if σt−1(x) = 0.

(4)

UCB integrates the posterior mean and variance via a trade-
off parameter βt, i.e.,

UCB(x) = µt−1(x) + β
1/2
t σt−1(x), (5)

and selects the data point by maximizing this measure.

2.3 Regrets
To evaluate the performance of BO algorithms, regrets are
often used. The instantaneous regret rt = f(x∗) − f(xt)
measures the gap of function values between an optimal so-
lution x∗ and the currently selected point xt. The simple
regret ST = mini∈[T ] ri measures the gap between x∗ and
the best point found in the first T iterations. The cumulative
regret RT =

∑T
i=1 ri is the sum of instantaneous regrets in

the first T iterations. A BO algorithm is said to be no-regret
if limT→+∞RT /T = 0.

3 The BO-PP Framework
In BO, a GP is used to characterize the unknown objective
function. The posterior variance of a GP describes the uncer-
tainty about the unknown objective, while the posterior mean
provides a closed form of the unknown objective. As the ob-
servation data augments, the posterior variance decreases and
the posterior mean gets close to the unknown objective, mak-
ing the GP express the unknown objective better. Thus, a
straightforward way to improve the GP model is collecting
more data points, which is, however, impractical, because the
objective evaluation is expensive. In this section, we propose
a general framework BO-PP by generating pseudo-points to
improve the GP model.

As shown in Eq. (2), the posterior variance of f does not
depend on the objective values, and will be decreased by
adding new data points. As shown in Eq. (1), the posterior
mean of f can be regarded as a linear combination of the ob-
served objective values, and will be influenced by the error on



Algorithm 2 BO-PP Framework
Input: iteration budget T
Parameter: {li}T−1i=0 , {τi}T−1i=0
Process:

1: let D0 = ∅ and l0 = 0;
2: for t = 1 : T do
3: generate lt−1 pseudo-points {(x′i, ŷ′i)}

lt−1

i=1 ;
4: re-compute µ̂t−1 and σ̂t−1 by Dt−1 ∪ {(x′i, ŷ′i)}

lt−1

i=1 ;
5: xt = arg maxx∈X acq(x);
6: evaluate f at xt to obtain yt;
7: augment the data Dt = Dt−1 ∪ {(xt, yt)} and update

the GP model
8: end for

where each pseudo-point in the t-th iteration has distance
τt−1 to some observed data point in Dt−1, and takes the
same objective value as the observed one.

the objective values of new data points. Inspired by the Lip-
schitz assumption, i.e., close data points have close objective
values, the pseudo-points are selected to be neighbors of the
observed data points, and take the same objective values as
the observed ones.

The BO-PP framework is described in Algorithm 2. Be-
fore selecting the next data point in line 5, BO-PP generates a
few pseudo-points to re-compute the posterior mean and vari-
ance of the GP model in lines 3-4, rather than directly using
the GP model updated in the last iteration. After evaluating a
new data point in line 6, the hyper-parameters of the covari-
ance function employed by the GP model will be updated in
line 7 using the truly observed data points by far. Note that
the pseudo-points are only used to re-compute the posterior
mean and variance.

The way of generating pseudo-points can be diverse, e.g.,
randomly sampling a point with distance τ from some ob-
served data point.∗ The only requirement is that the pseudo-
point takes the same objective value as the corresponding ob-
served data point, which does not increase the evaluation cost.
The number lt of pseudo-points and the distance τt employed
in each iteration could affect the performance of the algo-
rithm. For example, as τt decreases, the error on the objective
values of pseudo-points will decrease, whereas the reduction
on the posterior variance will also decrease. Their relation-
ship will be analyzed in theoretical analysis, and we will pro-
vide an effective way of setting lt and τt in experiments. Note
that BO-PP can be equipped with any acquisition function.

4 Theoretical Analysis
In this section, we theoretically analyze the performance of
BO-PP w.r.t. the acquisition function UCB, called UCB-PP.
Specifically, we prove that the cumulative regretRT of UCB-
PP can be generally upper bounded.

We first give some notations that will be used in the
following analysis. Let µt and σt denote the posterior

∗Here, two data points x,x′ ∈ Rd have distance τ means that
∀i ∈ [d] : |xi − x′i| = τ .

mean and variance after obtaining Dt; let µ̂t and σ̂t de-
note the posterior mean and variance after adding pseudo-
points {(x′i, ŷ′i)}

lt
i=1 into Dt; let µ̃t and σ̃t denote the poste-

rior mean and variance after adding pseudo-points with true
observed objective values, i.e., {(x′i, y′i))}

lt
i=1, where y′i =

f(x′i)+ε
′
i with ε′i ∼ N (0, σ2). Some notations about pseudo-

points: ŷ′1:lt = [ŷ′1; ŷ′2; . . . ; ŷ′lt ]; y
′
1:lt

= [y′1; y′2; . . . ; y′lt ];
k′lt(x) = [k(x′i,x)]lti=1; K′lt = [k(x′i,x

′
j)]i,j∈[lt]; K̃t,lt =

[k(xi,x
′
j)]i∈[t],j∈[lt]; p(x) = K̃T

t,lt
(Kt + σ2I)−1kt(x) −

k′lt(x); M = (K′lt − K̃T
t,lt

(Kt+σ2I)−1K̃t,lt +σ2I)−1. For
convenience of analysis, assume k(x,x) = 1.

Let A be a finite subset of X , fA denote their true ob-
jective values (which are actually random variables satisfy-
ing the posterior Gaussian distribution over the true objec-
tive values), and yA denote the noisy observations. Let PP
denote all generated pseudo-points, and ŷPP denote their
selected objective values. Note that ŷPP are random vari-
ables, as they are actually the noisy observations of the ob-
jective values of PP ’s neighbor observed points. Let γ′T =
maxA:|A|=T I(yA;fA)−minA:|A|=T,PP I(yA; ŷPP ), where
I(·; ·) denotes the mutual information.

Theorem 1 gives an upper bound of UCB-PP on the cumu-
lative regret RT . As the analysis of UCB in [Srinivas et al.,
2012], Assumption 1 is required, implying

Pr(∀x,x′ : |f(x)− f(x′)| ≤ L‖x− x′‖1)

≥ 1− dae−(L/b)
2

. (6)

Assumption 1. Suppose the kernel k(·, ·) satisfies the fol-
lowing probability bound on the derivatives of f : for some
constants a, b > 0, ∀j ∈ [d] : Pr(supx∈X |∂f/∂xj | > L) ≤
ae−(L/b)

2

.
Theorem 1. Let X ⊂ [0, r]d, δ ∈ (0, 1), and set βt in Eq. (5)
as βt= 2 log(2π2t2/(3δ)) + 2d log(t2dbr

√
log(4da/δ)).

Running UCB-PP for T iterations, it holds that

Pr
(
RT ≤

√
CTβT γ′T + 2 + 2

∑T
t=1∆m(lt−1, τt−1)

)
≥ 1− δ, (7)

where C = 8/ log(1 + σ−2), and ∆m(lt, τt) =

l2t
√

1 + σ−2
(
bdτt

√
log(4da/δ)/σ + 2

√
log

4
∑T−1

t=0 lt
δ

)
.

Lemma 1 bounds the error on the posterior mean led by
the incorrect objective values of pseudo-points, which will be
used in the proof of Theorem 1. Its proof is provided in the
supplementary material due to space limitation.
Lemma 1. After obtaining Dt in UCB-PP, the differ-
ence on the posterior mean by adding pseudo-points, i.e.,
{(x′i, ŷ′i)}

lt
i=1, and that with true observed objective values,

i.e., {(x′i, y′i))}
lt
i=1, is µ̂t(x) − µ̃t(x) = −p(x)TM(ŷ′1:lt −

y′1:lt). Furthermore, it holds that

Pr
(
∀0 ≤ t ≤ T − 1,∀x ∈ X : |µ̂t(x)− µ̃t(x)|

≤ ∆m(L, lt, τt)
)
≥ 1− dae−(L/b)

2

− δ/4,

where ∆m(L, lt, τt)= l2t
√

1+σ−2
(
Ldτt
σ +2

√
log

4
∑T−1

t=0 lt
δ

)
.



The proof of Theorem 1 is inspired by that of Theorem 2
in [Srinivas et al., 2012], which gives an upper bound of UCB
on the cumulative regret RT . Their proof intuition is mainly
that the instantaneous regret rt can be upper bounded by the
width of confidence interval of f(xt), relating to the poste-
rior variance. The generation of pseudo-points will introduce
another quantity into the upper bound on rt, characterized by
the error on the posterior mean in Lemma 1.

Proof of Theorem 1. According to Assumption 1 and βt =

2 log(2π2t2(dt2rL)d/(3δ)), where L = b
√

log(4da/δ), we
can apply Lemma 5.7 in [Srinivas et al., 2012] to derive that

Pr
(
∀t ≥ 1 : |f(x∗)− µ̃t−1([x∗]t)|

≤ β1/2
t σ̃t−1([x∗]t) + 1/t2

)
≥ 1− δ/2, (8)

where [x∗]t denotes the discretized data point closest to x∗
in the t-th iteration. Note that ∆m(lt, τt) is just ∆m(L, lt, τt)

with L = b
√

log(4da/δ) in Lemma 1. By the definition of
rt, we have, ∀t ≥ 1:

rt = f(x∗)− f(xt)

≤ β1/2
t σ̃t−1([x∗]t) + µ̃t−1([x∗]t)− f(xt) + 1/t2

≤ β1/2
t σ̃t−1([x∗]t) + µ̂t−1([x∗]t)− f(xt) + 1/t2

+ ∆m(lt−1, τt−1)

= β
1/2
t σ̂t−1([x∗]t) + µ̂t−1([x∗]t)− f(xt) + 1/t2

+ ∆m(lt−1, τt−1)

≤ β1/2
t σ̂t−1(xt) + µ̂t−1(xt)− f(xt) + 1/t2

+ ∆m(lt−1, τt−1)

≤ β1/2
t σ̂t−1(xt) + µ̃t−1(xt)− f(xt) + 1/t2

+ 2∆m(lt−1, τt−1)

≤ 2β
1/2
t σ̂t−1(xt) + 1/t2 + 2∆m(lt−1, τt−1),

where the first inequality holds with probability at least
1 − δ/2 by Eq. (8), the second and fourth inequalities hold
with probability at least 1− dae−(L/b)2 − δ/4 = 1− δ/2 by
Lemma 1, the equality holds because the posterior variance
in Eq. (2) does not depend on the objective values, leading to
∀x : σ̂t−1(x) = σ̃t−1(x), the third inequality holds because
xt is selected by maximizing µ̂t−1(x) + β

1/2
t σ̂t−1(x) in

Eq. (5), and the last inequality holds with probability at least
1 − δ/4 by Lemma 5.5 in [Srinivas et al., 2012]. Note that
to prove Lemma 5.7 in [Srinivas et al., 2012] and Lemma 1,
Assumption 1, i.e., Eq. (6), is both used; thus, the probability
dae−(L/b)

2

= δ/4 has been repeated. By the union bound,
we have

Pr
(
∀t ≥ 1 : rt ≤ 2β

1/2
t σ̂t−1(xt)+1/t2+2∆m(lt−1, τt−1)

)
≥ 1− δ/2− δ/4− δ/4 = 1− δ,

implying

Pr
(
RT =

∑T
t=1rt ≤

∑T
t=1

(
2β

1/2
t σ̂t−1(xt) + 1/t2

+ 2∆m(lt−1, τt−1)
))
≥ 1− δ.

By the Cauchy–Schwarz inequality, C = 8/ log(1 + σ−2)
and ∀t ≤ T : βt ≤ βT , we have∑T

t=12β
1/2
t σ̂t−1(xt) ≤

√
T
∑T
t=14βtσ̂2

t−1(xt)

≤
√
CTβT

2

∑T
t=1 log(1 + σ−2σ̂2

t−1(xt)).

Let PPt denote the pseudo-points generated in the t-th iter-
ation, and ŷPPt

denote their selected objective values. Let
H(·) denote the entropy. We have

1

2

∑T
t=1 log(1 + σ−2σ̂2

t−1(xt)) +H(y1:T |f1:T )

=
1

2

∑T
t=1 log(1 + σ−2σ̂2

t−1(xt)) +
1

2
log(det(2πeσ2I))

=
1

2

∑T
t=1 log(2πe(σ2 + σ̂2

t−1(xt)))

= H(y1 | ŷPP1
) +H(y2 | y1, ŷPP2

) + · · ·
+H(yT | y1:T−1, ŷPPT

)

= H(y1 | ŷPP ) +H(y2 | y1, ŷPP ) + · · ·
+H(yT | y1:T−1, ŷPP )

= H(y1:T | ŷPP ),

where the first equality holds because f(x) is subject to ad-
ditive Gaussian noise N (0, σ2). Thus,
1

2

∑T
t=1 log(1 + σ−2σ̂2

t−1(xt))

= H(y1:T | ŷPP )−H(y1:T | f1:T )

= H(ŷPP | y1:T )−H(ŷPP ) +H(y1:T )−H(y1:T | f1:T )

= I(y1:T ;f1:T )− I(y1:T ; ŷPP ) ≤ γ′T .
Considering

∑
t≥1 1/t2 = π2/6 < 2, Eq. (7) holds. Thus,

the theorem holds. �

Adding pseudo-points is to improve the GP model when
the number of observed data points is not large. After UCB-
PP runs many iterations, there are already enough observed
points, and thus pseudo-points are not needed. That is, UCB-
PP will only add pseudo-points in a finite number of itera-
tions, denoted by T0. This implies that ∀t ≥ T0, lt = 0,
leading to ∆m(lt, τt) = 0. Thus, limT→+∞RT /T = 0, im-
plying that UCB-PP is no-regret.

Under the same assumption, it has been proved [Srinivas et
al., 2012] that the cumulative regret RT of UCB satisfies

Pr
(
RT ≤

√
CTβT γT + 2

)
≥ 1− δ, (9)

where γT = maxA:|A|=T I(yA;fA), and the other param-
eters have the same meaning as that in Theorem 1. Without
generating pseudo-points, ∀t ≥ 0 : lt = 0∧I(yA; ŷPP ) = 0,
and thus, γ′T = γT ∧ ∆m(lt, τt) = 0, implying that Eq. (7)
specializes to Eq. (9). Thus, we have:
Remark 1. Our bound onRT of UCB-PP is a generalization
of the bound on RT of UCB in [Srinivas et al., 2012].

As γ′T ≤ γT , the comparison between Eqs. (7) and (9)
suggests that the generation of pseudo-points can be helpful
if the negative influence of introducing the error on the poste-
rior mean, i.e., introducing the term ∆m(lt, τt), can be com-
pensated by the positive influence of reducing the posterior
variance, i.e., introducing the term I(y1:T ; ŷPP ).



Function UCB UCB-PP01 UCB-PP001 UCB-PP0001

ST

Dropwave 0.2710±0.1311 0.2232±0.1053 0.1630±0.1014 0.2121±0.1038
Griewank 0.2357±0.2125 0.2272±0.1644 0.2350±0.1690 0.2085±0.1177
Hart6 1.0256±0.3498 1.0565±0.3620 1.0868±0.3153 0.9276±0.3307
Rastrigin 3.3492±3.2602 3.6975±2.7991 3.5124±2.4124 3.0077±2.3245

f

SVM wine 0.6182±0.0029 0.6186±0.0030 0.6186±0.0036 0.6189±0.0042
NN wine 0.9149±0.0004 0.9151±0.0005 0.9151±0.0004 0.9151±0.0004
NN cancer 0.9585±0.0006 0.9589±0.0006 0.9589±0.0006 0.9590±0.0006
NN housing 8.6733±1.6916 8.6776±1.7149 9.0691±1.8656 8.7216±1.8076

Function PI PI-PP01 PI-PP001 PI-PP0001

ST

Dropwave 0.1526±0.1534 0.1221±0.1462 0.1251±0.1355 0.1457±0.1539
Griewank 0±0 0±0 0±0 0±0
Hart6 0.5795±0.2959 0.4558±0.1048 0.5599±0.0982 0.5500±0.2529
Rastrigin 0.0524±0.2285 0.0524±0.2285 0±0 0.0524±0.2285

f

SVM wine 0.6192±0.0037 0.6176±0.0025 0.6204±0.0050 0.6208±0.0053
NN wine 0.9140±0.0011 0.9143±0.0006 0.9140±0.0008 0.9138±0.0008
NN cancer 0.9571±0.0024 0.9578±0.0020 0.9576±0.0024 0.9574±0.0024
NN housing 7.5570±1.4822 7.9702±1.4000 7.8585±1.5515 7.6147±1.3592

Function EI EI-PP01 EI-PP001 EI-PP0001

ST

Dropwave 0.2557±0.1720 0.1924±0.0818 0.2307±0.1461 0.2276±0.1752
Griewank 0.3098±0.1722 0.3028±0.1005 0.3187±0.1594 0.2729±0.1471
Hart6 0.6652±0.2685 0.6050±0.2328 0.6028±0.1656 0.6828±0.3081
Rastrigin 3.3069±2.4955 2.6602±2.2063 3.0492±1.5602 3.1987±2.3818

f

SVM wine 0.6189±0.0037 0.6182±0.0035 0.6198±0.0037 0.6179±0.0034
NN wine 0.9149±0.0006 0.9150±0.0005 0.9150±0.0004 0.9148±0.0005
NN cancer 0.9587±0.0006 0.9589±0.0006 0.9588±0.0006 0.9587±0.0006
NN housing 8.1780±1.8382 8.0277±1.3844 8.0471±1.5024 8.1992±1.7971

Table 1: The results (mean±std.) of BO-PP and BO on synthetic benchmark functions and real-world optimization problems, when reaching
the iteration budget. ST : the smaller, the better; f : the larger, the better. The bolded values denote that BO-PP is no worse than BO. UCB, PI
and EI are tested.

5 Empirical Study

In this section, we empirically compare BO-PP with BO.
Three common acquisition functions, i.e., UCB, PI and EI,
are used. The ARD squared exponential kernel is employed,
whose hyper-parameters are tuned by maximum likelihood
estimation (MLE), and the acquisition function is maximized
via the DIRECT algorithm [Jones et al., 1993]. To alleviate
the “cold start” issue, each algorithm starts with five random
initial points. To compare BO-PP with BO on each prob-
lem, we repeat their running 20 times independently and re-
port the average results; in each running, BO-PP and BO use
the same five random initial points. The noise level is set to
σ2 = 0.0001, and the iteration budget is set to 100.

In the (t + 1)-th iteration of BO-PP, for each point in
Dt, one pseudo-point is generated by randomly sampling
within its distance τt and taking the same function value;
thus, lt = |Dt|. To control the error of objective values with
pseudo-points increasing, τt is set to rτ0/(dlt), which de-
creases with lt. Note that r corresponds to the width of each
dimension of the search domain. τ0 is set to a small value.
We will use 0.01, 0.001 and 0.0001 to explore its influence,
and the corresponding algorithms are denoted as BO-PP01,
BO-PP001 and BO-PP0001, respectively.

We use four common synthetic benchmark functions:
Dropwave, Griewank, Hart6 and Rastrigin, whose dimen-
sions are 2, 2, 6 and 2, respectively. Their search domains
are scaled to [−1, 1]d. As the minima are known, the sim-

ple regret ST is used as the metric. We also employ four
real-world optimization problems, widely used in BO exper-
iments [Springenberg et al., 2016; Wang and Jegelka, 2017;
Ru et al., 2018]. The first is to tune the hyper-parameters,
i.e., box constraint C ∈ [0.001, 1000] and kernel scale l ∈
[0.0001, 1], of SVM for classification on the data set Wine
quality (1,599 #inst, 11 #feat). The second is to tune the
hyper-parameters of 1-hidden-layer neural network (NN) for
this task. The NN is trained by backpropagation, and the
hyper-parameters are the number of neurons n ∈ [1, 100]
and the learning rate lr ∈ [0.000001, 1]. The last two prob-
lems are to tune the hyper-parameters of 1-hidden-layer NN
for classification on Breast cancer (699 #inst, 9 #feat) and
regression on Boston housing (506 #inst, 13 #feat), respec-
tively. The NN is trained by Levenberg-Marquardt optimiza-
tion, and there are four hyper-parameters: n ∈ [1, 100], the
damping factor µ ∈ [0.000001, 100], the µ-decrease and µ-
increase factors µdec ∈ [0.01, 1], µinc ∈ [1.01, 20]. All data
sets are randomly split into training/validation/test sets with
ratio 0.7/0.2/0.1, and the performance on validation sets is
used as the objective f . For classification, f is the classifica-
tion accuracy; for regression, f equals 20 minus the regres-
sion L2-loss.

For UCB, βt in Eq. (5) is set to 2 log(td/2+2π2/3δ) where
δ = 0.1, as suggested in [Brochu et al., 2010; Srinivas et
al., 2012]. For PI and EI, the best observed function value
by far is used as f(x+) in Eqs. (3) and (4). The results are
summarized in Table 1. We can observe that UCB-PP0001
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Figure 1: The results (mean±(1/4)std.) of UCB-PP and UCB on real-world optimization problems. f : the larger, the better.
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Figure 2: The results (mean±(1/4)std.) of UCB-PP and UCB with the Gaussian kernel on real-world optimization problems. f : the larger,
the better.

is always better than UCB, and UCB-PP01/UCB-PP001 sur-
passes UCB in most cases, disclosing that the performance of
UCB-PP is not very sensitive to the distance τt. Also, PI-PP
and EI-PP perform better than PI and EI, respectively, in most
cases, showing the applicability of generating pseudo-points.

Furthermore, we plot the curves of the simple regret ST
or the objective f over iterations for each algorithm on each
problem. Figure 1 shows the curves of UCB-PP and UCB on
real-world problems. It can be observed that on each problem,
there is at least one curve of UCB-PP almost always above
that of UCB, implying that UCB-PP can consistently outper-
form UCB during the running process. The other five figures,
showing similar observations, are provided in the supplemen-
tary material due to space limitation.

To examine the robustness of BO-PP against kernels, we
use the Gaussian kernel with hyper-parameters tuned by
MLE. We compare UCB-PP with UCB on real-world opti-
mization problems. Figure 2 shows that UCB-PP can be bet-
ter than UCB except UCB-PP01/UCB-PP001 on SVM wine.

6 Conclusion
In this paper, we propose a general framework BO-PP by
generating pseudo-points to improve the GP model of BO.
BO-PP can be implemented with any acquisition function.
Equipped with UCB, we prove that the cumulative regret of
BO-PP can be well bounded. This bound generalizes the
well-known bound of UCB. Experiments with UCB, PI and
EI on synthetic as well as real-world optimization problems
show the superior performance of BO-PP over BO. It is ex-
pected that the generation of pseudo-points can be helpful
for more BO algorithms. Note that the dimensionality of
problems tested in our experiments is low. Thus, studying
the effectiveness of BO-PP on high-dimensional optimization
problems is an interesting topic.

It is also noted that the added pseudo-points take the same
function values with their neighbor observed data points, re-
quiring the function to vary smoothly locally. Thus, it is inter-
esting to study strategies of improving BO when the function
can fluctuate widely in the future.
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7 Appendix
7.1 Detailed Proofs
This part provides the proof of Lemma 1, which is omitted in Sec-
tion 4 of our original paper due to space limitation. We first give two
lemmas which will be used in the proof of Lemma 1.

Lemma 2 gives the reduction on the posterior variance by adding
pseudo-points.
Lemma 2. After obtainingDt in UCB-PP, the reduction on the pos-
terior variance by adding pseudo-points {(x′i, ŷ′i)}lti=1 is

∆v(x, lt, τt) = σ2
t (x)− σ̂2

t (x) = p(x)TMp(x).

Proof. By Eq. (2) and k(x,x) = 1, we have

σ̂2
t (x) = 1−

[kt(x);k′lt(x)]T
([

Kt K̃t,lt

K̃T
t,lt K′lt

]
+ σ2I

)−1

[kt(x);k′lt(x)]

= 1− kt(x)T(Kt + σ2I)−1kt(x)− p(x)TMp(x)

= σ2
t (x)− p(x)TMp(x),

where the second equality is derived by the inverse of a block matrix,
and the third one holds by Eq. (2). Thus, the lemma holds.

Lemma 3 is extracted from Lemma 5.1 in [Srinivas et al., 2012].
Lemma 3. SupposeX is a random variable satisfying the Gaussian
distributionN (µ, σ2). Then, it holds that

Pr(|X − µ| > cσ) ≤ e−c2/2,

where c > 0.

Proof of Lemma 1. By Eq. (1), we have

µ̂t(x) = [kt(x);k′lt(x)]T
([

Kt K̃t,lt

K̃T
t,lt K′lt

]
+ σ2I

)−1

[y1:t; ŷ
′
1:lt ]

= kt(x)T(Kt + σ2I)−1y1:t

+ p(x)TM([µt(x
′
1);µt(x

′
2); . . . ;µt(x

′
lt)]− ŷ′1:lt)

= µt(x) + p(x)TM([µt(x
′
1);µt(x

′
2); . . . ;µt(x

′
lt)]− ŷ′1:lt),

where the second equality is derived by the inverse of a block matrix,
and the third one holds by Eq. (1). Similarly, we have

µ̃t(x) = µt(x) + p(x)TM([µt(x
′
1);µt(x

′
2); . . . ;µt(x

′
lt)]− y′1:lt).

Thus, it holds that µ̂t(x)− µ̃t(x) = −p(x)TM(ŷ′1:lt − y′1:lt).
Next, we examine the upper bound on |p(x)TM(ŷ′1:lt − y′1:lt)|.

|p(x)TM(ŷ′1:lt − y′1:lt)| ≤
lt∑

i=1

|(p(x)TM)i| · |ŷ′i − y′i|,

where (p(x)TM)i denotes the i-th element of p(x)TM. Accord-
ing to the procedure of Algorithm 2, the pseudo-point x′i has dis-
tance τt with some observed data point and takes the same function
value. Assume that the corresponding observed data point for x′i is
xj , where j ∈ [t], implying ŷ′i = yj . Thus, we have

|ŷ′i − y′i| = |yj − y′i| = |(f(xj) + εj)− (f(x′i) + ε′i)|
≤ |f(xj)− f(x′i)|+ |εj − ε′i|,

where εj , ε′i ∼ N (0, σ2), and the second equality holds because
f(xj) and f(x′i) are subject to additive Gaussian noise N (0, σ2).
According to Assumption 1, we have

Pr
(
∀t ≥ 0, ∀i ∈ [lt] : |f(xj)− f(x′i)| ≤ L‖xj − x′i‖1 = Ldτt

)

≥ 1− dae−(L/b)2 .

As εj − ε′i ∼ N (0, 2σ2), by Lemma 3, we have

Pr

|εj − ε′i| ≤ 2σ

√
log

4
∑T−1

t=0 lt

δ

 ≥ 1− δ

4
∑T−1

t=0 lt
.

Applying the union bound leads to

Pr (∀0 ≤ t ≤ T − 1, ∀i ∈ [lt] :

|ŷi′ − y′i| ≤ Ldτt + 2σ

√
log

4
∑T−1

t=0 lt

δ


≥ 1− dae−(L/b)2 −

(
T−1∑
t=0

lt

)
· δ

4
∑T−1

t=0 lt

= 1− dae−(L/b)2 − δ

4
.

Thus, with probability at least 1 − dae−(L/b)2 − δ/4, it holds that
∀0 ≤ t ≤ T − 1,

|p(x)TM(ŷ′1:lt − y′1:lt)|

≤

Ldτt + 2σ

√
log

4
∑T−1

t=0 lt

δ

 lt∑
i=1

|(p(x)TM)i|. (10)

Next we prove an upper bound on
∑lt

i=1 |(p(x)TM)i|. Note that

|(p(x)TM)i| ≤
lt∑

j=1

|p(x)j | · |Mj,i|, (11)

where p(x)j denotes the j-th element of p(x), and Mj,i denotes the
element of the j-th row and i-th column of M. If only one pseudo-
point (x′j , ŷ

′
j) from {(x′i, ŷ′i)}lti=1 is added into Dt, we know from

Lemma 2 that the reduction on the posterior variance is

∆v(x, 1, τt) = (σ2
t (x′j) + σ2)−1p(x)2j ≤ 1,

where the inequality holds by k(x,x) = 1. This implies

∀j ∈ [lt] : |p(x)j | ≤
√
σ2
t (x′j) + σ2 ≤

√
1 + σ2. (12)

Let adj(·) denote the adjugate matrix, [·]i,j denote the principle
submatrix by deleting the i-th row and j-th column, and λk(·)
denote the k-th largest eigenvalue. By Cramer’s rule, M =
adj(M−1)/det(M−1), and thus,

|Mj,i| = |adj(M−1)j,i|/det(M−1)

= det([M−1]i,j)/det(M−1)

=

lt−1∏
k=1

λk([M−1]i,j)/

lt∏
k=1

λk(M−1)

≤ 1/λlt(M
−1) ≤ σ−2, (13)

where the second equality holds by the definition of the adjugate ma-
trix, and the two inequalities hold by the Cauchy interlacing inequal-
ity, leading to λ1(M−1) ≥ λ1([M−1]i,j) ≥ · · · ≥ λlt−1(M−1) ≥
λlt−1([M−1]i,j) ≥ λlt(M

−1) ≥ σ2. Combining Eqs. (11), (12)
and (13), we have

lt∑
i=1

|(p(x)TM)i| ≤
lt∑

i=1

lt∑
j=1

|p(x)j | · |Mj,i|



≤
√

1 + σ2σ−2l2t . (14)

Applying Eq. (14) to Eq. (10), we have

Pr
(
∀0 ≤ t ≤ T − 1, ∀x ∈ X : |p(x)TM(ŷ′1:lt − y′1:lt)|

≤

Ldτt + 2σ

√
log

4
∑T−1

t=0 lt

δ

√1 + σ2σ−2l2t

)
≥ 1− dae−(L/b)2 − δ/4.

Thus, the lemma holds. �

7.2 Detailed Experimental Results
This part provides some experimental results, which are omitted in
Section 5 of our original paper due to space limitation.

Figure 3 plots the curves of the simple regret ST over iterations
for UCB-PP and UCB on synthetic benchmark functions.

Figure 4 plots the curves of the objective f over iterations for
PI-PP and PI on real-world optimization problems.

Figure 5 plots the curves of the simple regret ST over iterations
for PI-PP and PI on synthetic benchmark functions.

Figure 6 plots the curves of the objective f over iterations for
EI-PP and EI on real-world optimization problems.

Figure 7 plots the curves of the simple regret ST over iterations
for EI-PP and EI on synthetic benchmark functions.
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Figure 3: The results (mean±(1/4)std.) of UCB-PP and UCB on synthetic benchmark functions. ST : the smaller, the better.
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Figure 4: The results (mean±(1/4)std.) of PI-PP and PI on real-world optimization problems. f : the larger, the better.
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Figure 5: The results (mean±(1/4)std.) of PI-PP and PI on synthetic benchmark functions. ST : the smaller, the better.
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Figure 6: The results (mean±(1/4)std.) of EI-PP and EI on real-world optimization problems. f : the larger, the better.
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Figure 7: The results (mean±(1/4)std.) of EI-PP and EI on synthetic benchmark functions. ST : the smaller, the better.
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