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Maximum coverage

Maximum coverage [Feige, JACM’98] : select at most 𝐵 sets from 𝑛
given sets to make the union maximal

Formally stated: given a ground set 𝑈, a collection 𝑉 = {𝑆1, … , 𝑆𝑛} of
subsets of 𝑈 and a budget 𝐵, it is to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 = |⋃𝑆𝑖∈𝑋 𝑆𝑖| 𝑠. 𝑡. 𝑋 ≤ 𝐵.

𝑆𝑙+1 𝑆𝑙+2 𝑆2𝑙

𝑆1

𝑆𝑖

𝑆𝑙
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Sparse regression

Sparse regression [Tropp, TIT’04] : find a sparse approximation 
solution to the linear regression problem

Formally stated: given all observation variables 𝑉 = {𝑣1, … , 𝑣𝑛}, a
predictor variable 𝑧 and a budget 𝐵, it is to find a subset 𝑋 ⊆ 𝑉 such
that

𝑚𝑎𝑥𝑋⊆𝑉 𝑅𝑧,𝑋
2 =

Var 𝑧 − MSE𝑧,𝑋
Var 𝑧

𝑠. 𝑡. 𝑋 ≤ 𝐵.
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Influence maximization

Influence maximization [Kempe et al., KDD’03] : select a subset of users 
from a social network to maximize its influence spread

Formally stated: given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑉 = {𝑣1, … , 𝑣𝑛},
edge probabilities 𝑝𝑢,𝑣 ((𝑢, 𝑣) ∈ 𝐸) and a budget 𝐵, it is to find a subset
𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 = ∑𝑖=1
𝑛 𝑝(𝑋 → 𝑣𝑖) 𝑠. 𝑡. 𝑋 ≤ 𝐵.

Influential users
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Document summarization

Document summarization [Lin & Bilmes, ACL’11] : select a few 
sentences to best summarize the documents
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Sensor placement

Sensor placement [Krause & Guestrin, IJCAI’09 Tutorial] : select a few places to 
install sensors such that the information gathered is maximized

Water contamination detection Fire detection
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Subset selection

Subset selection is to select a subset of size 𝐵 from a total set 
of 𝑛 items for optimizing some objective function

Formally stated: given all items 𝑉 = {𝑣1, … , 𝑣𝑛}, an objective function
𝑓: 2𝑉 → R and a budget 𝐵, it is to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵.

Application 𝒗𝒊 𝒇

maximum coverage a set of elements size of the union 

sparse regression an observation variable MSE of prediction 

influence maximization a social network user influence spread 

document summarization a sentence summary quality 

sensor placement a place to install a sensor entropy 

Many applications, but 
NP-hard in general!



http://staff.ustc.edu.cn/~chaoqian/

Subset selection - submodular

Monotone: for any 𝑋 ⊆ 𝑌 ⊆ 𝑉, 𝑓 𝑋 ≤ 𝑓(𝑌)

Subset selection: given all items 𝑉 = {𝑣1, … , 𝑣𝑛}, an objective function
𝑓: 2𝑉 → R and a budget 𝐵, it is to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵.

Submodular [Nemhauser et al., MP’78] : satisfy the natural diminishing returns 
property, i.e., for any 𝑋 ⊆ 𝑌 ⊆ 𝑉, 𝑣 ∉ 𝑌,

𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋 ≥ 𝑓 𝑌 ∪ 𝑣 − 𝑓(𝑌)

Submodular ratio [Zhang & Vorobeychi, AAAI’16] : 

𝛾𝑓 = min
𝑋⊆𝑌,𝑣∉𝑌

𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋

𝑓 𝑌 ∪ 𝑣 − 𝑓(𝑌)

The optimal approximation guarantee [Nemhauser & Wolsey, MOR’78] :

1 − 1/𝑒 ≈ 0.632 by the greedy algorithm  

Discrete analogue of convexity!
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Variants of subset selection

• Monotone set function maximization with size constraints

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵

𝑚𝑖𝑛𝑋⊆𝑉 𝑓 𝑋 /𝑔(𝑋)

• Ratio optimization of monotone functions

1 − 1/𝑒𝛾

[Das & Kempe, ICML’11] 

1/2
[Ohsaka & Yoshida, NIPS’15] 

1 − 𝑒−1/(2∆)

[Tschiatschek et al, AAAI’17] 

(1 − 1/𝑒)/2
[Soma et al., ICML’14] 

(𝛾/2) 1 − 1/𝑒𝛾

[Zhang & Vorobeychik, AAAI’16] 

|𝑋∗|

(1 + ( 𝑋∗ − 1)(1 − 𝜅))𝛾
[Bai et al., ICML’16] 

𝑋 ≤ 𝐵 → 𝑐 𝑋 ≤ 𝐵

• Monotone set function maximization with general constraints

𝑋: a subset → a multiset

• Monotone multiset function maximization with size constraints

𝑋: a subset → 𝑘 subsets

• Monotone 𝑘-submodular function maximization with size constraints

𝑋: a subset → a sequence

• Monotone sequence function maximization with size constraints
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Previous approaches

• Greedy algorithms

Process:  iteratively select one item that makes some criterion

currently optimized              

Iteration j:

Iteration 1:
V =

{𝑣1, 𝑣2, … , 𝑣𝑛}

𝑣∗

𝑋1 = {𝑣∗}

𝑣∗ =

arg𝑚𝑎𝑥𝑣∈𝑉∖𝑋𝑗−1𝑓 𝑋𝑗−1 ∪ 𝑣 − 𝑓 𝑋𝑗−1

𝑣∗

𝑉 ∖ 𝑋𝑗−1
𝑋𝑗 =

𝑋𝑗−1 ∪ {𝑣∗}

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵
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Previous approaches

𝑣∗ =

arg𝑚𝑎𝑥𝑣∈𝑉∖𝑋𝑗−1
𝑓 𝑋𝑗−1 ∪ 𝑣 − 𝑓(𝑋𝑗−1)

𝑐 𝑋𝑗−1 ∪ 𝑣 − 𝑐(𝑋𝑗−1)

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑐(𝑋) ≤ 𝐵

Iteration j:

Iteration 1:
V =

{𝑣1, 𝑣2, … , 𝑣𝑛}

𝑣∗

𝑋1 = {𝑣∗}

𝑣∗

𝑉 ∖ 𝑋𝑗−1
𝑋𝑗 =

𝑋𝑗−1 ∪ {𝑣∗}

• Greedy algorithms

Process:  iteratively select one item that makes some criterion

currently optimized              
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Previous approaches

𝑣∗ =

arg𝑚𝑖𝑛𝑣∈𝑉∖𝑋𝑗−1
𝑓 𝑋𝑗−1 ∪ 𝑣 − 𝑓(𝑋𝑗−1)

𝑔 𝑋𝑗−1 ∪ 𝑣 − 𝑔(𝑋𝑗−1)

𝑚𝑖𝑛𝑋⊆𝑉 𝑓 𝑋 /𝑔(𝑋)

• Greedy algorithms

Process:  iteratively select one item that makes some criterion

currently optimized              

Iteration j:

Iteration 1:
V =

{𝑣1, 𝑣2, … , 𝑣𝑛}

𝑣∗

𝑋1 = {𝑣∗}

𝑣∗

𝑉 ∖ 𝑋𝑗−1
𝑋𝑗 =

𝑋𝑗−1 ∪ {𝑣∗}
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Previous approaches

Iteration j:

Iteration 1:
V =

{𝑣1, 𝑣2, … , 𝑣𝑛}

(𝑣∗, 𝑖∗)
𝑋𝑖∗ = {𝑣∗}

(𝑣∗, 𝑖∗) = arg𝑚𝑎𝑥𝑣∈𝑉∖⋃𝑖𝑋𝑖, 𝑖∈{1,2, … ,𝑘}

𝑓 𝑋1, … , 𝑋𝑖 ∪ {𝑣}, … , 𝑋𝑘 − 𝑓 𝑋1, … , 𝑋𝑖 , … , 𝑋𝑘

(𝑣∗, 𝑖∗)
𝑉 ∖ ⋃1≤𝑖≤𝑘𝑋𝑖

𝑋𝑖∗ =
𝑋𝑖∗ ∪ {𝑣∗}

𝑚𝑎𝑥𝑋1,𝑋2,… ,𝑋𝑘⊆𝑉 𝑓 𝑋1, 𝑋2, … , 𝑋𝑘 𝑠. 𝑡. ⋃1≤𝑖≤𝑘 𝑋𝑖 ≤ 𝐵

• Greedy algorithms

Process:  iteratively select one item that makes some criterion

currently optimized              
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Previous approaches

• Greedy algorithms

Process:  iteratively select one item that makes some criterion

currently optimized    

Weakness:  get stuck in local optima due to the greedy behavior

Iteration j:

Iteration 1:
V =

{𝑣1, 𝑣2, … , 𝑣𝑛}

𝑣∗

𝑋1 = {𝑣∗}

𝑣∗

𝑉 ∖ 𝑋𝑗−1
𝑋𝑗 =

𝑋𝑗−1 ∪ {𝑣∗}
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Previous approaches (con’t)

• Relaxation methods

Process:  relax the original problem, then find the optimal        

solutions to the relaxed problem    

Weakness:  the optimal solution of the relaxed problem may be 
distant to the true optimum

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵

𝑚𝑎𝑥𝑤∊𝑅𝑛 𝑔 𝑤 𝑠. 𝑡. |𝑤|0 ≤ 𝐵

𝑚𝑎𝑥𝑤∊𝑅𝑛 𝑔 𝑤 𝑠. 𝑡. |𝑤|1 ≤ 𝐵

non-convex

convex
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Motivation

1. Optimize the criterion

2. Keep the size small

Two conflicting objectives:

𝑚𝑎𝑥𝑥∊{0,1}𝑛 𝑓 𝑥 𝑠. 𝑡. |𝑥| ≤ 𝐵

𝑚𝑎𝑥𝑥∊{0,1}𝑛 𝑓 𝑥

𝑚𝑖𝑛𝑥∊{0,1}𝑛 𝑚𝑎𝑥{|𝑥| − 𝐵, 0}

Subset selection:       

Why not directly optimize the bi-objective formulation?

𝑚𝑖𝑛𝑥∊ 0,1 𝑛 (−𝑓 𝑥 , |𝑥|)

a subset 𝑋 ⊆ 𝑉
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Pareto optimization

The basic idea:

𝑚𝑎𝑥𝑥∊{0,1}𝑛 𝑓 𝑥 𝑠. 𝑡. 𝑥 ≤ 𝐵

𝑚𝑖𝑛𝑥 (𝑓1 𝑥 , 𝑓2 𝑥 )

bi-objective optimization

z

x

y

𝑓1

𝑓2

better 𝑓1
better 𝑓2

worse 𝑓1
better 𝑓2

x dominates z :

𝑓1 𝑥 < 𝑓1 𝑧 ⋀ 𝑓2 𝑥 < 𝑓2 𝑧

x is incomparable with y :

𝑓1 𝑥 > 𝑓1 𝑦 ⋀ 𝑓2 𝑥 < 𝑓2 𝑦

𝑚𝑎𝑥𝑥∊{0,1}𝑛 𝑓 𝑥 𝑠. 𝑡. 𝑐(𝑥) ≤ 𝐵

𝑚𝑖𝑛𝑥∊{0,1}𝑛 𝑓 𝑥 /𝑔(𝑥)

𝑚𝑎𝑥𝑥∊{0,1,… , 𝑘}𝑛 𝑓 𝑥 𝑠. 𝑡. 𝑥 ≤ 𝐵
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Pareto optimization

The basic idea:

𝑚𝑎𝑥𝑥∊{0,1}𝑛 𝑓 𝑥 𝑠. 𝑡. 𝑥 ≤ 𝐵

𝑚𝑖𝑛𝑥 (𝑓1 𝑥 , 𝑓2 𝑥 )

bi-objective optimization

𝑚𝑖𝑛𝑥∊{0,1}𝑛 𝑓 𝑥 /𝑔(𝑥)

population new solutions

reproduction

evaluation & updatinginitialization

A simple multi-objective evolutionary 
algorithm [Laumanns et al., TEvC’04] 

Initialization: put a random or special
solution into the population 𝑃

Reproduction: pick a solution randomly
from 𝑃, and randomly change it (e.g., flip
each bit of 𝑥 ∊ {0,1}𝑛 with prob. 1/𝑛 )

Evaluation & Updating: if the new
solution is not dominated, put it into 𝑃
and weed out bad solutions

Output: select the best solution w.r.t. the original problem

How to 
transform?

𝑚𝑎𝑥𝑥∊{0,1}𝑛 𝑓 𝑥 𝑠. 𝑡. 𝑐(𝑥) ≤ 𝐵

𝑚𝑎𝑥𝑥∊{0,1,… , 𝑘}𝑛 𝑓 𝑥 𝑠. 𝑡. 𝑥 ≤ 𝐵
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Pareto optimization vs Greedy algorithms

Greedy algorithms: 

• Produce a new solution by adding a single item (single-bit 
forward search: 0 → 1)

• Maintain only one solution

Pareto optimization:

• Produce a new solution by flipping each bit of a solution
with prob. 1/𝑛 (single-bit forward search, backward search,
multi-bit search)

• Maintain several non-dominated solutions due to bi-
objective optimization

Pareto optimization may have a better ability of avoiding local optima!
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Monotone set function maximization with size constraints 

The POSS approach [Qian, Yu and Zhou, NIPS’15]

Transformation: 

Initialization: put the special solution {0}𝑛

into the population 𝑃

Reproduction: pick a solution 𝑥 randomly
from 𝑃, and flip each bit of 𝑥 with prob.
1/𝑛 to produce a new solution

Evaluation & Updating: if the new
solution is not dominated, put it into 𝑃
and weed out bad solutions

Output: select the best feasible solution

𝑚𝑎𝑥𝑥∊{0,1}𝑛 𝑓 𝑥 𝑠. 𝑡. 𝑥 ≤ 𝐵 original

𝑚𝑖𝑛𝑥∊{0,1}𝑛 (−𝑓 𝑥 , |𝑥|) bi-objective
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Theorem 1. For monotone set function maximization with cardinality constraints, 
POSS using 𝐸 𝑇 ≤ 2𝑒𝐵2𝑛 finds a solution 𝑥 with 𝑥 ≤ 𝐵 and 𝑓 𝑥 ≥ (1 − 𝑒−𝛾) ∙ 𝑂𝑃𝑇.

Theoretical analysis

POSS can achieve the same general approximation guarantee 
as the greedy algorithm

the expected number of iterations
the best known polynomial-time approximation ratio, 
previously obtained by the greedy algorithm [Das & Kempe, ICML’11]
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𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝐵
(𝑂𝑃𝑇 − 𝑓(𝑋))

Proof

the optimal function valuesubmodularity ratio [Das & Kempe, ICML’11]

Roughly speaking, the improvement by adding a specific item 
is proportional to the current distance to the optimum

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that
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Proof

Main idea:

• consider a solution 𝑥 with |𝑥| ≤ 𝑖 and 𝑓(𝑥) ≥ 1 − 1 −
𝛾

𝐵

𝑖
∙ 𝑂𝑃𝑇

{0,1}𝑛

𝑖 = 0 𝑖 = 𝐵

initial solution 00…0 1 − 1 −
𝛾

𝐵

𝐵

≥ 1 − 𝑒−𝛾

the desired approximation bound

𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝐵
(𝑂𝑃𝑇 − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that
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Proof

{0,1}𝑛

Main idea:

• consider a solution 𝑥 with |𝑥| ≤ 𝑖 and 𝑓(𝑥) ≥ 1 − 1 −
𝛾

𝐵

𝑖
∙ 𝑂𝑃𝑇

• in each iteration of POSS:        

 select 𝑥 from the population 𝑃, the probability: 1/|𝑃|

 flip one specific 0-bit of 𝑥 to 1-bit, the probability: 
1

𝑛
1 −

1

𝑛

𝑛−1
≥

1

𝑒𝑛

𝑥′ = 𝑥 + 1 ≤ 𝑖 + 1 and 𝑓(𝑥′) ≥ 1 − 1 −
𝛾

𝐵

𝑖+1
∙ 𝑂𝑃𝑇

𝑖 𝑖 + 1 the probability: 
1

𝑃
∙
1

𝑒𝑛

𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝐵
(𝑂𝑃𝑇 − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that
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Proof

𝑖 𝑖 + 1 the probability: 
1

𝑃
∙
1

𝑒𝑛

1

2𝑒𝐵𝑛

𝑃 ≤ 2𝐵

𝑖 𝑖 + 1 the expected number of iterations: 2𝑒𝐵𝑛

𝑖 = 0 𝐵 the expected number of iterations: 𝐵 ∙ 2𝑒𝐵𝑛

{0,1}𝑛

𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝐵
(𝑂𝑃𝑇 − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that

Main idea:

• consider a solution 𝑥 with |𝑥| ≤ 𝑖 and 𝑓(𝑥) ≥ 1 − 1 −
𝛾

𝐵

𝑖
∙ 𝑂𝑃𝑇

• in each iteration of POSS:        
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Theoretical analysis

Theorem 2. For the Exponential Decay subclass of sparse regression, POSS using 
𝐸 𝑇 = 𝑂(𝐵2 𝑛 − 𝐵 𝑛 log 𝑛) finds an optimal solution, while the greedy algorithm 
cannot.

POSS can do better than the greedy algorithm in cases
[Das & Kempe, STOC’08]

Theorem 1. For monotone set function maximization with cardinality constraints, 
POSS using 𝐸 𝑇 ≤ 2𝑒𝐵2𝑛 finds a solution 𝑥 with 𝑥 ≤ 𝐵 and 𝑓 𝑥 ≥ (1 − 𝑒−𝛾) ∙ 𝑂𝑃𝑇.

POSS can achieve the same general approximation guarantee 
as the greedy algorithm

the best known polynomial-time approximation ratio, 
previously obtained by the greedy algorithm [Das & Kempe, ICML’11]
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Sparse regression

Sparse regression [Tropp, TIT’04] : find a sparse approximation 
solution to the linear regression problem

Formally stated: given all observation variables 𝑉 = {𝑣1, … , 𝑣𝑛}, a
predictor variable 𝑧 and a budget 𝐵, it is to find a subset 𝑋 ⊆ 𝑉 such
that

𝑚𝑎𝑥𝑋⊆𝑉 𝑅𝑧,𝑋
2 =

Var 𝑧 − MSE𝑧,𝑋
Var 𝑧

𝑠. 𝑡. 𝑋 ≤ 𝐵.
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Experimental results - 𝑅2 values

greedy algorithms relaxation methods

POSS is significantly better than all 
the compared methods on all data sets 

the size constraint: B = 𝟖 the number of iterations of POSS: 𝟐𝒆𝑩𝟐𝒏

exhaustive search
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Experimental results - 𝑅2 values

POSS tightly follows OPT, and has a 
clear advantage over the rest methods

different size constraints: 𝑩 = 𝟑 → 𝟖
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Experimental results – running time

POSS can be much more efficient in practice than 
in theoretical analysis

OPT: 𝑛𝐵/𝐵𝐵 greedy methods (FR):  𝐵𝑛 POSS: 2𝑒𝐵2𝑛

theoretical 
running time
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Monotone set function maximization with general constraints 

The POMC approach [Qian, Shi, Yu and Tang, IJCAI’17]

Transformation: 

𝑚𝑎𝑥𝑥∊{0,1}𝑛 𝑓 𝑥 𝑠. 𝑡. 𝑐(𝑥) ≤ 𝐵 original

𝑚𝑖𝑛𝑥∊{0,1}𝑛 (−𝑓 𝑥 , 𝑐(𝑥)) bi-objective

Theory: POMC can achieve the same approximation guarantee 
(𝛾/2)(1 − 𝑒−𝛾) as the greedy algorithm [Zhang & Vorobeychik, AAAI’16]

Application:

influence maximization
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Monotone multiset function maximization with size constraints 

The POMS approach [Qian, Zhang, Tang and Yao, AAAI’18]

Transformation: 

𝑚𝑎𝑥𝑥∊Z+𝑛 𝑓 𝑥 𝑠. 𝑡. |𝑥| ≤ 𝐵 original

𝑚𝑖𝑛𝑥∊Z+𝑛 (−𝑓 𝑥 , |𝑥|) bi-objective

Theory: POMS can achieve the same approximation guarantee 
(1 − 1/𝑒)/2 as the greedy algorithm [Soma et al., ICML’14]

Application:

generalized influence
maximization
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Monotone k-submodular function maximization with size constraints 

The MOMS approach [Qian, Shi, Tang and Zhou, TEvC in press]

Transformation: 

𝑚𝑎𝑥𝑥∊{0,1,…,𝑘}𝑛 𝑓 𝑥 𝑠. 𝑡. 𝑥 ≤ 𝐵 original

𝑚𝑖𝑛𝑥∊{0,1,…,𝑘}𝑛 (−𝑓 𝑥 , |𝑥|) bi-objective

Theory: MOMS can achieve the same approximation guarantee 
1/2 as the greedy algorithm [Ohsaka & Yoshida, NIPS’15]

Application:

sensor placement
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Monotone sequence function maximization with size constraints 

The POSeqSel approach [Qian, Feng and Tang, IJCAI’18]

Transformation: 

𝑚𝑎𝑥𝑥∊𝒮 𝑓 𝑥 𝑠. 𝑡. |𝑥| ≤ 𝐵 original

𝑚𝑖𝑛𝑥∊𝒮 (−𝑓 𝑥 , |𝑥|) bi-objective

Theory: POSeqSel can achieve the approximation guarantee 
1 − 𝑒−1/2 better than the greedy algorithm [Tschiatschek et al., AAAI’17]

Application:

movie recommendation
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Ratio optimization of monotone functions

The PORM approach [Qian, Shi, Yu, Tang and Zhou, IJCAI’17]

Transformation: 

𝑚𝑖𝑛𝑥∊{0,1}𝑛 𝑓 𝑥 /𝑔(𝑥) original

𝑚𝑖𝑛𝑥∊{0,1}𝑛 (𝑓 𝑥 , −𝑔(𝑥)) bi-objective

Theory: PORM can achieve the same approximation guarantee 
|𝑋∗|

(1+( 𝑋∗ −1)(1−𝜅))𝛾
as the greedy algorithm [Bai et al., ICML’16]

Application:

F-measure maximization
in information retrieval



http://staff.ustc.edu.cn/~chaoqian/

Can we make the Pareto optimization method parallelizable? 

Pareto optimization for subset selection

achieve superior performance on diverse variants of 
subset selection both theoretically and empirically

The running time (e.g., 2𝑒𝐵2𝑛) for achieving a good solution 

unsatisfactory when the problem size (e.g., 𝐵 and 𝑛) is large 

A sequential algorithm that cannot be readily parallelized 

restrict the application to large-scale real-world problems
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Outline

Introduction

Pareto optimization for subset selection

Pareto optimization for large-scale subset selection

Pareto optimization for noisy subset selection 

Conclusion
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Pareto optimization

1.  randomly generate a solution,
and put it into the population 𝑃;

2.  loop
|   2.1 pick a solution randomly from 𝑃;
|   2.2 randomly change it to make a new one;
|   2.3 if the new one is not strictly worse
|   |    2.3.1 put it into 𝑃;
|   |    2.3.2 remove worse  solutions from 𝑃;
3.  when terminates, select the best feasible 

solution from 𝑃.

randomlyRandom 
solution pick a 

solution 

a new 
solution

population 
𝑃

flip each bit 
with prob. 1/𝑛

put it into 𝑃 and
remove worse solutions 

select 
the best 
feasible 
solution

initial

terminated

Random 
solution

p
o
p
u
la

ti
o
n
 𝑃

pick a 
solution 

a new 
solution

pick a 
solution 

a new 
solution

iteration 1 iteration 2

p
o
p
u
la

ti
o
n
 𝑃
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Parallel Pareto optimization
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solution
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Parallel Pareto optimization

1

𝑒𝑛
1 − 1 −

1

𝑒𝑛

𝑁

≈
𝑁

𝑒𝑛

[Qian et al., IJCAI’16]

1

𝑇

𝑁

𝑇/𝑁

Q: the same solution quality?

POSS

PPOSS

[Qian et al., NIPS’15]
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Theorem 1. For monotone set function maximization with size constraints, 
the expected number of iterations until PPOSS finds a solution 𝑥 with 𝑥 ≤ 𝐵
and 𝑓 𝑥 ≥ (1 − 𝑒−𝛾) ∙ 𝑂𝑃𝑇 is

(1) if 𝑁 = 𝑜 𝑛 , then 𝐸 𝑇 ≤ 2𝑒𝐵2𝑛/𝑁;

(2) if 𝑁 = Ω 𝑛𝑖 for 1 ≤ 𝑖 ≤ 𝐵, then 𝐸 𝑇 = 𝑂(𝐵2/𝑖);

(3) if 𝑁 = Ω 𝑛min{3𝐵−1,𝑛} , then 𝐸 𝑇 = 𝑂 1 .

Theoretical analysis

• When the number 𝑁 of processors is less than the number 𝑛 of items, 
the number 𝑇 of iterations can be reduced linearly w.r.t. the number 
of processors 

the same 
approximation bound
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Theorem 1. For monotone function maximization with cardinality constraints, 
the expected number of iterations until PPOSS finds a solution 𝑥 with 𝑥 ≤ 𝐵
and 𝑓 𝑥 ≥ (1 − 𝑒−𝛾) ∙ 𝑂𝑃𝑇 is

(1) if 𝑁 = 𝑜 𝑛 , then 𝐸 𝑇 ≤ 2𝑒𝐵2𝑛/𝑁;

(2) if 𝑁 = Ω 𝑛𝑖 for 1 ≤ 𝑖 ≤ 𝐵, then 𝐸 𝑇 = 𝑂(𝐵2/𝑖);

(3) if 𝑁 = Ω 𝑛min{3𝐵−1,𝑛} , then 𝐸 𝑇 = 𝑂 1 .

Theoretical analysis

• When the number 𝑁 of processors is less than the number 𝑛 of items, 
the number 𝑇 of iterations can be reduced linearly w.r.t. the number of 
processors 

the same 
approximation bound

• With increasing number 𝑁 of processors, the number 𝑇 of iterations 
can be continuously reduced, eventually to a constant



http://staff.ustc.edu.cn/~chaoqian/

Experiments on sparse regression

Compare the speedup as well as the solution quality measured by 𝑹𝟐 values 
with different number of cores 



http://staff.ustc.edu.cn/~chaoqian/

Experiments on sparse regression

the asynchronous version of PPOSS

PPOSS (blue line): achieve speedup around 8 when the number of 
cores is 10; the 𝑹𝟐 values are stable, and better than Greedy

PPOSS-asy (red line): achieve better speedup (avoid the synchronous cost); 

the 𝑹𝟐 values are slightly worse (the noise from asynchronization)

the best previous algorithm [Das & Kempe, ICML’11]
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Can we make the Pareto optimization method distributable? 

Pareto optimization for subset selection

achieve superior performance on diverse variants of 
subset selection both theoretically and empirically

Parallel Pareto optimization for subset selection

achieve nearly linear runtime speedup while keeping the 
solution quality 

Require centralized access to the whole data set

restrict the application to large-scale real-world problems
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Distributed Pareto optimization
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[Qian et al., IJCAI’18]
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Experiments on sparse regression

Compare DPOSS with the state-of-the-art distributed greedy algorithm 
RandGreeDi [Mirzasoleiman et al., JMLR’16] under different number of machines 

On regular-scale data sets

DPOSS is always better than RandGreeDi
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Experiments on sparse regression

On regular-scale data sets

DPOSS is very close to 
the centralized POSS 

On large-scale data sets

DPOSS is better than 
RandGreeDi
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Experiments on maximum coverage

On regular-scale data sets

On large-scale data sets
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Pareto optimization for subset selection

achieve superior performance on diverse variants of 
subset selection both theoretically and empirically

Parallel Pareto optimization for subset selection

achieve nearly linear runtime speedup while keeping the 
solution quality 

Distributed Pareto optimization for subset selection

achieve very close performance to the centralized algorithm 



http://staff.ustc.edu.cn/~chaoqian/

Previous analyses often assume that the exact value of the 
objective function can be accessed  

However, in many applications of subset selection, only a 
noisy value of the objective function can be obtained 

The objective function: 
the expected number 
of nodes activated by 
propagating from 𝑋

Influential usersInfluence 
maximization

noise
The average number of active nodes of independent diffusion 
processes [Kempe et al., KDD’03]

Noise



http://staff.ustc.edu.cn/~chaoqian/

How about the performance for noisy subset selection? 

Previous analyses often assume that the exact value of the 
objective function can be accessed  

However, in many applications of subset selection, only a 
noisy value of the objective function can be obtained 

The objective function: 
the mean square error 
of prediction by 𝑋

Sparse
regression

noise

Noise
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Outline

Introduction

Pareto optimization for subset selection

Pareto optimization for large-scale subset selection

Pareto optimization for noisy subset selection 

Conclusion
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Noisy subset selection

Subset selection: given all items 𝑉 = {𝑣1, … , 𝑣𝑛}, an objective 
function 𝑓: 2𝑉 → R and a budget 𝐵, it is to find a subset 
𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵.

Multiplicative:   1 − 𝜖 𝑓 𝑋 ≤ 𝐹 𝑋 ≤ 1 + 𝜖 𝑓(𝑋)

Additive:    𝑓 𝑋 − 𝜖 ≤ 𝐹 𝑋 ≤ 𝑓 𝑋 + 𝜖

Noise

Applications: influence maximization, sparse regression

crowdsourced image collection summarization [Singla et al., AAAI’16]

maximizing information gain in graphical models [Chen et al., COLT’15]



http://staff.ustc.edu.cn/~chaoqian/

Theoretical analysis for greedy algorithms 

Multiplicative noise:

𝑓 𝑋 ≥
1

1 +
2𝜖𝐵
1 − 𝜖 𝛾

1 −
1 − 𝜖

1 + 𝜖

𝐵

1 −
𝛾

𝐵

𝐵

∙ 𝑂𝑃𝑇

Additive noise:

submodularity ratio [Das & Kempe, ICML’11]

The noiseless approximation guarantee [Das & Kempe, ICML’11]

𝑓 𝑋 ≥ 1 − 1 −
𝛾

𝐵

𝐵

∙ 𝑂𝑃𝑇 ≥ 1 − 𝑒−𝛾 ∙ 𝑂𝑃𝑇
a constant 
approximation ratio

𝜀 ≤ 1/𝐵 for a constant 
approximation ratio

The performance largely degrades in noisy environments

𝑓 𝑋 ≥ 1 − 1 −
𝛾

𝐵

𝐵

∙ 𝑂𝑃𝑇 −
2𝐵

𝛾
−
2𝐵

𝛾
𝑒−𝛾 𝜖
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Theoretical analysis for POSS

• POSS can generally achieve the same approximation 
guarantee in both multiplicative and additive noises

• POSS has a better ability of avoiding the misleading search 
direction led by noise

Maximum coverage

Greedy: very bad approximation
[Hassidim & Singer, COLT’17]

POSS: find the optimal solution 
through multi-bit search  

POSS: find the optimal 
solution through 
backward search  
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PONSS

In our previous work, threshold selection was theoretically 
shown to be tolerant to noise [Qian et al., ECJ’18]

Exponentially 
decrease the 
running time

𝑓 𝑥 ≥ 𝑓(𝑦) 𝑓 𝑥 ≥ 𝑓 𝑦 + 𝜖

Additive:Multiplicative:

𝑥 ≼ 𝑦 ⇔  
𝑓 𝑥 ≥

1 + 𝜖

1 − 𝜖
𝑓(𝑦)

𝑥 ≤ |𝑦|

𝑥 ≼ 𝑦 ⇔  
𝑓 𝑥 ≥ 𝑓 𝑦 + 2𝜖

𝑥 ≤ |𝑦|

PONSS [Qian et al., NIPS’17]

POSS 𝑥 ≼ 𝑦 ⇔  
𝑓 𝑥 ≥ 𝑓(𝑦)

𝑥 ≤ |𝑦|

“better”
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Theoretical analysis

Multiplicative noise:

Additive noise:

𝑓 𝑋 ≥
1 − 𝜖

1 + 𝜖
1 − 1 −

𝛾

𝐵

𝐵

∙ 𝑂𝑃𝑇

𝑓 𝑋 ≥ 1 − 1 −
𝛾

𝐵

𝐵

∙ 𝑂𝑃𝑇 − 2𝜖

PONSS

PONSS

𝑓 𝑋 ≥
1

1 +
2𝜖𝐵
1 − 𝜖 𝛾

1 −
1 − 𝜖

1 + 𝜖

𝐵

1 −
𝛾

𝐵

𝐵

∙ 𝑂𝑃𝑇

𝑓 𝑋 ≥ 1 − 1 −
𝛾

𝐵

𝐵

∙ 𝑂𝑃𝑇 −
2𝐵

𝛾
−
2𝐵

𝛾
𝑒−𝛾 𝜖

POSS & Greedy

POSS & Greedy

≥

significantly better

≥

significantly better

𝛾 = 1 (submodular), 𝜖 is a constant

a constant 
approximation ratio

Θ(1/𝐵) approximation ratio
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Experimental results - influence maximization

PONSS (red line) vs POSS (blue line) vs Greedy (black line): 

• Noisy evaluation: the average of 10 independent Monte 
Carlo simulations

• The output solution: the average of 10,000 independent 
Monte Carlo simulations
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Experimental results - sparse regression

PONSS (red line) vs POSS (blue line) vs Greedy (black line): 

• Noisy evaluation: a random sample of 1,000 instances

• The output solution: the whole data set
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Conclusion

• Pareto optimization for subset selection

• Pareto optimization for large-scale subset selection

• Pareto optimization for noisy subset selection
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Future work

• Problem issues
– Non-monotone objective functions

– Continuous submodular objective functions

– Multiple objective functions 

• Algorithm issues
– More complicated MOEAs

• Theory issues
– Beat the best known approximation guarantee

• Application issues
– Attempts on more large-scale real-world applications
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