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Machine learning

Machine learning aims at learning generalizable 
models from data

• Model representation, evaluation, optimization [Domingos, CACM’12]

A complicated 
optimization problem

A machine 
learning problem

Non-unique 
objectives
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Selective ensemble

• better performance than the complete 
ensemble

• reduce storage and improve efficiency

Selective ensemble (ensemble 
pruning) [Zhou, 2012]

learner 1

data 
set

learner 𝑖

learner 𝑛

learner 2

Two goals
• maximize the generalization 

performance
• minimize the number of selected 

learners

Ensemble learning [Zhou, 2012]

• better performance than a single learner
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Multi-objective machine learning

Machine learning tasks often involve multiple 
conflicting objectives

How to solve multi-
objective 
optimization 
problems efficiently? 

• maximize the generalization performance
• minimize the number of selected learners

Selective ensemble [Zhou, 2012]

• maximize the intercluster similarity
• minimize the intracluster similarity

Clustering [Jain & Dubes, 1988]

• informative
• representative
• diverse

Active learning [Huang et al., TPAMI’14]
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Multi-objective optimization

z

x

y

𝑓1

𝑓2

better 𝑓1
better 𝑓2

worse 𝑓1
better 𝑓2

x dominates z :

𝑓1 𝑥 < 𝑓1 𝑧 ⋀ 𝑓2 𝑥 < 𝑓2 𝑧

x is incomparable with 𝑦 :

𝑓1 𝑥 > 𝑓1 𝑦 ⋀ 𝑓2 𝑥 < 𝑓2 𝑦

The task: optimize multiple objectives simultaneously

𝑚𝑖𝑛𝑥∈𝒳 (𝑓1 𝑥 , 𝑓2 𝑥 ,… , 𝑓𝑚 𝑥 )
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Multi-objective optimization methods

The coefficients 𝑤𝑖 or 𝜖𝑖 is hard to determine, 
and only one solution is generated 

 linear scalarization:

𝑚𝑖𝑛𝑥∈𝒳 𝑤1𝑓1 𝑥 +⋯+𝑤𝑚𝑓𝑚(𝑥)

• Convert into a single-objective optimization 
problem  

 𝜖-constraint method:

𝑚𝑖𝑛𝑥∈𝒳 𝑓𝑗 𝑥 𝑠. 𝑡. ∀𝑖 ≠ 𝑗: 𝑓𝑖 𝑥 ≤ 𝜖𝑖

e.g., one optimization-based selective ensemble algorithm 
[Zhang et al., JMLR’06]:

𝑚𝑖𝑛𝒙 𝒙𝑇 𝑮𝒙 𝑠. 𝑡. ∑𝑖=1
𝑁 𝑥𝑖 = 𝑇, 𝑥𝑖 ∈ {0,1}

the error the size
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Evolutionary algorithms

Evolutionary algorithms: a kind of nature-inspired 
randomized heuristic optimization algorithms

genetic algorithms, evolutionary strategies, evolutionary 

programming, particle swarm optimization, ……

population new solutions

reproduction

evaluation & updating

initialization generate multiple 
solutions in one run

multi-objective 
optimization
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Multi-objective evolutionary algorithms

• Many successful multi-objective applications

 SPEA [Zitzler & Thiele, TEC’99]

 NSGA-II [Deb et al., TEC’02]

 MOEA/D [Zhang & Li, TEC’07]

• Multi-objective evolutionary algorithms

 engineering design [Coello Coello & Lamont, 2004]

 medicine [Toro et al., TBME’06]

 finance and economics [Ponsich et al., TEC’13]

• Advantages
 generate multiple solutions in one run
 not need to select proper coefficients before optimization 

easier to select 
one solution after 
optimization
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Multi-objective evolutionary learning

• MOEAs have been applied in machine learning

 feature selection [Mukhopadhyay et al., TEC’14a]

 clustering [Mukhopadhyay et al., TEC’14b]

 multi-label learning [Shi et al., TIST’14]

 active learning [Reyes & Ventura, TIST’18]

• MOEAs have yielded encouraging empirical 
outcomes, but lack theoretical support

• The theoretical understanding of MOEAs is 
underdeveloped
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Running time analysis

Convergence analysis

𝑙𝑖𝑚𝑡→+∞ P 𝜉𝑡 ∈ 𝒳∗ = 1 ?

Running time analysis

𝜏 = min 𝑡 ≥ 0 𝜉𝑡 ∈ 𝒳∗}

The number of iterations until 
finding an optimal or approximate 
solution for the first time

Running time complexity

• The number of iterations × the number of fitness 
evaluations in each iteration

• Usually grows with the problem size and expressed 
in asymptotic notations

e.g., (1+1)-EA solving LeadingOnes: 𝑂(𝑛2)

z
y

Problem size

R
u

n
tim

e

The leading theoretical aspect
[Neumann & Witt, 2010; Auger & Doerr, 2011]
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Running time analysis

Convergence analysis

𝑙𝑖𝑚𝑡→+∞ P 𝜉𝑡 ∈ 𝒳∗ = 1 ?

Running time analysis

𝜏 = min 𝑡 ≥ 0 𝜉𝑡 ∈ 𝒳∗}

The number of iterations until 
finding an optimal or approximate 
solution for the first time

The leading theoretical aspect
[Neumann & Witt, 2010; Auger & Doerr, 2011]

A quick guide to asymptotic notations: 

Let 𝑔 and 𝑓 be two functions defined on the real numbers.

• 𝑔 ∈ Ο 𝑓 : ∃𝑀 > 0 such that 𝑔 𝑥 ≤ 𝑀 ∙ 𝑓(𝑥) for all sufficiently large 𝑥

• 𝑔 ∈ Ω 𝑓 : 𝑓 ∈ Ο 𝑔

• 𝑔 ∈ Θ 𝑓 : 𝑔 ∈ Ο 𝑓 and 𝑔 ∈ Ω 𝑓

𝑔 ∈ Ο(𝑓) → 𝑔 ≤ 𝑓

𝑔 ∈ Ω 𝑓 → 𝑔 ≥ 𝑓

𝑔 ∈ Θ 𝑓 → 𝑔 = 𝑓
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Running time analysis of MOEAs

• Running time analyses of MOEAs are rare and case-specific

• Analyses starting from scratch are quite difficult

• Existing general approaches, e.g., fitness level [Sudholt, TEC’13] and
drift analysis [He & Yao, AIJ’01], are hard to be applied directly

GSEMO SEMO

synthetic 
problems

LOTZ: 𝑂(𝑛3)
[Giel, CEC’03]

COCZ: 𝑂(𝑛2 log 𝑛)
[Qian et al., AIJ’13]

mLOTZ, mCOCZ: 𝑂(𝑛𝑚+1)
[Laumanns et al., TEC’04]

GSEMO a variant of GSEMO

combinatorial
problems

bi-objective MST
[Neumann, EJOR’07]

multi-objective shortest paths
[Horoba, FOGA’09; Neumann & Theile, PPSN’10]

More results: [Friedrich et al., TCS’10; Giel & Lehre, ECJ’10; Friedrich et al., TCS’11; Neumann, GECCO’12; 

Doerr et al., CEC’13; GECCO’16; Qian et al., PPSN’16; Osuna et al., GECCO’17]
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Switch analysis

Theorem 1: 𝜉 ∈ 𝒳 modeling a MOEA solving a multi-objective problem, a well-
defined function ℎ𝜶,𝑐: 𝒳 → ℕ0 and a Markov chain 𝜉′ ∈ 𝒴 = {0,1}𝑟 with 𝒴∗ = {1𝑟}
such that ∀𝑥 ∉ 𝒳∗， ∀𝑡 ≥ 0,

 
𝑖∈[𝑟]

P min ℎ 𝜉𝑡+1 , 𝑟 = 𝑖 𝜉𝑡 = 𝑥 E 𝜏′ 𝜉0
′ = 1𝑖0𝑟−𝑖

≤ 
𝑦∈𝒴

P 𝜉1
′ = 𝑦 𝜉0

′ = 1ℎ 𝑥 0𝑟−ℎ 𝑥 E(𝜏′|𝜉1
′ = 𝑦) + 𝛿,

⇒ E 𝜏 𝜉0 = 𝑥0 ≤ E(𝜏′|𝜉0
′ = 1min ℎ 𝑥0 ,𝑟 0𝑟−min ℎ 𝑥0 ,𝑟 )/(1 − 𝛿)

Main idea:

population
0 

population
1

population
2

population
3 

…

state 𝜉0 …state 𝜉1 state 𝜉2 state 𝜉3
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Switch analysis

Main idea [Bian, Qian and Tang, IJCAI’18]:

examine the different 
behaviors at each step

Given MOEA on the given problem

Reference chain

The expected running time of {𝜉𝑡
′}𝑡=0
+∞ , easy to analyze

{𝜉𝑡}𝑡=0
+∞

{𝜉𝑡
′}𝑡=0
+∞

Ε 𝜏 ≤ (≥) Ε 𝜏′ + ∑𝑡=0
+∞ 𝜌𝑡

The expected running time of {𝜉𝑡}𝑡=0
+∞ :
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Application

GSEMO Problem Previous 
result

Our result

Bi-objective LOTZ 𝑂(𝑛3)
[Giel, CEC’03]

≤ 6𝑛3

COCZ 𝑂 𝑛2 log 𝑛
[Qian et al., 

AIJ’13] 

≤ 3𝑛2 log 𝑛

Many-
objective

𝑚COCZ 𝑂(𝑛𝑚+1)
[Laumanns et 
al., TEC’04]

𝑂(𝑛𝑚) for 𝑚 > 4,

𝑂 𝑛3 log 𝑛 for 𝑚 = 4

Approximate 
analysis

WOMM ___ 1/𝑛-approximation: 

𝑂(𝑛2(log𝑙 𝑛 +

log𝑙(𝑤𝑛/𝑤1)))

gives the leading 
constants

is asymptotically
tighter

Switch analysis is general and powerful!

a simple MOEA which explains the common structure of MOEAs
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How about the performance of 
MOEAs for constrained optimization?

The optimization problems in machine learning 

often come with constraints
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Constrained optimization

𝑚𝑖𝑛𝑥∊{0,1}𝑛 𝑓 𝑥

𝑠. 𝑡. 𝑔𝑖 𝑥 = 0, 1 ≤ 𝑖 ≤ 𝑞;

ℎ𝑖 𝑥 ≤ 0, 𝑞 + 1 ≤ 𝑖 ≤ 𝑚

General formulation:

objective function

equality constraints 

inequality 
constraints 

The goal: find a feasible solution minimizing the objective 𝑓

satisfies all constraints 

Boolean solution space
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The penalty function method

1. transform the original constrained optimization 
problem into an unconstrained optimization problem

Main idea [Hadj-Alouane & Bean, OR’97]

unconstrained

𝑚𝑖𝑛 𝑓 𝑥 + 𝜆∑𝑖=1
𝑚 𝑓𝑖(𝑥)

constraint 
violation degree

𝑓𝑖 𝑥 =  
𝑔𝑖 𝑥 1 ≤ 𝑖 ≤ 𝑞

max{0, ℎ𝑖(𝑥)} 𝑞 + 1 ≤ 𝑖 ≤ 𝑚

constrained

𝑚𝑖𝑛 𝑓 𝑥

𝑠. 𝑡. 𝑔𝑖 𝑥 = 0, 1 ≤ 𝑖 ≤ 𝑞;

ℎ𝑖 𝑥 ≤ 0, 𝑞 + 1 ≤ 𝑖 ≤ 𝑚
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The penalty function method

1. transform the original constrained optimization 
problem into an unconstrained optimization problem

Main idea [Hadj-Alouane & Bean, OR’97]

2. employ an unconstrained optimization algorithm to 
solve the transformed problem

(1+1)-EA
[He & Yao, AIJ’01]

𝑚𝑖𝑛 𝑓 𝑥 + 𝜆∑𝑖=1
𝑚 𝑓𝑖(𝑥)
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The Pareto optimization method

1. transform the original constrained optimization 
problem into a bi-objective optimization problem

Main idea [Coello Coello, 2002; Cai & Wang, TEC’06]

bi-objective

𝑚𝑖𝑛 (𝑓 𝑥 , ∑𝑖=1
𝑚 𝑓𝑖(𝑥))

constraint 
violation degree

𝑓𝑖 𝑥 =  
𝑔𝑖 𝑥 1 ≤ 𝑖 ≤ 𝑞

max{0, ℎ𝑖(𝑥)} 𝑞 + 1 ≤ 𝑖 ≤ 𝑚

constrained

𝑚𝑖𝑛 𝑓 𝑥

𝑠. 𝑡. 𝑔𝑖 𝑥 = 0, 1 ≤ 𝑖 ≤ 𝑞;

ℎ𝑖 𝑥 ≤ 0, 𝑞 + 1 ≤ 𝑖 ≤ 𝑚
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The Pareto optimization method

1. transform the original constrained optimization 
problem into a bi-objective optimization problem

Main idea [Coello Coello, 2002; Cai & Wang, TEC’06]

2. employ a multi-objective evolutionary algorithm to 
solve the transformed problem

𝑚𝑖𝑛 (𝑓 𝑥 , ∑𝑖=1
𝑚 𝑓𝑖(𝑥))

GSEMO 
[Laumanns et al., TEC’04]
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The Pareto optimization method

1. transform the original constrained optimization 
problem into a bi-objective optimization problem

Main idea [Coello Coello, 2002; Cai & Wang, TEC’06]

𝑚𝑖𝑛 (𝑓 𝑥 , ∑𝑖=1
𝑚 𝑓𝑖(𝑥))

2. employ a multi-objective evolutionary algorithm to 
solve the transformed problem

3. output the feasible solution 
from the generated non-
dominated solution set

constraint violation 
degree = 0
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Problems

• Minimum matroid optimization (P-solvable) [Edmonds, MP’71]

• Minimum cost coverage (NP-hard) [Wolsey, Combinatorica’82]

e.g., minimum spanning tree, maximum bipartite matching

e.g., minimum set cover, submodular set cover

Definition 1. Given a matroid (𝑈, 𝑆), a rank function 𝑟: 2𝑈 → ℕ and a weight 

function 𝑤:𝑈 → ℕ, the problem is formulated as 

𝑚𝑖𝑛𝑥∈{0,1}𝑛 ∑𝑖=1
𝑛 𝑤𝑖𝑥𝑖 𝑠. 𝑡. 𝑟 𝑥 = 𝑟(𝑈)

Definition 2. Given a monotone submodular function 𝑓: 2𝑈 → ℝ, some value 

𝑞 ≤ 𝑓(𝑈) and a weight function 𝑤:𝑈 → ℕ, the problem is formulated as 

𝑚𝑖𝑛𝑥∈{0,1}𝑛 ∑𝑖=1
𝑛 𝑤𝑖𝑥𝑖 𝑠. 𝑡. 𝑓 𝑥 ≥ 𝑞
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Theoretical analysis

Penalty function vs. Pareto optimization 
[Qian, Yu and Zhou, IJCAI’15]

• Minimum matroid optimization (P-solvable): obtaining 
an optimal solution 

Penalty function:

Pareto optimization:

Ω(𝑟2𝑛(log 𝑛 + log𝑤𝑚𝑎𝑥))

Ο(𝑟𝑛(log 𝑛 + log𝑤𝑚𝑎𝑥 + 𝑟))

The running time reduces by a factor min{log 𝑛 + log𝑤𝑚𝑎𝑥 , 𝑟}

matroid rank problem size maximum weight
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Theoretical analysis

Penalty function:

• Minimum matroid optimization (P-solvable): obtaining 
an optimal solution 

Pareto optimization:

The running time reduces exponentially  

Ω(𝑟2𝑛(log 𝑛 + log𝑤𝑚𝑎𝑥))

Ο(𝑟𝑛(log 𝑛 + log𝑤𝑚𝑎𝑥 + 𝑟))

The running time reduces by a factor  min{log 𝑛 + log𝑤𝑚𝑎𝑥 , 𝑟}

Penalty function:

• Minimum cost coverage (NP-hard): obtaining a 𝐻𝑞-

approximate solution 

Pareto optimization: Ο(𝑞𝑛 log 𝑛 + log𝑤𝑚𝑎𝑥 + 𝑞 )

exponential w.r.t. 𝑛, 𝑞, log𝑤𝑚𝑎𝑥

polynomial
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Theoretical analysis 

Findings from the analysis: 

The Pareto optimization method

global optimum

local optimum

feasible space

infeasible 
space

The penalty function method

• the penalty prefers feasible solutions

• get trapped in the local optimum, 
which is far from the global optimum

• the constraint violation objective 
allows infeasible solutions

• follow a short path from infeasible to 
feasible to find good solutions 
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How about the performance for 
noisy optimization?

Previous theoretical analyses assume a clean 
environment, while optimization in machine 
learning often comes with noise
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Noisy optimization

The objective evaluation is often disturbed by noise

e.g., a prediction model is evaluated only on a 
limited amount of data  

noise
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Noisy optimization

new solutionspopulation

reproduction

evaluation & updating

initialization

The objective evaluation is often disturbed by noise

e.g., a prediction model is evaluated only on a 
limited amount of data  the true objective 

value

flip a randomly 
chosen bit of 𝑥

additive noise:

multiplicative noise:

one-bit noise:

𝑓 𝑥 + 𝛿

𝑓 𝑥 ∙ 𝛿

𝑓 𝑥′
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The influence of noise

It was believed that noise makes evolutionary 
optimization harder

many noise handling strategies have been proposed 
[Jin & Branke, TEC’05; Goh & Tan, TEC’07]  

Some empirical observations have shown that noise can 
have a positive impact on the performance of local search 
[Selman et al., AAAI’94; Hoos & Stutzle, JAR’00] 

Can noise make evolutionary optimization easier?
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Theoretical analysis

A sufficient condition: noise is helpful [Qian, Yu and Zhou, ECJ’18]

Intuitively, if an EA searches along the deceptive direction, noise can add 
some randomness to make the EA run along the right direction

Running time

Noise 
helpful

Example: (1+𝑛)-EA on the Trap problem

|𝑥|1

𝑓
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The influence of noise

Hypothesis: the negative influence of noise decreases as the 
problem hardness increases

Empirical verification: (1+1)-EA on the Jump𝑚,𝑛 problem with 
Θ(𝑛𝑚 + 𝑛 log 𝑛) running time [Droste et al., TCS’02]

Larger 𝑚, harder the problem

Noise may be helpful when the problem is quite hard

E 𝜏 − E[𝜏′]

E[𝜏′]

Running time 
with noise

Running time 
without noise
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Noise handling strategies

Noise is harmful in most cases

Two commonly used noise handling strategies: 

 Re-evaluation [Arnold & Beyer, TEC’02; Jin & Branke, TEC’05]

• every time we access the fitness of a solution by evaluation

 Threshold selection [Markon et al., CEC’01; Bartz-Beielstein & Markon, CEC’02]

• an offspring solution is accepted only if its fitness is larger 
than that of the parent solution by at least a threshold 𝜏

smooth noise

reduce the risk of accepting a bad solution due to noise
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Theoretical analysis

Example:

(1+1)-EA 

OneMax

one-bit noise

the range of noise level such that the 
running time is polynomial

combining re-evaluation with proper 
threshold selection is better
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Back to selective ensemble

Two goals:

• maximize the generalization 
performance

• minimize the number of 
selected learners

Selective ensemble [Zhou, 2012]

learner 1

learner 𝑖

learner 𝑛

learner 2

data 
set
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The PEP approach

PEP (Pareto Ensemble Pruning) [Qian, Yu and Zhou, AAAI’15]

Main idea:
optimize the two goals of selective ensemble 
simultaneously by MOEAs

Initialization: randomly 
generate a solution, put it 
into the population 𝑃

Reproduction: pick a solution 
randomly from 𝑃, and mutate 
it to make a new one

Evaluation & Updating: if 
the new solution is not 
dominated, put it and its 
good neighbors into 𝑃

Output: select a final solution
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Previous approaches

 Ordering-based methods (OEP)

Main idea: give an order of base classifiers according to some criterion, 
and select the front classifiers

• error minimization [Margineantu & Dietterich, ICML’97]

• diversity-like criterion maximization [Martínez-Munõz et al., TPAMI’09]

• combined criterion [Li et al., ECML’12]

 Single-objective optimization-based methods (SEP)

Main idea: formulate selective ensemble as a single-objective 
optimization problem, and employ some optimization technique  

• semi-definite programming [Zhang et al., JMLR’06]

• quadratic programming [Li & Zhou, MCS’09]

• genetic algorithms [Zhou et al., AIJ’02]



http://staff.ustc.edu.cn/~chaoqian/

Theoretical analysis

PEP is at least as good as ordering-based methods

PEP can be better than ordering-based methods

PEP/OEP can be better than single-objective 
optimization-based methods
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Experimental results - test error

baseline methods ordering-based methods optimization-based methods

PEP is never significantly worse

PEP achieves the smallest error on 60% (12/20) of the data sets, 
while other methods are less than 35% (7/20)

PEP is better than any other method on more than 60% 
(12.5/20) data sets

Pruning bagging base learners with size 100
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Experimental results - ensemble size

ordering-based methods optimization-based methods

PEP is never significantly worse, except two losses on vehicle-bo-vs

PEP achieves the smallest size on 60% (12/20) of 
the data sets, while other methods are less than 
15% (3/20)

PEP is better than any other method on more than 
80% (16/20) data sets
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Application

Mobile Human Activity Recognition: identify the actions carried out 
by a person according to the information gathered by smartphones

3 times more than 
the runner up

save more than 20% storage and 
testing time than the runner up

multiclass SVM:
89.3% 
[Anguita et al., IWAAL’12]

PEP: 90.4% 

On a public data set [Anguita et al., IWAAL’12]: 6 activities



http://staff.ustc.edu.cn/~chaoqian/

Selective ensemble

• minimize the number of selected 
learners

• optimize the generalization performance

We developed a Pareto optimization method for

Subset selection

• minimize the number of selected 
items

• optimize a given objective function



http://staff.ustc.edu.cn/~chaoqian/

Subset selection

Subset selection is to select a subset of size 𝐵 from a total set 
of 𝑛 items for optimizing some objective function

Formally stated: given all items 𝑉 = {𝑣1, … , 𝑣𝑛}, an objective function
𝑓: 2𝑉 → R and a budget 𝐵, to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵.

Ground set 𝑉 Subset X⊆ 𝑉
max 𝑓(𝑋)

𝑋 ≤ 𝐵
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Sparse regression

Sparse regression [Tropp, TIT’04] : find a sparse approximation 
solution to the linear regression problem
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Influence maximization

Influence maximization [Kempe et al., KDD’03] : select a subset of users 
from a social network to maximize its influence spread

Influential users
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Document summarization

Document summarization [Lin & Bilmes, ACL’11] : select a few 
sentences to best summarize the documents
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Subset selection

Subset 
selection

Machine 
learning

Natural 
language 

processing
Information 

retrieval

Document summarization Sensor placement

Data 
mining

Sparse regression Influence maximization

[Mathematical Programming 1978]

𝑓:monotone and submodular

The greedy algorithm：

(1 − 1/𝑒)-approximation

George Nemhauser

John Von Neumann

Theory Prize

Best Paper:

[Das & Kempe, ICML’11]

[Iyer, et al., ICML’13]

[Iyer & Bilmes, NIPS’13]
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The greedy algorithm

Process:  iteratively select one item that makes the increment 
on 𝑓 maximized              

Iteration j:

Iteration 1:
V =

{𝑣1, 𝑣2, … , 𝑣𝑛}

𝑣∗

𝑋1 = {𝑣∗}

𝑣∗ =

arg𝑚𝑎𝑥𝑣∈𝑉∖𝑋𝑗−1𝑓 𝑋𝑗−1 ∪ 𝑣 − 𝑓 𝑋𝑗−1

𝑣∗

𝑉 ∖ 𝑋𝑗−1
𝑋𝑗 =

𝑋𝑗−1 ∪ {𝑣∗}

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵

The optimal approximation guarantee [Nemhauser & Wolsey, MOR’78] :

1 − 1/𝑒 ≈ 0.632 by the greedy algorithm  

Subset selection:
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The POSS approach

The POSS approach [Qian, Yu and Zhou, NIPS’15]

Transformation: 

Initialization: put the special solution {0}𝑛

into the population 𝑃

Reproduction: pick a solution 𝑥 randomly
from 𝑃, and flip each bit of 𝑥 with prob.
1/𝑛 to generate a new solution

Evaluation & Updating: if the new
solution is not dominated, put it into 𝑃
and weed out bad solutions

Output: select the best feasible solution

𝑚𝑎𝑥𝑥∊{0,1}𝑛 𝑓 𝑥 𝑠. 𝑡. 𝑥 ≤ 𝐵 original

𝑚𝑖𝑛𝑥∊{0,1}𝑛 (−𝑓 𝑥 , |𝑥|) bi-objective
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Theorem 1. For subset selection with monotone objective functions, POSS using 
𝐸 𝑇 ≤ 2𝑒𝐵2𝑛 finds a solution 𝑥 with 𝑥 ≤ 𝐵 and 𝑓 𝑥 ≥ (1 − 𝑒−𝛾) ∙ 𝑂𝑃𝑇.

Theoretical analysis

POSS can achieve the same general approximation guarantee 
as the greedy algorithm

the expected number of iterations
the best known polynomial-time approximation ratio, 
previously obtained by the greedy algorithm [Das & Kempe, ICML’11]

Theorem 2. For the Exponential Decay subclass of sparse regression, POSS using 
𝐸 𝑇 = 𝑂(𝐵2 𝑛 − 𝐵 𝑛 log 𝑛) finds an optimal solution, while the greedy algorithm 
cannot.

POSS can do better than the greedy algorithm in cases
[Das & Kempe, STOC’08]
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Sparse regression

Sparse regression [Tropp, TIT’04] : find a sparse approximation 
solution to the linear regression problem

Formally stated: given all observation variables 𝑉 = {𝑣1, … , 𝑣𝑛}, a
predictor variable 𝑧 and a budget 𝐵, to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑅𝑧,𝑋
2 =

Var 𝑧 − MSE𝑧,𝑋
Var 𝑧

𝑠. 𝑡. 𝑋 ≤ 𝐵.
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Experimental results - 𝑅2 values

greedy algorithms relaxation methods

POSS is significantly better than all 
the compared methods on all data sets 

the size constraint: B = 𝟖 the number of iterations of POSS: 𝟐𝒆𝑩𝟐𝒏

exhaustive search
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Experimental results – running time

POSS can be much more efficient in practice than 
in theoretical analysis

OPT: 𝑛𝐵/𝐵𝐵 greedy methods (FR):  𝐵𝑛 POSS: 2𝑒𝐵2𝑛

theoretical 
running time
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POSS vs. Greedy algorithm

Greedy algorithm: 

• Generate a new solution by adding a single item (single-bit 
forward search: 0 → 1)

• Maintain only one solution

POSS:

• Generate a new solution by flipping each bit of a solution
with prob. 1/𝑛 (single-bit forward search, backward search,
multi-bit search)

• Maintain several non-dominated solutions due to bi-
objective optimization

POSS may have a better ability of avoiding local optima!
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Previous analyses often assume that the exact value of the 
objective function can be accessed  

However, in many applications of subset selection, only a 
noisy value of the objective function can be obtained 

The objective function: 
the expected number 
of nodes activated by 
propagating from 𝑋

Influential usersInfluence 
maximization

Noise
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1st diffusion: 15

2nd diffusion: 16

To achieve an 
accurate estimation, 
10,000 independent 
diffusion processes 
are required
[Kempe et al., KDD’03]
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Previous analyses often assume that the exact value of the 
objective function can be accessed  

However, in many applications of subset selection, only a 
noisy value of the objective function can be obtained 

The objective function: 
the expected number 
of nodes activated by 
propagating from 𝑋

Influential usersInfluence 
maximization

noise
The average number of active nodes of independent diffusion 
processes [Kempe et al., KDD’03]

Noise
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How about the performance for noisy subset selection? 

Previous analyses often assume that the exact value of the 
objective function can be accessed  

However, in many applications of subset selection, only a 
noisy value of the objective function can be obtained 

The objective function: 
the mean squared error 
of prediction by 𝑋

Sparse
regression

noise

Noise
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Noisy subset selection

Subset selection: given all items 𝑉 = {𝑣1, … , 𝑣𝑛}, an objective 
function 𝑓: 2𝑉 → R and a budget 𝐵, to find a subset 𝑋 ⊆ 𝑉
such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝐵.

Multiplicative:   1 − 𝜖 𝑓 𝑋 ≤ 𝐹 𝑋 ≤ 1 + 𝜖 𝑓(𝑋)

Additive:    𝑓 𝑋 − 𝜖 ≤ 𝐹 𝑋 ≤ 𝑓 𝑋 + 𝜖

Noise
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Theoretical analysis

Multiplicative noise:

𝑓 𝑋 ≥
1

1 +
2𝜖𝐵
1 − 𝜖 𝛾

1 −
1 − 𝜖

1 + 𝜖

𝐵

1 −
𝛾

𝐵

𝐵

∙ 𝑂𝑃𝑇

Additive noise:

The noiseless approximation guarantee [Das & Kempe, ICML’11; 

Qian, Yu and Zhou, NIPS’15]

𝑓 𝑋 ≥ 1 − 1 −
𝛾

𝐵

𝐵

∙ 𝑂𝑃𝑇 ≥ 1 − 𝑒−𝛾 ∙ 𝑂𝑃𝑇
a constant 
approximation ratio

𝜀 ≤ 1/𝐵 for a constant 
approximation ratio

The performance degrades largely in noisy environments

𝑓 𝑋 ≥ 1 − 1 −
𝛾

𝐵

𝐵

∙ 𝑂𝑃𝑇 −
2𝐵

𝛾
−
2𝐵

𝛾
𝑒−𝛾 𝜖

Greedy algorithm & POSS:
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The PONSS approach

Threshold selection has theoretically been shown to be 
tolerant to noise [Qian, Yu and Zhou, ECJ’18]

𝑓 𝑋 ≥ 𝑓(𝑌) 𝑓 𝑋 ≥ 𝑓 𝑌 + 𝜃

Additive:

𝑋 ≼ 𝑌 ⇔  
𝑓 𝑋 ≥ 𝑓 𝑌 + 2𝜃

𝑋 ≤ |𝑌|

Multiplicative:

𝑋 ≼ 𝑌 ⇔  
𝑓 𝑋 ≥

1 + 𝜃

1 − 𝜃
𝑓(𝑌)

𝑋 ≤ |𝑌|

PONSS [Qian et al., NIPS’17]

POSS 𝑋 ≼ 𝑌 ⇔  
𝑓 𝑋 ≥ 𝑓(𝑌)

𝑋 ≤ |𝑌|

“better”

Conservative
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Theoretical analysis

Multiplicative noise:

𝑓 𝑋 ≥
1 − 𝜖

1 + 𝜖
1 − 1 −

𝛾

𝐵

𝐵

∙ 𝑂𝑃𝑇PONSS

𝑓 𝑋 ≥
1

1 +
2𝜖𝐵
1 − 𝜖 𝛾

1 −
1 − 𝜖

1 + 𝜖

𝐵

1 −
𝛾

𝐵

𝐵

∙ 𝑂𝑃𝑇POSS & Greedy

Significantly 
better

𝛾 = 1 (submodular), 𝜖 is a constant

a constant approximation ratioPONSS

Θ(1/𝐵) approximation ratioPOSS & Greedy
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Theoretical analysis

Multiplicative noise:

𝑓 𝑋 ≥
1 − 𝜖

1 + 𝜖
1 − 1 −

𝛾

𝑏

𝐵

∙ OPTPONSS

𝑓 𝑋 ≥
1

1 +
2𝜖𝐵
1 − 𝜖 𝛾

1 −
1 − 𝜖

1 + 𝜖

𝐵

1 −
𝛾

𝐵

𝐵

∙ OPTPOSS & Greedy

Additive noise:

𝑓 𝑋 ≥ 1 − 1 −
𝛾

𝐵

𝐵

∙ OPT − 2𝜖PONSS

𝑓 𝑋 ≥ 1 − 1 −
𝛾

𝐵

𝐵

∙ OPT −
2𝐵

𝛾
−
2𝐵

𝛾
𝑒−𝛾 𝜖POSS & Greedy

Significantly 
better

better

2𝐵

𝛾
−
2𝐵

𝛾
𝑒−𝛾 ≥ 2
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Experimental results - influence maximization

PONSS (red line) vs. POSS (blue line) vs. Greedy (black line): 

• Noisy evaluation: the average of 10 independent Monte 
Carlo simulations

• The output solution: the average of 10,000 independent 
Monte Carlo simulations
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Experimental results - sparse regression

PONSS (red line) vs. POSS (blue line) vs. Greedy (black line): 

• Noisy evaluation: a random sample of 1,000 instances

• The output solution: the whole data set
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Conclusion

• Running time analysis approaches for MOEAs

• Theoretical properties of MOEAs

– Constrained optimization

– Noisy optimization

• Multi-objective evolutionary learning algorithms

– Selective ensemble

– Subset selection

– Noisy subset selection
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