
Towards Theoretically Grounded Evolutionary Learning

Chao Qian∗

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
qianc@lamda.nju.edu.cn

Abstract
Machine learning tasks are often formulated as
complex optimization problems, where the ob-
jective function can be non-differentiable, non-
continuous, non-unique, inaccurate, dynamic, and
have many local optima, making conventional op-
timization algorithms fail. Evolutionary Algo-
rithms (EAs), inspired by Darwin’s theory of evolu-
tion, are general-purpose randomized heuristic op-
timization algorithms, mimicking variational repro-
duction and natural selection. EAs have yielded en-
couraging outcomes for solving complex optimiza-
tion problems (e.g., neural architecture search) in
machine learning. However, due to the heuristic na-
ture of EAs, most outcomes to date have been em-
pirical and lack theoretical support, encumbering
their acceptance to the general machine learning
community. In this paper, I will review the progress
towards theoretically grounded evolutionary learn-
ing, from the aspects of analysis methodology, the-
oretical perspectives and learning algorithms. Due
to space limit, I will include a few representative
examples and highlight our contributions. I will
also discuss some future challenges.

1 Introduction
Machine learning tries to learn generalizable models from
data, which can be generally divided into three components:
model representation, evaluation and optimization [Domin-
gos, 2012]. The way of model representation (e.g., deep
neural networks) becomes more and more complex, and the
function of model evaluation may not have good properties.
Furthermore, the environment can be subject to a wide range
of uncertainties. A machine learning task is thus often for-
mulated as a complex optimization problem, whose objec-
tive function can be non-differentiable, non-continuous, non-
unique, inaccurate, dynamic and have many local optima, re-
quiring powerful optimization algorithms.

EAs [Bäck, 1996] are a type of general-purpose random-
ized heuristic optimization algorithms, by simulating the two
key factors of natural evolution, variational reproduction and

∗This work was supported by the NSFC (62022039).

natural selection. Starting from an initial population of solu-
tions, EAs iteratively reproduce offspring solutions by recom-
bination and mutation, and select better ones from the parent
and offspring solutions to form the next population. During
the evolutionary process, EAs only require the solutions to be
represented and their goodness to be evaluated, and thus can
be applied in the “black-box” manner to solve optimization
problems. The population-based search of EAs also matches
the requirement of multi-objective optimization, i.e., EAs can
generate a set of Pareto optimal solutions by running only
once. Furthermore, natural evolution have been successfully
processed in noisy and dynamic natural environments, and
hence the algorithmic simulations are also likely to be able to
handle noise and adapt to dynamic changes.

Due to the powerful optimization ability, EAs have been
applied to solve complex optimization problems in machine
learning, leading to the direction of evolutionary learn-
ing [Zhou et al., 2019]. For example, Zhou et al. [2002]
applied EAs to solve the ensemble pruning problem, gener-
ating a small subset of individual learners with strong gener-
alization ability; Real et al. [2017] applied EAs to search the
architecture of deep neural networks automatically, achiev-
ing competitive performance to the hand-designed models by
experts; Wang et al. [2022] applied EAs to policy search for
reinforcement learning in real-world scenarios, generating a
set of policies with both high quality and diversity.

Though evolutionary learning has achieved successes,
most outcomes to date (like those introduced above) have
been empirical and lack theoretical support. In fact, theo-
retical analysis of EAs is quite difficult, due to their heuristic
and randomized nature. The lack of sound theoretical founda-
tion encumbers the acceptance of evolutionary learning by the
general machine learning community. Next, I will review the
progress towards theoretically grounded evolutionary learn-
ing, from the aspects of analysis methodology, theoretical
perspectives, and algorithms with theoretical guarantees.

2 Analysis Methodology
Towards building the theoretical foundation of evolutionary
learning, the first step is to develop general analysis tools that
can guide the analysis of EAs on new problems, rather than
to perform adhoc analysis starting from scratch. As EAs are
used for optimization, running time complexity is one funda-
mental theoretical aspect, which characterizes how soon an

algorithm can solve a problem. Specifically, the running time
complexity of an EA is often measured by the number of fit-
ness (i.e., objective) evaluations required to find a desired so-
lution for the first time. Much efforts thus have been put into
developing general approaches for analyzing the running time
complexity of EAs. In the following, I will introduce three
representatives. Note that the process of optimizing a prob-
lem by an EA is often modeled as a Markov chain {ξt}+∞t=0 .

Fitness Level. Given a maximization problem f to be
solved by an elitist EA which never loses the best found solu-
tion, the fitness level method [Wegener, 2000] first partitions
the solution space into level sets S1,S2, . . . ,Sm according to
the fitness value, i.e., ∀i < j, s ∈ Si, s′ ∈ Sj : f(s) < f(s′).
Intuitively, the level sets form stairs; the higher, the better. By
pessimistically assuming that a single jump can reach only the
adjacent upper-level set, an upper bound on the expected run-
ning time of the EA can be derived by summing up the time
taken for leaving every stair. Let vi ≤ P (ξt+1 ∈ ∪mj=i+1Sj |
ξt ∈ Si) denote a lower bound on the probability of jump-
ing to higher levels. Then, the time taken for leaving stair Si
is at most 1/vi, leading to the upper bound

∑m−1
j=i 1/vj on

the expected running time starting from Si. By optimistically
assuming that a single jump can reach the target level set,
the expected running time of the EA can be lower bounded
by the time of leaving a stair, which is at least 1/ui where
ui ≥ P (ξt+1 ∈ ∪mj=i+1Sj | ξt ∈ Si) denotes an upper bound
on the probability of jumping to higher levels. Based on this
basic idea, advanced variants have also been proposed. For
example, Sudholt [2013] considered the probability distribu-
tion that the EA jumps to higher levels carefully, leading to
tighter lower bounds on the expected running time; Corus et
al. [2017] proposed the level-based theorem for deriving up-
per bounds on the expected running time of non-elitist EAs.

Drift Analysis. By introducing a distance function V (·) to
measure the distance from a state to the target state space, the
drift analysis approach [He and Yao, 2001] estimates the av-
erage drift towards the target, i.e., E[V (ξt) − V (ξt+1) | ξt],
of every step of an EA, and then derives an upper (lower)
bound on the expected running time of the EA through di-
viding the initial distance by a lower (upper) bound on the
one-step average drift. Many variants have been proposed,
e.g., multiplicative drift analysis [Doerr et al., 2012] is easier
to use when the average drift is roughly proportional to the
current distance V (ξt) to the target space; simplified negative
drift analysis [Oliveto and Witt, 2011] can be applied to prove
exponential lower bounds on the running time when the aver-
age drift is a negative constant and the probability of jumping
towards or away from the target space decays exponentially.

Switch Analysis. Different from the above two approaches
which provide paths to be followed for deriving the expected
running time of an EA solving an optimization problem from
scratch, we developed the switch analysis approach [Yu et
al., 2015], by comparing the expected running time of the
given EA process {ξt}+∞t=0 with that of a reference EA pro-
cess {ξ′t}+∞t=0 , which can be specially designed to be some-
what similar to {ξt}+∞t=0 but easier to be analyzed. The dif-
ference of these two chains at step k is calculated by the

time difference of two intermediate chains {ξk+1
t }+∞t=0 and

{ξkt }+∞t=0 , where ξkt acts like the given chain ξt before time
k, switches to the state space of the reference chain ξ′t at time
k, and then acts like ξ′t. All these one-step differences are
summed up to bound the total time difference of {ξt}+∞t=0 and
{ξ′t}+∞t=0 . Thus, the analysis of the expected running time of
a complex given process can be simplified by the comparison
with a relatively simpler reference process. We have applied
switch analysis to analyze the expected running time of EAs
solving multi-objective optimization problems, and derived
tighter bounds than before [Bian et al., 2018]. For example,
for the EA, namely SEMO, solving the m-objective problem
mCOCZ where m ≥ 4, the known bound O(nm+1) [Lau-
manns et al., 2004] is improved to be O(nm).

3 Theoretical Perspectives
Utilizing the general tools introduced in the previous section,
a series of theoretical results have been attained, which can
bring better understanding about the behaviors of EAs and
offer some insight for algorithm design. In this section, I will
focus on the common complex optimization problems, i.e.,
multi-objective, constrained, noisy and dynamic optimization
problems, in machine learning, and introduce some represen-
tative results for EAs solving these problems.
Multi-objective Optimization. Many machine learning
tasks involve multiple objectives. For example, ensemble
pruning [Zhou et al., 2002] tries to optimize the generaliza-
tion performance of a selective ensemble using as few indi-
vidual learners as possible; neural architecture search [Real et
al., 2017] hopes to find an architecture that maximizes accu-
racy and minimizes computation cost at the same time. For-
mally speaking, multi-objective optimization requires to si-
multaneously optimize two or more objective functions, i.e.,

maxs∈S
(
f1(s), f2(s), ..., fm(s)

)
,

where S denotes the solution space, and f1, f2, . . . , fm are
m objective functions to be maximized. When there are two
objective functions, it is also called bi-objective optimization.

As the objective functions are usually conflicting, it is im-
possible to have one solution which is optimal for all objec-
tives. The comparison between solutions in multi-objective
optimization is usually based on the domination relationship.
That is, for two solutions s and s′ ∈ S,
• s weakly dominates s′, denoted as s � s′, if ∀i ∈
{1, 2, . . . ,m} : fi(s) ≥ fi(s′);
• s dominates s′, denoted as s � s′, if s � s′ and ∃i ∈
{1, 2, . . . ,m} : fi(s) > fi(s

′).
If neither s � s′ nor s′ � s, they are incomparable. A
solution is Pareto optimal if there is no other solution in S
that dominates it. The set of objective vectors of all the Pareto
optimal solutions constitutes the Pareto front, which is just
the goal of multi-objective optimization.

Due to the characteristic of population-based search, EAs
have become a popular tool for multi-objective optimization.
However, the theoretical analysis is still underdeveloped, es-
pecially compared to the single-objective scenario. We ana-
lyzed the influence of recombination operators, by comparing

the expected running time of the same EA with and with-
out recombination for solving some bi-objective benchmark
problems [Qian et al., 2013]. The analysis discloses that the
recombination operator can work by accelerating the filling
of the Pareto front through recombining diverse Pareto opti-
mal solutions found-so-far, which is unique to multi-objective
optimization, as there is no Pareto front in single-objective
situations. Recently, we analyzed the popular NSGA-II [Deb
et al., 2002], and proved that stochastic tournament selection
(i.e., k tournament selection where k is uniformly sampled at
random) can be better than the common binary tournament
selection strategy, e.g., the expected running time for solving
the LOTZ problem can be reduced from O(n3) to O(n2) by
using stochastic tournament selection [Bian and Qian, 2022].
Constrained Optimization. The optimization problems in
machine learning also often come with constraints. For ex-
ample, to avoid overfitting, one often needs to minimize the
error of a model, while constraining the model complexity.
Constrained optimization can be generally formulated as

maxs∈S f(s) s.t. gi(s) = 0 for 1 ≤ i ≤ q,
hi(s) ≤ 0 for q + 1 ≤ i ≤ m,

where f is the objective function, gi and hi are the equal-
ity and inequality constraints, respectively. A solution is
(in)feasible if it does (not) satisfy the constraints. The goal
is to find a feasible solution maximizing the objective f .

When EAs are applied to constrained optimization, a fun-
damental question is how to deal with the constraints. The
most common way is the penalty function method, which
transforms the original constrained optimization problem into
an unconstrained one by adding the constraint violation de-
gree to the objective f . However, some theoretical studies
have shown that it can be better if the original constrained
optimization problem is transformed into a bi-objective opti-
mization problem that optimizes the original objective f and
a constraint-related objective (e.g., the constraint violation
degree) simultaneously. This way is called Pareto optimiza-
tion. For example, Neumann and Wegener [2006] proved that
for EAs solving the minimum spanning tree problem with
dense graphs, using Pareto optimization can be faster than
using penalty function, to find a minimum spanning tree; we
proved that for EAs solving the NP-hard minimum cost cov-
erage problem, using Pareto optimization can even be expo-
nentially faster to achieve some approximation ratio [Qian et
al., 2015a]. By Pareto optimization, infeasible solutions can
be naturally incorporated into the evolutionary process, which
may bring a “shortcut” to the good feasible solutions.
Noisy Optimization. In machine learning, the objective
evaluation of solutions can be inaccurate, resulting in noisy
optimization. For example, a prediction model is usually eval-
uated on a limited amount of data, where the estimated per-
formance generally has some deviation from the true one. Let
f and F denote the true and noisy objective functions, respec-
tively. A common noise model is the multiplicative one, i.e.,
F (s) = f(s) · δ. The occurrence of noise may mislead the
search direction of EAs, making the optimization inefficient.
We proved that the robustness of EAs against noise can be
increased by the strategies of sampling [Qian et al., 2018a],

threshold selection [Qian et al., 2018b] and using large pop-
ulation [Qian et al., 2021]. For example, for the (1+1)-EA
solving the OneMax problem under high noise levels, us-
ing threshold selection can reduce the expected running time
of finding the optimal solution from exponential to polyno-
mial [Qian et al., 2018b]. By threshold selection, EAs accept
an offspring solution only if its objective value is better than
that of a parent solution by at least a threshold, reducing the
risk of accepting a bad solution or deleting a good solution.
Dynamic Optimization. The real-world environment
where machine learning tasks are performed often changes
dynamically, resulting in dynamic optimization. That is, the
objective, constraint or solution space of the optimization
problem may change over time. EAs are believed to be
able to adapt to the dynamic changes quickly, and have
been widely applied to dynamic optimization in practice.
However, theoretical analysis is often lacked. Neumann and
Witt [2015] gave the theoretical evidence by proving that for
the dynamic makespan scheduling problem, even the simple
EA, (1+1)-EA, can maintain a good discrepancy efficiently
when the processing time of one job changes dynamically.
By considering EAs on linear functions under dynamic
uniform constraints, population has also been proved to be
necessary in tracking changes dynamically [Shi et al., 2019].

4 Theoretically Grounded Evolutionary
Learning Algorithms

Inspired by the theoretical results as those introduced in the
previous section, a series of evolutionary learning algorithms
with bounded approximation guarantees have been devel-
oped. In this section, I will introduce those algorithms for
three representative learning problems, i.e., ensemble prun-
ing, subset selection and result diversification.
Ensemble Pruning. Given a set of trained individual learn-
ers, ensemble pruning tries to select a small subset of individ-
ual learners to comprise the ensemble, instead of combining
all. There are naturally two goals, i.e., maximizing the gener-
alization performance and minimizing the number of selected
individual learners. Previous methods mainly optimize the
single objective, i.e, the generalization performance, by us-
ing greedy algorithms or EAs. We proposed an EA to solve
the explicit bi-objective formulation, achieving better perfor-
mance than state-of-the-art ensemble pruning methods both
theoretically and empirically [Qian et al., 2015b].
Subset Selection. It is a more general problem, aiming to
select a limited number of items from V = {v1, v2, . . . , vn}
for optimizing some given objective f : 2V → R. That is,

maxs∈{0,1}n f(s) s.t. |s| ≤ k, (1)

where k is a given budget, and s ∈ {0, 1}n represents a sub-
set of V where si = 1 if vi is selected and si = 0 other-
wise. It is NP-hard in general, and has many applications,
such as sparse regression, influence maximization, document
summarization and sensor placement, just to name a few.

Inspired by the theoretical results of applying Pareto op-
timization to handle constraints, we proposed the POSS al-
gorithm [Qian et al., 2015c], which reformulates the original

Algorithm 1 POSS Algorithm

1: Let P ← {0};
2: while some criterion is not met
3: Choose s from P uniformly at random;
4: Create s′ by flipping each bit of s with prob. 1/n;
5: if @z ∈ P such that z � s′ then
6: P ← (P \ {z ∈ P | s′ � z}) ∪ {s′}
7: return argmaxs∈P,|s|≤k f(s)

constrained problem in Eq. (1) into a bi-objective problem

maxs∈{0,1}n (f(s),−|s|), (2)

i.e., maximizing the original objective f(s) and minimizing
the subset size |s| =

∑n
i=1 si simultaneously. POSS employs

a simple EA [Laumanns et al., 2004] to solve this bi-objective
problem, as shown in Algorithm 1. Starting from the all-0s
vector 0 (i.e., the empty set), POSS iteratively improves the
quality of solutions in the population P . In each iteration,
a parent solution s is selected from P uniformly at random
(line 3), and used to generate an offspring solution s′ by bit-
wise mutation (line 4), which flips each bit of s independently
with probability 1/n. The newly generated s′ is then used to
update P (lines 5–6). If s′ is not dominated by any solution
in P (line 5), it will be added into P , and those parent solu-
tions weakly dominated by s′ will be deleted (line 6). When
POSS terminates, the best feasible solution w.r.t. the original
problem (i.e., argmaxs∈P,|s|≤k f(s)) will be selected from
the final population P as the output (line 7).

POSS can achieve the best-known polynomial-time ap-
proximation guarantees for subset selection. When the ob-
jective f is monotone submodular, it achieves the approx-
imation ratio of 1 − 1/e [Friedrich and Neumann, 2015],
which is optimal [Nemhauser and Wolsey, 1978]. When f
is monotone approximately submodular, it achieves the ap-
proximation 1−e−γ [Qian et al., 2015c], which is optimal as
well [Harshaw et al., 2019]. Note that γ is the submodularity
ratio characterizing the closeness of f to submodularity. Even
when f is non-monotone, POSS can achieve the approxima-
tion guarantee, f(s) ≥ (1− 1/e) · (OPT− kε) [Qian et al.,
2019], where OPT denotes the optimal function value and
ε ≥ 0 captures the degree of approximate monotonicity of f .
This also reaches the best-known one [Krause et al., 2008].
Noisy Subset Selection. For subset selection, there are
many practical situations where the objective evaluation can
be noisy. For example, in sparse regression, only a set of lim-
ited data can be used for evaluation, bringing noise. Inspired
by the theoretical results of applying threshold selection to
deal with noise, we incorporated this strategy into POSS, re-
sulting in the PONSS algorithm [Qian et al., 2017]. Con-
sider the multiplicative noise with δ ∈ [1 − ε, 1 + ε], i.e.,
(1− ε) · f(s) ≤ F (s) ≤ (1 + ε) · f(s). A solution s weakly
dominating s′ in PONSS requires

F (s) ≥ ((1 + ε)/(1− ε)) · F (s′) ∧ |s| ≤ |s′|,

instead of the previous F (s) ≥ F (s′) ∧ |s| ≤ |s′| in POSS.
By this conservative comparison, solutions with similar F
values will be kept in the population P , reducing the risk of

removing a good solution. We proved that PONSS achieves
an approximation ratio of 1−ε

1+ε (1 − e
−γ), significantly better

than that of the greedy algorithm [Horel and Singer, 2016].
Dynamic Subset Selection. In real-world applications of
subset selection, the budget k on the size constraint |s| ≤ k
may change over time, reflecting the change of resources.
It has been proved that whether k decreases or increases,
POSS can always maintain a good approximation ratio
quickly [Bian et al., 2021; Roostapour et al., 2022]. In fact,
this result even holds for the more general cost constraint
c(s) ≤ k, where c(·) is a cost function.
Large-scale Subset Selection. Though POSS can achieve
good approximation guarantees in general as well as excellent
empirical performance in various applications of subset se-
lection, its running time may be unsatisfactory for large-scale
situations. For acceleration, Crawford [2021] introduced a bi-
ased selection strategy to select solutions for mutation, while
we developed a parallel version of POSS, which generates
as many offspring solutions as the number of processors in
parallel in each iteration [Qian et al., 2016], as well as a dis-
tributed version, which employs a divide-and-conquer strat-
egy to partition the data set into multiple machines and run
POSS on each machine in parallel [Qian, 2020]. All these ac-
celerated variants still enjoy good approximation guarantees,
though with a little loss.
Result Diversification. Some applications (e.g., feature se-
lection, document summarization and web-based search) may
require the subset to have not only high “quality” but also
high “diversity”, leading to the result diversification problem

maxs∈{0,1}n f(s) + λ · div(s) s.t. |s| ≤ k,
where f and div represent the quality and diversity, respec-
tively. For some common diversity measures, we proved
that POSS with carefully-designed bi-objective reformulation
can still achieve good polynomial-time approximation guar-
antees [Qian et al., 2022]. Even for the more general matroid
constraint, POSS can achieve an asymptotically optimal ap-
proximation ratio, 1/2− ε/(4n), where ε > 0. Furthermore,
when f or div changes dynamically, POSS can maintain this
approximation ratio in polynomial running time, addressing
the open question [Borodin et al., 2017].

5 Discussion
Though there have been progresses towards theoretically
grounded evolutionary learning as introduced before, many
works remain to be done. For example, we still need gen-
eral running time analysis tools which are not only powerful
but also easy to use. It would be interesting to consider EAs
for robust optimization, which also appears frequently in ma-
chine learning. Of course, more theoretically grounded evo-
lutionary learning algorithms are expected, and we are very
looking forward to those algorithms that can achieve an ap-
proximation guarantee better than the best-known one.

Besides, how to make evolutionary learning efficient is an-
other major challenge. There are many possible ways, e.g.,
combining EAs with gradient-based optimization methods,
self-adjusting the parameters of EAs by learning, or repro-
ducing offspring solutions with the help of surrogate models.

References
[Bäck, 1996] T. Bäck. Evolutionary Algorithms in Theory and

Practice: Evolution Strategies, Evolutionary Programming, Ge-
netic Algorithms. Oxford University Press, 1996.

[Bian and Qian, 2022] C. Bian and C. Qian. Better running time
of the non-dominated sorting genetic algorithm ii (NSGA-II) by
using stochastic tournament selection. In PPSN, 2022.

[Bian et al., 2018] C. Bian, C. Qian, and K. Tang. A general ap-
proach to running time analysis of multi-objective evolutionary
algorithms. In IJCAI, 2018.

[Bian et al., 2021] C. Bian, C. Qian, F. Neumann, and Y. Yu. Fast
Pareto optimization for subset selection with dynamic cost con-
straints. In IJCAI, 2021.

[Borodin et al., 2017] A. Borodin, A. Jain, H. C. Lee, and Y. Ye.
Max-sum diversification, monotone submodular functions, and
dynamic updates. ACM TALG, 13(3):1–25, 2017.

[Corus et al., 2017] D. Corus, D.-C. Dang, A. Eremeev, and P. K.
Lehre. Level-based analysis of genetic algorithms and other
search processes. IEEE TEvC, 22(5):707–719, 2017.

[Crawford, 2021] V. G. Crawford. Faster guarantees of evolution-
ary algorithms for maximization of monotone submodular func-
tions. In IJCAI, 2021.

[Deb et al., 2002] K. Deb, A. Pratap, S. Agarwal, and T. Meyari-
van. A fast and elitist multiobjective genetic algorithm: NSGA-
II. IEEE TEvC, 6(2):182–197, 2002.

[Doerr et al., 2012] B. Doerr, D. Johannsen, and C. Winzen. Mul-
tiplicative drift analysis. Algorithmica, 64(4):673–697, 2012.

[Domingos, 2012] P. Domingos. A few useful things to know about
machine learning. CACM, 55(10):78–87, 2012.

[Friedrich and Neumann, 2015] T. Friedrich and F. Neumann.
Maximizing submodular functions under matroid constraints by
evolutionary algorithms. ECJ, 23(4):543–558, 2015.

[Harshaw et al., 2019] C. Harshaw, M. Feldman, J. Ward, and
A. Karbasi. Submodular maximization beyond non-negativity:
Guarantees, fast algorithms, and applications. In ICML, 2019.

[He and Yao, 2001] J. He and X. Yao. Drift analysis and average
time complexity of evolutionary algorithms. AIJ, 127(1):57–85,
2001.

[Horel and Singer, 2016] T. Horel and Y. Singer. Maximization of
approximately submodular functions. In NIPS, 2016.

[Krause et al., 2008] A. Krause, A. Singh, and C. Guestrin. Near-
optimal sensor placements in Gaussian processes: Theory, effi-
cient algorithms and empirical studies. JMLR, 9:235–284, 2008.

[Laumanns et al., 2004] M. Laumanns, L. Thiele, and E. Zitzler.
Running time analysis of multiobjective evolutionary algorithms
on pseudo-Boolean functions. IEEE TEvC, 8(2):170–182, 2004.

[Nemhauser and Wolsey, 1978] G. L. Nemhauser and L. A. Wolsey.
Best algorithms for approximating the maximum of a submodular
set function. MOR, 3(3):177–188, 1978.

[Neumann and Wegener, 2006] F. Neumann and I. Wegener. Min-
imum spanning trees made easier via multi-objective optimiza-
tion. Natural Computing, 5(3):305–319, 2006.

[Neumann and Witt, 2015] F. Neumann and C. Witt. On the run-
time of randomized local search and simple evolutionary algo-
rithms for dynamic makespan scheduling. In IJCAI, 2015.

[Oliveto and Witt, 2011] P. S. Oliveto and C. Witt. Simplified drift
analysis for proving lower bounds in evolutionary computation.
Algorithmica, 59(3):369–386, 2011.

[Qian et al., 2013] C. Qian, Y. Yu, and Z.-H. Zhou. An analysis on
recombination in multi-objective evolutionary optimization. AIJ,
204:99–119, 2013.

[Qian et al., 2015a] C. Qian, Y. Yu, and Z.-H. Zhou. On constrained
Boolean Pareto optimization. In IJCAI, 2015.

[Qian et al., 2015b] C. Qian, Y. Yu, and Z.-H. Zhou. Pareto ensem-
ble pruning. In AAAI, 2015.

[Qian et al., 2015c] C. Qian, Y. Yu, and Z.-H. Zhou. Subset selec-
tion by Pareto optimization. In NIPS, 2015.

[Qian et al., 2016] C. Qian, J.-C. Shi, Y. Yu, K. Tang, and Z.-H.
Zhou. Parallel Pareto optimization for subset selection. In IJCAI,
2016.

[Qian et al., 2017] C. Qian, J.-C. Shi, Y. Yu, K. Tang, and Z.-H.
Zhou. Subset selection under noise. In NIPS, 2017.

[Qian et al., 2018a] C. Qian, Y. Yu, K. Tang, Y. Jin, X. Yao, and
Z.-H. Zhou. On the effectiveness of sampling for evolutionary
optimization in noisy environments. ECJ, 26(2):237–267, 2018.

[Qian et al., 2018b] C. Qian, Y. Yu, and Z.-H. Zhou. Analyzing
evolutionary optimization in noisy environments. ECJ, 26(1):1–
41, 2018.

[Qian et al., 2019] C. Qian, Y. Yu, K. Tang, X. Yao, and Z.-H.
Zhou. Maximizing submodular or monotone approximately sub-
modular functions by multi-objective evolutionary algorithms.
AIJ, 275:279–294, 2019.

[Qian et al., 2021] C. Qian, C. Bian, Y. Yu, K. Tang, and X. Yao.
Analysis of noisy evolutionary optimization when sampling fails.
Algorithmica, 83(4):940–975, 2021.

[Qian et al., 2022] C. Qian, D.-X. Liu, and Z.-H. Zhou. Result di-
versification by multi-objective evolutionary algorithms with the-
oretical guarantees. AIJ, 309:103737, 2022.

[Qian, 2020] C. Qian. Distributed Pareto optimization for large-
scale noisy subset selection. IEEE TEvC, 24(4):694–707, 2020.

[Real et al., 2017] E. Real, S. Moore, A. Selle, S. Saxena, Y. L.
Suematsu, J. Tan, Q. Le, and A. Kurakin. Large-scale evolution
of image classifiers. In ICML, 2017.

[Roostapour et al., 2022] V. Roostapour, A. Neumann, F. Neu-
mann, and T. Friedrich. Pareto optimization for subset selection
with dynamic cost constraints. AIJ, 302:103597, 2022.

[Shi et al., 2019] F. Shi, M. Schirneck, T. Friedrich, T. Kötzing, and
F. Neumann. Reoptimization time analysis of evolutionary algo-
rithms on linear functions under dynamic uniform constraints.
Algorithmica, 81:828–857, 2019.

[Sudholt, 2013] D. Sudholt. A new method for lower bounds on the
running time of evolutionary algorithms. IEEE TEvC, 17(3):418–
435, 2013.

[Wang et al., 2022] Y. Wang, K. Xue, and C. Qian. Evolutionary
diversity optimization with clustering-based selection for rein-
forcement learning. In ICLR, 2022.

[Wegener, 2000] I. Wegener. On the expected runtime and the suc-
cess probability of evolutionary algorithms. In WG, 2000.

[Yu et al., 2015] Y. Yu, C. Qian, and Z.-H. Zhou. Switch analy-
sis for running time analysis of evolutionary algorithms. IEEE
TEvC, 19(6):777–792, 2015.

[Zhou et al., 2002] Z.-H. Zhou, J. Wu, and W. Tang. Ensembling
neural networks: Many could be better than all. AIJ, 137(1-
2):239–263, 2002.

[Zhou et al., 2019] Z.-H. Zhou, Y. Yu, and C. Qian. Evolutionary
Learning: Advances in Theories and Algorithms. Springer, 2019.

	Introduction
	Analysis Methodology
	Theoretical Perspectives
	Theoretically Grounded Evolutionary Learning Algorithms
	Discussion

