
Towards a Running Time Analysis of the
(1+1)-EA for OneMax and LeadingOnes under

General Bit-wise Noise?

Chao Bian1, Chao Qian1, and Ke Tang2

1Anhui Province Key Lab of Big Data Analysis and Application,
University of Science and Technology of China, Hefei 230027, China

2Shenzhen Key Lab of Computational Intelligence,
Southern University of Science and Technology, Shenzhen 518055, China

biancht@mail.ustc.edu.cn, chaoqian@ustc.edu.cn, tangk3@sustc.edu.cn

Abstract Running time analysis of evolutionary algorithms (EAs) un-
der noisy environments has recently received much attention, which can
help us understand the behavior of EAs in practice where the fitness
evaluation is often subject to noise. One of the mainly investigated noise
models is bit-wise noise, which is characterized by a pair (p, q) of pa-
rameters. However, previous analyses usually fix p or q, which makes our
understanding on bit-wise noise incomplete. In this paper, we analyze
the running time of the (1+1)-EA solving OneMax and LeadingOnes
under general bit-wise noise. Our results largely extend the known ones
in specific cases of bit-wise noise, and disclose that p and pq together
decide the running time to be polynomial or super-polynomial.

1 Introduction

Evolutionary algorithms (EAs) have been widely applied to solve real-world op-
timization problems, where the fitness evaluation of a solution is often disturbed
by noise. Although they have shown good empirical performances in noisy opti-
mization [8], it is also important to understand the impact of noise from a the-
oretical viewpoint. As an essential theoretical aspect of EAs, the running time
analysis has received much attention in the last two decades, and has achieved
many promising results [1,9]. However, most of them focus on noise-free opti-
mization, where the fitness evaluation is exact. The theoretical understanding of
EAs is still largely incomplete for the noisy case.

Previous running time analyses in noisy evolutionary optimization mainly
considered two kinds of noise models, posterior and prior. The posterior noise
comes from the variation on the fitness of a solution, e.g., additive noise adds

? This work was supported by the Ministry of Science and Technology of China
(2017YFC0804003), the NSFC (61603367, 61672478), the YESS (2016QNRC001),
the Science and Technology Innovation Committee Foundation of Shenzhen
(ZDSYS201703031748284), and the Royal Society Newton Advanced Fellowship
(NA150123).

Table 1. For the expected running time of the (1+1)-EA on OneMax and LeadingOnes
under bit-wise noise (p, q), the ranges of p, q for a polynomial upper bound (the first line
in each cell) and a super-polynomial lower bound (the second line) are shown below.

(1+1)-EA (p, 1/n) (1, q) (p, q)

OneMax
O(logn/n)
ω(logn/n)

[13]
O(logn/n2)
ω(logn/n2)

[6]
p = O(logn/n) ∨ pq = O(logn/n2)
p = ω(logn/n) ∧ pq = ω(logn/n2)

LeadingOnes
O(logn/n2)
ω(logn/n)

[13]
O(logn/n3)
ω(logn/n2)

[13]
p = O(logn/n2) ∨ pq = O(logn/n3)
p = ω(logn/n) ∧ pq = ω(logn/n2)

a value randomly drawn from some distribution. There was a sequence of pa-
pers [2,4,5,10] mainly showing that some specific EAs (e.g., compact genetic
algorithm and ant colony optimization) can well handle additive noise, and us-
ing populations can bring robustness to additive noise.

For the prior noise coming from the variation on a solution, Droste [3] first
considered a specific model, one-bit noise, which flips a randomly chosen bit of a
binary solution before evaluation with probability p. He analyzed the (1+1)-EA
solving the OneMax problem under one-bit noise, and proved that the maximal
value of p allowing a polynomial running time is O(log n/n). Gießen and Kötz-
ing [6] considered another problem LeadingOnes, and proved that the expected
running time is polynomial if p ≤ 1/(6en2) and exponential if p = 1/2. For these
two problems, Qian et al. [11,12,14] theoretically studied the effectiveness of two
noise-handling strategies, threshold selection and resampling, and proved that
under some large values of p, both of them can reduce the running time of the
(1+1)-EA from exponential to polynomial.

Gießen and Kötzing [6] also studied another prior noise model, which flips
each bit of a solution independently with probability q before evaluation. They
proved that for the (1+1)-EA on OneMax, the maximal q allowing a polynomial
running time is O(log n/n2). By combining this model with one-bit noise, Qian et
al. [13] studied a general prior noise model, bit-wise noise, which is characterized
by a pair (p, q) of parameters. It happens with probability p, and independently
flips each bit of a solution with probability q before evaluation. Their derived
results for the (1+1)-EA on OneMax and LeadingOnes are shown in the middle
two columns of Table 1, which give the ranges of p and q for a polynomial running
time upper bound as well as a super-polynomial lower bound.

However, the analysis for bit-wise noise [13] only considered two specific cases:
(p, 1/n) (i.e., q is fixed to 1/n) and (1, q) (i.e., p is fixed to 1). Some fundamental
theoretical issues are thus not addressed. For example, what is the deciding factor
for the running time of the (1+1)-EA under bit-wise noise? Will the (1+1)-EA
perform similarly for two scenarios (p, q) and (p′, q′) with pq = p′q′? In this paper,
we analyze the running time of the (1+1)-EA solving OneMax and LeadingOnes
under general bit-wise noise, i.e., without fixing p or q. We derive the ranges
of p and q for a polynomial upper bound and a super-polynomial lower bound,
which are summarized in the last column of Table 1. It is easy to verify that our
results cover previously known ones [6,13], as shown in the middle two columns
of Table 1. The results show that p and pq together decide the running time to be

polynomial or super-polynomial. We can also observe that the expected running
time for two scenarios (p, q) and (p′, q′) with pq = p′q′ may be significantly
different, e.g., for the (1+1)-EA on OneMax, the running time is polynomial if
p = q = log n/n, but super-polynomial if p′ = 1, q′ = (log n/n)2.

The rest of this paper is organized as follows. Section 2 introduces some
preliminaries. Sections 3 and 4 present the running time analysis on OneMax
and LeadingOnes, respectively. Section 5 concludes the paper.

2 Preliminaries

In this section, we first introduce the optimization problems, noise models and
EAs studied in this paper, respectively, then present the analysis tools that we
use throughout this paper.

2.1 OneMax and LeadingOnes

In this paper, we consider two pseudo-Boolean problems OneMax and Leading-
Ones, which are widely used in EAs’ theoretical analyses [1,9]. The former aims
to maximize the number of 1-bits of a solution, and the latter aims to maxi-
mize the number of consecutive 1-bits counting from the left of a solution. Their
optimal solutions are both 11 . . . 1 (briefly denoted as 1n).

Definition 1 (OneMax). The OneMax Problem of size n is to find an n bits
binary string x∗ that maximizes f(x) =

∑n
i=1 xi.

Definition 2 (LeadingOnes). The LeadingOnes Problem of size n is to find

an n bits binary string x∗ that maximizes f(x) =
∑n
i=1

∏i
j=1 xj .

2.2 Bit-wise Noise

There are mainly two kinds of noise models: prior and posterior [6,8]. The prior
noise comes from the variation on a solution, while the posterior noise comes from
the variation on the fitness of a solution. Previous theoretical analyses involving
prior noise [2,3,6,11,12] often focused on one-bit noise, which flips a random
bit of a solution before evaluation with probability p. Qian et al. [13] recently
considered a natural extension of one-bit noise, i.e., the bit-wise noise model.
As presented in Definition 3, it happens with probability p, and independently
flips each bit of a solution with probability q before evaluation. However, the
analyses in [13] considered bit-wise noise with one parameter fixed, i.e., p = 1
or q = 1/n. In this paper, we will analyze the general bit-wise noise model.

Definition 3 (Bit-wise Noise [13]). Given p, q ∈ [0, 1], let fn(x) and f(x)
denote the noisy and true fitness of a solution x ∈ {0, 1}n, respectively, then

fn(x) =

{
f(x) with probability 1− p,
f(x′) with probability p,

where x′ is generated by independently flipping each bit of x with probability q.

Algorithm 1 (1+1)-EA

Given a function f over {0, 1}n to be maximized, it consists of the following steps:

1: x := uniformly randomly selected from {0, 1}n.
2: Repeat until some termination condition is met
3: x′ := flip each bit of x with probability 1/n.
4: if fn(x′) ≥ fn(x) then x := x′.

2.3 (1+1)-EA

This paper considers the (1+1)-EA, which is a benchmark EA widely used in
theoretical analyses. For noisy optimization, only a noisy fitness value fn(x)
instead of the exact one f(x) can be accessed, and thus the condition in line 4
of Algorithm 1 is “if fn(x′) ≥ fn(x)” instead of “if f(x′) ≥ f(x)”. Note that the
reevaluation strategy is used as in [3,6,11,12]. That is, besides evaluating fn(x′),
fn(x) will be reevaluated in each iteration of the (1+1)-EA. The running time
is usually defined as the number of fitness evaluations needed to find an optimal
solution w.r.t. the true fitness function f for the first time [3,6,11,12].

2.4 Analysis Tools

The process of the (1+1)-EA solving OneMax or LeadingOnes under noise can
be modeled as a Markov chain {ξt}+∞t=0 . We only need to take the solution space
{0, 1}n as the chain’s state space (i.e., ξt ∈ X = {0, 1}n), and take the optimal
solution 1n as the chain’s target state (i.e., X ∗ = {1n}). Given a Markov chain
{ξt}+∞t=0 and ξt̂ = x, we define its first hitting time as τ = min{t | ξt̂+t ∈ X ∗, t ≥
0}. The mathematical expectation of τ , E[[τ | ξt̂ = x]] =

∑+∞
i=0 i · P(τ = i | ξt̂ =

x), is called the expected first hitting time (EFHT) starting from ξt̂ = x. If ξ0
is drawn from a distribution π0, E[[τ | ξ0 ∼ π0]] =

∑
x∈X π0(x)E[[τ | ξ0 = x]] is

called the EFHT of the chain over the initial distribution π0. Thus, the expected
running time of the (1+1)-EA starting from ξ0 ∼ π0 is 1 + 2 · E[[τ | ξ0 ∼ π0]],
where the term 1 corresponds to evaluating the initial solution, and the factor 2
corresponds to evaluating the offspring solution x′ and reevaluating the parent
solution x in each iteration. Note that we consider the expected running time of
the (1+1)-EA starting from a uniform initial distribution in this paper.

In the following, we give two drift theorems that will be used to derive upper
and lower bounds on the EFHT of Markov chains in the paper.

Theorem 1 (Additive Drift [7]). Given a Markov chain {ξt}+∞t=0 and a dis-
tance function V (x) with V (x ∈ X ∗) = 0 and V (x /∈ X ∗) > 0, if for any
t ≥ 0 and any ξt with V (ξt) > 0, there exists a real number c > 0 such that
E[[V (ξt)− V (ξt+1) | ξt]] ≥ c, then the EFHT satisfies that E[[τ | ξ0]] ≤ V (ξ0)/c.

Theorem 2 (Negative Drift with Self-loops [15]). Let Xt, t ≥ 0, be real-
valued random variables describing a stochastic process. Suppose there exists an
interval [a, b] ⊆ R, two constants δ, ε > 0 and, possibly depending on l := b− a,
a function r(l) satisfying 1 ≤ r(l) = o(l/ log(l)) such that for all t ≥ 0:

(1) ∀a < i < b : E[[Xt −Xt+1 | Xt = i]] ≤ −ε · P(Xt+1 6= i | Xt = i),

(2) ∀i>a, j∈N+ : P(|Xt+1−Xt|≥j | Xt= i) ≤ r(l)

(1+δ)j
· P(Xt+1 6= i | Xt= i).

Then there is a constant c > 0 such that for T := min{t ≥ 0 : Xt ≤ a | X0 ≥ b}
it holds P(T ≤ 2cl/r(l)) = 2−Ω(l/r(l)).

3 The OneMax Problem

In this section, we analyze the expected running time of the (1+1)-EA on One-
Max under bit-wise noise (p, q). We prove in Theorems 3 and 4 that the expected
running time is polynomial when p = O(log n/n)∨ pq = O(log n/n2); otherwise,
it is super-polynomial. The results generalize that in [6,13], which only consid-
ered the case where p = 1 or q = 1/n.

Theorem 3 is proved by applying Lemma 1, which gives an upper bound on
the running time of the (1+1)-EA solving noisy OneMax. Let xk denote any
solution with k 1-bits, and fn(xk) denote its noisy objective value, which is a
random variable. Lemma 1 intuitively means that if the probability of recognizing
the true better solution by noisy evaluation is large enough (i.e., Eq. (1)), the
running time can be upper bounded. Note that in their original theorem (i.e.,
Theorem 5 in [6]), it requires that Eq. (1) holds with only j = k, but their proof
actually also requires the property, i.e., ∀j < k < n, P(fn(xk) < fn(xk+1)) ≤
P(fn(xj) < fn(xk+1)). We have combined these two conditions in Lemma 1 by
requiring Eq. (1) to hold with any j ≤ k instead of only j = k.

Lemma 1 ([6]). If there is a constant 0<c≤ 1
15 and some 2<l≤ n

2 such that

∀j ≤ k < n : P(fn(xj) < fn(xk+1)) ≥ 1− l/n;

∀j ≤ k < n− l : P(fn(xj) < fn(xk+1)) ≥ 1− c(n− k)/n,
(1)

then the (1+1)-EA optimizes f in expectation in O(n log n) + n2O(l) iterations.

Theorem 3. For the (1+1)-EA on OneMax under bit-wise noise (p, q), the ex-
pected running time is polynomial if p = O(log n/n) ∨ pq = O(log n/n2).

Proof. We use Lemma 1 to prove it. We analyze the probability P(fn(xj) ≥
fn(xk+1)) for any j ≤ k < n. We consider two cases.
(1) p = O(log n/n). For some positive constant c1, assume that p ≤ c1 log n/n.
It is easy to see that fn(xj) ≥ fn(xk+1) implies that the fitness evaluation of
xj or xk+1 is affected by noise, whose probability is at most 2p. Thus, we have
P(fn(xj) ≥ fn(xk+1)) ≤ 2p ≤ 2c1 log n/n.
(2) pq=O(log n/n2). For some positive constant c2, assume that pq≤c2 log n/n2.
Note that fn(xj) ≥ fn(xk+1) implies that at least one bit of xj or xk+1 is flipped
by noise, whose probability is at most 2p(1− (1− q)n) ≤ 2pqn ≤ 2c2 log n/n.

Combining the above two cases leads to P(fn(xj)≥fn(xk+1)) ≤ 2max{c1,c2} logn
n .

Let l = 30 max{c1, c2} log n and c = 1/15. Then, P(fn(xj) ≥ fn(xk+1)) ≤ c · ln ,

and it is easy to verify that the condition of Lemma 1 holds. Thus, by Lemma 1,
the expected number of iterations is O(n log n) + n2O(logn), which implies that
the expected running time is polynomial. ut

Theorem 4 is proved by applying Lemma 2, which gives a lower bound on
the running time of the (1+1)-EA solving noisy OneMax when the probability
of making a right comparison due to noise is not large enough (i.e., Eq. (2)).

Lemma 2 ([6]). If there is a constant c≥16 and some l≤n/4 such that

∀n− l ≤ k < n : P(fn(xk) < fn(xk+1)) ≤ 1− c(n− k)/n, (2)

then the (1+1)-EA optimizes f in 2Ω(l) iterations with a high probability.

Theorem 4. For the (1+1)-EA on OneMax under bit-wise noise (p, q), the ex-
pected running time is super-polynomial if p = ω(log n/n) ∧ pq = ω(log n/n2).

Proof. We use Lemma 2 to prove it. We are to show that ∀ 3n/4 ≤ k < n,
P(fn(xk) ≥ fn(xk+1))=ω(log n/n) by considering two cases of p.

(1) p = ω(log n/n) ∩ o(1). To make fn(xk) ≥ fn(xk+1), it is sufficient that
fn(xk) = k and fn(xk+1) ≤ k. The former event happens with probability at
least 1− p, since it is sufficient that the noise doesn’t happen. Thus, we have

P(fn(xk) ≥ fn(xk+1)) ≥ (1− p) · P(fn(xk+1) ≤ k). (3)

Then, we analyze P(fn(xk+1) ≤ k) by further considering two subcases.
(1a) q ≤ 1/n. To make fn(xk+1) ≤ k, it is sufficient that exactly one 1-bit is
flipped by noise. Thus,

P(fn(xk+1) ≤ k) ≥ p · (k + 1)q(1− q)n−1 ≥ ω(log n/n) · (1/e) = ω(log n/n),

where the second inequality is by pq = ω(log n/n2), k ≥ 3n/4 and q ≤ 1/n.
(1b) q > 1/n. Let Y denote a random variable such that P(Y = 0) = 1− q and
P(Y = 1) = q. Let Y1, Y2, ..., Yn denote random variables which are independent
and have the same distribution as Y . Then, under the condition that the noise
happens in evaluating xk+1, we have

fn(xk+1) =
k+1∑
j=1

(1− Yj) +
n∑

j=k+2

Yj = k + 1−
2k−n+2∑
j=1

Yj −
k+1∑

j=2k−n+3

Yj +
n∑

j=k+2

Yj .

Note that
∑n
j=k+2 Yj −

∑k+1
j=2k−n+3 Yj is the difference between the sum of the

same number of Yj , thus P(
∑n
j=k+2 Yj −

∑k+1
j=2k−n+3 Yj ≤ 0) ≥ 1/2 due to

symmetry. Then, we have

P(fn(xk+1) ≤ k) ≥ P(the noise happens) · P
(
k + 1−

∑2k−n+2
j=1 Yj ≤ k

)
· 1

2

=
p

2
· (1−(1−q)2k+2−n) ≥ p

2
· (1−(1−q)n/2) ≥ p

2
· (1−(1/e)1/2) = ω(log n/n),

where the second inequality is by k ≥ 3n/4 and the last is by q > 1/n.
Combining subcases (1a) and (1b) leads to P(fn(xk+1) ≤ k) = ω(log n/n).

Thus, according to Eq. (3) and p = o(1), it holds that for 3n/4 ≤ k < n,
P(fn(xk) ≥ fn(xk+1)) = ω(log n/n).

(2) p = Ω(1). Since pq = ω(log n/n2), it must hold that q = ω(log n/n2). We
consider three subcases.
(2a) q = ω(log n/n2) ∩ O(1/n). We have P(fn(xk) ≥ fn(xk+1)) ≥ P(fn(xk) =
k) ·P(fn(xk+1) = k). To make fn(xk) = k, it is sufficient that the noise happens
but no bit is flipped by noise. To make fn(xk+1) = k, it is sufficient that exactly
one 1-bit is flipped by noise. Thus,

P(fn(xk) ≥ fn(xk+1)) ≥ p(1− q)n · p(k + 1)q(1− q)n−1 = ω(log n/n),

where the equality holds since p = Ω(1), q = ω(log n/n2)∩O(1/n) and k ≥ 3n/4.
(2b) q = ω(1/n) ∩ O(log n/n). We conduct the following analysis under the
condition that both noise happens in evaluating xk and xk+1, whose probability
is p2 = Ω(1). We divide xk into two parts: yk and zk, where yk is a string with
(log n− 1) 1-bits and one 0-bit, and zk is a string with (k− log n+ 1) 1-bits and
(n − k − 1) 0-bits. We also divide xk+1 into two parts: yk+1 and zk+1, where
yk+1 is a string with (log n) 1-bits, and zk+1 is a string with (k + 1 − log n)
1-bits and (n− k− 1) 0-bits. Let mut(x) denote the string generated by flipping
each bit of x with probability q, and let |x|1 denote the number of 1-bits of
a string x. Thus, we have fn(xk) = |mut(yk)|1 + |mut(zk)|1 and fn(xk+1) =
|mut(yk+1)|1 + |mut(zk+1)|1. To make fn(xk) ≥ fn(xk+1), it is sufficient that
|mut(yk)|1 ≥ log n−1, |mut(yk+1)|1 = log n−1 and |mut(zk)|1 ≥ |mut(zk+1)|1.
Note that P(|mut(yk)|1 ≥ log n − 1) ≥ (1 − q)logn−1 since it is sufficient that
all the 1-bits of yk are not flipped; P(|mut(yk+1)|1 = log n − 1) = log n · q(1 −
q)logn−1 since exactly one 1-bit needs to be flipped. For zk and zk+1, they are
two strings with the same number of 1-bits and 0-bits, and thus P(|mut(zk)|1 ≥
|mut(zk+1)|1) ≥ 1/2 due to symmetry. Then, we get

P(fn(xk) ≥ fn(xk+1)) ≥ p2 · (1− q)logn−1 · log n · q(1− q)logn−1 · (1/2)

≥ ω(log n/n) · (1− 2 log n · q) ≥ ω(log n/n),

where the second inequality is by q = ω(1/n) and Bernoulli’s inequality, and the
last is by q = O(log n/n).
(2c) q = ω(log n/n). The analysis is similar to that of case (2b), except the
division of xk and xk+1. Here, yk is just a 0-bit, yk+1 is just a 1-bit, and zk, zk+1

are two strings with k 1-bits and (n− k − 1) 0-bits. We similarly get

P(fn(xk) ≥ fn(xk+1)) ≥ p2 · q · (1/2) = ω(log n/n).

Combining cases (1) and (2) shows that ∀ 3n/4 ≤ k < n, P(fn(xk) ≥
fn(xk+1)) = ω(log n/n). We set the parameters in Lemma 2 as c = 16 and
l = b log n, where b is any positive constant. Thus, for any n − l ≤ k < n,
P(fn(xk) < fn(xk+1)) = 1 − ω(log n/n) ≤ 1 − c(n − k)/n. By Lemma 2, the
expected number of iterations is 2Ω(l) = nΩ(b). Since b can be any positive con-
stant, the expected running time is super-polynomial. ut

4 The LeadingOnes Problem

In this section, we consider the (1+1)-EA solving LeadingOnes under bit-wise
noise (p, q). We prove in Theorems 5 and 6 that the expected running time
is polynomial if p = O(log n/n2) ∨ pq = O(log n/n3), and super-polynomial if
p = ω(log n/n) ∧ pq = ω(log n/n2). The results generalize that in [13], where p
is fixed to 1 or q is fixed to 1/n.

Theorem 5 is proved by applying the additive drift theorem (i.e., Theorem 1).
We will use LO(x) to denote the number of leading 1-bits of a solution x.

Theorem 5. For the (1+1)-EA on LeadingOnes under bit-wise noise (p, q), the
expected running time is polynomial if p = O(log n/n2) ∨ pq = O(log n/n3).

Proof. We use Theorem 1 to prove it. For some positive constant b, suppose that
p ≤ b log n/n2 or pq ≤ b log n/n3. We construct a distance function as follows:

V (x) = (1 + c/n)
n − (1 + c/n)

LO(x)
,

where c = 12b log n+ 1. It is easy to verify that V (x) = 0 iff x ∈ X ∗ = {1n}.
Then, we investigate E[[V (ξt)− V (ξt+1) | ξt = x]] for any x with LO(x) =

i < n. Let Pmut(x, x
′) denote the probability that x′ is generated from x by

mutation, and let Pacc(x, x
′) denote the probability that the offspring solution

x′ is accepted by comparing with x, i.e., Pacc(x, x
′) = P(fn(x′) ≥ fn(x)). We

divide the drift into two parts: positive E+ and negative E−. That is,

E[[V (ξt)− V (ξt+1) | ξt = x]] = E+ − E−,

where E+ =
∑
x′:LO(x′)>iPmut(x, x

′) · Pacc(x, x
′) · (V (x)− V (x′)),

E− =
∑
x′:LO(x′)<iPmut(x, x

′) · Pacc(x, x
′) · (V (x′)− V (x)).

Note that V (x) > V (x′) iff LO(x′) > LO(x) = i, since the distance function V
decreases with the number of leading 1-bits.

We first analyze the positive drift E+. For any x′ with LO(x′) > i,

V (x)− V (x′) = (1 + c/n)
LO(x′) − (1 + c/n)

i ≥ (1 + c/n)
i · c/n. (4)

To generate x′ with LO(x′) > i by mutating x, it needs to flip the (i+ 1)-th bit
(which must be 0) of x and keep the i leading 1-bits unchanged. Thus, we have∑

x′:LO(x′)>iPmut(x, x
′) = P(LO(x′) > i) = (1− 1/n)

i
(1/n) ≥ 1/en. (5)

To analyze Pacc(x, x
′) for any x′ with LO(x′) > i, we consider the opposite

event that x′ is rejected, i.e., fn(x) > fn(x′), which implies that fn(x) ≥ i + 1
or fn(x′) ≤ i− 1. By the union bound, P(fn(x) > fn(x′)) ≤ P(fn(x) ≥ i+ 1) +
P(fn(x′) ≤ i− 1) = pq(1− q)i + p(1− (1− q)i) = p− p(1− q)i+1, where the first
equality is because fn(x) ≥ i + 1 iff the (i + 1)-th bit of x is flipped by noise
while the i leading 1-bits are not flipped; fn(x′) ≤ i− 1 iff at least one of the i
leading 1-bits of x′ is flipped by noise. Then, we get

Pacc(x, x
′) = 1− P(fn(x) > fn(x′)) ≥ 1− p+ p(1− q)i+1

≥ max{1− p, 1− pq(i+ 1)} ≥ 1− b log n/n2 ≥ 1/2,
(6)

where the second inequality is by Bernoulli’s inequality, the third inequality is
by p ≤ b log n/n2 or pq ≤ b log n/n3, and the last holds with sufficiently large n.
By applying Eqs. (4), (5) and (6) to E+, we get

E+ ≥ (1/en) · (1/2) · (1 + c/n)
i · (c/n) ≥ (1 + c/n)

i · (c/6n2).

We then analyze the negative drift E−. For any x′ with LO(x′) < i, we have

V (x′)− V (x) = (1 + c/n)
i − (1 + c/n)

LO(x′) ≤ (1 + c/n)
i − 1. (7)

To analyze Pacc(x, x
′) for any x′ with LO(x′) < i, we consider fn(x) ≤ fn(x′),

which implies that at least one bit of x or x′ is flipped by noise. By the union
bound, we have Pacc(x, x

′) ≤ 2p (1−(1−q)n). Note that 1−(1−q)n ≤ min{qn, 1}
and p ≤ b log n/n2 or pq ≤ b log n/n3, we have

Pacc(x, x
′) ≤ 2p ·min{nq, 1} = min{2npq, 2p} ≤ 2b log n/n2. (8)

By applying Eqs. (7) and (8) to E−, we get

E−≤
∑
x′:LO(x′)<iPmut(x, x

′) · (2b log n/n2) · (1+c/n)
i≤(1+c/n)

i
(2b log n/n2).

By subtracting E− from E+, we get

E[[V (ξt)− V (ξt+1) | ξt = x]] ≥ (1 + c/n)
i (
c/6n2 − 2b log n/n2

)
≥ 1/6n2,

where the last inequality is by c = 12b log n + 1. Note that V (x) ≤ (1 + c
n)n ≤

ec = en12b. By Theorem 1, we have E[[τ | ξ0]] ≤ 6n2 · en12b = O
(
n12b+2

)
, thus

the expected running time is polynomial. ut

Next, we use the negative drift with self-loops theorem (i.e., Theorem 2) to
prove a super-polynomial lower bound for p = ω(log n/n) ∧ pq = ω(log n/n2).

Theorem 6. For the (1+1)-EA on LeadingOnes under bit-wise noise (p, q), the
expected running time is super-polynomial if p = ω(log n/n)∧ pq = ω(log n/n2).

Proof. We use Theorem 2 to prove it. Let Xt = |x|0 be the number of 0-bits of
the solution x after t iterations of the (1+1)-EA. Let c by any positive constant.
We consider the interval [0, c log n], i.e., a = 0 and b = c log n in Theorem 2.

Then, we analyze E[[Xt −Xt+1 | Xt = i]] for 1 ≤ i < c log n. As in the proof
of Theorem 5, we also divide the drift into positive E+ and negative E−:

E[[Xt −Xt+1 | Xt = i]] = E+ − E−,

where E+ =
∑
x′:|x′|0<iPmut(x, x

′) · Pacc(x, x
′) · (i− |x′|0),

E− =
∑
x′:|x′|0>iPmut(x, x

′) · Pacc(x, x
′) · (|x′|0 − i).

Note that we still use Pmut(x, x
′) and Pacc(x, x

′) to denote the probability that
the offspring solution x′ is generated and accepted, respectively.

To analyze E+, we use a trivial upper bound 1 for Pacc(x, x
′). Then, we have

E+ ≤
∑
x′:|x′|0<iPmut(x, x

′)(i− |x′|0) ≤ i/n,

where the second inequality is directly from the proof of Theorem 4.2 in [13].
For the negative drift E−, we need to consider the increase of the number of 0-

bits. We analyze the n−i cases where only one 1-bit is flipped (i.e., |x′|0 = i+1),
which happens with probability 1

n (1− 1
n)n−1. Assume that LO(x) = k ≤ n− i.

To analyze Pacc(x, x
′) = P(fn(x′) ≥ fn(x)), we consider two cases.

(1) The j-th (where 1 ≤ j ≤ k) leading 1-bit is flipped. To make fn(x′) ≥ fn(x),
we consider the j cases where fn(x) = l and fn(x′) ≥ l for 0 ≤ l ≤ j − 1. Note
that P(fn(x) = l) = p(1− q)lq and P(fn(x′) ≥ l) = 1− p+ p(1− q)l. Thus,

Pacc(x, x
′) ≥

∑j−1
l=0 p(1− q)

lq ·
(
1− p+ p(1− q)l

)
.

If p = o(1), 1−p+p(1−q)l≥Ω(1); otherwise, 1−p+p(1−q)l≥Ω(1) · (1−q)l. Thus,

Pacc(x, x
′) ≥ Ω(1) · pq

∑j−1
l=0 (1− q)2l ≥ Ω(1) · p ·

(
1− (1− q)2j

)
.

(2) One of the (n− i−k) non-leading 1-bits is flipped, i.e., LO(x′) = LO(x) = k.
To make fn(x′) ≥ fn(x), we consider the k + 1 cases where fn(x) = l and
fn(x′) ≥ l for 0 ≤ l ≤ k. Thus, we have

Pacc(x, x
′) ≥

∑k−1
l=0 p(1− q)lq ·

(
1− p+ p(1− q)l

)
+
(
1− p+ p(1− q)k+1

)
·
(
1− p+ p(1− q)k

)
.

If p = o(1), obviously Pacc(x, x
′) = Ω(1). If p = Ω(1), we can derive that

Pacc(x, x
′)≥Ω(1) ·

(
1−(1−q)2k

)
+
(
Ω(1)(1−q)k+1

)2
, and then further consider

two cases for q. If q=Ω(1), Pacc(x, x
′)≥Ω(1) · (1−(1−q)2k)≥Ω(1) · (1−(1−q))=

Ω(1). If q=o(1), Pacc(x, x
′)≥Ω(1)(1−(1−q)2k)+Ω(1)(1−q)2k=Ω(1). Thus,

Pacc(x, x
′) = Ω(1).

Combining cases (1) and (2), we get

E− ≥ (1/n) (1−1/n)
n−1 ·

(
Ω(1) · p

∑k
j=1(1−(1−q)2j) + (n− i− k) ·Ω(1)

)
.

If (1− q)2j < 1/2, 1− (1− q)2j > 1/2; otherwise, 1− (1− q)2j = (1− q)2j((1 +
q

1−q)2j − 1) ≥ (1− q)2j 2qj
1−q ≥ (1− q)2j · 2qj ≥ qj . Thus,

E− ≥ Ω(1/n) ·
(
p
∑k
j=1 min{1/2, qj}+ n− i− k

)
.

By subtracting E− from E+, we get

E[[Xt−Xt+1 | Xt= i]]≤ i/n−Ω(1/n) ·
(
p
∑k
j=1 min{1/2, qj}+n−i−k

)
.

To investigate condition (1) of Theorem 2, we need to derive an upper bound
on P(Xt+1 6= i | Xt = i). To make Xt+1 6= i, it is necessary that at least one bit
of x is flipped and x′ is accepted. We consider two cases: (1) at least one of the k
leading 1-bits of x is flipped; (2) the k leading 1-bits of x are not flipped and at
least one of the last n−k bits is flipped. For case (1), Pacc(x, x

′) ≤ min{2npq, 2p}
by Eq. (8). For case (2),

∑
x′ Pmut(x, x

′) ≤ n−k
n . Thus, we get

P(Xt+1 6= i | Xt = i) ≤ min{2npq, 2p}+ (n− k)/n.

Now we compare E[[Xt −Xt+1 | Xt = i]] with P(Xt+1 6= i | Xt = i).
(1) k < n/2. We have

E[[Xt −Xt+1 | Xt = i]] ≤ i/n−Ω(1/n) · (n− i− k)

= −Ω(1) ≤ −Ω(1) · P(Xt+1 6= i | Xt = i),

where the equality is by i < c log n and k < n/2.

(2) k ≥ n/2. We first investigate
∑k
j=1 min{1/2, qj}. If q = o(1/n), we have∑k

j=1 min{1/2, qj} ≥ qk2/2 = Ω(qn2). If q = Ω(1/n),
∑k
j=1 min{1/2, qj} =

Ω(n). Thus, we have
∑k
j=1 min{1/2, qj} ≥ Ω(1) ·min{qn2, n}. Then we get

E[[Xt −Xt+1 | Xt = i]] ≤ i/n−Ω(1/n) ·
(
p ·min{qn2, n}+ n− i− k

)
= i/n−Ω(1) · (min{pqn, p} − i/n+ (n− k)/n) .

Note that pq = ω(log n/n2) and p = ω(log n/n), thus min{pqn, p} = ω(log n/n).
Furthermore, i < c log n. Thus, we get

E[[Xt −Xt+1 | Xt = i]] ≤ −Ω(1) · (min{pqn, p}+ (n− k)/n)

≤ −Ω(1) · P(Xt+1 6= i | Xt = i),

Combining the above two cases implies that condition (1) of Theorem 2 holds.
To investigate condition (2) of Theorem 2, we need to derive a lower bound

on P(Xt+1 6= i | Xt = i). We consider the n cases where only one bit is flipped.
We can directly follow the analysis for E− to derive that

P(Xt+1 6= i | Xt = i) ≥ Ω(1/n) ·
(
p
∑k
j=1 min{1/2, qj}+ n− k

)
.

The only difference is that we also consider flipping only one 0-bit, whose analysis
is the same as that for flipping only one non-leading 1-bit. To make |Xt+1−Xt|≥j,
it is necessary that at least j bits of x are flipped and x′ is accepted. We consider
two cases: (1) at least one of the k leading 1-bits of x is flipped; (2) the k leading 1-
bits are not flipped. For case (1),

∑
x′ Pmut(x, x

′)≤ k
n

(
n−1
j−1
)

1
nj−1 and Pacc(x, x

′)≤
min{2npq, 2p} by Eq. (8). For case (2),

∑
x′ Pmut(x, x

′)≤(1− 1
n)k
(
n−k
j

)
1
nj . Thus,

P(|Xt+1 −Xt| ≥ j | Xt = i) ≤ k

n

(
n−1

j−1

)
min{2npq, 2p}

nj−1
+

(
1− 1

n

)k (
n−k
j

)
1

nj

≤ (k/n) ·min{2npq, 2p} · (4/2j) + ((n− k)/n) · (2/2j).

By following the way of comparing E[[Xt −Xt+1 | Xt = i]] with P(Xt+1 6= i |
Xt = i) in the above analysis, we can derive that

P(|Xt+1 −Xt| ≥ j | Xt = i) ≤ (O(1)/2j) · P(Xt+1 6= i | Xt = i),

i.e., condition (2) of Theorem 2 holds with δ = 1 and r(l) = O(1).
The parameter l in Theorem 2 is b−a= c log n. Thus, the expected running

time is 2Ω(c logn) (where c > 0 can be any constant), i.e., super-polynomial. ut

5 Conclusion

In this paper, we analyze the running time of the (1+1)-EA solving OneMax
and LeadingOnes under bit-wise noise (p, q). We derive the ranges of p, q for the
running time being polynomial and super-polynomial, respectively. Our results
complement previous analyses, which fix p = 1 or q = 1/n. Note that our
analysis on LeadingOnes does not cover all the ranges of p, q. That is, the running
time is not known for p = ω(log n/n2) ∩ O(log n/n) ∧ pq = ω(log n/n3) and
p = ω(log n/n)∧pq = ω(log n/n3)∩O(log n/n2). This question has been partially
addressed in the recent work [16]. We leave the full analysis as our future work.

References

1. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and
Recent Developments. World Scientific (2011)

2. Dang, D.C., Lehre, P.K.: Efficient optimisation of noisy fitness functions with
population-based evolutionary algorithms. In: FOGA’15. pp. 62–68. Aberystwyth,
UK (2015)

3. Droste, S.: Analysis of the (1+1) EA for a noisy OneMax. In: GECCO’04. pp.
1088–1099. Seattle, WA (2004)

4. Friedrich, T., Kötzing, T., Krejca, M., Sutton, A.: Robustness of ant colony opti-
mization to noise. Evolutionary Computation 24(2), 237–254 (2016)

5. Friedrich, T., Kötzing, T., Krejca, M., Sutton, A.: The compact genetic algorithm
is efficient under extreme gaussian noise. IEEE Transactions on Evolutionary Com-
putation 21(3), 477–490 (2017)

6. Gießen, C., Kötzing, T.: Robustness of populations in stochastic environments.
Algorithmica 75(3), 462–489 (2016)

7. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artificial Intelligence 127(1), 57–85 (2001)

8. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey.
IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)

9. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization:
Algorithms and Their Computational Complexity. Springer-Verlag (2010)

10. Prügel-Bennett, A., Rowe, J., Shapiro, J.: Run-time analysis of population-based
evolutionary algorithm in noisy environments. In: FOGA’15. pp. 69–75. Aberyst-
wyth, UK (2015)

11. Qian, C., Yu, Y., Tang, K., Jin, Y., Yao, X., Zhou, Z.H.: On the effectiveness of
sampling for evolutionary optimization in noisy environments. Evolutionary Com-
putation 26(2), 237–267 (2018)

12. Qian, C., Yu, Y., Zhou, Z.H.: Analyzing evolutionary optimization in noisy envi-
ronments. Evolutionary Computation 26(1), 1–41 (2018)

13. Qian, C., Bian, C., Jiang, W., Tang, K.: Running time analysis of the (1+1)-EA
for OneMax and LeadingOnes under bit-wise noise. In: GECCO’17. pp. 1399–1406.
Berlin, Germany (2017)

14. Qian, C., Bian, C., Yu, Y., Tang, K., Yao, X.: Analysis of noisy evolutionary
optimization when sampling fails. In: GECCO’18. Kyoto, Japan (2018)

15. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1,λ)
evolutionary algorithm. Theoretical Computer Science 545, 20–38 (2014)

16. Sudholt, D.: On the robustness of evolutionary algorithms to noise: Refined results
and an example where noise helps. In: GECCO’18. Kyoto, Japan (2018)

	Towards a Running Time Analysis of the (1+1)-EA for OneMax and LeadingOnes under General Bit-wise Noise

