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Evolutionary algorithms

Evolutionary algorithms: a kind of nature-inspired 
randomized heuristic optimization algorithms

genetic algorithms, evolutionary strategies, evolutionary 

programming, particle swarm optimization, ……

Charles Darwin
1809-1882

C. Darwin, after collecting abundant evidence, 
developed a theory about how species evolve

reproduction with variation + nature selection



http://www.lamda.nju.edu.cn/qianc/

Evolutionary algorithms

EAs can be applied to solve complex optimization problems

• non-differentiable and non-continuous problems

• problems with multiple objective functions

• problems without explicit objective function formulation

Initial 

population

Parent 

solutions
Offspring 

solutions

Mutation & 

recombination 

Parent 

selection 

Solution1

Solution2

Solution3
Fitness 

evaluation
Survivor

selection

New

population
Stop 

criterion 

End

Yes

No

Common structure of evolutionary algorithms (EAs)

Only requirement
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Application - high-speed train head design

initialization

population

evaluation &
selection

offspring

reproduction
Series 700

Series N700

this nose ... has been newly developed ... using the 

latest analytical technique (i.e. genetic algorithms)

N700 cars save 19% energy ... 30% increase in the output... 

This is a result of adopting the ... nose shape
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Application - antenna design

evolved antennas

93% efficiency

QHAs (human designed) 

38% efficiency

human designed
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Application - biological evolution



http://www.lamda.nju.edu.cn/qianc/

Safe evolutionary algorithms

EAs have yielded encouraging empirical outcomes, 
but lack theoretical guarantee

Data set 1 

Data set 2 

Data set 3 

Data set 4 

Data set 5 

Data set 6 ?

Data set 7 ?

Data set 8 ?

Data set 9 ?

Data set 10 ?

Not safe

Reported results How about the performance on other data? 

Theoretical guarantee: for any instance of a given problem,

𝑓 𝑥 ≥ 𝛼 ⋅ OPT Optimal function value
function value of 
the output solution
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Safe evolutionary algorithms

Can we design “safe” EAs, i.e., EAs with provable 
approximation guarantee?

EAs have yielded encouraging empirical outcomes, 
but lack theoretical guarantee

Data set 1 

Data set 2 

Data set 3 

Data set 4 

Data set 5 

Data set 6 ?

Data set 7 ?

Data set 8 ?

Data set 9 ?

Data set 10 ?

Not safe

Reported results How about the performance on other data? 
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Outline

Safe evolutionary optimization?

Develop running time analysis tools for EAs
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Convergence analysis of EAs

Convergence analysis

lim𝑡→+∞ 𝑃 𝜉𝑡 ∈ 𝒳∗ = 1 ?

An EA that

1. uses global operators

2. preserves the best solution

But life is limited! How fast does it converge?

∀𝑥: 𝑃 𝜉𝑡+1 ∈ 𝒳∗ 𝜉𝑡 = 𝑥) > 0

the probability of finding 
optimum in each step

lim𝑡→+∞ 𝑃 𝜉𝑡 ∈ 𝒳∗ = 1
converges to the optimal solutions

[Rudolph, 1998]
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Running time analysis of EAs

Convergence analysis

lim𝑡→+∞ 𝑃 𝜉𝑡 ∈ 𝒳∗ = 1 ?

Running time analysis

𝜏 = min 𝑡 ≥ 0 𝜉𝑡 ∈ 𝒳∗}

The number of iterations until 
finding an optimal or approximate 
solution for the first time

The leading theoretical aspect
[Auger & Doerr, 2011; Neumann & Witt, 2012]

Running time complexity

• Usually grows with the problem size and expressed 
in asymptotic notations

e.g., (1+1)-EA solving LeadingOnes: 𝑂(𝑛2)

z
y

Problem size

R
u

n
tim

e
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Running time analysis tools of EAs

• Analyses starting from scratch are quite difficult

• We need general running time analysis tools

𝑆0

𝑆1

𝑆2

𝑆𝑚−1

𝑆𝑚

1

𝑣1

1

𝑣𝑚−1

𝑃(𝜉𝑡+1 ∈ ⋃𝑗=𝑖+1
𝑚 𝑆𝑗|𝜉𝑡 ∈ 𝑆𝑖) ≥ 𝑣𝑖

 Running time upper bound: ∑𝑖=𝑗
𝑚−11/𝑣𝑖

Fitness level method [Droste et al., TCS’02]

 Jumping probability lower bound:

Drift analysis [He & Yao, AIJ’01]

optimal 
solutions

𝑥
𝑉(𝑥)Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡] ≥ 𝑐

 Running time upper bound: 𝑉(𝑥)/𝑐

 Expected drift in one step:
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Switch analysis

Main idea:

population
0 

population
1

population
2

population
3 

…

state 𝜉0 …state 𝜉1 state 𝜉2 state 𝜉3

Switch analysis [Yu, Qian & Zhou, TEC’15]

∀𝑡: ∑𝑥∈𝒳,𝑦∈𝒴 𝜋𝑡 𝑥 𝑃 𝜉𝑡+1 ∈ 𝜙−1 𝑦 𝜉𝑡 = 𝑥 E 𝜏′ 𝜉0
′ = 𝑦

−∑𝑢,𝑦∈𝒴 𝜋𝑡
𝜙
𝑢 𝑃 𝜉1

′ ∈ 𝑦 𝜉0
′ = 𝑢 E 𝜏′ 𝜉1

′ = 𝑦 ≤ 𝜌𝑡

 Running time upper bound: E 𝜏 𝜉0 ∼ 𝜋0 ≤ E[𝜏′|𝜉0
′ ∼ 𝜋0

𝜙
] + ∑𝑡=0

+∞𝜌𝑡

 One step difference with a reference evolutionary process:
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Switch analysis

Main idea [Yu, Qian and Zhou, TEC’15]:

examine the different 
behaviors at each step

Given EA on the given problem

Reference chain

The expected running time of {𝜉𝑡
′}𝑡=0
+∞ , easy to analyze

{𝜉𝑡}𝑡=0
+∞

{𝜉𝑡
′}𝑡=0
+∞

Ε 𝜏 ≤ (≥) Ε 𝜏′ + ∑𝑡=0
+∞ 𝜌𝑡

The expected running time of {𝜉𝑡}𝑡=0
+∞ :



http://www.lamda.nju.edu.cn/qianc/

Ability of switch analysis 

𝑃(𝜉𝑡+1 ∈ ⋃𝑗=𝑖+1
𝑚 𝑆𝑗|𝜉𝑡 ∈ 𝑆𝑖) ≥ 𝑣𝑖

 Running time upper bound: ∑𝑖=𝑗
𝑚−11/𝑣𝑖

Fitness level method [Droste et al., TCS’02]

 Jumping probability lower bound:

Drift analysis [He & Yao, AIJ’01]

Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡] ≥ 𝑐

 Running time upper bound: 𝑉(𝑥)/𝑐

 Expected drift in one step:

Reducible to 
switch analysis

Switch analysis can derive at least the same tight bound 
while requiring no more information
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Application of switch analysis

GSEMO Problem Previous 
result

Our result

𝑂(𝑛3)
[Giel, CEC’03]

≤ 6𝑛3

𝑂 𝑛2 log 𝑛
[Qian et al., 

AIJ’13] 

≤ 3𝑛2 log 𝑛

𝑂(𝑛𝑚+1)
[Laumanns et 
al., TEC’04]

𝑂(𝑛𝑚) for 𝑚 > 4,

𝑂 𝑛3 log 𝑛 for 𝑚 = 4

___
1/𝑛-approximation: 

𝑂(𝑛2(log𝑙 𝑛 +

log𝑙(𝑤𝑛/𝑤1)))

gives the leading 
constants

Switch analysis is general and powerful

Bi-objective

Many-objective

Approximate 
analysis

LOTZ

COCZ

𝑚COCZ

WOMM

is asymptotically
tighter than

L. Thiele

Member of  

Academia 

Europaea

Application [Bian, Qian and Tang, IJCAI’18]:
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Outline

Safe evolutionary optimization?

Develop running time analysis tools for EAs

Disclose theoretical properties of EAs 
for constrained and noisy optimization



http://www.lamda.nju.edu.cn/qianc/

How to deal with constraints when EAs 
are used for constrained optimization?

The optimization problems in real-world applications

often come with constraints
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Constrained optimization

𝑚𝑖𝑛𝑥∊𝒳 𝑓 𝑥

𝑠. 𝑡. 𝑔𝑖 𝑥 = 0, 1 ≤ 𝑖 ≤ 𝑞;

ℎ𝑖 𝑥 ≤ 0, 𝑞 + 1 ≤ 𝑖 ≤ 𝑚

General formulation:

objective function

equality constraints 

inequality 
constraints 

The goal: find a feasible solution minimizing the objective 𝑓

satisfies all constraints 
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Constraint handling strategies

Two common constraint handling strategies: 

 Penalty function [Hadj-Alouane & Bean, OR’97]

• transform the original constrained optimization problem 
into an unconstrained optimization problem

 Multi-objective reformulation [Coello Coello, 2002; Cai & Wang, TEC’06]

• transform the original constrained optimization problem 
into a bi-objective optimization problem
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Penalty function

1. transform the original constrained optimization 
problem into an unconstrained optimization problem

Main idea [Hadj-Alouane & Bean, OR’97]

unconstrained

𝑚𝑖𝑛 𝑓 𝑥 + 𝜆∑𝑖=1
𝑚 𝑓𝑖(𝑥)

constraint 
violation degree

𝑓𝑖 𝑥 =  
𝑔𝑖 𝑥 1 ≤ 𝑖 ≤ 𝑞

max{0, ℎ𝑖(𝑥)} 𝑞 + 1 ≤ 𝑖 ≤ 𝑚

constrained

𝑚𝑖𝑛 𝑓 𝑥

𝑠. 𝑡. 𝑔𝑖 𝑥 = 0, 1 ≤ 𝑖 ≤ 𝑞;

ℎ𝑖 𝑥 ≤ 0, 𝑞 + 1 ≤ 𝑖 ≤ 𝑚
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Penalty function

1. transform the original constrained optimization 
problem into an unconstrained optimization problem

Main idea [Hadj-Alouane & Bean, OR’97]

unconstrained

𝑚𝑖𝑛 𝑓 𝑥 + 𝜆∑𝑖=1
𝑚 𝑓𝑖(𝑥)

constrained

𝑚𝑖𝑛 𝑓 𝑥

𝑠. 𝑡. 𝑔𝑖 𝑥 = 0, 1 ≤ 𝑖 ≤ 𝑞;

ℎ𝑖 𝑥 ≤ 0, 𝑞 + 1 ≤ 𝑖 ≤ 𝑚

2. employ a single-objective EA to solve the transformed 
problem
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Multi-objective reformulation

1. transform the original constrained optimization 
problem into a bi-objective optimization problem

Main idea [Coello Coello, 2002; Cai & Wang, TEC’06]

bi-objective

𝑚𝑖𝑛 (𝑓 𝑥 , ∑𝑖=1
𝑚 𝑓𝑖(𝑥))

constraint 
violation degree

𝑓𝑖 𝑥 =  
𝑔𝑖 𝑥 1 ≤ 𝑖 ≤ 𝑞

max{0, ℎ𝑖(𝑥)} 𝑞 + 1 ≤ 𝑖 ≤ 𝑚

constrained

𝑚𝑖𝑛 𝑓 𝑥

𝑠. 𝑡. 𝑔𝑖 𝑥 = 0, 1 ≤ 𝑖 ≤ 𝑞;

ℎ𝑖 𝑥 ≤ 0, 𝑞 + 1 ≤ 𝑖 ≤ 𝑚
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Multi-objective optimization

z

x

y

𝑓1

𝑓2

better 𝑓1
better 𝑓2

worse 𝑓1
better 𝑓2

x dominates z :

𝑓1 𝑥 < 𝑓1 𝑧 ⋀ 𝑓2 𝑥 < 𝑓2 𝑧

x is incomparable with 𝑦 :

𝑓1 𝑥 > 𝑓1 𝑦 ⋀ 𝑓2 𝑥 < 𝑓2 𝑦

The task: optimize multiple objectives simultaneously

𝑚𝑖𝑛𝑥∈𝒳 (𝑓1 𝑥 , 𝑓2 𝑥 ,… , 𝑓𝑚 𝑥 )

Example: bi-objective minimization
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1. transform the original constrained optimization 
problem into a bi-objective optimization problem

Main idea [Coello Coello, 2002; Cai & Wang, TEC’06]

2. employ a multi-objective EA to solve the transformed 
problem

Multi-objective reformulation

bi-objective

𝑚𝑖𝑛 (𝑓 𝑥 , ∑𝑖=1
𝑚 𝑓𝑖(𝑥))

constrained

𝑚𝑖𝑛 𝑓 𝑥

𝑠. 𝑡. 𝑔𝑖 𝑥 = 0, 1 ≤ 𝑖 ≤ 𝑞;

ℎ𝑖 𝑥 ≤ 0, 𝑞 + 1 ≤ 𝑖 ≤ 𝑚

3. output the feasible solution from the generated non-
dominated solution set

constraint violation degree = 0
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Constraint handling strategies

Two common constraint handling strategies: 

 Penalty function [Hadj-Alouane & Bean, OR’97]

 Multi-objective reformulation [Coello Coello, 2002; Cai & Wang, TEC’06]

It is not yet clear whether multi-objective 
reformulation can be better in theory

Previous empirical studies have shown the superior 
performance of multi-objective reformulation
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Problems

• Minimum matroid optimization (P-solvable) [Edmonds, MP’71]

• Minimum cost coverage (NP-hard) [Wolsey, Combinatorica’82]

e.g., minimum spanning tree, maximum bipartite matching

e.g., minimum set cover, submodular set cover

Definition 1. Given a matroid (𝑈, 𝑆), a rank function 𝑟: 2𝑈 → ℕ and a weight 

function 𝑤:𝑈 → ℕ, the problem is formulated as 

𝑚𝑖𝑛𝒙∈{0,1}𝑛 ∑𝑖=1
𝑛 𝑤𝑖𝑥𝑖 𝑠. 𝑡. 𝑟 𝒙 = 𝑟(𝑈)

Definition 2. Given a monotone submodular function 𝑓: 2𝑈 → ℝ, some value 

𝑞 ≤ 𝑓(𝑈) and a weight function 𝑤:𝑈 → ℕ, the problem is formulated as 

𝑚𝑖𝑛𝒙∈{0,1}𝑛 ∑𝑖=1
𝑛 𝑤𝑖𝑥𝑖 𝑠. 𝑡. 𝑓 𝒙 ≥ 𝑞



http://www.lamda.nju.edu.cn/qianc/

Theoretical analysis

Penalty function vs. Multi-objective reformulation
[Qian, Yu and Zhou, IJCAI’15]

• Minimum matroid optimization (P-solvable): obtaining 
an optimal solution 

Penalty function:

Multi-objective reformulation:

Ω(𝑟2𝑛(log 𝑛 + log𝑤𝑚𝑎𝑥))

Ο(𝑟𝑛(log 𝑛 + log𝑤𝑚𝑎𝑥 + 𝑟))

The running time reduces by a factor 𝑚𝑖𝑛{log 𝑛 + log𝑤𝑚𝑎𝑥 , 𝑟}

matroid rank problem size maximum weight
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Theoretical analysis

• Minimum matroid optimization (P-solvable): obtaining 
an optimal solution 

The running time reduces exponentially  

The running time reduces by a factor  𝑚𝑖𝑛{log 𝑛 + log𝑤𝑚𝑎𝑥 , 𝑟}

• Minimum cost coverage (NP-hard): obtaining a 𝐻𝑞-

approximate solution 

Ο(𝑞𝑛 log 𝑛 + log𝑤𝑚𝑎𝑥 + 𝑞 )

exponential w.r.t. 𝑛, 𝑞, log𝑤𝑚𝑎𝑥

polynomial

Penalty function:

Multi-objective reformulation:

Ω(𝑟2𝑛(log 𝑛 + log𝑤𝑚𝑎𝑥))

Ο(𝑟𝑛(log 𝑛 + log𝑤𝑚𝑎𝑥 + 𝑟))

Penalty function:

Multi-objective reformulation:
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Theoretical analysis 

Findings from the analysis: 

Multi-objective reformulation

global optimum

local optimum

feasible space

infeasible 
space

Penalty function

• the penalty prefers feasible solutions

• get trapped in the local optimum, 
which is far from the global optimum

• the constraint violation objective 
allows infeasible solutions

• follow a short path from infeasible to 
feasible to find good solutions 
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General problem classes

• Constrained submodular approximately monotone 
maximization

• Constrained monotone approximately submodular 
maximization

[Qian et al., AIJ’19]

𝑓 𝑥 ≥ 1 −
1

𝑒
⋅ (OPT − 𝑘𝜖)

𝑓 𝑥 ≥
1

1 +
2𝑘𝜖
1 − 𝜖

1 −
1

𝑒

1 − 𝜖

1 + 𝜖

𝑘

⋅ OPT

Multi-objective 
reformulation:

[Krause et al., JMLR’08]

[Horel & Singer, NIPS’16]

Achieve the best known polynomial-time 
approximation guarantee

Multi-objective 
reformulation:
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How to improve the robustness when 
EAs are used for noisy optimization?

The optimization problems in real-world applications

often come with noise
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Noisy optimization

The objective evaluation is often disturbed by noise

e.g., a prediction model is evaluated only on a 
limited amount of data  

Exact objective 
value: 𝑓(𝑥)

Solution 𝑥
Objective 
function 

evaluation Noisy objective 
value: 𝐹(𝑥)

e.g., 𝑓 𝑥 + 𝑁(0, 𝜎2)
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The influence of noise

It was believed that noise makes evolutionary 
optimization harder

many noise handling strategies have been proposed 
[Jin & Branke, TEC’05; Goh & Tan, TEC’07]  

Some empirical observations have shown that noise can 
have a positive impact on the performance of local search 
[Selman et al., AAAI’94; Hoos & Stutzle, JAR’00] 

Can noise make evolutionary optimization easier?
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Running time

Theoretical analysis

A sufficient condition: noise is helpful [Qian, Yu and Zhou, ECJ’18]

Intuitively, noise can bring some randomness to help the EA escape from 
local optima

Noise 
helpful

Example: (1+𝑛)-EA on the Trap problem

|𝑥|1

𝑓
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Noise handling strategies

Noise is harmful in most cases

Two commonly used noise handling strategies: 

 Re-evaluation [Arnold & Beyer, TEC’02; Jin & Branke, TEC’05]

• every time we access the fitness of a solution by evaluation

 Threshold selection [Markon et al., CEC’01; Bartz-Beielstein & Markon, CEC’02]

• an offspring solution is accepted only if its fitness is larger 
than that of the parent solution by at least a threshold 𝜏

smooth noise

reduce the risk of accepting a bad solution due to noise
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Theoretical analysis

Example:

(1+1)-EA 

OneMax

one-bit noise

the range of noise level such that the 
running time is polynomial

combining re-evaluation with proper threshold 
selection is better [Qian, Yu and Zhou, ECJ’18]
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Outline

Safe evolutionary optimization?

Develop running time analysis tools for EAs

Disclose theoretical properties of EAs 
for constrained and noisy optimization

Propose EAs with good polynomial-time 
approximation guarantees for (noisy) subset selection
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Subset selection

Subset selection is to select a subset of size 𝑘 from a total set 
of 𝑛 items for optimizing some objective function

Formally stated: given all items 𝑉 = {𝑣1, … , 𝑣𝑛}, an objective function
𝑓: 2𝑉 → R and a budget 𝑘, to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝑘.

Ground set 𝑉 Subset 𝑋 ⊆ 𝑉
max 𝑓(𝑋)

𝑋 ≤ 𝑘
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Application - sparse regression

Sparse regression [Tropp, TIT’04] : select a few observation variables 
to best approximate the predictor variable by linear regression

observation variables predictor 
variable 𝑧

Item 𝑣𝑖: an observation variable

Objective 𝑓: squared multiple correlation 𝑅𝑧,𝑋2 =
Var 𝑧 − MSE𝑧,𝑋

Var 𝑧

variance mean squared 
error

a subset 𝑋 of observation variables
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Application - influence maximization

Influence maximization [Kempe et al., KDD’03] : select a subset of users 
from a social network to maximize its influence spread

Influential users

Item 𝑣𝑖: a social network user

Objective 𝑓: influence spread, measured by the expected 
number of social network users activated by diffusion 
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Application - document summarization

Document summarization [Lin & Bilmes, ACL’11] : select a few 
sentences to best summarize the documents

Item 𝑣𝑖: a sentence

Objective 𝑓: summary quality
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Application - sensor placement

Sensor placement [Krause & Guestrin, IJCAI’09 Tutorial] : select a few places to 
install sensors such that the information gathered is maximized

Water contamination detection Fire detection

Item 𝑣𝑖: a place to install a sensor Objective 𝑓: entropy 
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Subset selection

Subset 
selection

Machine 
learning

Natural 
language 

processing
Networks

Document summarization Sensor placement

Data 
mining

Sparse regression Influence maximization

[Mathematical Programming 1978]

𝑓:monotone and submodular

The greedy algorithm：

(1 − 1/𝑒)-approximation

George Nemhauser

John Von Neumann

Theory Prize

Best Paper/Test of 
Time Award:

[Kempe et al., KDD’03]

[Das & Kempe, ICML’11]

[Iyer & Bilmes, NIPS’13]
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POSS algorithm

POSS algorithm [Qian, Yu and Zhou, NIPS’15]

Transformation: 

Initialization: put the special solution {0}𝑛

into the population 𝑃

Reproduction: pick a solution 𝒙 randomly
from 𝑃, and flip each bit of 𝒙 with prob.
1/𝑛 to generate a new solution

Evaluation & Updating: if the new
solution is not dominated, put it into 𝑃
and weed out bad solutions

Output: select the best feasible solution

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝑘 original

𝑚𝑖𝑛𝑋⊆𝑉 (−𝑓 𝑋 , |𝑋|) bi-objective
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Sparse regression

Sparse regression: given all observation variables 𝑉 = {𝑣1, … , 𝑣𝑛}, a
predictor variable 𝑧 and a budget 𝑘, to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑅𝑧,𝑋
2 =

Var 𝑧 − MSE𝑧,𝑋
Var 𝑧

𝑠. 𝑡. 𝑋 ≤ 𝑘

observation variables predictor 
variable 𝑧

Var 𝑧 : variance of 𝑧 MSE𝑧,𝑋: mean squared error of predicting 𝑧
by using observation variables in 𝑋

a subset 𝑋 of observation variables
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Experimental results

greedy algorithms relaxation methods

POSS is significantly better than all the compared 
state-of-the art algorithms on all data sets 

the size constraint: k= 𝟖 the number of iterations of POSS: 𝟐𝒆𝒌𝟐𝒏

exhaustive search

● denotes that POSS is significantly better by 
the 𝑡-test with confidence level 0.05
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Theorem 1. For subset selection with monotone objective functions, 
POSS using 𝐸 𝑇 ≤ 2𝑒𝑘2𝑛 finds a solution 𝑋 with 𝑋 ≤ 𝑘 and 

𝑓 𝑋 ≥ (1 − 𝑒−𝛾) ∙ 𝑂𝑃𝑇.

Theoretical analysis

POSS can achieve the optimal polynomial-time 
approximation guarantee

the optimal polynomial-time approximation guarantee 
for monotone 𝑓 [Harshaw et al., ICML’19]
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Previous analyses often assume that the exact value of the 
objective function can be accessed  

However, in many applications of subset selection, only a 
noisy value of the objective function can be obtained 

The objective function: 
the expected number 
of nodes activated by 
propagating from 𝑋

Influential usersInfluence 
maximization

noise
The average number of nodes activated by a limited number 
of independent diffusion processes [Kempe et al., KDD’03]

Noise
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How about the performance for noisy subset selection? 

Previous analyses often assume that the exact value of the 
objective function can be accessed  

However, in many applications of subset selection, only a 
noisy value of the objective function can be obtained 

The objective function: 
the mean squared error 
of prediction by 𝑋

Sparse
regression

noise

Noise
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Noisy subset selection

Subset selection: given 𝑉 = {𝑣1, … , 𝑣𝑛}, an objective function 
𝑓: 2𝑉 → R and a budget 𝑘, to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝑘

Multiplicative:   1 − 𝜖 ⋅ 𝑓 𝑋 ≤ 𝐹 𝑋 ≤ 1 + 𝜖 ⋅ 𝑓(𝑋)

Additive:    𝑓 𝑋 − 𝜖 ≤ 𝐹 𝑋 ≤ 𝑓 𝑋 + 𝜖

Noise

Applications: influence maximization, sparse regression

crowdsourced image collection summarization [Singla et al., AAAI’16]

maximizing information gain in graphical models [Chen et al., COLT’15]

exact objective value noisy objective value
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Theoretical analysis

Under multiplicative noise:

𝑓 𝑋 ≥
1

1 +
2𝜖𝑘

1 − 𝜖 𝛾

1 −
1 − 𝜖

1 + 𝜖

𝑘

1 −
𝛾

𝑘

𝑘

∙ 𝑂𝑃𝑇

Under additive noise:

Noiseless approximation guarantee [Qian, Yu and Zhou, NIPS’15]

𝑓 𝑋 ≥ 1 − 1 −
𝛾

𝑘

𝑘

∙ 𝑂𝑃𝑇 ≥ 1 − 𝑒−𝛾 ∙ 𝑂𝑃𝑇
a constant 
approximation ratio

𝜀 ≤ 1/𝑘 for a constant 
approximation ratio

The performance degrades largely in noisy environments

𝑓 𝑋 ≥ 1 − 1 −
𝛾

𝑘

𝑘

∙ 𝑂𝑃𝑇 −
2𝑘

𝛾
−
2𝑘

𝛾
𝑒−𝛾 𝜖

Approximation guarantee of POSS noise strength
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PONSS algorithm

Threshold selection has theoretically been shown to be 
robust against noise [Qian, Yu and Zhou, ECJ’18]

𝑓 𝑋 ≥ 𝑓(𝑌) 𝑓 𝑋 ≥ 𝑓 𝑌 + 𝜃

Additive:

𝑋 ≼ 𝑌 ⇔  
𝑓 𝑋 ≥ 𝑓 𝑌 + 2𝜃

𝑋 ≤ |𝑌|

Multiplicative:

𝑋 ≼ 𝑌 ⇔  
𝑓 𝑋 ≥

1 + 𝜃

1 − 𝜃
𝑓(𝑌)

𝑋 ≤ |𝑌|

PONSS [Qian et al., NIPS’17]

POSS 𝑋 ≼ 𝑌 ⇔  
𝑓 𝑋 ≥ 𝑓(𝑌)

𝑋 ≤ |𝑌|

“better”

Conservative 
comparison
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Theoretical analysis

Under multiplicative noise:

𝑓 𝑋 ≥
1 − 𝜖

1 + 𝜖
1 − 1 −

𝛾

𝑘

𝑘

∙ 𝑂𝑃𝑇PONSS

𝑓 𝑋 ≥
1

1 +
2𝜖𝑘

1 − 𝜖 𝛾

1 −
1 − 𝜖

1 + 𝜖

𝑘

1 −
𝛾

𝑘

𝑘

∙ 𝑂𝑃𝑇POSS

Significantly 
better

When 𝛾 = 1 (submodular), 𝜖 is a constant

a constant approximation ratioPONSS

Θ(1/𝑘) approximation ratioPOSS
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Theoretical analysis

Under multiplicative noise:

𝑓 𝑋 ≥
1 − 𝜖

1 + 𝜖
1 − 1 −

𝛾

𝑘

𝑘

∙ 𝑂𝑃𝑇PONSS

𝑓 𝑋 ≥
1

1 +
2𝜖𝑘

1 − 𝜖 𝛾

1 −
1 − 𝜖

1 + 𝜖

𝑘

1 −
𝛾

𝑘

𝑘

∙ 𝑂𝑃𝑇POSS

Under additive noise:

𝑓 𝑋 ≥ 1 − 1 −
𝛾

𝑘

𝑘

∙ 𝑂𝑃𝑇 − 2𝜖PONSS

𝑓 𝑋 ≥ 1 − 1 −
𝛾

𝑘

𝑘

∙ 𝑂𝑃𝑇 −
2𝑘

𝛾
−
2𝑘

𝛾
𝑒−𝛾 𝜖POSS

Significantly 
better

better
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Experimental results - influence maximization

PONSS (red line) vs. POSS (blue line) vs. Greedy (black line): 

• Noisy evaluation: the average of 10 independent Monte 
Carlo simulations

• The output solution: the average of 10,000 independent 
Monte Carlo simulations
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Experimental results - sparse regression

PONSS (red line) vs. POSS (blue line) vs. Greedy (black line): 

• Noisy evaluation: a random sample of 1,000 instances

• The output solution: the whole data set
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Safe evolutionary optimization?

Develop running time analysis tools for EAs

Disclose theoretical properties of EAs 
for constrained and noisy optimization

Propose EAs with good polynomial-time 
approximation guarantees for (noisy) subset selection

Yes

Conclusion
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