
Running Time Analysis of the (1+1)-EA using
Surrogate Models on OneMax and LeadingOnes⋆

Zi-An Zhang, Chao Bian, and Chao Qian

State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China

{zhangza,bianc,qianc}@lamda.nju.edu.cn

Abstract Evolutionary algorithms (EAs) have been widely applied to
solve real-world optimization problems. However, for problems where
fitness evaluation is time-consuming, the efficiency of EAs is usually un-
satisfactory. One common approach is to utilize surrogate models, which
apply machine learning techniques to approximate the real fitness func-
tion. Though introducing noise, using surrogate models can reduce the
time of fitness evaluation significantly, and has been shown usesful in
many applications. However, the theretical analysis (especially the es-
sential theoretical aspect, running time analysis) of surrogate-assisted
EAs has not been studied. In this paper, we make a preliminary at-
tempt by analyzing the running time of the (1+1)-EA using two typical
kinds of preselection surrogate for solving the OneMax and LeadingOnes
problems. The results imply that the running time can be significantly
reduced when the surrogate model is accurate enough and properly used.

Keywords: Evolutionary algorithm · Surrogate model · Running time
analysis.

1 Introduction

EAs, a kind of randomized heuristic optimization algorithm [2], have been widely
used in real-world applications. However, the fitness (i.e., objective) evaluation
for real-world problems is often very time-consuming. For example, in aerody-
namic design [15], it is often necessary to carry out computational fluid dynamics
simulations to evaluate the performance of a given structure, which is compu-
tationally expensive. Other examples include protein design, drug design, and
material design [15]. The expensive fitness evaluation has limited the efficiency
of EAs largely.

Much effort thus has been devoted to reducing the computational time in
both the design and application of EAs. One popular idea is using machine
learning models, called surrogate models, to approximate the real objective func-
tions [15]. Specifically, it first samples some solutions from the solution space and
⋆ This work was supported by the National Science Foundation of China (62022039).

Chao Qian is the corresponding author.

2 Z. A. Zhang et al.

evaluates their true fitness, and then uses them to train a learning model, which
will be used to evaluate the newly generated solutions during the evolution-
ary process. Surrogate-assisted EAs have been widely used to solve real-world
problems, e.g., the design of turbine blades, airfoils, forging, and vehicle crash
tests [13]. Note that the idea of surrogate model also appears in other optimiza-
tion methods, e.g., in Bayesian optimization where Gaussian processes are used
as surrogate models [16,19].

However, it has been found that if only the surrogate model is used for fitness
evaluation, EAs are very likely to converge to a false optimum [14]. Therefore, the
surrogate model should be used together with the original fitness function in a
proper way, leading to the issue of surrogate management [12,13,15]. Preselection
is a widely used surrogate management strategy, which first expands the number
of candidate offspring solutions and then uses the surrogate model to filter out
some unpromising ones before the real fitness evaluation. Typical preselection
mechanisms include the Regression model-based PreSelection (RPS) [10] which
predicts the fitness of a solution, the Classification model-based PreSelection
(CPS) [24] which predicts the probability of a solution being good, and the binary
Relation Classification-based PreSelction (RCPS) [9] which predicts whether a
solution is better than another one.

In contrast to the wide application of EAs, the theoretical foundation of EAs
is underdeveloped due to their sophisticated behaviors. Much effort has been de-
voted to analyzing the essential theoretical aspect, i.e., running time complexity,
of EAs [1,7,17,25]. The running time analysis starts from simple EAs solving syn-
thetic problems. For example, one classical result is that the expected running
time of the (1+1)-EA on OneMax and LeadingOnes is Θ(n log n) and Θ(n2),
respectively [8]. Meanwhile, general running time analysis approaches, e.g., drift
analysis [5,6,11,18], fitness-level methods [4,20,21], and switch analysis [3,22,23],
have also been proposed. However, to the best of our knowledge, running time
analysis of surrogate-assisted EAs has not been touched.

This paper aims at moving the first step towards running time analysis of
surrogate-assisted EAs by considering the (1+1)-EA using the RPS and RCPS
surrogates. Specifically, we first introduce a concept of (k, δ)-RPS surrogate,
which generates k candidate offspring solutions in each iteration and predicts
the fitness of a candidate solution wrong with probability δ, and then prove that
the (1+1)-EA using the (k, δ)-RPS surrogate with k = c/δ (where c is a positive
constant) and δ < 1/2 can solve OneMax and LeadingOnes in O(n + δn log n)
and O(max{n, δn2}) expected running time, respectively. The results show that
the performance of EAs can be significantly improved, as long as δ is given
appropriate values, e.g., δ = O(1/n). We also prove that the above upper bounds
on the expected running time hold for the (1+1)-EA using the (k, δ)-RCPS
surrogate, where δ denotes the probability of predicting the relation between
any two offspring solutions wrong.

The rest of this paper starts with some preliminaries. Then, the running time
analysis of the (1+1)-EA using the RPS and RCPS surrogates is presented in
Sections 3 and 4, respectively. Section 5 concludes the paper.

Running Time Analysis of the (1+1)-EA using Surrogate Models 3

2 Preliminaries

In this section, we first introduce EAs, surrogate models and problems stud-
ied in this paper, respectively, and then present the analysis tools that we use
throughout this paper.

2.1 (1+1)-EA

The (1+1)-EA as described in Algorithm 1 is a simple EA for maximizing pseudo-
Boolean functions over {0, 1}n. It reflects the common structure of EAs, and
has been widely used in the running time analysis of EAs [1,17]. The (1+1)-
EA maintains only one solution during the optimization procedure (i.e., the
population size is 1), and repeatedly improves the current solution by using
bit-wise mutation (i.e., line 3) and selection (i.e., lines 4–6).

Algorithm 1 (1+1)-EA
Given a function f : {0, 1}n → R to be maximized:
1: x := uniformly randomly selected from {0, 1}n;
2: repeat
3: x′ := flip each bit of x independently with probability 1/n;
4: if f(x′) ≥ f(x) then
5: x := x′

6: end if
7: until the termination condition is met

2.2 Surrogate Models

In this paper, we incorporate the widely used preselection surrogate model [9,10]
into the (1+1)-EA. As described in Algorithm 2, the (1+1)-EA using preselection
has the same general procedure as the original (1+1)-EA, i.e., it randomly gen-
erates an initial solution and improves it repeatedly. However, it inserts two key
subprocedures: surrogate training (i.e., lines 1–2) and preselection (i.e., lines 5–
8), which aim to train the surrogate model using the sampled data and use the
surrogate model to select a promising solution, respectively. In the following, we
present two specific preselection surrogates, i.e., RPS and RCPS surrogates, that
will be studied in this paper.

RPS Surrogate tries to learn a mapping from the solution space to the ob-
jective space, based on a training set P = {⟨xi, f(xi)⟩ |i = 1, ..., N}, and then
employs the mapping to predict the fitness value of newly generated candidate
solutions. Note that f(x) denotes the true fitness value of a solution. Specifically,
we first sample a set of solutions from the solution space, and then employ a
regression learning method, e.g., regression tree, to learn the mapping M. That
is, line 2 of Algorithm 2 changes to

M = RegressorTrain({⟨xi, f(xi)⟩ |i = 1, ..., N}).

4 Z. A. Zhang et al.

Algorithm 2 (1+1)-EA with Preselection
1: Conduct a training data set P ;
2: M = SurrogateTrain(P);
3: x := uniformly randomly selected from {0, 1}n;
4: repeat
5: for i = 1 to k do
6: ui := flip each bit of x independently with probability 1/n
7: end for
8: u∗ = PreSelection({u1, ...,uk},M);
9: if f(u∗) ≥ f(x) then

10: x := u∗

11: end if
12: until the termination condition is met

In the preselection procedure, we first generate k candidate offspring solutions,
and then select a solution u∗ which has the maximal predicted fitness value.
That is, line 8 of Algorithm 2 changes to

u∗ = argmaxu∈{u1,u2,...,uk} Predict(u,M),

where Predict(u,M) denotes the fitness of the candidate solution u predicted
by regression model M.

We introduce a concept of (k, δ)-RPS surrogate as presented in Definition 1,
which will be used in our analysis. It specifies the number of solutions generated
in lines 5–7 of Algorithm 2, as well as the accuracy of the surrogate model. That
is, we omit the specific training methods, and only assume that the obtained
preselection model can predict the fitness of a solution approximately correctly
with some probability. Note that for the pseudo-Boolean functions considered in
this paper, the acceptable threshold is set to 0.5, while for general problems, 0.5
can be replaced by a parameter ϵ.

Definition 1. A (k, δ)-RPS surrogate is a regression model-based preselection
surrogate such that
(1) k offspring solutions are generated before the real fitness evaluation,
(2) the prediction error exceeds the acceptable threshold 0.5 with probability δ,
i.e., P(|f(x)− f ′(x)| ≥ 0.5) = δ, where f ′(x) denotes the predicted fitness of x
by the surrogate.

RCPS Surrogate tries to learn a classifier which predicts whether a solution
is better than another. Specifically, we first sample a set {x1,x2, ...,xN} of
solutions from the solution space, and then employ Algorithm 3 to assign a label
for each pair of solutions. That is, a pair (x,y) of solutions will be assigned a
label 1 if x is better than y (i.e., x wins), and a label -1 otherwise. After that, we
employ a classification learning method, e.g., decision tree, to learn the classifier
M. That is, line 2 of Algorithm 2 changes to

M = ClassifierTrain({⟨(xi,xj), l⟩ |1 ≤ i, j ≤ N, i ̸= j}).

Running Time Analysis of the (1+1)-EA using Surrogate Models 5

Algorithm 3 Training Data Preparation
1: for i = 1 to N do
2: for j = 1 to i− 1 do
3: if f(xi) ≥ f(xj) then
4: assign the pair (xi,xj) a label l = 1
5: else
6: assign the pair (xi,xj) a label l = −1
7: end if
8: assign the pair (xj ,xi) a label −l
9: end for

10: end for

In the preselection procedure, we first generate k candidate offspring solutions,
and then select a solution u∗ which wins the most times in the pairwise com-
petation, with ties broken uniformly. Note that for each pair of candidate off-
spring solutions, only one of them can win, i.e., ∀i, j, Predict ((xi,xj) ,M) =
−Predict ((xj ,xi) ,M). That is, line 8 of Algorithm 2 changes to

u∗ = argmaxu∈{u1,...,uk}
∑

ui∈{u1,...,uk}\{u}
Predict((u,ui) ,M),

where Predict ((u,ui) ,M) denotes the label of the pair (u,ui) of solutions pre-
dicted by classification model M.

Similar to the (k, δ)-RPS surrogate, in our analysis, we will omit the specific
training methods, and only assume that the obtained classification model can
predict the relation between two solutions correctly with some probability, as
presented in Definition 2.

Definition 2. A (k, δ)-RCPS surrogate is a binary relation classification-based
preselction surrogate such that
(1) k offspring solutions are generated before the real fitness evaluation,
(2) the relation between any two solutions is predicted wrong with probability δ.

2.3 OneMax and LeadingOnes

In this section, we introduce two well-known pseudo-Boolean functions OneMax
and LeadingOnes, which will be used in this paper. The OneMax problem as
presented in Definition 3 aims to maximize the number of 1-bits of a solution.
Its optimal solution is 11...1 (briefly denoted as 1n) with the function value n.
It has been shown that the expected running time of the (1+1)-EA on OneMax
is Θ(n log n) [8]. For a Boolean solution x, let xi denote its i-th bit.

Definition 3 (Onemax). The OneMax Problem of size n is to find an n bits
binary string x∗ such that x∗ = argmaxx∈{0,1}n

∑n
i=1 xi.

The LeadingOnes problem as presented in Definition 4 aims to maximize the
number of consecutive 1-bits counting from the left of a solution. Its optimal
solution is 1n with the function value n. It has been proved that the expected
running time of the (1+1)-EA on LeadingOnes is Θ(n2) [8].

6 Z. A. Zhang et al.

Definition 4 (LeadingOnes). The LeadingOnes Problem of size n is to find
an n bits binary string x∗ such that x∗ = argmaxx∈{0,1}n

∑n
i=1

∏i
j=1 xi.

2.4 Analysis Tools

Because an evolution process usually goes forward only based on the current
population, an EA can be modeled as a Markov chain {ξt}+∞

t=0 [11,25]. The state
space of the chain (denote as X) is exactly the population space of the EA. The
target state space X ∗ is the set of all optimal populations, where an “optimal”
population implies containing an optimal solution. Note that we consider the
discrete state space (i.e., X is discrete) in this paper.

Given a Markov chain {ξt}+∞
t=0 and ξ0 = x, we define its first hitting time

(FHT) as a random variable τ such that τ = min{t|ξt ∈ X ∗, t ≥ 0}. That is, τ
is the number of generations required to reach the optimal state space X ∗ from
ξ0 = x for the first time. Then, we define the chain’s expected first hitting time
(EFHT) as the mathematical expectation of τ , i.e., E[τ |ξ0] =

∑+∞
i=0 i · P(τ = i).

In the following, we introduce two drift theorems which will be used to derive
the EFHT of Markov chains in the paper. Drift analysis was first introduced to
the running time analysis of EAs by He and Yao [11], and has become a popular
tool with many variants [5,6]. We will use its additive (i.e., Lemma 1) as well
as multiplicative (i.e., Lemma 2) version. To use drift analysis, we first need
to construct a distance function V (x) to measure the distance of a state x to
the optimal state space X ∗, where V (x) satisfies that V (x ∈ X ∗) = 0 and
V (x /∈ X ∗) > 0. Then, we need to investigate the progress on the distance to X ∗

in each step, i.e., E[V (ξt)−V (ξt+1)|ξt]. For additive drift analysis in Lemma 1, an
upper bound on the EFHT can be derived through dividing the initial distance
by a lower bound on the progress. Multiplicative drift analysis in Lemma 2 is
much easier to use when the progress is roughly proportional to the current
distance to the optimum.

Lemma 1 (Additive Drift [11]). Given a Markov chain {ξt}+∞
t=0 and a dis-

tance function V (x), if for any t ≥ 0 and any ξt with V (ξt) > 0, there exists a
real number c > 0 such that E[V (ξt)− V (ξt+1)|ξt] ≥ c, then the EFHT satisfies
that E[τ |ξ0] ≤ V (ξ0)/c.

Lemma 2 (Multiplicative Drift [6]). Given a Markov chain {ξt}+∞
t=0 and

a distance function V (x), if for any t ≥ 0 and any ξt with V (ξt) > 0, there
exists a real number c > 0 such that E[V (ξt) − V (ξt+1)|ξt] ≥ c · V (ξt), then the
EFHT satisfies that E[τ |ξ0] ≤ (1 + ln(V (ξ0)/Vmin)) /c, where Vmin denotes the
minimum among all possible positive values of V .

3 Analysis of the (1+1)-EA using the RPS Surrogate

In this section, we analyze the expected running time of the (1+1)-EA using the
(k, δ)-RPS surrogate on OneMax and LeadingOnes, respectively. Note that the
acceptable threshold in Definition 1 is set to 0.5 on OneMax and LeadingOnes.

Running Time Analysis of the (1+1)-EA using Surrogate Models 7

Under such setting, the condition (2) in Definition 1 implies that for any two
solutions x and y with f(x) ≥ f(y), x will be predicted better than y if the
prediction error doesn’t exceed the acceptable threshold.

We prove in Theorem 1 that when δ < 1/2 and k = c/δ, the expected running
time of the (1+1)-EA using the (k, δ)-RPS surrogate on the OneMax problem
is O(n + δn log n). Note that without surrogate model, the expected running
time of the (1+1)-EA on the OneMax problem is Θ(n log n) [8]. Therefore, if
δ = O(1/ log n), the expected running time can be improved from Θ(n log n)
to O(n). Intuitively, the results show that the running time can be significantly
improved when the surrogate model is accurate enough and properly used.

The main proof idea can be summarized as follows. Since the comparison of
the parent solution x and the preselected offspring solution u∗ is under the real
fitness, the distance function used in drift analysis does not increase. Further-
more, when at least one of the k offspring solutions is better than the parent, and
all the k offspring solutions are “correctly” evaluated by the surrogate model,
i.e., the prediction error doesn’t exceed the acceptable threshold, there will be a
positive progress on the distance function.

Theorem 1. For the (1+1)-EA using the (k, δ)-RPS surrogate on the OneMax
problem, the expected running time is O(n + δn log n) if δ < 1/2 and k = c/δ
(where c is a positive constant). Particularly, it is O(n) if δ = O(1/ log n).

Proof. We use additive and multiplicative drift analysis to prove this theorem.
Let the distance function V (x) = |x|0 be the number of 0-bits of a solution x.
It is easy to verify that V (x ∈ X ∗ = {1n}) = 0 and V (x /∈ X ∗) > 0.

Suppose that the current solution x has i 0-bits, i.e., |x|0 = i. Then, we
examine the expected progress E[V (ξt) − V (ξt+1)|ξt = x]. We decompose the
progress into two parts, i.e., E[V (ξt)− V (ξt+1)|ξt = x] = E+ − E−, where

E+ =
∑

ξt+1:V (ξt+1)<i
P(ξt+1|ξt = x)(i− V (ξt+1)),

E− =
∑

ξt+1:V (ξt+1)>i
P(ξt+1|ξt = x)(V (ξt+1)− i).

That is, E+ and E− denote the positive and negative drift towards the optimal
state, respectively. Since the comparison of the parent solution and the prese-
lected offspring solution is under the real fitness, the fitness of the solution will
never decrease. Thus, the distance function will not increase, implying E− = 0.
To analyze the positive drift E+, we consider the probability that one offspring
solution x′ is better than the parent solution x. We have

P(f(x′) > f(x)) ≥ (i/n) · (1− 1/n)n−1 ≥ i/(en), (1)

where the first inequality holds because it is sufficient to flip one of the i 0-bits
of x by mutation and keep the other bits unchanged, and the second inequality
is by (1− 1/n)n−1 ≥ 1/e. Then, we can derive a lower bound on the probability

8 Z. A. Zhang et al.

of generating at least one offspring solution which is better than the parent
solution, i.e.,

P(∃u∗ ∈ {uj}kj=1, f(u
∗) > f(x)) ≥ 1− (1− i/(en))

k ≥ 1− e−ki/(en)

≥ 1− 1

1 + ki/(en)
= ki/(ki+ en),

where the last two inequalities are both by 1 + a ≤ ea. When all the k offspring
solutions are correctly evaluated by the surrogate model, whose probability is
(1− δ)k, the best one will be chosen. Thus, we have

P(V (ξt+1) < i|ξt = x) ≥ (ki/(ki+ en)) · (1− δ)
k
,

implying that

E[V (ξt)− V (ξt+1)|ξt = x] ≥ P(V (ξt+1) < i|ξt = x) · 1

≥ (ki/(ki+ en)) · (1− δ)
k
.

(2)

To derive the expected running time for finding the optimal solution, we
divide the evolution process into two phases. The first phase starts from the
initial solution and ends when |x|0 ≤ en/k, and the second phase starts after
the first phase finishes and ends when the optimal solution is found. Let τ1 and
τ2 denote the running time of these two phases, respectively. For the first phase,
i.e., en/k ≤ i ≤ n, because ki/(ki+ en) ≥ ki/(ki+ ki) = 1/2, we have

E[V (ξt)− V (ξt+1)|ξt = x] ≥ (1− δ)k/2.

Thus, by Lemma 1, we get

E[τ1|ξ0] ≤ 2n/(1− δ)k.

For the second phase, i.e., i < en/k, because ki/(ki + en) ≥ ki/(en + en) =
ki/(2en), we have

E[V (ξt)− V (ξt+1)|ξt = x] ≥ ki (1− δ)
k
/(2en),

Thus, by Lemma 2, we get

E[τ2|ξ0] ≤
1 + ln en

k

k(1−δ)k

2en

=
2e (2− ln k)

k (1− δ)
k

n+
2e

k (1− δ)
k
n lnn.

Combining the analysis of the two phases, we have

E [τ |ξ0] = E [τ1|ξ0] + E [τ2|ξ0] ≤
1(

(1− δ)
1
δ

)c ·
(
2n+

4e

c
δn+

2e

c
δn lnn

)
,

Running Time Analysis of the (1+1)-EA using Surrogate Models 9

where the last inequality is by k = c/δ. Note that

1(
(1− δ)

1
δ

)c =

((
1 +

δ

1− δ

) 1
δ−1
)c

· 1

(1− δ)
c

≤ e
δ

1−δ ·(
1
δ−1)·c · 1

(1− δ)
c =

(
e

1− δ

)c

< (2e)
c
,

(3)

where the first inequality is by 1 + a ≤ ea, and the second inequality is by
δ < 1/2. Furthermore, as c is a constant, we get E [τ |ξ0] = O(n + δn log n).
Thus, the theorem holds. ⊓⊔

We prove in Theorem 2 that when δ < 1/2 and k = c/δ, the expected run-
ning time of the (1+1)-EA using the (k, δ)-RPS surrogate on the LeadingOnes
problem is O(max{n, δn2}). Note that without surrogate model, the expected
running time of the (1+1)-EA on the LeadingOnes problem is Θ(n2) [8]. There-
fore, if δ = O(1/n), the expected running time can be improved from Θ(n2) to
O(n). The main proof idea is similar to that of Theorem 1. That is, the distance
function used in drift analysis does not increase; meanwhile, it can decrease if
at least one of the offspring solutions is better than the parent solution and all
the offspring solutions are correctly evaluated by the surrogate model.

Theorem 2. For the (1+1)-EA using the (k, δ)-RPS surrogate on the Leadin-
gOnes problem, the expected running time is O(max{n, δn2}) if δ < 1/2 and
k = c/δ (where c is a positive constant). Particularly, it is O(n) if δ = O(1/n).

Proof. We use additive drift analysis to prove this theorem. Let the distance
function V (x) = n− LO(x), where LO(x) is the number of leading 1-bits of x.
It is easy to verify that V (x ∈ X ∗ = {1n}) = 0 and V (x /∈ X ∗) > 0. Suppose
that the current solution x has i leading 1-bits, i.e., LO(x) = i < n . Then,
Eq. (1) becomes

P(f(x′) > f(x)) ≥ (1/n) · (1− 1/n)i ≥ 1/(en), (4)

since it is sufficient to flip the first 0-bit and keep the i leading 1-bits unchanged.
Eq. (2) becomes

E[V (ξt)−V (ξt+1)|ξt = x] ≥ P(V (ξt+1) < i|ξt = x) ·1 ≥ (k/(k+en)) · (1−δ)k.

We consider two cases for k. If k ≥ en, we have k/(k + en) ≥ 1/2. Then, we get
E[V (ξt)− V (ξt+1)|ξt = x] ≥ (1− δ)k/2. By Lemma 1, we get

E[τ |ξ0] ≤
2n

(1− δ)
k
=

1(
(1− δ)

1
δ

)c · 2n = O(n),

where the first equality is by k = c/δ, and the second inequality holds by Eq. (3).
If k < en, we have k/(k + en) ≥ k/(2en). Then, we get E[V (ξt) − V (ξt+1)|ξt =
x] ≥ k(1− δ)k/(2en). By Lemma 1, we get

E[τ |ξ0] ≤
2en2

k (1− δ)
k
= O(δn2),

10 Z. A. Zhang et al.

Thus, the analysis of the above two cases leads to E[τ |ξ0] = O
(
max{n, δn2}

)
,

implying that the theorem holds. ⊓⊔

4 Analysis of the (1+1)-EA using the RCPS Surrogate

In this section, we analyze the expected running time of the (1+1)-EA using the
(k, δ)-RCPS surrogate on OneMax and LeadingOnes, respectively.

We prove in Theorem 3 that when δ < 1/2 and k = c/δ, the expected
running time of the (1+1)-EA using the (k, δ) RCPS surrogate on the OneMax
problem is O(n+ δn log n). Thus, the expected running time can be reduced by
a factor of O(log n) if δ = O(1/ log n), which also suggests the effectiveness of
the surrogate model. The main proof idea can be summarized as follows. Similar
to the proof of Theorem 1, the distance function does not increase. When some
offspring solutions are better than the parent solution and one of these offspring
solutions wins the competition with the other offspring solutions, the preselected
offspring solution can be better than the parent solution, leading to a positive
drift towards the optimal solution.

Theorem 3. For the (1+1)-EA using the (k, δ)-RCPS surrogate on the OneMax
problem, the expected running time is O(n + δn log n) if δ < 1/2 and k = c/δ
(where c is a positive constant). Particularly, it is O(n) if δ = O(1/ log n).

Proof. We use additive and multiplicative drift analysis to prove this theorem.
Let the distance function V (x) = |x|0 be the number of 0-bits of a solution x.
Suppose that the current solution x has i 0-bits, i.e., |x|0 = i.

Suppose that the offspring solutions x1, ...,xm are better the parent solution
x and xm+1, ...,xk are worse than the parent solution (or have the same fitness
as the parent solution). If ∃j ∈ {1, ...,m}, xj wins the competitions with all the
other offspring solutions, then xj will be chosen and will bring progress as it is
better than the parent solution. The probability of this event is

m∑
j=1

δj−1(1− δ)k−j =
(1− δ)

k

1− 2δ

(
1−

(
δ

1− δ

)m)
.

Let p denote the probability that a better individual is produced by mutation,
which is at least i/(en) by Eq. (1). Then, we have

P(V (ξt+1) < i|ξt = x) ≥
k∑

m=1

(
k

m

)
pm(1− p)k−m (1− δ)

k

1− 2δ

(
1−

(
δ

1− δ

)m)

=
(1− δ)

k

1− 2δ

(
1−

(
1− 1− 2δ

1− δ
p

)k
)

≥ (1− δ)
k

1− 2δ

(
1− 1

1 + 1−2δ
1−δ

ki
en

)
.

Running Time Analysis of the (1+1)-EA using Surrogate Models 11

Similar to the analysis of Theorem 1, we have

E[V (ξt)− V (ξt+1)|ξt = x] ≥ P(V (ξt+1) < i|ξt = x) · 1

≥ (1− δ)
k

1− 2δ

(
1− 1

1 + 1−2δ
1−δ

ki
en

)
.

To derive the expected running time for finding the optimal solution, we
divide the evolutionary process into two phases. The first phase starts from the
initial solution and ends when |x|0 ≤ 1−δ

1−2δ
en
k , and the second phase starts after

the first phase finishes and ends when the optimal solution is found. Let τ1 and
τ2 denote the running time of these two phases, respectively. For the first phase,
i.e., 1−δ

1−2δ
en
k ≤ i ≤ n, we have

E[V (ξt)− V (ξt+1)|ξt = x] ≥ (1− δ)k/(2− 4δ),

By Lemma 1, we get

E[τ1|ξ0] ≤ n(2− 4δ)/(1− δ)k ≤ 2n/(1− δ)k.

For the second phase, i.e., i < 1−δ
1−2δ

en
k ≤ n, we have

E[V (ξt)− V (ξt+1)|ξt = x] ≥ ki(1− δ)k−1/(2en).

By Lemma 2, we get

E[τ2|ξ0] ≤
1 + ln

(
1−δ
1−2δ

en
k

)
k(1−δ)k−1

2en

≤ 2en(1 + lnn)

k (1− δ)
k

.

Combining the analysis of the two cases, we have

E [τ |ξ0] = E [τ1|ξ0] + E [τ2|ξ0] ≤
2n

(1− δ)k
+

2en(1 + lnn)

k(1− δ)k
= O(n+ δn log n),

where the last equality is by k = c/δ and Eq. (3). Thus, the theorem holds. ⊓⊔

We prove in Theorem 4 that when δ < 1/2 and k = c/δ, the expected run-
ning time of the (1+1)-EA using the (k, δ)-RCPS surrogate on the LeadingOnes
problem is O(max{n, δn2}). The results show that the expected running time
can be reduced by a factor of O(n) if δ = O(1/n). The main proof idea is similar
to that of Theorem 3.

Theorem 4. For the (1+1)-EA using the (k, δ)-RCPS surrogate on the Leadin-
gOnes problem, the expected running time is O(max{n, δn2}) if δ < 1/2 and
k = c/δ (where c is a positive constant). Particularly, it is O(n) if δ = O(1/n).

Proof. We use additive drift analysis to prove this theorem. Let the distance
function V (x) = n − LO(x). Suppose that the current solution x has i leading
1-bits, i.e., LO(x) = i < n.

12 Z. A. Zhang et al.

Similar to the analysis in Theorem 3, we have

P(V (ξt+1) < i|ξt = x) ≥ (1− δ)
k

1− 2δ

(
1− 1

1 + 1−2δ
1−δ pk

)

≥ (1− δ)
c
δ

1− 2δ

(
1− 1

1 +
(
1
δ − 2

)
c
en

)
,

where the second inequality holds by p ≥ 1/(en) as shown in Eq. (4), k = c/δ,
and δ < 1/2. We consider two cases for δ. If

(
1
δ − 2

)
· c
en ≥ 1, i.e., δ ≤ c

en+2c , we
have

E[V (ξt)− V (ξt+1)|ξt = x] ≥ P(V (ξt+1) < i|ξt = x) · 1 ≥ (1− δ)c/δ/2.

By Lemma 1, we get

E[τ |ξ0] ≤ 2n/(1− δ)c/δ = O(n).

If
(
1
δ − 2

)
· c
en < 1, i.e., δ > c

en+2c , we have

E[V (ξt)− V (ξt+1)|ξt = x] ≥ c (1− δ)
c/δ

/(2eδn).

By Lemma 1, we get

E[τ |ξ0] ≤
2eδn2

c (1− δ)
c/δ

= O(δn2).

Thus, E[τ |ξ0] = O
(
max{n, δn2}

)
, implying that the theorem holds. ⊓⊔

5 Conclusion and Discussion

In this paper, we conduct a preliminary study on the running time analysis of
surrogate-assisted EAs, by considering the (1+1)-EA using the RPS and RCPS
surrogates solving OneMax and LeadingOnes. We introduce the concept of the
(k, δ)-RPS and (k, δ)-RCPS surrogates, and derive the parameter values that can
make using the surrogate model accelerate the evolution process. The results
imply that if the surrogate model is accurate enough and used properly, the
running time can be significantly improved.

We hope this work can encourage more work on the running time analysis
of EAs using surrogate models. In the future, the following two directions can
be considered. On one hand, in this paper, we simply assume that the surrogate
model is trained in advance before optimization, while in practical applications,
the surrogate model is usually updated along with the optimization process.
It is interesting to theoretically study the impact of updating the surrogate
model with newly obtained data. On the other hand, when analyzing the running
time, we only consider the cost of true fitness evaluation during the evolutionary
process, which is somewhat unfair. It is interesting to examine the total cost of
surrogate-assisted EAs, i.e., the cost of training before evolution and the cost
during the evolutionary process.

Running Time Analysis of the (1+1)-EA using Surrogate Models 13

References

1. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and
Recent Developments. World Scientific, Singapore (2011)

2. Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford,
UK (1996)

3. Bian, C., Qian, C., Tang, K.: A general approach to running time analysis of
multi-objective evolutionary algorithms. In: Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI’18). pp. 1405–1411. Stockholm,
Sweden (2018)

4. Corus, D., Dang, D.C., Eremeev, A.V., Lehre, P.K.: Level-based analysis of ge-
netic algorithms and other search processes. IEEE Transactions on Evolutionary
Computation 22(5), 707–719 (2017)

5. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65(1), 224–250
(2013)

6. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64(4), 673–697 (2012)

7. Doerr, B., Neumann, F.: Theory of Evolutionary Computation: Recent Develop-
ments in Discrete Optimization. Springer, Cham, Switzerland (2020)

8. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science 276(1-2), 51–81 (2002)

9. Hao, H., Zhang, J., Lu, X., Zhou, A.: Binary relation learning and classifying
for preselection in evolutionary algorithms. IEEE Transactions on Evolutionary
Computation 24(6), 1125–1139 (2020)

10. Hao, H., Zhang, J., Zhou, A.: A comparison study of surrogate model based pre-
selection in evolutionary optimization. In: Proceedings of the 14th International
Conference on Intelligent Computing Theories and Application (ICIC). pp. 717–
728. Wuhan, China (2018)

11. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artificial intelligence 127(1), 57–85 (2001)

12. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary compu-
tation. Soft Computing 9(1), 3–12 (2005)

13. Jin, Y.: Surrogate-assisted evolutionary computation: Recent advances and future
challenges. Swarm and Evolutionary Computation 1(2), 61–70 (2011)

14. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with
approximate fitness functions. IEEE Transactions on Evolutionary Computation
6(5), 481–494 (2002)

15. Jin, Y., Wang, H., Sun, C.: Data-Driven Evolutionary Optimization. Springer,
Cham, Switzerland (2021)

16. Mockus, J.: Application of Bayesian approach to numerical methods of global and
stochastic optimization. Journal of Global Optimization 4(4), 347–365 (1994)

17. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimiza-
tion: Algorithms and Their Computational Complexity. Springer, Berlin, Germany
(2010)

18. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evo-
lutionary computation. Algorithmica 59(3), 369–386 (2011)

19. Qian, C., Xiong, H., Xue, K.: Bayesian optimization using pseudo-points. In: Pro-
ceedings of the 29th International Joint Conference on Artificial Intelligence (IJ-
CAI’20). pp. 3044–3050. Yokohama, Japan (2020)

14 Z. A. Zhang et al.

20. Sudholt, D.: A new method for lower bounds on the running time of evolution-
ary algorithms. IEEE Transactions on Evolutionary Computation 17(3), 418–435
(2012)

21. Wegener, I.: Methods for the analysis of evolutionary algorithms on pseudo-
Boolean functions. In: Evolutionary Optimization, pp. 349–369. Kluwer, Norwell,
MA (2002)

22. Yu, Y., Qian, C.: Running time analysis: Convergence-based analysis reduces to
switch analysis. In: Proceedings of the IEEE Congress on Evolutionary Computa-
tion (CEC). pp. 2603–2610. Sendai, Japan (2015)

23. Yu, Y., Qian, C., Zhou, Z.H.: Switch analysis for running time analysis of evolution-
ary algorithms. IEEE Transactions on Evolutionary Computation 19(6), 777–792
(2014)

24. Zhang, J., Zhou, A., Tang, K., Zhang, G.: Preselection via classification: A case
study on evolutionary multiobjective optimization. Information Sciences 465, 388–
403 (2018)

25. Zhou, Z.H., Yu, Y., Qian, C.: Evolutionary Learning: Advances in Theories and
Algorithms. Springer, Singapore (2019)

