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Abstract Convolutional neural networks have achieved success in var-
ious tasks, but often lack compactness and robustness, which are, how-
ever, required under resource-constrained and safety-critical environ-
ments. Previous works mainly focused on enhancing either compactness
or robustness of neural networks, such as network pruning and adver-
sarial training. Robust neural network pruning aims to reduce computa-
tional cost while preserving both accuracy and robustness of a network.
Existing robust pruning works usually require expert experiences and
trial-and-error to design proper pruning criteria or auxiliary modules,
limiting their applications. Meanwhile, evolutionary algorithms (EAs)
have been used to prune neural networks automatically, achieving im-
pressive results but without considering the robustness. In this paper,
we propose a novel robust pruning method CCRP by cooperative co-
evolution. Specifically, robust pruning is formulated as a three-objective
optimization problem that optimizes accuracy, robustness and compact-
ness simultaneously, and solved by a cooperative coevolution pruning
framework, which prunes filters in each layer by EAs separately. The ex-
periments on CIFAR-10 and SVHN show that CCRP can achieve com-
parable performance with state-of-the-art methods.

Keywords: Model compression - Neural network pruning - Robust-
ness - Evolutionary algorithm - Cooperative coevolution.

1 Introduction

Recently, convolutional neural networks (CNNs) have achieved great success
in the field of computer vision, such as image classification [§] and object de-
tection [f]. Despite the impressive performance, the high computational cost
of CNNs inhibits their deployments in resource-limited scenarios. The CNNs
are also vulnerable to malicious attacks, challenging their reliability in safety-
critical scenarios. Therefore, in many real-world applications like autonomous
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driving [4,5], enhancing the compactness and robustness of CNNs simultane-
ously is essential.

Most previous works, however, only focus on enhancing either compactness
or robustness of networks. On the one hand, various model compression methods
have been proposed to reduce the computational cost of neural networks, such as
neural network pruning [§] and quantization [30]. Among them, neural network
pruning aims to remove the redundant parameters in networks while preserving
accuracy, which has achieved impressive success. On the other hand, methods like
adversarial training [[7], which aims to minimize the training loss on adversarial
examples, can significantly improve the robustness of neural networks.

Recently, several works [21,22,27] took the network robustness into consid-
eration when pruning neural networks. They usually use criteria designed by
experts to measure the importance of network weights and prune the networks
accordingly. However, the designing and tuning of such criteria require plenty of
expertise and tiring trials, making them difficult to be applied to the practical
scenarios where the data sets and neural network architectures can be vari-
ous. Meanwhile, these works mainly focus on unstructured neural network prun-
ing [2], which can hardly reduce the computation cost in practical applications,
since the consequent irregular structures are incompatible with the mainstream
software and hardware frameworks. Therefore, an automatic structured robust
pruning method is essential in real-world applications.

Robust neural network pruning can be naturally formulated as an optimiza-
tion problem that aims to search for a sub-net of the original network which still
maintains high accuracy and robustness but has less computation cost. Evolu-
tionary algorithms (EAs) [1] are a kind of heuristic randomized optimization
algorithms inspired by natural evolution, which have been used for pruning neu-
ral networks automatically since the 1990s [26]. However, unlike artificial neural
networks in the last century, modern CNNs usually consist of dozens of layers
and millions of parameters, implying a huge search space. It is difficult for EAs
to obtain satisfactory solutions within a limited computational overhead. Re-
cently, Shang et al. have proposed CCEP [23], an evolutionary pruning method
inspired by cooperative coevolution, which has achieved encouraging results on
the large-scale pruning problem. However, they only focused on the accuracy
but did not take robustness into consideration.

In this paper, we propose a novel Cooperative Coevolution method for Ro-
bust Pruning (CCRP). The robust pruning problem is formulated as an explicit
three-objective optimization problem, i.e., optimizing accuracy, robustness and
compactness simultaneously. A cooperative coevolution framework is adopted to
solve the formulated robust pruning problem, which divides the search space by
layer and applies an EA to optimize each group. Besides, since the process of
generating adversarial examples for each pruned network is time-consuming, we
design an adversarial example generating method to improve the efficiency of
robustness evaluation.

The contributions of this paper are summarized as follows.
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1. We propose a novel framework, CCRP, that considers network robustness
during the pruning process and automatically solves the three-objective ro-
bust pruning problem by cooperative coevolution. To the best of our knowl-
edge, this is the first application of EAs to robust neural network pruning.

2. We propose an adversarial example generating method to improve the effi-
ciency of evaluating the robustness of pruned networks.

3. We compare CCRP with previous methods through experiments on three
network architectures and two data sets. Experimental results show that
CCRP can achieve comparable performance with state-of-the-art methods.

2 Related work

2.1 Neural Network Pruning

Neural network pruning aims to enhance the efficiency of a network by remov-
ing redundant components. Existing methods can be generally classified into
two categories, i.e., unstructured pruning and structured pruning [2]. Unstruc-
tured pruning methods directly prune the weights in the parameter matrices of
the network. Even though such methods can achieve impressive theoretical ac-
celeration, the resulted sparse matrices and broken structures are incompatible
with the mainstream software and hardware platforms, which can hardly ob-
tain actual acceleration. Instead, structured pruning methods focus on pruning
structured components such as filters in convolution layers, which have shown
better overall performance in real-world applications, and thus have prevailed
and attracted more attention nowadays.

Based on how to identify the redundant component, previous structured
pruning methods can be generally categorized into criteria-based and learning-
based methods. Criteria-based methods (e.g., [15,16]) use expert-designed crite-
ria to identify unimportant components and prune them, while learning-based
methods (e.g., [18]) use auxiliary modules to measure the importance of compo-
nents and conduct pruning accordingly. However, both of these methods heavily
rely on the expertise, limiting their application and extensibility.

To get rid of the reliance on expertise, it is natural to use EAs to search
for the good pruned networks automatically, which has been studied since the
1990s [26]. However, the huge search space of a deep neural network brings se-
vere challenge to EAs [14,13]. Recently, a novel pruning method inspired by
cooperative coevolution named CCEP [23] is proposed, which employs the idea
of divide-and-conquer to settle the huge search space and has achieved impres-
sive performance, showing the great potential of EA-based methods for neural
network pruning. But the previous EA-based pruning methods never considered
the network robustness, which is important to many application scenarios [4,5].

2.2 Robustness of Neural Network

In application scenarios [4,5], neural networks are typically vulnerable to adver-
sarial attacks [[7]. Generally, adversaries utilize the model information to generate
adversarial examples for attack. An adversarial example can be defined as
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Figure 1: Illustration of an adversarial example in the image classification task.
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where x is the original example and 7 is the perturbation subject to budget
€. As shown in Fig [I|, an adversarial example in the image classification task
is generated by adding perturbations to the original image. The perturbations
are imperceptible to the human eyes, but will mislead the neural network to
incorrect prediction. When facing adversarial attacks, the robustness of a neural
network A is usually measured by the robust accuracy on an adversarial data
set D, i.e.,

ACC,(N) =

Y IW(@) =y) (2)

Z,y€Dq

| Dal

where |D,| denotes the size of D, (i.e., the number of adversarial examples),
N (2) denotes the prediction of the neural network A/ on the adversarial example
&, and I(+) is the indicator function that is 1 if the inner expression is true and
0 otherwise.

Adversarial training [H,@,@] is one of the primary defense methods against
adversarial attacks. The main idea is to minimize the training loss on adversarial
examples generated by adversarial attacks, such as fast gradient sign method
(FGSM) [ﬁj Thus, the objective of adversarial training can be formulated as

min [ max L(x+mn,y,0)|, 3
0 (@y)~D [|n|m<e (@ +mn,y,0) (3)

where 0 denotes the parameters of the neural network, and L is a loss function.
Previous empirical results have indicated that adversarial training requires the
networks owning a larger capacity for better overall performance. Therefore,
neural networks with robustness are usually too computationally intensive to be
deployed on resource-constrained applications.

2.3 Robust Neural Network Pruning

Recently, some works [@,@] have studied on the relationship between robustness
and network capacity, revealing that a sub-net of the original network can have
similar or even better robustness than the original one, and different sub-nets can
have quite different robustness. This finding has inspired robust neural network
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pruning, which aims to find a compact neural network and retain the robustness.
The few existing methods usually train a network by adversarial training and
conduct unstructured pruning based on expert-designed criteria. For example,
ADV-LWM [21] prunes weights with small /;-norm, and fine-tunes the obtained
network by adversarial training to recover robustness. Ye et al. [27] adopts the
ADMM pruning framework by replacing the original training loss with an adver-
sarial one. HYDRA [22] adds importance scores to all the weights in the network,
and optimizes the adversarial loss by adjusting importance scores while freezing
weights. Then the weights with small importance scores are pruned. DNR [12]
chooses the feature matrices with small Frobenius norm and prunes the corre-
sponding filters. Furthermore, these methods need proper pruning ratios of each
layer, which also often require a lot of expert experience and trial-and-error.

3 CCRP Method

Let A denote a well-trained neural network with n convolution layers {L1, Lo,
-+, Ly}, where £; denotes the ith layer which has [; filters and £;; denotes the
jth filter in the ith layer. Robust neural network pruning can be formulated as
an optimization problem, with the aim of searching for a subset of filters in A/,
which can maximize the accuracy and robustness while minimizing computa-
tional cost simultaneously. Let the mask vector M = {m;; | m;; € {0,1},i €
{1,2,..,n},j € {1,2,...,l;}}, where m;; = 1 if and only if £;; is retained. Thus,
a pruned network can be represented by the mask M as

n ol
NM = U U mij/lij. (4)

i=1j=1
Let ACC(Ny ) denote the accuracy of the pruned network Ay on the clean
data sets, ACC,(Nr) denote the robust accuracy on the generated adversarial
examples, and FLOPs(N ) denote the number of FLoating point OPerations,
which is a common metric to measure the computational cost. The robust neural
network pruning problem can be formulated as

argmax (ACC(Na), ACC,(Naq), —FLOPs(Np))
Me{o,1}=i=1t

()

Because the number of alternative filters to be pruned in a CNN, i.e. Z?=1 li,
can be very large, this is essentially a challenging large-scale optimization prob-
lem. To solve this problem, we propose a novel robust pruning method named
CCRP. Inspired by our previous work CCEP [23], we adopt a cooperative coevo-
lution pruning framework which divides the search space by layer and conducts
an EA on each layer independently. Robust accuracy is set as an optimization
objective to directly guide pruned neural networks towards robustness. Note that
the evaluation of ACC, (M) is time-consuming since specialized adversarial ex-
amples need to be generated for each pruned network. To settle this, we propose
an adversarial example generating method that needs to generate adversarial
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Figure 2: Illustration of the framework of CCRP.

samples only once in each iteration of CCRP. The generated examples can be
used to evaluate all the pruned networks in this iteration.

3.1 Framework of CCRP

The framework of CCRP is shown in Algorithm m It prunes a well-trained
network iteratively and finally outcomes a set of pruned networks with robustness
for user selection. Each iteration works as follows. Firstly, a mask M is generated
based on the network to be pruned in line 4. Then the mask M will be split
into n groups by layer in line 5. After that, in line 6, a set D, of adversarial
examples is generated for the evaluation of the pruned networks, which is shown
in Algorithm B in detail. For each group, an EA is employed to optimize it and
obtain m/ representing the pruned result of the ith layer. The process of EA
in each group is described in Algorithm B. By collecting all the m/ of n layers
and applying it to N}, the corresponding pruned network N’ is obtained, as
presented in line 8. After pruning, to recover the accuracy and robust accuracy,
the pruned network A/ will be fine-tuned by adversarial training in line 9. The
fine-tuned model will be used as the new base network A to be pruned in the
next iteration, and added into archive H in line 11. After T iterations, the CCRP
method will stop and return the pruned networks in archive H. An illustration
of the framework of CCRP is also shown in Fig E

3.2 EA in Each Group

For EA in each group, we use a typical evolutionary process: generate an ini-
tial subpopulation randomly, breed new individuals by applying reproductive
operators, evaluate the fitness of each individual, and select better individuals
to remain in the next generation. When the termination condition is reached, it
selects an individual from the final subpopulation, which represents the corre-
sponding pruned layer.

The detailed description of EA in each group is shown in Algorithm E At
the beginning, it generates the initial subpopulation P with d individuals, as
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Algorithm 1 CCRP Framework

Input: A well trained CNN N with n layers, maximum number T of iterations, training
set Dy, a randomly sampled part D, of the training set D,

Output: A set of pruned networks with different sizes

1: Let H=10,:=0;

2: Set base network N}, = N;

3: while 7 < T do

Generate a mask M based on N, and initialize it with all bits equal to 1;
mi, ma, - ,m, = Decompose(M);

D, = Generate adversarial samples based on (Nb, D,);

my,msy, - ,m;, = EA(m1,Ds, D,),EA(m2, D, D,),- - ,EA(my,, Ds, D,);
N =UL, Ug;l mi; Ly, where Li; is a filter of N;

9: Ny = Fine-tune(N”’, Dy);
10: H = HUN;
11: 1=1+1
12: end while
13: return H

shown in line 2. An individual mg with all bits equal to 1 is added into P
to encourage conservative pruning. The rest d — 1 individuals are generated
by applying a modified bit-wise mutation operator with mutation rate p;. In
each generation of EA, it generates d new offspring individuals by uniformly
randomly choosing d individuals from the subpopulation with replacement and
applying the bit-wise mutation operator with mutation rate p,. Following the
prior work CCEP [23], we make a modification to the standard bit-wise mutation
operator to prevent the pruning process from being too violent. That is, a ratio
bound r is introduced to limit the number of filters to be pruned. Specifically,
a standard bit-wise mutation operator with mutation rate p is first performed
on an individual m; if the number of Os in the mutated m, denoted by |m|o,
is larger than Len(m) x r, it will randomly select |m|op — Len(m) x r bits from
where m; = 0, and flip them to 1.

When evaluating the fitness of an offspring individual, noting that each in-
dividual only corresponds to a single pruned layer, it first obtains a complete
network by splicing this single layer with the other layers obtained from the base
network Aj. Then, we can evaluate the accuracy, robust accuracy, and FLOPs
of offspring individuals. More specifically, ACC is evaluated on the clean data
set D, which is randomly sampled from the training set Dy; ACC.. is evaluated
on the adversarial data set D,, which is generated by Algorithm B and will be
introduced in Section B.3; FLOPs can be calculated directly. After evaluation in
lines 6-7, the d offspring individuals and d individuals in the current subpopu-
lation P will be merged into a collection Q. Since we consider three objectives
as in Eq. (), it is not easy to find a proper ranking of the individuals. For sim-
plicity, the individuals in @ are ranked by the average value of ACC and ACC,
in descending order. As for two individuals with the same average value, the
one with less FLOPs is ranked ahead. Other techniques (e.g., non-dominated
sorting [3]) may also be employed, and will be investigated in our future work.
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Algorithm 2 EA in each group

Input: A mask m; of the ith layer, population size d, a randomly sampled part D,

of the training set D;, adversarial data set D,, mutation rate pi, p2, ratio bound 7,

maximum number G of generations

Output: Mask vector m/

1: Let j =0, mo = my;

2: Initialize a subpopulation P with mg and d — 1 individuals generated from mg by
applying the bit-wise mutation operator with p; and r;

3: while j < G do

4: Uniformly randomly select d individuals from P with replacement as the parent
individuals;
5: Generate d offspring individuals by applying the bit-wise mutation operator

with p2 and 7 on each parent individual;
Calculate the ACC and ACC,. of d offspring individuals by using D, and D;
Calculate the FLOPs of d offspring individuals;
Set @ as the union of P and d offspring individuals;
Rank the 2d individuals in @ in descending order by ; for two indi-
viduals with the same value, the one with less FLOPs is ranked ahead;
10: Replace the individuals in P with the top d individuals in Q;
11 j=j+1
12: end while
13: Select the rank one individual in P as m,
14: return m,

ACCH+ACC,.
2

After the evolution of G generations, the individual that ranks first in the final
subpopulation is chosen as the pruned result of the corresponding group.

3.3 Robustness Evaluation

Typically, the robustness of a neural network is based on its ability against ad-
versarial attacks. In this paper, we use the robust accuracy on the generated ad-
versarial examples as the metric of robustness, which is denoted as ACC,.. CCRP
applies the state-of-the-art white-box attack algorithm PGD[19] to generate the
adversarial examples. PGD is designed to attack a specialized network in an
iterative style, which is time-consuming. If we use PGD to generate specialized
adversarial examples when evaluating each pruned network, the computational
overhead will be prohibitive. To settle this issue, we design an adversarial ex-
ample generating method shown in Algorithm P to generate an adversarial data
set Dg, which can be shared in one iteration of CCRP. The method samples a
sub-net N/ of base network N by randomly selecting [n/k]| layers in A, and
applying bit-wise mutation operator with p; and r to them in lines 4-5, and
then employs PGD on AN to generate adversarial examples based on D, in line
6. This process will be repeated k times independently, and all the generated
adversarial examples constitute the adversarial data set D,, which will be used
to evaluate the robustness of all the pruned networks in the current iteration
of CCRP. Note that the goal of generating adversarial examples from diverse
sub-nets of N} is to better measure the robustness of a pruned network.
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Algorithm 3 Adversarial Example Generating
Input: Base network A, with n layers, a randomly sampled part D; of the training
set D;, number k of sampled sub-nets.

Output: Adversarial data set D,

1: Let D, =0, i = 0;

2: while i < k£ do

3: Randomly select [n/k] layers from Ny;

4: Apply mutation with p; and r on these layers to obtain a sub-net A/;
5 A = PGD(N’,Dy);
6: D, =D, U A;

7 t=1+1
8:
9:

end while
return D,

3.4 Comparison with CCEP

In this subsection, we make a comparison between CCEP and CCRP. CCEP
applies cooperation coevolution to neural network pruning and achieves impres-
sive results. CCRP is inspired by CCEP and extended to robust neural network
pruning, i.e., by taking the robustness of networks into consideration. These two
methods use a similar decomposition strategy that splits the search space by
layer. The most significant difference between them is the problem formulation.
CCRP introduces robustness as an optimization objective while CCEP concerns
accuracy and compactness only. An adversarial example generation method has
been introduced into CCRP, which can reduce the cost of robustness evaluation.
In addition, adversarial training is applied in fine-tuning to retain the robustness
of the pruned network.

4 Experiments

We conduct experiments from three aspects. First, we compare CCRP with the
state-of-the-art unstructured robust pruning methods. Second, we extend several
popular structured pruning methods to robust pruning and compare CCRP with
them. In the third aspect, we conduct repeated experiments to examine the
stability of CCRP and visualize the architecture of pruned networks.

Two popular image classification data sets CIFAR-10 [11] and SVHN [20],
and three typical neural networks VGG [24], ResNet [9] and WRN [2§] are used
for examination. Following the common filter pruning settings, CCRP prunes all
convolution layers for VGG and the first convolution layer of the residual blocks
for ResNet and WRN. The popular adversarial training method, TRADES [29],
is used in the pre-train and fine-tune processes. The settings of CCRP are de-
scribed as follows. It runs for 16 iterations, i.e., T = 16. For EA in each group,
the population size d is 5, the mutation rate p; and p, are 0.05 and 0.1, re-
spectively, the ratio bound r is 0.1, the maximum generation G is 10, and D
is generated by selecting 10% of the training set randomly. When generating
adversarial examples, the number k of sampled sub-nets is 5.
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Table 1: Comparison in terms of ACC, ACC,., and inference speed with unstruc-
tured robust pruning methods. The best results of each objective are shown in
bold.

Data Set Architecture Method Base ACC Base ACC, ACC| ACC, | Speed

(%) (%) (%) (%) (images/s)

ADV-LWM 82.70 51.90 3.90 4.20 2082.13

VGG-16 ADV-ADMM  78.36 47.07 3.50 3.76  2114.77

) HYDRA 82.70 51.90 220 240  2077.57

CCRP 81.57 61.71 -1.39 0.63 6842.39

CIFAR-10 ADV-LWM 85.60 57.20 2.80 3.40 414274
ADV-ADMM  78.22 51.56 2.46  2.50  4375.58

WRN-28-4 HYDRA 85.60 57.20 1.90 2.00  4016.55

CCRP 85.91 53.42  -0.05 -9.12 4737.09

ADV-LWM 90.50 53.50 1.30 2.00  2308.65

VGG.16 ADV-ADMM  89.35 54.61 -0.23  4.10  2322.72

) HYDRA 90.50 53.50 1.30 1.10 2334.29

SVEHN CCRP 86.86 53.18 -1.58 2.36 11124.56
ADV-LWM 93.50 60.10 1.20  0.70  5259.51

ADV-ADMM  92.14 59.07 1.32 4.53 548291

WRN-28-4 HYDRA 93.50 60.10 -0.90 -2.70 5294.31
CCRP 90.07 57.47  -1.63 -0.18 6467.55

For adversarial training by TRADES [29], the common settings are used.
The optimizer is SGD with an initial learning rate 0.1, and a Cosine Annealing
scheduler [17] is employed to adjust the learning rate during fine-tuning. The
weight decay is 0.0001 and the momentum is 0.9. The number of epochs in each
process of fine-tuning is 30. The batch size for training is 128. For adversarial
attack by PGD, the [, perturbation budget, number of steps, and perturbation
per step are set as 8/255, 10, 2/255 respectively in adversarial training and
8/255, 40, 2/255 for evaluation and testing.

We compare CCRP with various methods, including three state-of-the-art
unstructured robust pruning methods: ADV-LWM [21], ADV-ADMM [27] and
HYDRA [22], as well as two structured pruning methods L1 [15] and HRank [16]
extended to robust pruning. The results of HYDRA and ADV-LWM are obtained
from their released models. All the experiments are realized based on PyTorch
and carried out on a single Nvidia GeForce RTX-3090 GPU.

Comparison with Unstructured Robust Pruning Methods: We first
compare CCRP with state-of-the-art unstructured robust pruning methods in
terms of accuracy drop, robust accuracy drop, and inference speed, as shown
in Table [I|. Inference speed is used to measure the computation cost here since
FLOPs drop of unstructured models cannot reflect the actual computational
performance in applications. The inference speed is tested on 100,000 32 x 32
images with a batch size of 128. For CCRP, the solution in the 10th iteration is
presented in Table [| for comparison. CCRP achieves a smaller drop in accuracy
and robust accuracy with faster inference speed in most cases. On SVHN, HY-
DRA [22] and ADV-LWM [21]] achieve a smaller drop in robust accuracy than
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CCRP but more drop in accuracy and slower inference speed. It is worth noting
that CCRP achieves the fastest inference speed in all cases.

Comparison with Structured Robust Pruning Methods: For a more
comprehensive comparison, two structured pruning methods, L1 [[15] and HRank
[L6], are extended to the scenario of robust pruning by introducing adversarial
training in the pre-train and fine-tune steps. For CCRP, we select the solution
in the 16th iteration for comparison. The results in Table P show that compared
with L1 and HRank, CCRP can always achieve better performance on at least
two of the three metrics. Sometimes CCRP prevails on two metrics but only
with minor disadvantage on the third metric.

Table 2: Comparison in terms of ACC, ACC,., and pruning ratio with structured
robust pruning methods. The best results of each objective are shown in bold.

Base ACC Base ACC,, ACCJ ACC, | FLOPs |

Data Set Architecture Method

(%) (%) (%) (%) (%)

L1 81.57 61.71 2.00 3.37  69.23

VGG-16 HRank  81.91 61.11 7.05 3.01  65.85
CCRP 81.57 61.71 0.05 6.22 77.95

L1 30.31 48.95 247 -4.62 6853

CIFAR-10 ResNet-56 HRank  80.31 48.95 0.13 -2.22  50.02
CCRP 80.31 48.95 023 -8.31 72.30

L1 85.91 53.61 2.00 337 69.23

WRN-28-1 CCRP 85.91 53.61 -0.88 -8.06 66.92

L1 86.86 53.18 2.17 4.35 85.88

VGG-16 HRank  86.06 54.53 0.40 5.03  65.85
CCRP 86.86 53.18 -0.98 2.68 80.44

SVHN L1 85.01 52.24 -2.04 -1.78 60.08
ResNet-56 HRank  87.09 55.57 -1.53  3.25 50.02
CCRP 85.91 52.24 -1.95 -2.01 70.71

L1 90.07 57.47 1.45 419 72.11

WRN-28-4 CCRP 90.07 57.47  -1.25 1.46  70.99

Further Studies: Because experiments of network pruning are very time-
consuming and may require dozens of hours, previous works [[15,16,21,22] usually
conducted experiments only once. However, considering the stochastic character-
istic of EAs, we conduct a repeated test on a relatively small data set CIFAR-10,
to prune ResNet-56 and VGG-16 for ten independent runs. The ACC, ACC,,
and ACC, (i.e., the average of ACC and ACC,.), are recorded and shown in Fig

. The solid line is the mean value, and the shadow area represents the 95%
confidence interval. We can observe that the ACC and ACC,. are even better
than the base model when the pruning ratio is low and get a slight drop as the
pruning ratio increases; the ACC, is always better than the base model. The
95% confidence interval implies the good stability of CCRP.

In Fig W, we visualize the architecture (i.e., the number of filters in each
layer or residual block) of pruned networks on CIFAR-10. The results show that
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Figure 3: Repeated test of CCRP on CIFAR-10.

CCRP can choose different pruning ratios at different layers (or residual blocks)
automatically. For ResNet-56, CCRP prunes fewer filters around the expansion
of channels, while on VGG-16, CCRP prunes more filters after the 6th layer.
As for WRN-28-4, more filters at 9th block are preserved. Note that previous
robust pruning methods may require lots of trial-and-error to design the proper
pruning ratios at each layer manually.
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Figure4: Visualization of the original networks and the pruned networks ob-
tained by CCRP on CIFAR-10.

5 Conclusion

This paper proposes the automatic robust neural network pruning method, which
formulates robust pruning as a three-objective optimization problem considering
robustness, and solves it by an adapted cooperative coevolution framework. To
the best of our knowledge, this is the first application of EAs to robust neural
network pruning. Experiments show that CCRP can achieve a comparable per-
formance with the state-of-the-art methods. In the future, we will try to perform
theoretical analysis [31], as well as incorporate more advanced multi-objective
optimization techniques to improve the performance of CCRP.



Robust Neural Network Pruning by Cooperative Coevolution 13

References

10.

11.

12.

13.

14.

Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford,
UK (1996)

. Cheng, J., Wang, P., Li, G., Hu, Q., Lu, H.: Recent advances in efficient compu-

tation of deep convolutional neural networks. Frontiers of Information Technology
and Electronic Engineering 19(1), 64-77 (2018)

Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2), 182-197 (2002)

Duan, R., Ma, X., Wang, Y., Bailey, J., Qin, A.K., Yang, Y.: Adversarial cam-
ouflage: Hiding physical-world attacks with natural styles. In: Proceedings of the
2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp.
997-1005. Seattle, WA (2020)

Eykholt, K., Evtimov, 1., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash,
A., Kohno, T., Song, D.: Robust physical-world attacks on deep learning visual
classification. In: Proceedings of the 2018 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 1625-1634. Salt Lake City, UT (2018)
Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for
accurate object detection and semantic segmentation. In: Proceedings of the 2014
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 580—
587. Columbus, OH (2014)

Goodfellow, 1.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: Proceedings of the 3rd International Conference on Learning Repre-
sentations (ICLR). San Diego, CA (2015)

Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In: Proceedings of the 4th
International Conference on Learning Representations (ICLR). San Juan, Puerto
Rico (2016)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 770-778. Las Vegas, NV (2016)

Huang, H., Wang, Y., Erfani, S., Gu, Q., Bailey, J., Ma, X.: Exploring architectural
ingredients of adversarially robust deep neural networks. In: Advances in Neural
Information Processing Systems (NeurIPS). vol. 34, pp. 5545-5559. New Orleans,
LA (2021)

Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report, University of Toronto, Toronto, Canada (2009)

Kundu, S., Nazemi, M., Beerel, P.A., Pedram, M.: DNR: A tunable robust pruning
framework through dynamic network rewiring of dnns. In: Proceedings of the 26th
Asia and South Pacific Design Automation Conference (ASPDAC). pp. 344-350.
Tokyo, Japan (2021)

Li, G., Qian, C., Jiang, C., Lu, X., Tang, K.: Optimization based layer-wise
magnitude-based pruning for DNN compression. In: Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence (IJCAI). pp. 2383-2389. Stock-
holm, Sweden (2018)

Li, G., Yang, P., Qian, C., Hong, R., Tang., K.: Magnitude-based pruning for
recurrent neural networks. IEEE Transactions on Neural Networks and Learning
Systems (in press)



14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Wu et al.

Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for effi-
cient convnets. In: Proceedings of the 5th International Conference on Learning
Representations (ICLR). Toulon, France (2017)

Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., Shao, L.: Hrank: Filter
pruning using high-rank feature map. In: Proceedings of the 2020 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 1526-1535. Los
Alamitos, CA (2020)

Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts.
In: Proceedings of the 5th International Conference on Learning Representations
(ICLR). Toulon, France (2017)

Luo, J., Wu, J.: Autopruner: An end-to-end trainable filter pruning method for
efficient deep model inference. Pattern Recognition 107(107461), 107461 (2020)
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: Proceedings of the 6th International
Conference on Learning Representations (ICLR). Vancouver, Canada (2018)
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading dig-
its in natural images with unsupervised feature learning. In: Advances in Neural
Information Processing Systems, Workshop (NeurIPS) (2011)

Sehwag, V., Wang, S., Mittal, P., Jana, S.: Towards compact and robust deep
neural networks. CoRR p. abs/1906.06110 (2019)

Sehwag, V., Wang, S., Mittal, P., Jana, S.: HYDRA: Pruning adversarially ro-
bust neural networks. In: Advances in Neural Information Processing Systems
(NeurIPS). vol. 33, pp. 19655-19666. Vancouver, Canada (2020)

Shang, H., Wu, J.L., Hong, W., Qian, C.: Neural network pruning by cooperative
coevolution. In: Proceedings of the 31st International Joint Conference on Artificial
Intelligence (IJCAI). Vienna, Austria (2022)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Proceedings of the 3rd International Conference on Learning
Representations (ICLR). San Diego, CA (2015)

Wu, B., Chen, J., Cai, D., He, X., Gu, Q.: Do wider neural networks really help
adversarial robustness? In: Advances in Neural Information Processing Systems
(NeurIPS). vol. 34, pp. 7054-7067. New Orleans, LA (2021)

Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423—
1447 (1999)

Ye, S., Lin, X., Xu, K., Liu, S., Cheng, H., Lambrechts, J., Zhang, H., Zhou,
A., Ma, K., Wang, Y.: Adversarial robustness vs. model compression, or both?
In: Proceedings of the 2019 IEEE International Conference on Computer Vision
(ICCV). pp. 111-120. Seoul, Korea (South) (2019)

Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Proceedings of the 2016
British Machine Vision Conference (BMVC). York, UK (2016)

Zhang, H., Yu, Y., Jiao, J., Xing, E.P., Ghaoui, L.E., Jordan, M.L.: Theoreti-
cally principled trade-off between robustness and accuracy. In: Proceedings of the
36th International Conference on Machine Learning (ICML). pp. 7472-7482. Long
Beach CA (2019)

Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization:
Towards lossless cnns with low-precision weights. In: Proceedings of the 5th Inter-
national Conference on Learning Representations (ICLR). Toulon, France (2017)
Zhou, Z., Yu, Y., Qian, C.: Evolutionary Learning: Advances in Theories and Al-
gorithms. Springer, Singapore (2019)



	Robust Neural Network Pruningby Cooperative Coevolution

