
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, 2019 1

Distributed Pareto Optimization for Large-scale
Noisy Subset Selection

Chao Qian, Member, IEEE

Abstract—Subset selection, aiming to select the best subset
from a ground set with respect to some objective function, is
a fundamental problem with applications in many areas, such
as combinatorial optimization, machine learning, data mining,
computer vision, information retrieval, etc. Along with the devel-
opment of data collection and storage, the size of the ground set
grows larger. Furthermore, in many subset selection applications,
the objective function evaluation is subject to noise. We thus study
the large-scale noisy subset selection problem in this paper. The
recently proposed DPOSS algorithm based on multi-objective
evolutionary optimization is a powerful distributed solver for
large-scale subset selection. Its performance, however, has been
only validated in the noise-free environment. In this paper, we
first prove its approximation guarantee under two common noise
models, i.e., multiplicative noise and additive noise, disclosing that
the presence of noise degrades the performance of DPOSS largely.
Next, we propose a new distributed multi-objective evolutionary
algorithm called DPONSS for large-scale noisy subset selection.
We prove that the approximation guarantee of DPONSS under
noise is significantly better than that of DPOSS. We also conduct
experiments on the application of sparse regression, where the
objective evaluation is often estimated using a sample data,
bringing noise. The results on various real-world data sets, whose
size can reach millions, clearly show the excellent performance
of DPONSS.

Index Terms—Subset selection, large-scale, noise, Pareto op-
timization, multi-objective evolutionary algorithms, distributed
algorithms, theoretical analyses, experimental studies.

I. INTRODUCTION

In real-world applications, we often encounter the problem
of selecting a good subset from a total set of items. For
example, for influence maximization [22], it is to select a
subset of social network users which has a large influence
spread; for sensor placement [23], it is to select a subset of
places to install sensors such that the information gathered is
maximized or the uncertainty of the environment is mostly
reduced; for sparse regression [26], it is to select a subset of
observation variables to best approximate the target variable
by linear regression; for unsupervised feature selection [13], it
is to select a subset of features to minimize the reconstruction
error of the data matrix. All of these applications can be
formulated as such a constrained optimization problem:

argmaxS⊆V f(S) s.t. |S| ≤ k, (1)

where V = {v1, v2, . . . , vn} is a ground set of n items, f
is a given objective function to be maximized, | · | denotes
the size of a set, and k is the budget. Each application

C. Qian is with the National Key Laboratory for Novel Software Technol-
ogy, Nanjing University, Nanjing 210023, China, and also with the School of
Computer Science and Technology, University of Science and Technology of
China, Hefei 230027, China (e-mail: qianc@lamda.nju.edu.cn)

has specific meanings on the items {v1, v2, . . . , vn} and the
objective f . This general problem is called subset selection,
the goal of which is to select a subset with at most k items for
maximizing a given objective function f . More applications
include maximum coverage [14], active set selection [39],
exemplar-based clustering [11], etc.

Therefore, subset selection is a very general problem with
many practical applications. Due to its NP-hardness [28],
several polynomial-time approximation algorithms have been
designed. The most famous one is the standard greedy al-
gorithm. Starting from the empty set, the greedy algorithm
iteratively adds one item which brings the largest increment
on the objective f , until k items have been selected. It has
been proved that when the objective function f is monotone,
the greedy algorithm can achieve an approximation ratio of
(1 − e−γ) [7], where γ is the submodularity ratio measuring
how close f is to submodular. Particularly, for the cases
where f is submodular, γ = 1 and thus the approximation
ratio becomes (1 − 1/e), which is optimal [29], [30]; for
sparse regression where f is not necessarily submodular, the
approximation ratio (1− e−γ) is also the best known one [7].

A simple local search (LS) algorithm [30] is also often used
for subset selection. Starting from k randomly selected items,
LS iteratively replaces a selected item with an unselected one,
which can bring improvement on the objective f . This process
is terminated until no improvement can be yielded. It has been
shown [30] that for monotone submodular f , LS can achieve
an approximation ratio of k/(2k−1), which is, however, worse
than that, i.e., 1− 1/e, of the greedy algorithm.

Evolutionary algorithms (EAs), as a kind of global search
algorithms, have achieved great successes in solving com-
plicated optimization problems, e.g., [4], [10], [31], [32],
[40], [42]. Based on multi-objective evolutionary optimization,
Qian et al. [36] recently proposed a new method Pareto
Optimization for Subset Selection (POSS). POSS first refor-
mulates the original problem, i.e., Eq. (1), as a bi-objective
optimization problem: maximizing the given objective f(S)
and minimizing the subset size |S|. Then, a simple multi-
objective EA (MOEA) with mutation only is employed to
solve this bi-objective optimization problem. Finally, the best
feasible solution, i.e., the solution having the largest f value
while satisfying the size constraint, is selected from the
generated non-dominated solution set. Note that a solution here
corresponds to a subset. POSS has been proved to be able to
obtain the same general approximation guarantee (1 − e−γ)
as the greedy algorithm. Furthermore, it has been empirically
shown significantly better than the greedy algorithm and LS
on the application of sparse regression [36] and unsupervised
feature selection [15].



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, 2019 2

As the development of data collection and storage tech-
niques, the size of the ground set V involved in the subset
selection applications becomes larger and larger. For example,
for the application of influence maximization, a social net-
work can contain millions of users; for sparse regression or
unsupervised feature selection, the number of variables can
also reach millions, or even tens of millions. However, the
application of POSS to large-scale subset selection tasks is
limited. In each iteration of POSS, new offspring solutions
are randomly generated by mutation and then evaluated. Thus,
running POSS requires centralized access to the whole V ,
whereas the data set can be too large to be stored on one
single machine for large-scale applications.

To alleviate the limitation of POSS to large-scale appli-
cations, a distributed version called DPOSS has been pro-
posed [33]. DPOSS is a two-round algorithm and employs
a divide and conquer strategy. That is, the ground set V is
partitioned and distributed over m machines, and then POSS
is run on each machine to find a subset in parallel; after this,
another subset is generated by running POSS on the union
of these m resulting subsets. DPOSS finally outputs the best
one among all the (m + 1) subsets generated in these two
rounds. On the two large-scale applications, i.e., maximum
coverage and sparse regression, it has been shown that the
performance of DPOSS is very close to that of the centralized
POSS algorithm, and clearly better than that of the state-of-
the-art distributed greedy algorithm RANDGREEDI [1], [27].
Furthermore, it has been proved that for the subset selection
problem having monotone objective functions, DPOSS has an
approximation guarantee of (1−e−γ)·max {α/m, γ/k}. Note
that α is another notion of approximate submodularity [43],
different from γ.

Thus, DPOSS is a powerful approximation solver for large-
scale subset selection. However, its performance has only been
validated in the noise-free environment, whereas the objective
function evaluation is often subject to noise for large-scale
subset selection. That is, only a noisy objective function value
can be obtained instead of the exact one. The noise generally
stems from two aspects. On one hand, the objective function
evaluation can be very time-consuming and thus is often
approximately calculated in some applications. For example,
in the task of influence maximization, the computation of
the objective, i.e., influence spread, is #P-hard [5], which
is often estimated by simulating the random propagation
process multiple times and using the average [22]; in the
task of sparse regression, a sample of instances rather than
all instances is often used for regression, leading to a noisy
evaluation. On the other hand, the noise can be produced by the
distributed algorithm. For some applications, e.g., exemplar-
based clustering [11] and unsupervised feature selection [13],
the objective function relies on the whole data set V , whereas
by the distribution, it can only be estimated based on the local
data allocated to each machine.

In this paper, we first theoretically study the performance
of DPOSS for large-scale subset selection under noise. Two
common noise models, i.e., multiplicative noise and additive
noise, are considered, where the noisy objective F (S) is in the
range of (1±ϵ)·f(S) and f(S)±ϵ, respectively. We prove that

for subset selection having monotone f under multiplicative
noise, DPOSS can achieve an approximation guarantee of

1

1+ 2kϵ
(1−ϵ)γ

·

(
1−
(
1−ϵ

1+ϵ

)k

e−γ

)
·max

{ α

m
,
γ

k

}
. (2)

Compared with that without noise, i.e., (1 − e−γ) ·
max {α/m, γ/k} [33], we find that the performance of
DPOSS degrades largely due to the presence of noise. For
example, for the case of submodular f where α = γ = 1,
DPOSS without noise can achieve an approximation guarantee
of Θ(max {1/m, 1/k}), whereas such a guarantee can be
obtained only when ϵ = O(1/k) under multiplicative noise.
Under additive noise, we also prove that the approximation
bound of DPOSS is much worse than that without noise.
Note that there are several pieces of works [18], [19], [41]
addressing noisy subset selection, but the algorithms cannot
be directly applied to large-scale applications.

Next, we propose a new distributed algorithm called
DPONSS for large-scale subset selection under noise. Sim-
ilarly to DPOSS, DPONSS also uses the strategy of di-
vide and conquer. The difference is that DPONSS runs the
PONSS algorithm [34] on each machine, whereas DPOSS
runs POSS. PONSS is modified from POSS by introducing
a noise-aware comparison mechanism, which can bring the
robustness against noise. Under multiplicative noise, we prove
that DPONSS can achieve an approximation guarantee of

1− ϵ

1 + ϵ
· (1− e−γ) ·max

{ α

m
,
γ

k

}
, (3)

based on some assumption like independently and identically
distributed (i.i.d.) noise distribution. By comparing Eq. (3)
with Eq. (2), we find that DPONSS achieves a much better
approximation bound than DPOSS. For example, for the case
of submodular f and constant ϵ, DPONSS obtains an approx-
imation ratio of Θ(max {1/m, 1/k}), whereas DPOSS can
only guarantee a Θ((1/k) · max {1/m, 1/k})-approximation
ratio. Under additive noise, we also prove that DPONSS
obtains a better approximation bound than DPOSS.

Finally, we empirically compare DPONSS with the two
state-of-the-art distributed algorithms, DPOSS and RAND-
GREEDI, on the application of sparse regression. We also
implement the distributed version of LS, called DLS. All
of them are easily implemented in the Hadoop MapReduce
framework, and Spark is used in our experiments. For sparse
regression, to estimate the regression error of a subset of
variables, only a random sample of instances is used, which
thus brings noise. Besides 9 large-scale data sets where the
size can be millions, we also use 12 regular-scale data sets, by
which we can examine whether the performance of DPONSS
will decrease, compared to the centralized PONSS algorithm.
The results on these real-world data sets clearly show that
DPONSS performs the best, and DPOSS is the runner-up. Fur-
thermore, the average approximation ratio of DPONSS over
the centralized PONSS algorithm on regular-scale data sets is
at least 97.5%, disclosing that the distribution implementation
leads to little performance loss.

The rest of the paper is organized as follows. Section II
first introduces some preliminaries on the studied problem,



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, 2019 3

i.e., large-scale noisy subset selection. In Section III, the
performance of DPOSS under noise is analyzed theoretically.
Section IV then presents the proposed DPONSS algorithm and
its theoretical analysis. Section V gives the empirical study.
Section VI finally concludes this paper.

II. PRELIMINARIES

This section first introduces the subset selection problem
and the POSS algorithm; then presents the distributed version
of POSS, DPOSS, for large-scale subset selection and the
PONSS algorithm for noisy subset selection, respectively; fi-
nally introduces the large-scale noisy subset selection problem.

A. Subset Selection

Let R and R+ denote the set of reals and non-negative
reals, respectively. Let V = {v1, v2, . . . , vn} be a ground set.
Let [n] denote the set {1, 2, . . . , n}. In this paper, we study
the set functions f : 2V → R. In other words, a solution is
a subset of V . Definition 1 gives the general subset selection
problem, which is to choose a subset S from a given ground
set V that maximizes some given objective function f and
meanwhile satisfies the size constraint |S| ≤ k.

Definition 1 (Subset Selection). Given a ground set V =
{v1, v2, . . . , vn}, a set function f : 2V → R, and a budget
k ∈ [n], to find a subset of V with at most k items that
maximizes f , that is,

argmaxS⊆V f(S) s.t. |S| ≤ k. (4)

Next, we introduce two properties of set functions, i.e.,
monotonicity and submodularity, that will be used in this
paper. The monotonicity of a set function is shown in Defini-
tion 2, which means that as a set extends, the corresponding
function value increases. Note that monotone here is assumed
to be monotone non-decreasing. In this paper, monotone
functions are assumed without loss of generality (w.l.o.g.) to
be normalized, i.e., f(∅) = 0.

Definition 2 (Monotone). A set function f : 2V → R is
monotone if it holds that

∀S ⊆ T ⊆ V : f(S) ≤ f(T ).

The submodularity of a set function is shown in Definition 3,
which means that the diminishing returns property is satisfied,
i.e., as a set extends, the increment on the function brought by
adding a same item decreases. The submodularity has several
equivalent definitions [30], e.g.,

∀S ⊆ T ⊆ V : (5)

f(T )− f(S) ≤
∑

v∈T\S

(
f(S ∪ {v})− f(S)

)
,

which will also be used in our analysis.

Definition 3 (Submodular). A set function f : 2V → R is
submodular if it holds that

∀S ⊆ T ⊆ V, v /∈ T : (6)
f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T ).

For a general set function f , which is not necessarily sub-
modular, several concepts of approximate submodularity have
been proposed to measure the closeness of f to submodularity.
Here, we give two submodularity ratios in Definitions 4 and 5,
which will be used in our analysis. The γ-submodularity ratio
is defined based on Eq. (5), whereas the α-submodularity
ratio is based on Eq. (6). Note that γS,l(f) and α(f) will
be simplified as γS,l and α, when the meaning of f is clear.

Definition 4 (γ-Submodularity Ratio [6]). For a set function
f : 2V → R, the γ-submodularity ratio with respect to a set
S ⊆ V and a parameter l ≥ 1 is defined as

γS,l(f) = min
L⊆S,T :|T |≤l,T∩L=∅

∑
v∈T (f(L ∪ {v})− f(L))

f(L ∪ T )− f(L)
.

Definition 5 (α-Submodularity Ratio [43]). For a set function
f : 2V → R, the α-submodularity ratio is defined as

α(f) = min
S⊆T⊆V,v/∈T

f(S ∪ {v})− f(S)

f(T ∪ {v})− f(T )
.

Since monotone set functions are considered in this paper,
we make the observations in Remark 1. Note that the direct
computation of these submodularity ratios is very difficult,
which requires exponential time. To use them, we need to
derive some lower bounds, which are easy to be calculated.
In [3], [6], [12], [35], lower bounds on γS,l(f) and α(f) have
been derived for some concrete applications of subset selection
where the objective functions can be non-submodular, such
as Bayesian experimental design, non-parametric learning and
sparse regression.

Remark 1. For a monotone set function f : 2V → R+, it
holds that

1) 0 ≤ α(f) ≤ 1 and ∀S, l : 0 ≤ γS,l(f) ≤ 1;
2) f is submodular iff α(f) = 1;
3) f is submodular iff ∀S, l : γS,l(f) = 1.

Here is one application of subset selection, i.e., sparse
regression, that will be used in our experiments. As shown
in Definition 6, the goal is to select a limited number of
observation variables to best approximate a target variable by
linear regression. Its objective function R2

z,S has been proved
to be monotone, but not necessarily submodular [6]. Note that
when we define the mean squared error MSEz,S , S and its
index set {i | vi ∈ S} are not distinguished for notational
convenience.

Definition 6 (Sparse Regression [26]). Given a ground set
V = {v1, v2, . . . , vn} containing n observation variables, a
variable z to be predicted, and a budget k ∈ [n], to find
a subset of V with at most k observation variables that
maximizes the objective, squared multiple correlation R2

z,S [9],
[21], that is,

argmaxS⊆V

(
R2

z,S =
Var(z)−MSEz,S

Var(z)

)
s.t. |S| ≤ k,

where Var(z) denotes the variance of z, and MSEz,S denotes
the mean squared error of using S to predict z by linear
regression, i.e.,

MSEz,S = minα∈R|S| E
[(

z −
∑

i∈S
αivi

)2]
.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, 2019 4

For solving the subset selection problem, which is NP-
hard, the greedy algorithm has been shown to be a good
approximation solver. The procedure of the greedy algorithm
is simple. Starting from the empty set, it continues to greedily
add one item with the current largest marginal gain on f , until
k items have been selected. Let S denote the subset returned
by the greedy algorithm. It has been proved that the greedy
algorithm can obtain an approximation ratio of (1−e−γS,k) [7]
for the subset selection problem with monotone objective
functions. For the application of sparse regression where f can
be non-submodular, this ratio reaches the best known one [7].
For the problems with submodular f , this ratio is specialized
to be (1 − 1/e), which is optimal [29], [30]. Note that by
Remark 1, it is known that when f is submodular, γS,k = 1.

[The POSS algorithm] Recently, Qian et al. [36] proposed
an anytime randomized algorithm for subset selection, POSS,
by using the idea of multi-objective evolutionary optimization.
The main idea of POSS is to transform the original subset
selection problem as a bi-objective optimization problem, then
solve the problem by a MOEA, and finally output the best
feasible solution from the generated non-dominated solution
set. Note that for a constrained optimization problem, a
solution is (in)feasible if it does (not) satisfy the constraints.

In the following, the POSS algorithm will be introduced
in detail. A subset S of V can be naturally represented by a
Boolean vector s ∈ {0, 1}n, where si = 1 if vi ∈ S and si = 0
otherwise. In other words, for a Boolean vector s ∈ {0, 1}n,
the corresponding subset is {vi | si = 1}. In this paper, a
Boolean vector s ∈ {0, 1}n and its corresponding subset will
not be distinguished for notational convenience.

The POSS algorithm transforms the subset selection prob-
lem, i.e., Eq. (4), as a bi-objective optimization problem: max-
imizing the objective function f and meanwhile minimizing
the subset size |s|. That is,

argmins∈{0,1}n (f1(s), f2(s)), (7)

where f1(s) =

{
+∞, |s| ≥ 2k

−f(s), otherwise
, f2(s) = |s|.

Note that minimizing f1 is equivalent to maximizing f . The
goal of setting f1(s) = +∞ for |s| ≥ 2k is to exclude overly
infeasible solutions, which might be useless and will decrease
the efficiency of the optimization process.

To solve this transformed bi-objective optimization problem,
POSS employs a simple MOEA, i.e., lines 1-9 of Algorithm 1.
This employed MOEA is inspired from the GSEMO algo-
rithm [17], [24], [25], [37], widely used in the theoretical
analyses of MOEAs. Starting from the special solution 0n

which represents the empty set (line 1), it iteratively uses bit-
wise mutation and domination-based comparison to improve
the solutions maintained in the population P (lines 2-9).
In each iteration, a parent solution is first selected from P
uniformly at random (line 3); then an offspring solution s′

is generated by applying the bit-wise mutation operator to s
(line 4); finally the generated offspring solution s′ is used to
update the population P according to the domination-based
comparison (lines 5-7).

Algorithm 1 POSS Algorithm [36]
Input: a ground set V = {v1, v2, . . . , vn}, an objective
function f : 2V → R, a budget k ∈ [n]
Parameter: the number T of iterations
Output: a subset S of V with |S| ≤ k
Process:

1: Let s = 0n, P = {s}, and let t = 0;
2: while t < T do
3: Select s from P uniformly at random;
4: Generate s′ by applying bit-wise mutation to s;
5: if @z ∈ P such that z ≺ s′ then
6: P = (P \ {z ∈ P | s′ ≼ z}) ∪ {s′}
7: end if
8: t = t+ 1
9: end while

10: return argmaxs∈P,|s|≤k f(s)

The bit-wise mutation operator is shown in Definition 7.
It is a global search operator. The probability of generating
s′ from s is (1/n)H(s,s′)(1− 1/n)n−H(s,s′), where H(s, s′)
denotes the Hamming distance between two Boolean vectors
s and s′.

Definition 7 (Bit-wise Mutation). For a solution s ∈ {0, 1}n,
the bit-wise mutation operator generates a new offspring
solution by flipping each bit of s with probability 1/n.

In multi-objective optimization, the domination relationship
is often used to compare two solutions. Here, we only give the
case of bi-objective minimization in Definition 8 for simplicity.
When using the domination-based comparison to update the
population P in lines 5-7 of Algorithm 1, the offspring solution
s′ will be included into P if no solution in P dominates it,
and meanwhile those solutions in P weakly dominated by s′

will be deleted. Thus, the population P will always contain
the non-dominated solutions generated so-far.

Definition 8 (Domination). Given a bi-objective minimization
problem min(f1(s), f2(s)). For two solutions s and s′,

1) s weakly dominates s′, denoted as s ≼ s′, if

f1(s) ≤ f1(s
′) ∧ f2(s) ≤ f2(s

′);

2) s dominates s′, denoted as s ≺ s′, if

s ≼ s′ ∧ (f1(s) < f1(s
′) ∨ f2(s) < f2(s

′));

3) s, s′ are incomparable if neither s ≼ s′ nor s′ ≼ s.

When the algorithm terminates after T iterations, we get a
set P of non-dominated solutions. Since the original problem
Eq. (4) is a constrained optimization problem, the best feasible
solution in P , i.e., the solution with the smallest f1 value
(or equivalently the largest f value) while satisfying the size
constraint in P , is output as the final solution (line 10).

It has been shown that POSS can be better than the greedy
algorithm [36]. In theory, POSS with E[T ] ≤ 2ek2n can
obtain the same general approximation guarantee as the greedy
algorithm, for the subset selection problem with monotone
objective functions. Note that E[·] denotes the expectation



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, 2019 5

Algorithm 2 DPOSS Algorithm [33]
Input: a ground set V = {v1, v2, . . . , vn}, an objective
function f : 2V → R, a budget k ∈ [n], the number m of
machines
Parameter: the number of iterations at each machine, i.e.,
T1, T2, . . . , Tm, Tm+1

Output: a subset S of V with |S| ≤ k
Process:

1: Partition V into m sets V1, V2, . . . , Vm arbitrarily such that
each Vi can fit on one single machine;

2: Run POSS with T = Ti on each Vi to find a subset si;
3: Merge the m resulting subsets into a set U = ∪m

i=1si;
4: Run POSS with T = Tm+1 on U to find a subset sm+1

5: return argmaxs∈{s1,s2,...,sm+1} f(s)

of a random variable. In experiments, POSS can achieve
significantly better performance than the greedy algorithm on
the application of sparse regression.

B. Large-scale Subset Selection

As the advance of data collection and storage, the applica-
tions of subset selection often meet with massive data, which
can be too large to be stored on one single machine. Although
with excellent performance, POSS requires centralized access
to the whole data set V , because subsets of V randomly
generated by bit-wise mutation need to be evaluated on one
machine. Thus, POSS does not apply to large-scale subset
selection tasks.

In [33], Qian et al. thus proposed a distributed version of
POSS, DPOSS, as described in Algorithm 2. DPOSS uses
the divide and conquer idea, and is implemented in two
rounds. For the first round, i.e., lines 1-2 of Algorithm 2,
the ground set V is partitioned into V1, V2, . . . , Vm where
V = ∪m

i=1Vi ∧ ∀i ̸= j : Vi ∩ Vj = ∅; these m sets
are distributed over m machines; then POSS is run on each
machine in parallel, producing m subsets s1, s2, . . . , sm. For
the second round, i.e., lines 3-4 of Algorithm 2, POSS is run
on the union ∪m

i=1si of these m subsets generated in the first
round, resulting in another subset sm+1. DPOSS finally returns
the best one among these (m+ 1) subsets, i.e., line 5.

For the applications of maximum coverage and sparse re-
gression, DPOSS has empirically shown to achieve close per-
formance to the centralized POSS algorithm, and achieve su-
perior performance than the state-of-the-art distributed greedy
algorithm, RANDGREEDI [1], [27]. It has also been proved
that for the subset selection problem with monotone objec-
tive functions, the approximation performance of DPOSS is
bounded, as shown in Theorem 1. Note that for an arbitrary
partition {V1, V2, . . . , Vm} of V , we use notations as follows:
ni = |Vi| and nmax = max{ni | i ∈ [m]}.

Theorem 1 (Theorem 1 of [33]). For the subset selection
problem where the objective function f is monotone, using
E[max{Ti | i ∈ [m]}] = O(k2nmax(1 + logm)), DPOSS
finds a subset s with |s| ≤ k and

f(s) ≥ (1− e−γmin) ·max
{ α

m
,
γ∅,k
k

}
·OPT,

where γmin = mins⊆V :|s|=k−1 γs,k, and OPT denotes the
optimal function value.

C. Noisy Subset Selection

In real applications of subset selection such as influence
maximization [22] and sparse regression [26], we can often
obtain only a noisy objective function value F (s), rather than
the exact one f(s). For example, computing the objective
R2

z,S of sparse regression is time-consuming if using all
instances, and thus, a random sample of instances is often
used to estimate R2

z,S , which, however, introduces noise. Two
commonly used noise models [16], [20] are shown as follows.

Definition 9 (Multiplicative Noise). Let f and F denote the
true and noisy objective functions, respectively. It holds that

(1− ϵ) · f(s) ≤ F (s) ≤ (1 + ϵ) · f(s), (8)

where 0 ≤ ϵ ≤ 1.

Definition 10 (Additive Noise). Let f and F denote the true
and noisy objective functions, respectively. It holds that

f(s)− ϵ ≤ F (s) ≤ f(s) + ϵ, (9)

where ϵ ≥ 0.

The presence of noise can degrade the performance of
POSS. Qian et al. [34] thus proposed a noise-tolerant version
of POSS, PONSS, as described in Algorithm 3. The main
difference is that POSS uses the domination relationship in
Definition 8 for comparing two solutions, whereas PONSS
uses a conservative strategy, θ-domination, which intuitively
means that a solution better than the other requires its objective
value to be larger by at least a threshold. θ-domination is
inspired by the noise-handling strategy, threshold selection [2],
[38]. For the two noise models, multiplicative and additive,
the corresponding θ-dominations are shown in Definitions 11
and 12, respectively. Note that these two definitions are
specialized to the bi-objective minimization problem Eq. (7),
where f1(s) = −f(s). Thus, f1(s) ≤ 1+θ

1−θ ·f1(s
′) is equivalent

to f(s) ≥ 1+θ
1−θ · f(s′), and f1(s) ≤ f1(s

′)− 2θ is equivalent
to f(s) ≥ f(s′) + 2θ.

Definition 11 (Multiplicative θ-Domination). Given a bi-
objective minimization problem min(f1(s), f2(s)) and a pa-
rameter θ ∈ [0, 1]. For two solutions s and s′,

1) s weakly dominates s′, denoted as s ≼θ s′, if

f1(s) ≤
1 + θ

1− θ
· f1(s′) ∧ f2(s) ≤ f2(s

′);

2) s dominates s′, denoted as s ≺θ s′, if

s ≼θ s′ ∧
(
f1(s) <

1 + θ

1− θ
· f1(s′) ∨ f2(s) < f2(s

′)

)
;

3) s, s′ are incomparable if neither s ≼θ s′ nor s′ ≼θ s.

Definition 12 (Additive θ-Domination). Given a bi-objective
minimization problem min(f1(s), f2(s)) and a parameter θ ≥
0. For two solutions s and s′,

1) s weakly dominates s′, denoted as s ≼θ s′, if

f1(s) ≤ f1(s
′)− 2θ ∧ f2(s) ≤ f2(s

′);



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, 2019 6

Algorithm 3 PONSS Algorithm [34]
Input: a ground set V = {v1, v2, . . . , vn}, a noisy objective
function F : 2V → R, a budget k ∈ [n]
Parameter: T , θ, B
Output: a subset S of V with |S| ≤ k
Process:

1: Let s = 0n, P = {s}, and let t = 0;
2: while t < T do
3: Select s from P uniformly at random;
4: Generate s′ by applying bit-wise mutation to s;
5: if @z ∈ P such that z ≺θ s′ then
6: P = (P \ {z ∈ P | s′ ≼θ z}) ∪ {s′};
7: Q = {z ∈ P | |z| = |s′|};
8: if |Q| = B + 1 then
9: P = P \Q and let j = 0;

10: while j < B do
11: Select two solutions z1, z2 from Q uniformly at

random without replacement;
12: Evaluate F (z1) and F (z2);
13: Let ẑ = argmaxz∈{z1,z2} F (z) (breaking ties

randomly);
14: P = P ∪ {ẑ}, Q = Q \ {ẑ}, and j = j + 1
15: end while
16: end if
17: end if
18: t = t+ 1
19: end while
20: return argmaxs∈P,|s|≤k F (s)

2) s dominates s′, denoted as s ≺θ s′, if

s ≼θ s′ ∧ (f1(s) < f1(s
′)− 2θ ∨ f2(s) < f2(s

′)) ;

3) s, s′ are incomparable if neither s ≼θ s′ nor s′ ≼θ s.

For each subset size, if using domination, only the solution
with the best noisy F value is maintained in the population
P ; if using θ-domination, solutions with close F values will
all be maintained in P , reducing the risk of losing good
solutions. However, the population size, i.e., |P |, can become
very large by using θ-domination. Thus, PONSS introduces
an extra procedure to control the size of P in lines 7-16 of
Algorithm 3. For each subset size i, the number of solutions
in P is limited by at most B, which is a parameter. When
the number exceeds B, which actually must be B + 1, one
solution with size i will be removed as follows: two solutions
with size i are randomly selected without replacement and the
better one is kept; after repeating this process B times, the
remaining solution with size i is removed.

In [34], it has been proved that under either multiplica-
tive or additive noise, PONSS with θ ≥ ϵ can achieve an
approximation guarantee significantly better than POSS, in
polynomial time. The superior performance of PONSS has
also been empirically shown on the two noisy applications,
influence maximization and sparse regression.

D. Large-scale Noisy Subset Selection

When large-scale subset selection meets with noise, the
problem of large-scale noisy subset selection emerges. In fact,
even when the objective function evaluation is originally exact,
noise can be produced due to the distribution. For example,
for the application of unsupervised feature selection [13]
where each item is a column vector, the objective function
∥V − SS+V ∥2F relies on the whole data set V , but can only
be estimated using the local data allocated to each machine
after the distribution, which thus produces noise.

Although DPOSS has shown excellent performance for
large-scale subset selection, its performance under noise is not
yet known. PONSS performs well for noisy subset selection,
but does not apply to large-scale applications. In the following,
we first examine whether DPOSS can still achieve good
performance for large-scale noisy subset selection.

III. THEORETICAL ANALYSIS OF DPOSS UNDER NOISE

In this section, we theoretically analyze the performance
of DPOSS under noise. For subset selection with monotone
objective functions, we prove the approximation guarantee of
DPOSS in Theorem 2 under multiplicative noise. The proof
idea is inspired by that of Theorem 1 in [33], which gives
the approximation guarantee of DPOSS without noise. In the
proof, we will use Lemmas 1 and 2. Lemma 1 shows that
the objective f value of the best subset over all machines can
be lower bounded. Lemma 2 gives the recursive relation of
the noisy objective F value between any set and its resulting
superset by adding a specific item.

Lemma 1 (Lemma 1 of [33]). For any partition {V1, . . . , Vm}
of V , let oi denote an optimal subset of Vi, i.e., oi ∈
argmaxs⊆Vi:|s|≤k f(s), where i ∈ [m]. It holds that

max{f(oi) | i ∈ [m]} ≥ max
{ α

m
,
γ∅,k
k

}
·OPT.

Lemma 2 (Lemma 2 of [34]). For any s ⊆ Vi, where i ∈ [m],
there exists one item v ∈ Vi \ s satisfying that

F (s ∪ {v}) ≥
(
1−ϵ

1+ϵ

)(
1− γs,k

k

)
F (s) +

(1−ϵ)γs,k
k

f(oi).

Theorem 2. For the subset selection problem, where the
objective function f is monotone, under multiplicative noise,
using E[max{Ti | i ∈ [m]}] = O(k2nmax(1+logm)), DPOSS
finds a subset s with |s| ≤ k and

f(s) ≥ 1

1 + 2kϵ
(1−ϵ)γmin

·

(
1−

(
1− ϵ

1 + ϵ

)k

e−γmin

)
·max

{ α

m
,
γ∅,k
k

}
·OPT,

where γmin = mins⊆V :|s|=k−1 γs,k, and OPT denotes the
optimal function value.

Proof. We consider the first round of DPOSS, where POSS
is run on each Vi to find a subset si. To reach the desired
approximation guarantee, we only need to analyze max{Ti |



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, 2019 7

i ∈ [m]}, i.e., the maximal number of iterations of POSS at
each machine, until

∀i ∈ [m] : F (si) ≥
(1− ϵ)γmin

k

1− 1−ϵ
1+ϵ (1−

γmin

k )
(10)

·

(
1−

(
1− ϵ

1 + ϵ

)k (
1− γmin

k

)k)
· f(oi).

Note that the selection in line 5 of DPOSS, i.e., Algorithm 2,
relies on the noisy objective F value now. Thus, for the F
value of the returned subset, denoted as s∗, it holds that

F (s∗) = max{F (si) | i ∈ [m+ 1]} ≥
(1− ϵ)γmin

k

1− 1−ϵ
1+ϵ (1−

γmin

k )

·

(
1−

(
1− ϵ

1 + ϵ

)k (
1− γmin

k

)k)
·max{f(oi) | i ∈ [m]}

≥
(1− ϵ)γmin

k

1− 1−ϵ
1+ϵ (1−

γmin

k )
·

(
1−

(
1− ϵ

1 + ϵ

)k

e−γmin

)
·max

{ α

m
,
γ∅,k
k

}
·OPT,

(11)
where the first inequality holds by Eq. (10), and the last one
holds by (1 − γmin/k)

k ≤ e−γmin and Lemma 1. According
to the definition of multiplicative noise, i.e., Definition 9, we
have F (s∗) ≤ (1 + ϵ) · f(s∗). Thus,

f(s∗) ≥
1−ϵ
1+ϵ

γmin

k

1− 1−ϵ
1+ϵ (1−

γmin

k )
·

(
1−
(
1−ϵ

1+ϵ

)k

e−γmin

)
·max

{ α

m
,
γ∅,k
k

}
·OPT

=
1

1 + 2kϵ
(1−ϵ)γmin

·

(
1−

(
1− ϵ

1 + ϵ

)k

e−γmin

)
·max

{ α

m
,
γ∅,k
k

}
·OPT,

implying that the desired approximation guarantee is obtained.
Thus, we only need to examine max{Ti | i ∈ [m]} until

Eq. (10) holds. For POSS running on Vi, where i ∈ [m], we
use J i

max to denote the maximal value of j ∈ {0, 1, . . . , k},
satisfying that the population P contains a solution s with
|s| ≤ j and F (s) ≥ (1−ϵ)

γmin
k

1− 1−ϵ
1+ϵ (1−

γmin
k )

· (1− ( 1−ϵ
1+ϵ )

j(1− γmin

k )j) ·
f(oi). In other words,

J i
max = max{j ∈ {0, 1, . . . , k} | ∃s ∈ P, |s| ≤ j ∧ F (s) ≥

(1− ϵ)γmin

k

1− 1−ϵ
1+ϵ (1−

γmin

k )
·

(
1−
(
1−ϵ

1+ϵ

)j (
1− γmin

k

)j)
· f(oi)}.

It is clear that J i
max = k implies that P contains a solution s

with |s| ≤ k and F (s) ≥ (1−ϵ)
γmin

k

1− 1−ϵ
1+ϵ (1−

γmin
k )

· (1 − ( 1−ϵ
1+ϵ )

k(1 −
γmin

k )k) · f(oi), and thus the subset si returned by POSS
running on Vi satisfies that F (si) ≥ (1−ϵ)

γmin
k

1− 1−ϵ
1+ϵ (1−

γmin
k )

· (1 −
( 1−ϵ
1+ϵ )

k(1 − γmin

k )k) · f(oi). To make Eq. (10) holds, it is
sufficient to make min{J i

max | i ∈ [m]} = k. Thus,
our focus is now on analyzing max{Ti | i ∈ [m]} until
min{J i

max | i ∈ [m]} = k.
As the initial solution of POSS is 0n, ∀i ∈ [m] : J i

max = 0,
implying that min{J i

max | i ∈ [m]} is initially 0. We assume

w.l.o.g. that min{J i
max | i ∈ [m]} = j < k and |{i ∈ [m] |

J i
max = j}| = l, where l ∈ [m]. Let zi denote a solution

corresponding to J i
max, implying that |zi| ≤ J i

max and

F (zi) ≥
(1− ϵ)γmin

k

1− 1−ϵ
1+ϵ (1−

γmin

k )
· (12)(

1−
(
1− ϵ

1+ϵ

)Ji
max (

1− γmin

k

)Ji
max

)
· f(oi).

It is clear that J i
max does not decrease. If zi is kept in the pop-

ulation P , the claim obviously holds. If zi is deleted from P
in line 6 of Algorithm 1, it must hold that the newly generated
solution s′ ≼ zi, implying that |s′| ≤ |zi| ∧ F (s′) ≥ F (zi).
According to the fact that J i

max does not decrease for each i,
we conclude that j does not decrease and the corresponding l
does not increase.

Next, we analyze the probability of increasing J i
max in one

iteration for i ∈ [m]. Lemma 2 shows that ∀i ∈ [m], including
one specific item into zi, i.e., flipping one specific 0 bit of zi,
can generate an offspring solution s′, satisfying that

F (s′) ≥
(
1−ϵ

1+ϵ

)(
1− γzi,k

k

)
F (zi) +

(1−ϵ)γzi,k

k
f(oi)

=
1− ϵ

1 + ϵ
F (zi) +

(
f(oi)−

F (zi)

1 + ϵ

)
(1− ϵ)γzi,k

k
.

Consider J i
max < k. By the definition of the γ-submodularity

ratio, i.e., Definition 4, it can be verified that γs,k decreases
with s. As |zi| ≤ J i

max < k and γmin = mins⊆V :|s|=k−1 γs,k,
we have γzi,k ≥ γmin. Because f(oi) − F (zi)

1+ϵ ≥ f(zi) −
F (zi)
1+ϵ ≥ 0, we have

F (s′) ≥
(
1− ϵ

1 + ϵ

)(
1− γmin

k

)
F (zi) +

(1− ϵ)γmin

k
· f(oi).

By applying Eq. (12) to the above inequality, we have

F (s′) ≥
(1− ϵ)γmin

k

1− 1−ϵ
1+ϵ

(
1− γmin

k

) ·(
1−

(
1−ϵ

1+ϵ

)Ji
max+1(

1− γmin

k

)Ji
max+1

)
· f(oi).

Considering |s′| = |zi|+ 1 ≤ J i
max + 1, s′ will enter into P .

Otherwise, according to line 5 of Algorithm 1, we have ∃z ∈
P : z ≺ s′, contradicting with the definition of J i

max. After
adding s′ into P , J i

max will increase by at least 1. Thus, J i
max

can increase by at least 1 through flipping a specific 0-bit of zi.
In line 3 of Algorithm 1, zi is selected with probability (1/|P |)
due to uniform selection. In line 4, i.e., bit-wise mutation,
only a specific bit of zi is flipped with probability (1/ni)(1−
1/ni)

ni−1, where ni is the size of Vi. Thus, the probability of
increasing J i

max by at least 1 in one iteration is at least (1/|P |)·
(1/ni)(1− 1/ni)

ni−1 ≥ 1/(eni|P |). Due to the domination-
based comparison in lines 5-7 of Algorithm 1, the population
P must contain incomparable solutions, implying that there
is at most one corresponding solution in P for each possible
value of some objective. As solutions with size at least 2k are
excluded from the population P , we have |P | ≤ 2k. Thus, the
probability of increasing J i

max by at least 1 in one iteration is
at least 1/(2ekni).



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, 2019 8

Now, we can analyze the expected number of iterations
required to increase j, or equivalently to decrease the cor-
responding l to 0. To decrease l by at least 1, it is sufficient to
increase at least one J i

max with value j, which happens with
probability at least

1−
∏

i:Ji
max=j

(
1− 1

2ekni

)
≥ 1−

(
1− 1

2eknmax

)l

in one iteration. The inequality holds by nmax = max{ni |
i ∈ [m]} and |{i ∈ [m] | J i

max = j}| = l. Thus, decreasing l
to 0, i.e., increasing j by at least 1, requires at most

m∑
l=1

1

1−
(
1− 1

2eknmax

)l = m∑
l=1

1 +
1

1

(1− 1
2eknmax

)
l − 1

=
m∑
l=1

1 +
1(

1 +
1

2eknmax

1− 1
2eknmax

)l
− 1

≤
m∑
l=1

1 +
1
l

2eknmax

1− 1
2eknmax

=
m∑
l=1

1 +
2eknmax − 1

l
= O(knmax(1 + logm))

iterations in expectation.
To make min{J i

max | i ∈ [m]} = k, it requires to increase
j by at most k times. The expected number of iterations is
then at most O(k2nmax(1 + logm)), implying

E[max{Ti | i ∈ [m]}] = O(k2nmax(1 + logm)).

Thus, the theorem holds.

Theorem 3 shows the approximation bound of DPOSS
under additive noise. The proof can be accomplished in the
way similar to that of Theorem 2. The only difference is
that when comparing the true objective f(s) with the noisy
objective F (s), Eq. (9) is used under additive noise, whereas
Eq. (8) is used under multiplicative noise.

Theorem 3. For the subset selection problem, where the
objective function f is monotone, under additive noise, using
E[max{Ti | i ∈ [m]}] = O(k2nmax(1+logm)), DPOSS finds
a subset s with |s| ≤ k and

f(s) ≥ (1− e−γmin) ·
(
max

{ α

m
,
γ∅,k
k

}
·OPT− 2kϵ

γmin

)
−
(
1− γmin

k

)k
ϵ,

where γmin = mins⊆V :|s|=k−1 γs,k, and OPT denotes the
optimal function value.

To examine the influence of noise on the performance of
DPOSS, we compare Theorems 2 and 3 with Theorem 1, and
make the following observations.

Remark 2. For DPOSS solving the subset selection problem
with monotone objective functions,

1) the approximation guarantee under multiplicative noise
in Theorem 2 is worse than that without noise in
Theorem 1;

2) the approximation guarantee under additive noise in
Theorem 3 is worse than that without noise in Theo-
rem 1.

Algorithm 4 DPONSS Algorithm
Input: a ground set V = {v1, v2, . . . , vn}, a noisy objective
function F : 2V → R, a budget k ∈ [n], the number m of
machines
Parameter: T1, T2, . . . , Tm, Tm+1, θ, B
Output: a subset S of V with |S| ≤ k
Process:

1: Partition V into m sets V1, V2, . . . , Vm arbitrarily such that
each Vi can fit on one single machine;

2: Run PONSS with (T = Ti, θ, B) on each Vi to find a
subset si;

3: Merge the m resulting subsets into a set U = ∪m
i=1si;

4: Run PONSS with (T = Tm+1, θ, B) on U to find a subset
sm+1

5: return argmaxs∈{s1,s2,...,sm+1} F (s)

Note that for maximization, the approximation guarantee is
worse means that it is smaller. The second case in Remark 2
obviously holds, because the approximation bound in Theo-
rem 3 equals that in Theorem 1 minus some additional positive
terms. For the first case, it can be verified because

1−
(

1−ϵ
1+ϵ

)k
e−γmin

1− e−γmin
=

1−
(
1− 2ϵ

1+ϵ

)k
e−γmin

1− e−γmin
(13)

≤
1−

(
1− 2kϵ

1+ϵ

)
e−γmin

1− e−γmin
= 1 +

2kϵ
1+ϵe

−γmin

1− e−γmin

= 1 +
2kϵ
1+ϵ

eγmin − 1
≤ 1 +

2kϵ
1+ϵ

γmin
≤ 1 +

2kϵ

(1− ϵ)γmin
,

leading to

1

1 + 2kϵ
(1−ϵ)γmin

·

(
1−

(
1− ϵ

1 + ϵ

)k

e−γmin

)
≤ 1− e−γmin .

In fact, we can find that the presence of noise degrades
the performance of DPOSS significantly. For example, for the
case of f being submodular, where α = 1 and ∀s, l : γs,l = 1,
Theorem 1 shows that DPOSS can achieve an approximation
guarantee of Θ(max{1/m, 1/k}) in the noiseless environ-
ment, whereas Theorem 2 shows that under multiplicative
noise, DPOSS can achieve such an approximation guarantee
only if ϵ = O(1/k).

IV. THE DPONSS ALGORITHM

In this section, we propose a new distributed algorithm,
DPONSS, for large-scale noisy subset selection, and will
show that in the noisy environment, DPONSS can achieve
an approximation guarantee, much better than DPOSS.

As described in Algorithm 4, DPONSS shares the same
structure as DPOSS. The difference is that PONSS, instead of
POSS, is run on each machine. It is a two round algorithm.
In the first round, the ground set is divided and distributed
to several machines, and PONSS is run on each machine in
parallel to find a subset. After this, the algorithm enters into the
second round, where the subsets generated in the first round
are combined on one single machine and PONSS is run again



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, 2019 9

to find another subset. Finally, the best one is selected from
all generated subsets, as the final output.

DPONSS is easy to be implemented in the Hadoop MapRe-
duce framework. The parameters T1, T2, . . . , Tm+1, θ and B
are able to influence the goodness of the output solution,
and their relationship will be made clear in the following
theoretical analysis.

A. Theoretical Analysis

Theorem 4 shows the approximation guarantee of DPONSS
under multiplicative noise. The proof idea is similar to that
of Theorem 2. The main difference consists of two aspects:
(1) for defining the quantity J i

max, an inductive inequality of
f is used, rather than an inductive inequality of F ; (2) the
number of iterations required to achieve the desired approxi-
mation guarantee is analyzed with probability, rather than in
expectation. The proof is also inspired by Theorem 5 in [34],
which gives the approximation guarantee of PONSS under
multiplicative noise. For concise illustration, some existing
results in previous analyses will be used directly in the proof
of Theorem 4.

To analyze the approximation guarantee of DPONSS, some
assumptions are required: (1) the noise is random, i.e., F (s) is
a random variable; (2) if f(s) > f(s′), F (s) > F (s′) holds
with probability at least 0.5 + δ, i.e.,

Pr(F (s) > F (s′)) ≥ 0.5 + δ if f(s) > f(s′), (14)

where 0 ≤ δ < 0.5. Several common noisy settings satisfy
this assumption. For example, the i.i.d. noise distribution has
been verified in [34].

Theorem 4. For the subset selection problem, where the
objective function f is monotone, under multiplicative noise
with the assumption Eq. (14), with probability (1/2) · (1 −
O(k2mnmax(log k+logm)(1+logm)/B2δ)), DPONSS using
θ ≥ ϵ and max{Ti | i ∈ [m]} = O(Bk2nmax(log k +
logm)(1 + logm)) finds a subset s with |s| ≤ k and

f(s) ≥ 1− ϵ

1 + ϵ
· (1− e−γmin) ·max

{ α

m
,
γ∅,k
k

}
·OPT,

where γmin = mins⊆V :|s|=k−1 γs,k, and OPT denotes the
optimal function value.

Proof. The first round of DPONSS is considered, where
PONSS is run on each Vi to find a subset si. To reach the
desired approximation guarantee, it is sufficient to make the
following equation hold:

∀i ∈ [m] : F (si)≥(1−ϵ)

(
1−
(
1− γmin

k

)k)
f(oi). (15)

As the analysis of Eq. (11), the F value of the returned subset
s∗ satisfies that

F (s∗) = max{F (si) | i ∈ [m+ 1]}

≥ (1− ϵ) ·
(
1−

(
1− γmin

k

)k)
·max{f(oi) | i ∈ [m]}

≥ (1− ϵ) · (1− e−γmin) ·max
{ α

m
,
γ∅,k
k

}
·OPT.

By the definition of multiplicative noise, we have

f(s∗) ≥ F (s∗)/(1 + ϵ)

≥ 1− ϵ

1 + ϵ
· (1− e−γmin) ·max

{ α

m
,
γ∅,k
k

}
·OPT,

implying that the desired approximation guarantee is obtained.
For PONSS running on Vi, where i ∈ [m], we define J i

max

as follows:
J i
max = max{j ∈ {0, 1, . . . , k} | ∃s ∈ P, |s| ≤ j

∧ f(s) ≥
(
1−

(
1− γmin

k

)j)
· f(oi)}.

To make Eq. (15) hold, it is sufficient to make min{J i
max |

i ∈ [m]} = k. J i
max = k implies that P contains a solution

s with |s| ≤ k and f(s) ≥ (1− (1− γmin

k )k) · f(oi). As the
returned subset si has the largest noisy objective F value,

F (si) ≥ F (s) ≥ (1− ϵ) · f(s)

≥ (1− ϵ) ·
(
1−

(
1− γmin

k

)k)
· f(oi),

where the second inequality holds due to multiplicative noise,
i.e., Definition 9. Thus, we only need to analyze the number
of iterations in the first round of DPONSS until min{J i

max |
i ∈ [m]} = k.

For any i ∈ [m], J i
max is initially 0, because PONSS starts

from 0n. We make the assumption that during the running
of PONSS, one solution with the best true objective f value
in Q is always retained if lines 8-16 of Algorithm 3 are
implemented. From the proof of Theorem 5 in [34], it has
been known that ∀i ∈ [m], J i

max does not decrease and the
probability of increasing J i

max by at least 1 in one iteration is
at least 1/(2eBkni) ≥ 1/(2eBknmax).

It is clear that min{J i
max | i ∈ [m]} is initially 0. We

assume w.l.o.g. that min{J i
max | i ∈ [m]} = j < k

and |{i ∈ [m] | J i
max = j}| = l, where l ∈ [m]. In

(2eBknmax log(2km)/l) iterations of DPONSS, the current
l is decreased with probability at least

1−
(
1− 1

2eBknmax

)l· 2eBknmax log(2km)
l

≥ 1− e− log(2km)

= 1− 1

2km
.

This implies that after running DPONSS for
(
∑m

l=1 2eBknmax log(2km)/l) iterations, the probability
of decreasing l to 0, i.e., increasing j by at least 1, is at least(

1− 1

2km

)m

≥ 1− 1

2k
.

To make min{J i
max | i ∈ [m]} = k, it requires to increase j

by at most k times. Thus, after

k ·
m∑
l=1

2eBknmax log(2km)

l
(16)

= O(Bk2nmax(log k + logm)(1 + logm))

iterations, min{J i
max | i ∈ [m]} = k with probability at least(

1− 1

2k

)k

≥ 1

2
. (17)



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, 2019 10

Finally, we need to examine the assumption that during the
running of O(Bk2nmax(log k+logm)(1+ logm)) iterations,
one solution with the best true objective f value in Q is
always retained if lines 8-16 of Algorithm 3 are implemented.
From the proof of Theorem 5 in [34], it has been known that
when implementing lines 8-16, the solution with the best true
objective f value in Q is deleted with probability at most

4
e1−1/eB1+2δ . Note that their analysis relies on Eq. (14). Based
on the union bound, the probability that the assumption holds
is at least

1−O(Bk2nmax(log k+logm)(1+logm)) ·m · 4

e1−1/eB1+2δ

= 1−O(k2mnmax(log k + logm)(1 + logm)/B2δ),
(18)

where the factor m in the left-hand side corresponds to m
machines.

Combining Eqs. (16), (17) and (18) leads to the theorem.

For DPONSS under additive noise, we prove the approxi-
mation guarantee in Theorem 5. The proof is the same as that
of Theorem 4, expect that Eq. (9) is used instead of Eq. (8)
when comparing F (s) with f(s).

Theorem 5. For the subset selection problem, where the
objective function f is monotone, under additive noise with
the assumption Eq. (14), with probability (1/2) · (1 −
O(k2mnmax(log k+logm)(1+logm)/B2δ)), DPONSS using
θ ≥ ϵ and max{Ti | i ∈ [m]} = O(Bk2nmax(log k +
logm)(1 + logm)) finds a subset s with |s| ≤ k and

f(s) ≥ (1− e−γmin) ·max
{ α

m
,
γ∅,k
k

}
·OPT− 2ϵ,

where γmin = mins⊆V :|s|=k−1 γs,k, and OPT denotes the
optimal function value.

When the assumption Eq. (14) of noise holds with a constant
large δ, using a polynomial B can make the approxima-
tion guarantee of DPONSS hold with a constant probability,
implying that the maximal number of iterations in the first
round of DPONSS is polynomial in expectation. To compare
the approximation guarantees of DPONSS and DPOSS under
noise, we make the following observations.

Remark 3. For solving the subset selection problem with
monotone objective functions,

1) under multiplicative noise, the approximation guarantee
of DPONSS in Theorem 4 is better than that of DPOSS
in Theorem 2;

2) under additive noise, the approximation guarantee of
DPONSS in Theorem 5 is better than that of DPOSS in
Theorem 3.

For the first case in Remark 3, it can be verified because

1−
(

1−ϵ
1+ϵ

)k
e−γmin

1−ϵ
1+ϵ (1− e−γmin)

≤ 1 + ϵ

1− ϵ
+

2kϵ

(1− ϵ)(eγmin − 1)

(the inequality is derived as the analysis of Eq. (13))

= 1 +
2ϵ

1− ϵ
+

2kϵ

(1− ϵ)(eγmin − 1)

= 1 +
2kϵ

(1− ϵ)γmin

(
γmin

k
+

γmin

eγmin − 1

)
≤ 1 +

2kϵ

(1− ϵ)γmin

(
γmin

k
+

1

1 + γmin/2

)
(the inequality holds by eγmin ≥ 1 + γmin + γ2

min/2)

≤ 1 +
2kϵ

(1− ϵ)γmin

(
γmin

3
+

1

1 + γmin/2

)
(the inequality holds with k ≥ 3)

≤ 1 +
2kϵ

(1− ϵ)γmin
, (by γmin ≤ 1)

leading to

1

1 + 2kϵ
(1−ϵ)γmin

·

(
1−

(
1−ϵ

1+ϵ

)k

e−γmin

)
≤ 1−ϵ

1+ϵ
(1−e−γmin).

The second case can be verified by ∀k ≥ 2 : (1 −
e−γmin) 2kϵ

γmin
≥ 2ϵ.

In fact, we can find that the approximation guarantee
of DPONSS under noise can be significantly better than
DPOSS. For example, when the objective function is sub-
modular (where α = 1 and ∀s, l : γs,l = 1) and the
noise level ϵ of multiplicative noise is a constant, DPONSS
can achieve an approximation ratio of Θ(max{1/m, 1/k}),
whereas DPOSS only guarantees an approximation ratio of
Θ((1/k) ·max{1/m, 1/k}).

V. EMPIRICAL STUDY

In this section, we conduct experiments on the application
of sparse regression to examine the practical performance
of DPONSS. We compare DPONSS with the two state-of-
the-art distributed algorithms, i.e., DPOSS [33] and RAND-
GREEDI [1], [27], on both regular-scale and large-scale data
sets. The goal of using regular-scale data sets is to examine the
approximation ratio and the running time speedup of DPONSS
to the centralized PONSS algorithm. Note that regular-scale
data sets can be stored on one single machine, and thus can
be run by the centralized PONSS algorithm.

To run one distributed algorithm on one data set, the data
set is partitioned into m blocks uniformly at random and
then distributed to m machines. For each data set, we first
generate 10 partitions independently; then, the three distributed
algorithms, DPONSS, DPOSS and RANDGREEDI, are run on
these same partitions, and the average results are reported
and compared. Note that when m = 1, DPONSS, DPOSS
and RANDGREEDI degenerate to the corresponding central-
ized algorithms, PONSS, POSS and the greedy algorithm,
respectively. Thus, we do not need to perform the partition
for the case of m = 1. But since PONSS and POSS are
randomized algorithms, we also repeat running them for 10
times independently and use the average results when m = 1.
Although the greedy algorithm is deterministic, its behavior is
randomized under noise, and thus it will also be repeated for
10 times independently.

For DPOSS, we need to run POSS at each machine. The
number of iterations for POSS at one machine is set to 2ek2N ,
where N denotes the number of observation variables allocated
to that machine, as suggested in [34], [36]. For DPONSS,



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, 2019 11

PONSS is run at each machine, which has three parameters,
B, θ and T . As in [34], we set B = k and θ = 0.1. To
make a fair comparison between DPONSS and DPOSS, we
use the same number of fitness evaluations for POSS and
PONSS at each machine. POSS only needs to evaluate the new
offspring solution in each iteration, and thus running 2ek2N
iterations implies using 2ek2N evaluations. Note that each
iteration of PONSS requires 1 or (1+2B) fitness evaluations,
depending on whether the condition “|Q| = B + 1” in line 8
of Algorithm 3 is met. Thus, PONSS at each machine keeps
running and will be stopped until the 2ek2N number of fitness
evaluations is run out.

In the running of each algorithm, to estimate the objective
R2 value of each solution, a sample of instances randomly
selected from the whole data set is used. Note that R2 as
presented in Definition 6 captures the portion of the variance
of the predictor variable explained by the selected observation
variables. The ratio of the sample size over the total number
of instances, called sample ratio, can be regarded as the noise
level. The larger the sample ratio, the lower the noise level.
The extreme case is that the sample ratio is 1, which means
that the whole data set is used for fitness evaluation, and thus
there is no noise. In the experiments, various sample ratios,
i.e., various noise levels, will be used. For comparing the final
solutions output by each algorithm, the whole data set is used
for evaluation. In other words, we can obtain only a noisy
objective function value in the optimization process, but for
assessing the goodness of the final output solutions, the exact
value is used.

To run the experiments, we use an identical configuration:
a cluster of 6 machines, where each machine has 16 cores,
running Spark 2.2.1. Python 2.7.14 is used for coding.

A. Regular-scale Data Sets

We use 12 regular-scale data sets, as shown in Table I.
The two data sets Cifar10 and Cifar100 are downloaded
from https://www.cs.toronto.edu/∼kriz/cifar.html. VOC2007
and VOC2012 are downloaded from http://host.robots.ox.ac.
uk/pascal/VOC. Caltech256 and Caltech101 are downloaded
from http://www.vision.caltech.edu/Image Datasets. The other
6 data sets are downloaded from https://archive.ics.uci.
edu/ml/datasets.html and https://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/datasets/.

Note that some data sets are for classification, including
both single-label and multi-label classification, but we use
them for regression. For a multi-label classification data set
with L labels, the L labels are assigned integers 1, 2, . . . , L,
respectively. To use it for regression, we construct the target
variable of each instance as the sum of the integers correspond-
ing to its labels. Among the 12 data sets in Table I, VOC2007,
VOC2012 and DeliciousMIL are multi-label classification data
sets, each of which has 20 labels. Note that some image data
sets, where each instance is an image, are stretched in the
experiments. For VOC2007 and VOC2012, the size of each
image is not fixed, and we uniformly scale each image such
that the size is fixed to be 40×40, i.e., 40 pixels in height and
40 pixels in width. For Caltech256, the size of each image is

Table I
REGULAR-SCALE DATA SETS FOR SPARSE REGRESSION.

Data set #inst #feat
sEMG 1,800 2,500

Cifar10 10,000 3,072
Cifar100 60,000 3,072

SVHN 73,257 3,072
VOC2007 4,952 4,800
VOC2012 11,540 4,800

gisette 7,000 5,000
GGO-Network 2,921 5,232
DS-Activities 9,120 5,625
Caltech256 30,607 6,912

DeliciousMIL 12,234 8,519
Caltech101 9,114 11,664

scaled to 48 × 48. For Caltech101, the original size of each
image is roughly 300× 200, which is scaled to 48× 81.

We set the budget k = 8. The number m of reducers is
set to {1, 2, . . . , 10}. During the running of each algorithm
on each data set, when evaluating the fitness of a solution, a
random sample of 200 instances is used for estimation. Thus,
the sample ratio, i.e., the noise level, is varied for different
data sets, ranging from 0.27% on SVHN to 11.11% on sEMG.
We summarize the results in Figure 1, showing the objective
R2 values of the solution output by each algorithm running
on each data set for m ∈ {1, 2, . . . , 10}. It can be seen that
DPONSS almost always performs the best, except three losses,
on SVHN with m = 5, VOC2012 with m = 6 and Caltech256
with m = 1. This observation thus verifies our theoretical
analyses. In [33], it has been shown that DPOSS is better than
RANDGREEDI in the noiseless environment. From Figure 1,
we can see that the advantage of DPOSS over RANDGREEDI
is kept in the noisy environment.

To examine how well DPONSS performs compared to the
centralized PONSS algorithm, we calculate the approxima-
tion ratio of DPONSS over PONSS. For any m = i ∈
{2, 3, . . . , 10}, the approximation ratio is computed as fi/f1,
where ∀i ∈ {1, 2, . . . , 10}, fi denotes the R2 value of the
solution output by DPONSS with m = i. Note that f1 is
just the R2 value output by the centralized PONSS algorithm,
because DPONSS with m = 1 is just PONSS. The approx-
imation ratios are averaged overall all the 12 data sets, and
plotted in Figure 2, showing that the average approximation
ratio is at least 97.5% for any m, and can reach 100% for
m = 4, 5. This implies that the performance of DPONSS is
very close to that of the centralized PONSS algorithm. In other
words, the distribution leads to little performance decrease. In
fact, the distribution can even bring performance increase in
some cases, e.g., m = 6 on the Cifar10 data set. This may be
because local optima are just avoided by the distribution, i.e.,
the partition of the whole data set into m blocks.

We also examine the running time speedup of DPONSS
over the centralized PONSS algorithm. For any m = i ∈
{2, 3, . . . , 10}, the speedup is computed as t1/ti, where ∀i ∈
{1, 2, . . . , 10}, ti denotes the running time of DPONSS with
m = i. Note that t1 is just the running time of the centralized



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, 2019 12

10
-3

DPONSS DPOSS RANDGREEDI

2 4 6 8 10

m

0

0.005

0.01

0.015

0.02

0.025

R
2

2 4 6 8 10

m

0.02

0.025

0.03

0.035

0.04

0.045

0.05

R
2

2 4 6 8 10

m

0.01

0.015

0.02

0.025

0.03

0.035

R
2

2 4 6 8 10

m

0

0.005

0.01

0.015

R
2

(a) sEMG (b) Cifar10 (c) Cifar100 (d) SVHN

2 4 6 8 10

m

0.015

0.02

0.025

0.03

0.035

R
2

2 4 6 8 10

m

0.003

0.004

0.005

0.006

0.007

0.008

R
2

2 4 6 8 10

m

0.4

0.45

0.5

0.55

0.6

0.65

0.7

R
2

2 4 6 8 10

m

0.82

0.84

0.86

0.88

0.9

0.92

0.94

R
2

(e) VOC2007 (f) VOC2012 (g) gisette (h) GGO-Network

2 4 6 8 10

m

0.9955

0.996

0.9965

0.997

0.9975

R
2

2 4 6 8 10

m

0.005

0.01

0.015

R
2

2 4 6 8 10

m

0

0.02

0.04

0.06

R
2

2 4 6 8 10

m

0.05

0.06

0.07

0.08

0.09

0.1

0.11

R
2

(i) DS-Activities (j) Caltech256 (k) DeliciousMIL (l) Caltech101

Figure 1. The comparison between DPONSS, DPOSS and RANDGREEDI on 12 regular-scale data sets of sparse regression for k = 8 (The objective R2:
the larger, the better).

2 3 4 5 6 7 8 9 10

m

0.90

0.92

0.94

0.96

0.98

1.00

A
p

p
ro

x
im

at
io

n
 r

at
io 0.991

0.9971.00 1.00

0.9880.987

0.995
0.991

0.975

Figure 2. The approximation ratio of DPONSS over the centralized PONSS
algorithm at each m ∈ {2, 3, . . . , 10}, which is averaged over all the 12
regular-scale data sets of sparse regression.

PONSS algorithm. PONSS uses 2ek2n fitness evaluations in
total. For DPONSS, PONSS first uses nearly 2ek2 · (n/m)
fitness evaluations at each machine in parallel due to uniform
partition, and then uses 2ek2 · (mk) fitness evaluations at one
single machine. Thus, when n/m is much larger than mk,
the 2ek2 · (n/m) fitness evaluations will dominate the total
running time of DPONSS, and linear speedup can be nearly
achieved. For the 12 data sets in Table I, it is clear that n/m
is much larger than mk for m ∈ {1, 2, . . . , 10}. We plot the
running time speedup of DPONSS on the sEMG data set in
Figure 3, which is consistent with our analysis.

B. Large-scale Data Sets

We use 9 large-scale data sets, as shown in the first
three columns of Table II. UMDFaces is an image data set,

1 2 3 4 5 6 7 8 9 10

m

2

4

6

8

10

S
p
ee
d
u
p

Linear

DPONSS

Figure 3. The running time speedup of DPONSS over the centralized PONSS
algorithm on the sEMG data set.

downloaded from https://www.umdfaces.io/. We scale the size
of each image to 126 × 126. COCO2017 is a multi-label
classification data set with 80 labels, downloaded from http://
cocodataset.org/#download. ILSVRC2012 is downloaded from
http://www.image-net.org/challenges/LSVRC/2012/. They are
two image data sets, and the size of each image is scaled
to 256 × 256. For the three regular-scale image data sets
Caltech101, VOC2007 and VOC2012, we also stretch them
to obtain the corresponding large-scale data sets, named as
Caltech101-large, VOC2007-large and VOC2012-large, re-
spectively. The size of each image for these three data sets
is uniformly scaled to 266 × 266, 312 × 312 and 450 × 450,
respectively. Note that for Caltech101 with 9, 114 instances,
we delete the gray images, and thus, Caltech101-large contains
only 8, 733 instances. NYU is a multi-label classification
data set with 894 labels, downloaded from https://cs.nyu.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, 2019 13

Table II
THE R2 VALUE (MEAN±STD.) OF THE FOUR COMPARED ALGORITHMS, DPONSS, DPOSS, RANDGREEDI AND DLS, ON 9 LARGE-SCALE DATA SETS OF
SPARSE REGRESSION FOR k = 8. ON EACH DATA SET, THE LARGEST VALUES ARE BOLDED. THE COUNT OF DIRECT WIN DENOTES THE NUMBER OF DATA

SETS ON WHICH DPONSS HAS A LARGER R2 VALUE THAN THE CORRESPONDING ALGORITHM (1 TIE IS COUNTED AS 0.5 WIN), WHERE SIGNIFICANT
CELLS BY THE SIGN-TEST WITH CONFIDENCE LEVEL 0.05 ARE BOLDED.

Data set #inst #feat DPONSS DPOSS RANDGREEDI DLS
UMDFaces 391,861 47,628 .0339±.0017 .0329±.0017 .0314±.0025 .0310±.0020
COCO2017 5,000 196,608 .0827±.0087 .0777±.0081 .0705±.0049 .0725±.0107
ILSVRC2012 50,000 196,608 .0246±.0019 .0222±.0025 .0223±.0025 .0227±.0030

Caltech101-large 8,733 212,268 .1237±.0051 .1204±.0106 .1071±.0094 .1069±.0137
VOC2007-large 4,952 292,032 .0305±.0025 .0300±.0036 .0263±.0030 .0253±.0025
VOC2012-large 11,540 607,500 .0067±.0014 .0055±.0009 .0057±.0011 .0055±.0015

NYU 1,449 1,017,600 .0342±.0090 .0271±.0038 .0258±.0031 .0239±.0048
fgvc-aircraft 3,334 1,062,912 .0318±.0063 .0275±.0073 .0241±.0052 .0213±.0067

SUN-od 5,061 1,080,000 .0507±.0126 .0467±.0098 .0476±.0131 .0395±.0065
DPONSS: Count of direct win - 9 9 9

Average rank 1 2.5 2.9 3.6

edu/∼silberman/datasets/nyu depth v2.html. The size of each
image is scaled to 640 × 530. fgvc-aircraft is an image
data set downloaded from http://www.robots.ox.ac.uk/∼vgg/
data/fgvc-aircraft/#format, where each image is scaled from
size 692 × 1024 to 692 × 512. Note that there are four
variables, ‘model’, ‘variant’, ‘family’ and ‘manufacturer’, to
predict, and we only use ‘variant’. SUN-od is a multi-label
image data set with 2, 776 labels, downloaded from http:
//groups.csail.mit.edu/vision/SUN/. The size of each image is
scaled to 600 × 600. To use multi-label large-scale data sets
for regression, the target variable is constructed in the same
way as that for multi-label regular-scale data sets.

For the comparison on large-scale data sets, we also im-
plement the distributed version of LS [30], called DLS, by
applying the divide and conquer idea. The budget k is also
set to 8. We use different number of reducers for large-scale
data sets. The larger the data set, the more the number m of
reducers. For the first five data sets in Table II, m is set to
300; for VOC2012-large, m = 600; for the last three data sets,
NYU, fgvc-aircraft and SUN-od, m = 1, 000. As the number m
of reducers exceeds the total number 6×16 of cores, each core
will carry out several reduce tasks sequentially. To estimate
the fitness of a solution during the running of each algorithm,
the sample ratios employed for the 9 large-scale data sets in
Table II are 1%, 10%, 3%, 10%, 10%, 5%, 20%, 5% and 3%,
respectively.

The results are summarized in Table II, showing that
DPONSS always achieves the best performance. By the sign-
test [8] with confidence level 0.05, DPONSS is significantly
better than the other three algorithms. The rank of each
algorithm on each data set is also computed as in [8], and
averaged in the last row of Table II.

The sample ratio, i.e., the ratio of the sample size over the
total number of instances, characterizes the noise level. We
examine the influence of the sample ratio on the performance
of DPONSS. Although the sample ratios for different data
sets used in our experiments can be different, it requires to
test the performance of DPONSS on the same data set with
different sample ratios. On the COCO2017 data set, we vary
the sample ratio from 8% to 16%. The results in Figure 4
show that DPONSS is always the best, implying that DPONSS
can achieve good performance under different noise levels.

8 10 12 14 16

Sample ratio (%)

0.06

0.07

0.08

0.09

0.1

R
2

滚滚长江东逝水 滚滚长江东逝水

滚滚长江东逝水

16

DPONSS

DPOSS

RANDGREEDI

DLS

Figure 4. The comparison between DPONSS, DPOSS, RANDGREEDI
and DLS on the COCO2017 data set for the sample ratio in
{8%, 10%, . . . , 16%}.

6 8 10 12 14 16 18 20

Budget k

0.04

0.06

0.08

0.1

0.12

R
2

滚滚长江东逝水
滚滚长江东逝水

16

DPONSS

DPOSS

RANDGREEDI

DLS

Figure 5. The comparison between DPONSS, DPOSS, RANDGREEDI and
DLS on the COCO2017 data set for the budget k ∈ {6, 7, . . . , 20}.

We then also examine the influence of the budget k. On
COCO2017 with the sample ratio 8%, we vary k from 6 to
20. The results in Figure 5 show that DPONSS keeps the best.

VI. CONCLUSION

This paper studies the problem of large-scale noisy subset
selection. First, we analyze the performance of DPOSS, a
state-of-the-art distributed algorithm based on multi-objective
evolutionary optimization for large-scale subset selection, un-
der noise. The derived approximation guarantees imply that the
noise leads to a large performance decrease. Then, we propose
the distributed algorithm DPONSS, which employs a noise-
aware multi-objective evolutionary algorithm PONSS at each
machine. We prove that DPONSS achieves significantly better
approximation guarantees than DPOSS under noise. For the
application of sparse regression, the performance of DPONSS



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, 2019 14

is empirically tested using Spark on real-world data sets, where
the size ranges from thousands to millions. The results show
the excellent performance of DPONSS. In the future, we will
apply DPONSS to the data sets with size tens of millions, and
also to more large-scale noisy applications of subset selection.

ACKNOWLEDGMENTS

This research was supported by the National Key Research
and Development Program of China (2017YFB1003102) and
the National Natural Science Foundation of China (61603367).

REFERENCES

[1] R. Barbosa, A. Ene, H. Nguyen, and J. Ward, “The power of random-
ization: Distributed submodular maximization on massive datasets,” in
Proceedings of the 32nd International Conference on Machine Learning
(ICML’15), Lille, France, 2015, pp. 1236–1244.

[2] T. Bartz-Beielstein and S. Markon, “Threshold selection, hypothesis
tests, and DOE methods,” in Proceedings of the 2002 IEEE Congress on
Evolutionary Computation (CEC’02), Honolulu, HI, 2002, pp. 777–782.

[3] A. A. Bian, J. M. Buhmann, A. Krause, and S. Tschiatschek, “Guar-
antees for greedy maximization of non-submodular functions with
applications,” in Proceedings of the 34th International Conference on
Machine Learning (ICML’17), Sydney, Australia, 2017, pp. 498–507.

[4] J. Branke, S. Nguyen, C. W. Pickardt, and M. Zhang, “Automated design
of production scheduling heuristics: A review,” IEEE Transactions on
Evolutionary Computation, vol. 20, no. 1, pp. 110–124, 2016.

[5] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’10), Washington, DC, 2010, pp.
1029–1038.

[6] A. Das and D. Kempe, “Submodular meets spectral: Greedy algorithms
for subset selection, sparse approximation and dictionary selection,” in
Proceedings of the 28th International Conference on Machine Learning
(ICML’11), Bellevue, WA, 2011, pp. 1057–1064.

[7] ——, “Approximate submodularity and its applications: Subset selec-
tion, sparse approximation and dictionary selection,” Journal of Machine
Learning Research, vol. 19, pp. 1–34, 2018.

[8] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[9] G. Diekhoff, Statistics for the Social and Behavioral Sciences: Univari-
ate, Bivariate, Multivariate. William C Brown Pub, 1992.

[10] M. Duarte, J. Gomes, S. M. Oliveira, and A. L. Christensen, “Evolution
of repertoire-based control for robots with complex locomotor systems,”
IEEE Transactions on Evolutionary Computation, vol. 22, no. 2, pp.
314–328, 2018.

[11] D. Dueck and B. J. Frey, “Non-metric affinity propagation for unsu-
pervised image categorization,” in Proceedings of the 11th IEEE Inter-
national Conference on Computer Vision (ICCV’07), Rio de Janeiro,
Brazil, 2007, pp. 1–8.

[12] E. R. Elenberg, R. Khanna, A. G. Dimakis, S. Negahban et al.,
“Restricted strong convexity implies weak submodularity,” The Annals
of Statistics, vol. 46, no. 6B, pp. 3539–3568, 2018.

[13] A. K. Farahat, A. Ghodsi, and M. S. Kamel, “An efficient greedy
method for unsupervised feature selection,” in Proceedings of the 11th
IEEE International Conference on Data Mining (ICDM’11), Vancouver,
Canada, 2011, pp. 161–170.

[14] U. Feige, “A threshold of lnn for approximating set cover,” Journal of
the ACM, vol. 45, no. 4, pp. 634–652, 1998.

[15] C. Feng, C. Qian, and K. Tang, “Unsupervised feature selection by
Pareto optimization,” in Proceedings of the 33rd AAAI Conference on
Artificial Intelligence (AAAI’19), Honolulu, HI, 2019.

[16] T. Friedrich, T. Kötzing, M. S. Krejca, and A. M. Sutton, “The compact
genetic algorithm is efficient under extreme gaussian noise,” IEEE
Transactions on Evolutionary Computation, vol. 21, no. 3, pp. 477–490,
2017.

[17] T. Friedrich and F. Neumann, “Maximizing submodular functions under
matroid constraints by evolutionary algorithms,” Evolutionary Compu-
tation, vol. 23, no. 4, pp. 543–558, 2015.

[18] A. Hassidim and Y. Singer, “Submodular optimization under noise,” in
Proceedings of the 30th Conference on Learning Theory (COLT’17),
Amsterdam, The Netherlands, 2017, pp. 1069–1122.

[19] T. Horel and Y. Singer, “Maximization of approximately submodular
functions,” in Advances in Neural Information Processing Systems 29
(NIPS’16), Barcelona, Spain, 2016, pp. 3045–3053.

[20] Y. Jin and J. Branke, “Evolutionary optimization in uncertain
environments-A survey,” IEEE Transactions on evolutionary computa-
tion, vol. 9, no. 3, pp. 303–317, 2005.

[21] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical
Analysis, 6th ed. Pearson, 2007.

[22] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’03), Washington, DC, 2003, pp. 137–146.

[23] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements
in Gaussian processes: Theory, efficient algorithms and empirical stud-
ies,” Journal of Machine Learning Research, vol. 9, pp. 235–284, 2008.

[24] X. Lai, Y. Zhou, J. He, and J. Zhang, “Performance analysis of
evolutionary algorithms for the minimum label spanning tree problem,”
IEEE Transactions on Evolutionary Computation, vol. 18, no. 6, pp.
860–872, 2014.

[25] M. Laumanns, L. Thiele, and E. Zitzler, “Running time analysis of
multiobjective evolutionary algorithms on pseudo-Boolean functions,”
IEEE Transactions on Evolutionary Computation, vol. 8, no. 2, pp. 170–
182, 2004.

[26] A. Miller, Subset Selection in Regression, 2nd ed. Chapman and
Hall/CRC, 2002.

[27] B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause, “Distributed
submodular maximization: Identifying representative elements in mas-
sive data,” in Advances in Neural Information Processing Systems 26
(NIPS’13), Lake Tahoe, NV, 2013, pp. 2049–2057.

[28] B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM
Journal on Computing, vol. 24, no. 2, pp. 227–234, 1995.

[29] G. L. Nemhauser and L. A. Wolsey, “Best algorithms for approximating
the maximum of a submodular set function,” Mathematics of Operations
Research, vol. 3, no. 3, pp. 177–188, 1978.

[30] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions – I,” Mathe-
matical Programming, vol. 14, no. 1, pp. 265–294, 1978.

[31] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and
J. R. Woodward, “Genetic improvement of software: A comprehensive
survey,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 3,
pp. 415–432, 2018.

[32] C. Pizzuti, “Evolutionary computation for community detection in
networks: A review,” IEEE Transactions on Evolutionary Computation,
vol. 22, no. 3, pp. 464–483, 2018.

[33] C. Qian, G. Li, C. Feng, and K. Tang, “Distributed Pareto optimization
for subset selection,” in Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI’18), Stockholm, Sweden,
2018, pp. 1492–1498.

[34] C. Qian, J.-C. Shi, Y. Yu, K. Tang, and Z.-H. Zhou, “Subset selection
under noise,” in Advances in Neural Information Processing Systems 30
(NIPS’17), Long Beach, CA, 2017, pp. 3562–3572.

[35] C. Qian, Y. Yu, and K. Tang, “Approximation guarantees of stochastic
greedy algorithms for subset selection,” in Proceedings of the 27th
International Joint Conference on Artificial Intelligence (IJCAI’18),
Stockholm, Sweden, 2018, pp. 1478–1484.

[36] C. Qian, Y. Yu, and Z.-H. Zhou, “Subset selection by Pareto opti-
mization,” in Advances in Neural Information Processing Systems 28
(NIPS’15), Montreal, Canada, 2015, pp. 1765–1773.

[37] C. Qian, J.-C. Shi, K. Tang, and Z.-H. Zhou, “Constrained monotone
k-submodular function maximization using multiobjective evolutionary
algorithms with theoretical guarantee,” IEEE Transactions on Evolution-
ary Computation, vol. 22, no. 4, pp. 595–608, 2018.

[38] C. Qian, Y. Yu, and Z.-H. Zhou, “Analyzing evolutionary optimization
in noisy environments,” Evolutionary computation, vol. 26, no. 1, pp.
1–41, 2018.

[39] C. E. Rasmussen, “Gaussian processes in machine learning,” in Ad-
vanced Lectures on Machine Learning. Springer, 2004, pp. 63–71.

[40] Á. Rubio-Largo, L. Vanneschi, M. Castelli, and M. A. Vega-Rodrı́guez,
“Multiobjective metaheuristic to design RNA sequences,” IEEE Trans-
actions on Evolutionary Computation, vol. 23, no. 1, pp. 156–169, 2019.

[41] A. Singla, S. Tschiatschek, and A. Krause, “Noisy submodular maxi-
mization via adaptive sampling with applications to crowdsourced image
collection summarization,” in Proceedings of the 30th AAAI Conference
on Artificial Intelligence (AAAI’16), Phoenix, AZ, 2016, pp. 2037–2043.

[42] M.-H. Tayarani-N, X. Yao, and H. Xu, “Meta-heuristic algorithms in car
engine design: A literature survey,” IEEE Transactions on Evolutionary
Computation, vol. 19, no. 5, pp. 609–629, 2015.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, 2019 15

[43] H. Zhang and Y. Vorobeychik, “Submodular optimization with routing
constraints,” in Proceedings of the 30th AAAI Conference on Artificial
Intelligence (AAAI’16), Phoenix, AZ, 2016, pp. 819–826.

Chao Qian received the BSc and PhD degrees in
computer science from Nanjing University, China, in
2009 and 2015, respectively. Since then, he joined
the School of Computer Science & Technology at
University of Science and Technology of China as
an associate researcher. His research interests are
mainly in evolutionary computation and machine
learning, particularly, the theoretical foundation of
evolutionary algorithms and its application with
theoretical guarantees in machine learning. He has
published over 20 first-author papers in leading inter-

national journals and conference proceedings, including Artificial Intelligence,
Evolutionary Computation, IEEE Transactions on Evolutionary Computation,
Algorithmica, NIPS, IJCAI, AAAI, etc. He won the ACM GECCO 2011 Best
Paper Award (Theory Track), the IDEAL 2016 Best Paper Award, and the
2017 Outstanding Doctoral Dissertation Award of CAAI. He has served as
chair of the IEEE Computational Intelligence Society Task Force “Theoretical
Foundations of Bio-inspired Computation”, and an Young Associate Editor of
Frontiers of Computer Science. He has also been selected to the Young Elite
Scientists Sponsorship Program by CAST.


