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Abstract—The problem of maximizing monotone k-
submodular functions under a size constraint arises in
many applications, and it is NP-hard. In this paper, we
propose a new approach which employs a multi-objective
evolutionary algorithm to maximize the given objective and
minimize the size simultaneously. For general cases, we prove
that the proposed method can obtain the asymptotically tight
approximation guarantee, which was also achieved by the
greedy algorithm. Moreover, we further give instances where the
proposed approach performs better than the greedy algorithm
on applications of influence maximization, information coverage
maximization and sensor placement. Experimental results on
real-world data sets exhibit the superior performance of the
proposed approach.

Index Terms—Submodular optimization, constrained optimiza-
tion, multi-objective evolutionary algorithms, theoretical analysis,
experimental studies.

I. INTRODUCTION

In many areas such as combinatorial optimization and
machine learning, we often encounter the problem of selecting
a subset with a size constraint from a total set of items. The
involved objective functions are often monotone and submod-
ular, e.g., in maximum coverage [7] and feature selection [15],
[17]. This kind of problem, maximizing monotone submodular
functions under a size constraint, is NP-hard, and the greedy
algorithm achieves the (1− 1

e )-approximation guarantee [22],
which is optimal in general [21].

In this paper, we study a generalization of the above
problem, i.e., maximizing monotone k-submodular functions
under a size constraint, which appears in many practical ap-
plications, e.g., influence maximization with k kinds of topics
and sensor placement with k kinds of sensors [25]. That is, k
pairwise disjoint subsets instead of a single subset need to be
selected, and the objective functions are k-submodular. Note
that although k-submodular is a generalization of submodular
(i.e., k = 1) [12], the methods on submodular function
maximization cannot be directly applied to the general k.
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Studies on k-submodular function optimization start with
k = 2, i.e., bisubmodular, including both minimization [9],
[18] and maximization [31], [35]. Since 2012, more attention
has been drawn to the case of general k. The minimization of
k-submodular functions is solvable in polynomial time [32].
However, maximizing k-submodular functions is NP-hard.
Ward and Živnỳ [35] first gave a 1

3 -approximation guarantee
by a deterministic greedy algorithm. This bound was later
improved by Iwata et al. [13] to 1

2 with a randomized greedy
algorithm. In addition, Iwata et al. [13] also proved a k

2k−1 -
approximation guarantee for monotone k-submodular function
maximization.

Most of the above-mentioned studies considered the un-
constrained cases. Meanwhile, real-world applications of k-
submodular function maximization are often subject to a
size constraint [31]. To the best of our knowledge, there
has existed only one work for maximizing monotone k-
submodular functions under a size constraint. Ohsaka and
Yoshida [25] proved that the greedy algorithm can obtain
the 1

2 -approximation guarantee under the total size constraint,
which is asymptotically tight since exponential running time
is required for achieving an approximation ratio of k+1

2k +ϵ for
any ϵ > 0 [13]. Note that they also studied the problem under
the individual size constraint, while we focus on the total size
constraint in this paper.

Motivated by the success of multi-objective evolutionary
algorithms (MOEAs) for solving constrained optimization
problems over the continuous solution space [2], [4], [33]
as well as the Boolean solution space (i.e., {0, 1}n) [26],
[27], [28], [29], we propose a Multi-Objective evolutionary
optimization method for maximizing Monotone k-Submodular
functions with a size constraint (where the solution space
is {0, 1, . . . , k}n), called MOMS. The MOMS method first
reformulates the original constrained problem as a bi-objective
optimization problem that maximizes the given objective and
minimizes the size simultaneously, then employs a simple
MOEA [16] combined with randomized local search to solve
it, and finally selects the best feasible solution from the
produced non-dominated solution set.

We first theoretically analyze the performance of MOMS.
The main results are that,

• MOMS can achieve the 1
2 -approximation guarantee in

polynomial time for general cases (i.e., Theorem 1),
which reaches the asymptotically tight bound also ob-
tained by the greedy algorithm [25].
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• Three representative monotone k-submodular problems,
i.e., influence maximization, information coverage maxi-
mization and sensor placement, are investigated. For each
problem, we give an instance and prove that MOMS
can find an optimal solution while the greedy algorithm
cannot (i.e., Theorems 2, 3 and 4).

These results show that compared with the best-so-far method
for the studied problem, the greedy algorithm [25], the pro-
posed method MOMS has the same general approximation
guarantee, but can achieve better solutions in cases.

We have also conducted experiments on the applications of
influence maximization, information coverage maximization
and sensor placement. The results on 14 real-world data sets
exhibit the superior performance of MOMS over the greedy
algorithm. Note that for sensor placement with k = 1, the
greedy algorithm has been proved to be able to achieve the
nearly optimal solution [30]. Thus, the better performance
of MOMS on sensor placement also discloses that MOMS
can bring a performance improvement even when the greedy
algorithm has been nearly optimal.

The rest of the paper first introduces the studied problem,
and then presents the proposed MOMS method, its theoretical
analysis and empirical study. Finally we conclude this paper.

II. MONOTONE k-SUBMODULAR FUNCTION
MAXIMIZATION UNDER A SIZE CONSTRAINT

In this section, we first introduce the general k-submodular
problem, and then give three special instances, influence
maximization, information coverage maximization and sensor
placement, which will be studied in this paper.

A. The General k-Submodular Problem

Given a finite nonempty set V = {e1, . . . , en} and a positive
integer k, we study the functions f : (k+1)V → R defined on
k disjoint subsets of V , where (k + 1)V = {(X1, . . . , Xk) |
Xi ⊆ V, ∀i ̸= j : Xi ∩ Xj = ∅}. Note that (X1, . . . , Xk)
can be naturally represented by a vector x ∈ {0, 1, . . . , k}n,
where the j-th value xj = i means that ej ∈ Xi, and
xj = 0 means that ej does not appear in any subset. That
is, Xi = {ej | xj = i}. In this paper, we will not distinguish
x ∈ {0, 1, . . . , k}n and its corresponding k disjoint subsets
(X1, . . . , Xk) for notational convenience.

For x = (X1, . . . , Xk) and y = (Y1, . . . , Yk), we define
x ⊑ y if Xi ⊆ Yi for any i. The monotonicity and k-
submodularity are then defined as follows. When k = 1, it
is easy to see that k-submodular is just submodular.

Definition 1 (Monotone). A function f : (k + 1)V → R is
monotone if for any x ⊑ y, f(x) ≤ f(y).

Definition 2 (k-Submodular). [25] A function f : (k+1)V →
R is k-submodular if for any x and y,

f(x) + f(y) ≥ f(x ⊓ y) + f(x ⊔ y),

where x ⊓ y = (X1 ∩ Y1, . . . , Xk ∩ Yk), and

x⊔y =
(
(X1∪Y1)\

∪
i ̸=1

(Xi∪Yi), . . . , (Xk∪Yk)\
∪
i ̸=k

(Xi∪Yi)
)
.

Let [k] denote the set {1, 2, . . . , k}. We then give some
concepts in Definitions 3-6, that will be used in the paper.
The support of a solution x = (X1, . . . , Xk) is the union
of its k disjoint subsets, i.e., supp(x) =

∪
i∈[k] Xi. For the

vector representation x ∈ {0, 1, . . . , k}n, Xi = {ej | xj = i},
and thus supp(x) can also be represented as {ej | xj > 0}.
The orthant submodularity intuitively means that the marginal
gain by adding a single element into a solution decreases as
the k subsets contained by the solution extend. The pairwise
monotonicity is weaker than the monotonicity, because if a
function is monotone, it must be pairwise monotone. In [35],
the k-submodularity is proved to be equivalent to both the
orthant submodularity and the pairwise monotonicity.

Definition 3 (Support). For a solution x = (X1, . . . , Xk), the
support supp(x) is the union of its k disjoint subsets, i.e.,

supp(x) =
∪

i∈[k]
Xi.

Definition 4 (Marginal Gain/Loss). For a function f : (k +
1)V → R and a solution x = (X1, . . . , Xk), the marginal
gain ∆+

e,if(x) with respect to e /∈ supp(x) and i ∈ [k] is the
increment on f by adding e into Xi, i.e.,

∆+
e,if(x) =f(X1, . . . , Xi−1, Xi ∪ {e}, Xi+1, . . . , Xk)

− f(X1, . . . , Xk);

and the marginal loss ∆−
e,i with respect to e ∈ Xi is decrement

on f by deleting e from Xi, i.e.,

∆−
e,if(x) =f(X1, . . . , Xk)

− f(X1, . . . , Xi−1, Xi \ {e}, Xi+1, . . . , Xk).

Definition 5 (Orthant Submodular). A function f : (k+1)V →
R is orthant submodular if for any x ⊑ y, e /∈ supp(y) and
i ∈ [k],

∆+
e,if(x) ≥ ∆+

e,if(y). (1)

Definition 6 (Pairwise Monotone). A function f : (k+1)V →
R is pairwise monotone if for any x, e /∈ supp(x) and i, j ∈
[k] with i ̸= j,

∆+
e,if(x) + ∆+

e,jf(x) ≥ 0.

Our studied problem as presented in Definition 7 is to
maximize a monotone k-submodular function f with an upper
limit on |supp(x)|, where | · | denotes the size of a set. Let
0 denote the all-zeros vector. Without loss of generality, we
assume that f is normalized, i.e., f(0) = 0. Ohsaka and
Yoshida [25] have recently proved that the greedy algorithm
can obtain the asymptotically tight 1

2 -approximation guarantee.
As shown in Algorithm 1, the greedy algorithm iteratively
selects a combination (e, i) with the largest improvement on
f . Note that x(e) denotes the value of x on the element e, i.e.,
e ∈ Xx(e). Ohsaka and Yoshida [25] also studied the problem
under the individual size constraint, i.e., |Xi| ≤ bi for each
i ∈ [k]. In this paper, we focus on the total size constraint,
i.e., |supp(x)| = |

∪
i∈[k] Xi| ≤ b.
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Algorithm 1 Greedy Algorithm
Input: a monotone k-submodular function f : {0, . . . , k}n →
R+ and a budget b ∈ [n]
Output: a solution x with |supp(x)| = b
Process:

1: Let t = 0 and x = 0.
2: repeat
3: (e, i) = argmaxe∈V \supp(x),i∈[k] ∆

+
e,if(x).

4: Let x(e) = i, and t = t+ 1.
5: until t = b
6: return x

Definition 7 (The General k-Submodular Problem). Given a
monotone k-submodular function f : {0, 1, . . . , k}n → R+

and a budget b ∈ [n], the task is to find

x∗ = argmax
x∈{0,1,...,k}n

f(x) s.t. |supp(x)| ≤ b. (2)

B. Influence Maximization

Influence maximization is to identify a set of influential
users in social networks. Let a directed graph G = (V,E)
represent a social network, where each node is a user and
each edge (u, v) ∈ E has a probability pu,v representing
the strength of influence from user u to v. Given a budget
b, influence maximization is to find a subset S of V with
|S| = b such that the expected number of nodes activated
by propagating from S is maximized [14]. A fundamental
propagation model is Independence Cascade (IC), as shown
in Definition 8. Starting from a seed set A0 = S, it uses a
set At to record the nodes activated at time t, and at time
t+1, each inactive neighbor v of u ∈ At becomes active with
probability pu,v; this process is repeated until no nodes get
activated at some time.

Definition 8 (Independence Cascade (IC)). [14] Given a
directed graph G = (V,E) with edge probabilities pu,v for
any (u, v) ∈ E and a seed set S ⊂ V , the IC model propagates
as follows:
1. let A0 = S and t = 0.
2. repeat until At = ∅
3. for each edge (u, v) with u ∈ At and v ∈ V \

∪
i≤t Ai

4. v is added into At+1 with probability pu,v .
5. let t = t+ 1.

As the user-to-user influence usually depends on some topic,
Barbieri et al. [1] introduced the topic-aware model, where
each edge (u, v) has a probability vector (p1u,v, . . . , p

k
u,v)

representing the influence strength from u to v on each topic.
Let x ∈ {0, 1, . . . , k}n represent an assignment of topics to n
users, where xj = i means that user j is with topic i. Thus,
Xi contains all the nodes with topic i. The k-topic IC model
propagates from Xi using probabilities piu,v independently for
each topic. The set of nodes activated by propagating from
Xi is denoted as A(Xi), which is a random variable. Then,
influence maximization with k kinds of topics as shown in
Definition 9 is to maximize the expected total number of nodes
that get activated in at least one propagation process. It has

been proved to be monotone and k-submodular [25]. Note that
E[·] denotes the expectation of a random variable.

Definition 9 (Influence Maximization). Given a directed
graph G = (V,E) with |V | = n, edge probabilities piu,v
((u, v) ∈ E, i ∈ [k]) and a budget b, the task is to find

x∗= argmax
x∈{0,1,...,k}n

E
[
|
∪

i∈[k]
A(Xi)|

]
s.t. |supp(x)| ≤ b.

C. Information Coverage Maximization

Considering that an inactive node may be informed of
information by any of its active neighbor nodes, Wang et
al. [34] proposed a new problem, i.e., information coverage
maximization, which is to maximize the expected number of
both active nodes and informed nodes. An inactive node is
informed if there exists at least one active neighbor node. For
each v ∈ A(Xi), let N(v) denote the set of inactive neighbor
nodes of v. Then, the set of active nodes and informed nodes
by propagating from Xi can be represented as

AI(Xi) = A(Xi) ∪ (∪v∈A(Xi)N(v)).

Information coverage maximization with k kinds of topics
as shown in Definition 10 is to maximize the expected total
number of nodes that get activated or informed in at least one
propagation process. Because E[|AI(Xi)|] is monotone and
submodular [34], it is easy to show that E

[
|
∪

i∈[k] AI(Xi)|
]

is monotone and k-submodular, the proof of which is as same
as that for influence maximization in [25].

Definition 10 (Information Coverage Maximization). Given a
directed graph G = (V,E) with |V | = n, edge probabilities
piu,v ((u, v) ∈ E, i ∈ [k]) and a budget b, the task is to find

x∗= argmax
x∈{0,1,...,k}n

E
[
|
∪

i∈[k]
AI(Xi)|

]
s.t. |supp(x)|≤b.

D. Sensor Placement

Given a limited number of sensors, the sensor placement
problem is to decide where to place them such that the
uncertainty is mostly reduced. Assume that there are k kinds
of sensors, and let x ∈ {0, 1, . . . , k}n represent a placement
of sensors on n locations, where xj = i means that location j
is installed with the i-th kind of sensor. We use Oi

j to denote a
random variable representing the observations collected from
location j with sensor i. Note that the conditional entropy (i.e.,
remaining uncertainty) of a total set U of random variables
having observed a subset S is H(U | S) = H(U) − H(S),
where H(·) denotes the entropy. Thus, minimizing the un-
certainty of U is equivalent to maximizing the entropy of S.
Let U = {Oi

j | j ∈ [n], i ∈ [k]}. Then, sensor placement
is to maximize the entropy of {Oxj

j | xj > 0} using at
most b number of sensors, as shown in Definition 11. It has
been proved to be monotone and k-submodular [25]. Note
that for the special case k = 1 (i.e, submodular), Sharma et
al. [30] have shown that the greedy algorithm can achieve
the nearly optimal solution by proving that the submodular
objective function of sensor placement is close to modular.
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Definition 11 (Sensor Placement). Given n locations, k kinds
of sensors and a budget b, the task is to find

x∗= argmax
x∈{0,1,...,k}n

H({Oxj

j | xj > 0}) s.t. |supp(x)| ≤ b.

III. THE MOMS METHOD

In this section, we propose a Multi-Objective evolutionary
optimization method for the problem of maximizing Monotone
k-Submodular functions under a size constraint, briefly called
MOMS. The MOMS method first reformulates the original
problem Eq. (2) as a bi-objective minimization problem

argminx∈{0,1,...,k}n (f1(x), f2(x)),

where

f1(x) =

{
+∞, |supp(x)| ≥ 2b

−f(x), otherwise
, f2(x) = |supp(x)|.

That is, MOMS maximizes the original objective f and
minimizes the size of supp(x) simultaneously.

In the bi-objective setting, both the two objective values
have to be considered for comparing two solutions x and x′.
x weakly dominates x′ (i.e., x is better than x′, denoted as
x ≼ x′) if f1(x) ≤ f1(x

′) ∧ f2(x) ≤ f2(x
′) (i.e., x has a

smaller or equal value on both the objectives); x dominates
x′ (i.e., x is strictly better, denoted as x ≺ x′) if x ≼ x′ and
either f1(x) < f1(x

′) or f2(x) < f2(x
′) (i.e., x has a smaller

value on one objective, and meanwhile has a smaller or equal
value on the other objective). The domination relationship can
be summarized as follows:
(1) x ≼ x′ if f1(x) ≤ f1(x

′) ∧ f2(x) ≤ f2(x
′),

(2) x ≺ x′ if x ≼ x′ ∧ (f1(x) < f1(x
′) ∨ f2(x) < f2(x

′)).
But if neither x is better than x′ nor x′ is better than x, they
are incomparable.

After the transformation, a simple multi-objective evolution-
ary algorithm (MOEA) with mutation only [16] is employed
to solve the reformulated bi-objective minimization problem.
It has been shown to be among the best-so-far algorithms for
optimizing some P problems [23], [24] as well as approx-
imating some NP-hard problems [8], [36]. As described in
Algorithm 2, it starts from the all-zeros solution (line 1) and
then iteratively tries to improve the solutions in the population
P (lines 3-16). In each iteration, a new solution y is generated
by mutating an archived solution x selected from the current
P (lines 4-5); if y is not dominated by any previously archived
solution (line 6), it will be added into P , and meanwhile those
previously archived solutions weakly dominated by y will be
removed from P (line 7). Note that in order to utilize the local
information well to improve the efficiency, a randomized local
search (RLS) procedure is incorporated to improve the newly
included solution y (line 8). RLS as shown in Algorithm 3
adopts the random sampling technique [20], and performs a
sequence of greedy local moves. In each step, it first selects
a random subset R of elements and then adds one element
from R with the largest gain or deletes one element from R
with the smallest loss. The addition or deletion depends on the
relationship between |supp(y)| and b. The generated solutions

Algorithm 2 MOMS
Input: a monotone k-submodular function f : {0, . . . , k}n →
R+ and a budget b ∈ [n]
Parameter: the number T of iterations
Output: a solution x with |supp(x)| ≤ b
Process:

1: Let x = 0 and P = {x}.
2: Let t = 0.
3: while t < T do
4: Select x from P uniformly at random.
5: y = Mutation(x).
6: if @z ∈ P such that z ≺ y then
7: P = (P \ {z ∈ P | y ≼ z}) ∪ {y}.
8: Q = RLS(f, b,y).
9: for each q ∈ Q

10: if @z ∈ P such that z ≺ q then
11: P = (P \ {z ∈ P | q ≼ z}) ∪ {q}.
12: end if
13: end for
14: end if
15: t = t+ 1.
16: end while
17: return argminx∈P,|supp(x)|≤b f1(x)

by RLS are then used to update P (lines 9-13). Note that the
choice of the sample size |R| in each iteration of RLS will be
made clear in theoretical analysis.

Definition 12 (Mutation). Given a solution x ∈ {0, . . . , k}n,
the mutation operator generates a new solution y by indepen-
dently flipping each position of x with probability 1

n , where
the flipping on one position changes the current value to a
different value selected uniformly at random. That is, for all
j ∈ [n],

yj =

{
xj , with probability 1− 1/n,

i, otherwise,

where i is uniformly randomly chosen from {0, . . . , k}\{xj}.

MOMS repeats for T iterations. The value of T is a param-
eter, which could affect the quality of the produced solution.
Their relationship will be analyzed in the next section, and we
will use the theoretically derived T value in the experiments.

After running T iterations, the best solution (i.e., having the
smallest f1 value) satisfying the size constraint in P is selected
as the final solution (line 17). Note that the smallest f1 value
corresponds to the largest value on the original objective f .

In the bi-objective transformation, the goal of setting f1 to
+∞ is to exclude overly infeasible solutions, that is, the size
of the support is at least 2b. These infeasible solutions having
f1 = +∞∧ f2 ≥ 2b are dominated by any feasible solution
(e.g., the empty solution having f1 = 0 and f2 = 0), and
therefore never introduced into the population P .

To the best of our knowledge, MOEAs have not been
specially designed for the constrained k-submodular maxi-
mization problem before. Furthermore, previous applications
of MOEAs often lack theoretical justification. We thus first
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Algorithm 3 Randomized Local Search (RLS)
Input: a monotone k-submodular function f : {0, . . . , k}n →
R+, a budget b ∈ [n] and a solution x ∈ {0, . . . , k}n
Output: a set Q of solutions
Process:

1: Let Q = ∅, and j = |supp(x)|.
2: if j < b then
3: repeat
4: R← n−|supp(x)|

b−|supp(x)| ln(2(b− j)) elements uniformly
sampled from V \ supp(x) with replacement.

5: (e, i) = argmaxe∈R,i∈[k] ∆
+
e,if(x).

6: Let x(e) = i, and Q = Q ∪ {x}.
7: until |supp(x)| = b
8: else if j > b then
9: repeat

10: R← b+1
|supp(x)|−b elements uniformly sampled

from supp(x) with replacement.
11: e = argmine∈R ∆−

e,x(e)f(x).
12: Let x(e) = 0, and Q = Q ∪ {x}.
13: until |supp(x)| = b
14: end if
15: return Q

propose a simple multi-objective evolutionary method for the
ease of theoretical analysis. The following analysis will show
that MOMS has already performed well both theoretically and
empirically. Complex MOEAs for this problem will be studied
in our future work.

IV. THEORETICAL ANALYSIS: GENERAL CASES

This section theoretically investigates the general perfor-
mance of MOMS. We prove its general approximation bound
in Theorem 1, where OPT denotes the optimal function value
of Eq. (2). Note that the 1

2 polynomial-time approximation
guarantee achieved by MOMS is asymptotically tight, since
exponential running time is required for achieving an approx-
imation ratio of k+1

2k + ϵ for any ϵ > 0 [13]. The proof is
inspired from that of Theorem 3.1 in [25]. If the running
time is allowed to be infinite, MOMS can eventually find
an optimal solution, since the employed mutation operator in
Definition 12 is a global search operator which leads to a
positive probability of producing any solution in each iteration.

Theorem 1. For maximizing a monotone k-submodular func-
tion under a size constraint, the expected number T of itera-
tions until MOMS first finds a solution x with |supp(x)| ≤ b
and f(x) ≥ OPT/2 is at most 8eb.

Proof. Assume that the population P always contains at least
one solution x such that |supp(x)| < b and

f(x) ≥ OPT − f(z) (3)

for some solution z with x ⊑ z and |supp(z)| = b. By
selecting x in line 4 of Algorithm 2 and flipping no position
in line 5, x is regenerated. Because x is previously archived
in P , there must exist no solution in P which dominates x.

Thus, the condition of line 6 is satisfied, and x will go into
the randomized local search procedure in line 8.

We then claim that with probability at least 1
2 , RLS on x

can generate a solution with the 1
2 -approximation guarantee.

Since |supp(x)| < b, Algorithm 3 will perform lines 3-7,
which iteratively adds one element into x until |supp(x)| = b.
In the first iteration, the sampled R in line 4 is denoted as
R(1), the selected element from R and its value in line 5
are denoted as e(1) and i(1), respectively, and the generated
solution in line 6 is denoted as x(1). We define z(1/2) as a
vector obtained from z by assigning 0 to one element e′ in
S(1) = supp(z) \ supp(x). Note that x ⊑ z, thus supp(x) ⊆
supp(z). Assume that R(1) ∩ S(1) ̸= ∅. If e(1) ∈ R(1) ∩ S(1),
e′ = e(1); otherwise, e′ is an arbitrary element in R(1) ∩S(1).
Because (e(1), i(1)) is the combination which increases f the
most (see line 5), we have

f(x(1))− f(x) ≥ ∆+
e′,z(e′)f(x).

Since x ⊑ z(1/2) and e′ /∈ supp(z(1/2)), we can apply the
orthant submodularity (i.e., Eq. (1)) to derive that

∆+
e′,z(e′)f(x) ≥ ∆+

e′,z(e′)f(z
(1/2)) = f(z)− f(z(1/2)).

Combining the above two inequalities, we get

f(x(1))− f(x) ≥ f(z)− f(z(1/2)).

We define z(1) as a vector obtained from z(1/2) by letting
z(1/2)(e(1)) = i(1). Note that |supp(z(1))| = b. Due to the
monotonicity of f , f(z(1)) ≥ f(z(1/2)). Thus, we get

f(x(1))− f(x) ≥ f(z)− f(z(1)).

Using the same analysis procedure, we easily get f(x(i)) −
f(x(i−1)) ≥ f(z(i−1)) − f(z(i)) for the i-th iteration. Note
that lines 4-6 will repeat L = b − |supp(x)| iterations, and
z(L) = x(L). Let x(0) = x and z(0) = z. Then, we have

f(x(L))− f(x) =
∑L

i=1

(
f(x(i))− f(x(i−1))

)
≥

∑L

i=1

(
f(z(i−1))− f(z(i))

)
= f(z)− f(z(L)).

By combining z(L) = x(L) with the above inequality, we get

f(x(L)) ≥ (f(x) + f(z))/2 ≥ OPT/2,

where the second inequality is by Eq. (3).
The above analysis relies on the assumption that

∀1 ≤ i ≤ L : R(i) ∩ S(i) ̸= ∅.

In the following, we show that our choice of the sam-
ple size |R(i)| makes this assumption hold with prob-
ability at least 1

2 . Note that |S(i)| = |supp(z(i−1)) \
supp(x(i−1))| = b−|supp(x(i−1))|, because |supp(z(i−1))| =
b and supp(x(i−1)) ⊆ supp(z(i−1)). From the procedure of
generating R(i) in line 4 of Algorithm 3, we can derive that

Pr(R(i) ∩ S(i) = ∅)

=

(
1− b− |supp(x(i−1))|

n− |supp(x(i−1))|

)n−|supp(x(i−1))|
b−|supp(x(i−1))|

ln(2L)

≤ 1

2L
,



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, 2017 6

where the inequality is by (1−1/m)m ≤ 1/e. The assumption
then holds with probability at least 1−L· 1

2L = 1
2 by the union

bound. Thus, our claim holds.
Once such a solution x(L) is generated by RLS, it will be

used to update the population P (lines 9-13 of Algorithm 2);
this makes P always contain a solution y ≼ x(L), i.e.,

f(y) ≥ f(x(L)) ≥ OPT/2;

|supp(y)| ≤ |supp(x(L))| = b.

Thus, in order to find a solution with the 1
2 -approximation

guarantee, the required number of times to regenerate x in
line 5 of Algorithm 2 is at most 2 in expectation. Let Pmax

denote the largest size of the population P during the run of
MOMS. The probability of selecting x in line 4 is at least 1

Pmax

due to uniform selection. From Definition 12, we know that the
probability of flipping no position of x in line 5 is (1− 1

n )
n ≥

1
2e . Thus, the probability of regenerating x in each iteration is
at least 1

2ePmax
, and then the expected number of iterations is at

most 2ePmax. Note that the solutions in P are incomparable,
thus each value of one objective can correspond to at most
one solution in P . Because any solution with |supp(·)| ≥ 2b is
excluded from P (since f1 = +∞), the second objective f2 =
|supp(·)| can only belong to {0, 1, . . . , 2b−1}. Thus, Pmax ≤
2b, which implies that the expected number of iterations until
achieving the 1

2 -approximation guarantee is at most 2 · (2e ·
2b) = 8eb.

Finally, we only need to verify our assumption. The initial
solution 0 satisfies Eq. (3) by letting z be an optimal solution.
Furthermore, it will always be in P , because it has the smallest
f2 value 0 and no other solution can weakly dominate it. Thus,
our assumption holds and then the theorem holds.

V. THEORETICAL ANALYSIS: SPECIAL CASES

We have proved that MOMS can generally achieve the 1
2 -

approximation bound. Previous studies have shown that the
greedy algorithm can also achieve this asymptotically tight
bound [25]. We then further compare MOMS with the greedy
algorithm on the applications of influence maximization, infor-
mation coverage maximization and sensor placement. For each
application, we give an instance where MOMS can perform
better than the greedy algorithm.

A. Influence Maximization

For influence maximization, we analyze Example 1 where
each user has an equal influence probability on each topic.
We prove in Theorem 2 that MOMS can find a global
optimal solution while the greedy algorithm cannot. The proof
idea is that the greedy algorithm easily gets trapped in a
local optimal solution, while MOMS can efficiently find an
infeasible solution with size b + 1, from which backward
randomized local search (i.e., lines 9-13 of Algorithm 3)
can produce a global optimal solution. Let si be a random
variable such that si = 1 if the node vi is activated in the
propagation process and si = 0 otherwise. In the proof, the
objective function in Definition 9 is equivalently computed
by E[

∑n
i=1 si] =

∑n
i=1 E[si], where the equality is by the

linearity of expectation.

�� �  �! 

�" �# �$ �% 

�& �' 

Figure 1. A social network graph, where each edge has a probability vector
( 1
k
, . . . , 1

k
).

Example 1. The parameters of influence maximization in
Definition 9 are set as: the graph G = (V,E) is shown in
Figure 1 where each edge has a probability vector ( 1k , . . . ,

1
k ),

and the budget b = 2.

Theorem 2. For Example 1, the expected number T of
iterations until MOMS first finds a global optimal solution
is O(bn), while the greedy algorithm cannot find a global
optimal solution.

Proof. We first analyze f(x) with |supp(x)| ≤ b = 2. Note
that xj is the value on the node vj . For |supp(x)| = 1, it
is easy to see that the solution (0, i, 0, . . . , 0) with i ∈ [k]
has the largest f value 1 + 2

k + 2
k2 , which is calculated by

E[s2] = 1, E[s4] = E[s5] = 1
k , E[s8] = E[s9] = 1

k2 and
E[s1] = E[s3] = E[s6] = E[s7] = 0. For x with x2 > 0 and
|supp(x)| = 2, we can derive that, for any i, j ∈ [k],

f((j, i, 0, . . . , 0)) = f((0, i, j, 0, . . . , 0))

=

{
2 + 4

k + 2
k2 − 1

k3 if i = j

2 + 4
k + 2

k2 − 1
k4 if i ̸= j

,

f((0, i, 0, j, 0, . . . , 0)) = f((0, i, 0, 0, j, 0, . . . , 0))

=

{
2 + 2

k + 1
k2 if i = j

2 + 2
k + 2

k2 − 1
k3 if i ̸= j

,

otherwise, f(x) ≤ 2 + 2/k + 2/k2.

It is also easy to verify that xglobal = (i, 0, j, 0, . . . , 0) is a
global optimal solution with the objective value 2 + 4

k + 2
k2 .

According to the above calculation results, the greedy
algorithm will first find (0, i, 0, . . . , 0), and then go to the
solution xlocal = (j, i, 0, . . . , 0) or (0, i, j, 0, . . . , 0), where
i ̸= j. Thus, it cannot find a global optimal solution.

For MOMS, we first show that it can efficiently find xlocal.
The required number of iterations is denoted by T1. Note that
the initial solution 0 will always be in P . By selecting 0 in
line 4 of Algorithm 2 and flipping no position, which happens
with probability at least 1

2b · (1−
1
n )

n ≥ 1
4eb , 0 is regenerated

in line 5. Because 0 cannot be dominated by any solution, it
will go into the RLS procedure, which produces xlocal with
probability Ω(1), since the random sample R in line 4 of
RLS can cover any specific element with probability Ω(1).
We pessimistically assume that xglobal is not found, since we
are to derive the upper bound on the number of iterations
for finding xglobal. Then, xlocal will be included into P and
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always exist in P , because it has the second largest f value
among the solutions with |supp(x)| = 2. Thus, E[T1] = O(b).

After that, by selecting xlocal in line 4 and flipping the only
0 value in its first three positions to a value l ̸= i, j in line 5,
which happens with probability at least 1

2b ·
1
n (1−

1
n )

n−1 k−2
k ,

a solution x∗ = (j, i, l, 0, . . . , 0) or (l, i, j, 0, . . . , 0) is gen-
erated. Such a solution has the largest f value among the
solutions with |supp(x)| = 3, and thus no solution can
dominate it and x∗ will go into the RLS procedure. Since
|supp(x∗)| = b + 1, lines 10-12 of Algorithm 3 will be
performed once. If the random sample R in line 10 covers v2,
which happens with probability 1− (1− 1

b+1 )
b+1 ≥ 1− 1

e , x∗
2

will be set to 0, which leads to the smallest loss. Thus, xglobal

has been found. Denote the number of iterations in this phase
as T2. We then have E[T2] ≤ 2ebn k

k−2 ·
e

e−1 = O(bn).
By combining the above two phases, we get that the

expected number of iterations for MOMS finding xglobal is
at most E[T1] + E[T2] = O(bn).

B. Information Coverage Maximization

For information coverage maximization, we consider Exam-
ple 2, which also uses the social network graph in Figure 1.
The objective function in Definition 10 can be computed by∑n

i=1 E[si], where si = 1 if the node vi is activated or
informed in the propagation process and si = 0 otherwise.
We prove in Theorem 3 that MOMS performs better than the
greedy algorithm.

Example 2. The parameters of information coverage maxi-
mization in Definition 10 are set as: the graph G = (V,E) is
shown in Figure 1 where each edge has a probability vector
( 1k , . . . ,

1
k ), and the budget b = 2.

Theorem 3. For Example 2, the expected number T of
iterations until MOMS first finds a global optimal solution
is O(bn), while the greedy algorithm cannot find a global
optimal solution.

Proof. We first analyze f(x). When |supp(x)| = 1, the
solution (0, i, 0, . . . , 0) with i ∈ [k] has the largest f value
3 + 2

k , which is calculated by E[s2] = E[s4] = E[s5] = 1,
E[s8] = E[s9] = 1

k and E[s1] = E[s3] = E[s6] = E[s7] = 0.
When x2 > 0 and |supp(x)| = 2, we have, for any i, j ∈ [k],

f((j, i, 0, . . . , 0)) = f((0, i, j, 0, . . . , 0)) = 5 +
3

k
− 1

k2
,

f((0, i, 0, j, 0, . . . , 0)) = f((0, i, 0, 0, j, . . . , 0)) = 4 +
1

k
,

otherwise, f(x) ≤ 4 + 2/k.

In the case of b = 2, it is easy to verify that (i, 0, j, 0, . . . , 0) is
a global optimal solution with the objective value 6+ 2

k . When
|supp(x)| = 3, the solution (i, j, l, 0, . . . , 0) has the largest f
value 7 + 4

k −
2
k2 .

Thus, the structure of the f function here is similar to that
for influence maximization. We then can use the same proof
as Theorem 2 to prove that MOMS can find a global optimal
solution in O(bn) expected number of iterations, while the
greedy algorithm will get trapped in a local optimal solution.

C. Sensor Placement

For sensor placement, we analyze Example 3 where only
4 locations with a specific kind of sensor can have different
observations. Note that Oi

j denotes the observations from
location j by installing the i-th kind of sensor, as introduced
in Section II-D. Theorem 4 shows that MOMS is better than
the greedy algorithm. The proof idea is similar to that of The-
orem 2. The objective function (i.e., entropy) in Definition 11
is calculated using the observed frequency.

Example 3. The parameters of sensor placement in Defini-
tion 11 are set as: the budget b = 3, and the observations
collected from n locations by installing k kinds of sensors are

O1
1 = {1, 1, 1, 2, 1, 2, 3, 3}, O2

2 = {1, 1, 1, 1, 2, 2, 2, 2},
O3

3 = {1, 1, 2, 2, 1, 1, 2, 2}, O4
4 = {1, 2, 1, 2, 1, 2, 1, 2},

and for any other i ∈ [k], j ∈ [n], Oi
j = {1, 1, 1, 1, 1, 1, 1, 1}.

Theorem 4. For Example 3, the expected number T of
iterations until MOMS first finds a global optimal solution
is O(kbn), while the greedy algorithm cannot find a global
optimal solution.

Proof. By analyzing f(x) with |supp(x)| ≤ 3, we can
easily follow the solution path of the greedy algorithm. When
|supp(x)| = 1, f((1, 0, . . . , 0)) = 1.5, f((0, 2, 0, . . . , 0)) =
f((0, 0, 3, 0, . . . , 0)) = f((0, 0, 0, 4, 0 . . . , 0)) = 1, and
f(x) = 0 otherwise. Thus, the greedy algorithm first
finds (1, 0, . . . , 0). When |supp(x)| = 2 and x1 =
1, we have f((1, 2, 0, . . . , 0)) = f((1, 0, 3, 0, . . . , 0)) =
f((1, 0, 0, 4, 0, . . . , 0)) = 2.16, and f(x) = 1.5 otherwise.
Thus, the next solution can be any of these three solutions.
Since f((1, 2, 3, 0, . . . , 0)) = 2.5 and f((1, 2, 0, 4, 0 . . . , 0)) =
f((1, 0, 3, 4, 0, . . . , 0)) = 2.75, the greedy algorithm
will output the solution xlocal = (1, 2, 0, 4, 0, . . . , 0) or
(1, 0, 3, 4, 0, . . . , 0). It is also easy to verify that the global op-
timal solution xglobal = (0, 2, 3, 4, 0, . . . , 0) with f(xglobal) =
3. Thus, the greedy algorithm cannot find xglobal.

For MOMS, we can first use the same proof as Theorem 2
to derive that xlocal will be found in the expected number
of iterations E[T1] = O(b). Then, by selecting xlocal in
line 4 and using mutation in line 5, the solution x∗ =
(1, 2, 3, 4, 0, . . . , 0) will be generated with probability at least
1
2b ·

1
n (1−

1
n )

n−1 1
k ≥

1
2ekbn . Because f(x∗) reaches the largest

f value 3 and we pessimistically assume that xglobal has not
been found, no solution in P can dominate x∗ and it will
go into the randomized local search procedure, which quickly
finds xglobal by letting x∗

1 = 0 with probability at least 1− 1
e .

Thus, E[T2] ≤ 2ekbn · e
e−1 . By combining these two phases,

we get that the expected number of iterations for MOMS
finding xglobal is at most E[T1] + E[T2] = O(kbn).

VI. EMPIRICAL STUDY

In the above theoretical analysis, we have proved that
MOMS can generally achieve the asymptotically tight ap-
proximation bound (which was also achieved by the greedy
algorithm), and can perform better than the greedy algorithm
on some artificial instances. Here, we also conducted ex-
periments on influence maximization, information coverage
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Table I
STATISTICS OF DATA SETS FOR INFLUENCE MAXIMIZATION AND

INFORMATION COVERAGE MAXIMIZATION.

Data set Type #Nodes #Edges
p2p-Gnutella04 Directed 10,879 39,994
p2p-Gnutella05 Directed 8,846 31,839
p2p-Gnutella06 Directed 8,717 31,525
p2p-Gnutella08 Directed 6,301 20,777
p2p-Gnutella09 Directed 8,114 26,013
p2p-Gnutella24 Directed 26,518 65,369
p2p-Gnutella25 Directed 22,687 54,705
p2p-Gnutella30 Directed 36,682 88,328

ca-HepPh Undirected 12,008 118,521
ca-HepTh Undirected 9,877 25,998

ego-Facebook Undirected 4,039 88,234
weibo Directed 10,000 162,371

maximization and sensor placement to investigate the actual
performance of MOMS on real-world data sets.

Since the greedy algorithm is the previous best algorithm
both theoretically and empirically [25], we compare MOMS
with it. Note that although there has existed various MOEAs,
they have not been specially designed for these applications
before. We thus do not compare MOMS with them. The
number T of iterations of MOMS is set to ⌊8eb⌋ as suggested
by Theorem 1. We test the budget b from 5 to 10. As
MOMS is a randomized algorithm, we repeat the run 10 times
independently and report the average f values.

A. Influence Maximization

We first test the special case of k = 1, i.e., each edge
on the network has one propagation probability instead of
one probability vector. We use 12 real-world data sets1, the
details of which are shown in Table I. The data set p2p-
Gnutella04 is collected from the Gnutella peer-to-peer file
sharing network from August 4 2002, and other p2p-Gnutella
data sets are collected similarly. The data sets ca-HepPh
and ca-HepTh are collected from the e-print arXiv, which
cover collaborations between authors who submitted papers to
High Energy Physics - Phenomenology category and Theory
category in the period from January 1993 to April 2003, re-
spectively. The ego-Facebook data set is collected from survey
participants using Facebook.app. The last data set weibo is
crawled from Weibo.com, which is a Chinese microblogging
site like Twitter. On each network, the propagation probability
of one edge from node i to j is estimated by weight(i,j)

indegree(j) , as
widely used in [3], [10].

For the general case k ≥ 2, i.e., each edge on the network
has one propagation probability vector of length k, we use a
real-world data set2 collected from the social news website
Digg over one month in 2009. It contains two tables, the
friendship links between users and the user votes on news
stories [11]. After preprocessing, we get a directed graph with
3523 nodes and 90244 edges. We set the number of topics
k = 2, 3, . . . , 9, respectively, and use the method in [1] to

1http://snap.stanford.edu/data/index.html
2http://www.isi.edu/∼lerman/downloads/digg2009.html
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Figure 2. Average improvement ratio from the greedy algorithm (i.e.,
(fMOMS − fGreedy)/fGreedy) at b = 10 for influence maximization: (a)
on the 12 data sets with k = 1; (b) on the data set Digg with k = 2, 3, . . . , 9.
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Figure 3. Average improvement ratio from the greedy algorithm (i.e.,
(fMOMS − fGreedy)/fGreedy) at b = 10 for information coverage
maximization: (a) on the 12 data sets with k = 1; (b) on the data set Digg
with k = 2, 3, . . . , 9.

estimate the edge probabilities on each topic from the user
votes.

Note that for estimating the objective function of influence
maximization in Definition 9, i.e., the expected number of
nodes that get activated, we simulate the diffusion process 30
times independently and use the average as an estimation (that
is, the objective function evaluation is noisy). But for the final
output solutions of the algorithms, we average over 10,000
times for more accurate estimation. Since the behavior of the
greedy algorithm is randomized under noise, we also repeat its
run 10 times independently and report the average f values.

The results are plotted in Figures 4 and 5. We can observe
that MOMS performs consistently better than the greedy
algorithm on all data sets, which supports our theoretical
analysis. Figure 2 also depicts the improvement ratio from
the greedy algorithm (i.e., (fMOMS − fGreedy)/fGreedy) at
b = 10, which can exceed 33% and 14% for k = 1 and k ≥ 2,
respectively, at best. We can also observe from Figures 4 and 5
that the gap between MOMS and the greedy algorithm has the
trend of increasing with b at most cases. This may be because
the more complex problem landscape led by larger b makes
the greedy algorithm easier get trapped in local optima.

B. Information Coverage Maximization

To compare MOMS with the greedy algorithm on the task
of information coverage maximization, we also use the 12 real-
world data sets in Table I and the Digg data set. For estimating
the objective function of information coverage maximization
in Definition 10, i.e., the expected number of nodes that get
activated or informed, we use the same process as that used
in the experiment of influence maximization.
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Figure 4. Influence maximization with k = 1 on the 12 data sets in Table I. The objective f : the average number of active nodes (the larger the better).
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Figure 5. Influence maximization with k ≥ 2 on the data set Digg. The objective f : the average number of active nodes (the larger the better).

The results plotted in Figures 6 and 7 show that MOMS
always performs better than the greedy algorithm. Note that
on the data set ego-Facebook (i.e., Figure 6(k)), MOMS almost

finds an optimal solution at b = 10, since the objective
function value has reached the largest possible value, i.e., the
total number 4039 of nodes of this network. The improvement
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Figure 6. Information coverage maximization with k = 1 on the 12 data sets in Table I. The objective f : the average number of active nodes and informed
nodes (the larger the better).
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Figure 7. Information coverage maximization with k ≥ 2 on the data set Digg. The objective f : the average number of active nodes and informed nodes
(the larger the better).

ratio from the greedy algorithm at b = 10 is shown in Figure 3.
We can see that the improvement ratio can exceed 25% for

k = 1 at best. For k ≥ 2, the improvement ratio is relatively
low, i.e., between 1% and 2%.
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Figure 8. Sensor placement on the data set collected from the Intel Berkeley Research lab. The objective f : the entropy (the larger the better).

C. Sensor Placement

For the comparison on the application of sensor placement,
we use a real-world data set3 collected from sensors installed
at 55 locations of the Intel Berkeley Research lab between
February 28 and April 5, 2004. The light, temperature, volt-
age and humidity measures are extracted and their values
are discretized into 5, 12, 6 and 13 bins with equal size,
respectively. Thus, we have k = 4 kinds of sensors and
n = 55 locations. The problem is to select b locations and the
corresponding sensors such that the entropy is maximized. We
compare the performance of MOMS and the greedy algorithm
at k = 1, 2, 3, 4, respectively. For k = 1, we only use the light
sensor at each location; for k = 2, the light and temperature
sensors can be selected at each location; for k = 3, we use the
light, temperature and voltage sensors; for k = 4, we use all
the four kinds of sensors. Note that the objective function (i.e.,
the entropy) of sensor placement in Definition 11 is calculated
using the observed frequency.

The results are plotted in Figure 8. We can see that MOMS
is better than the greedy algorithm for any k and b. We also
calculate the improvement ratios of MOMS from the greedy
algorithm at b = 10, which are 2%, 1%, 1.2% and 0.5% for
k = 1, 2, 3, 4, respectively.

D. Running Time

Considering the running time (in the number of objective
function evaluations), the greedy algorithm needs O(kbn)
time, while MOMS needs 8eb iterations × O(kn ln2 b) time
per iteration (i.e., the worst case of RLS). Note that we
do not consider the lazy evaluation technique [19] for the
fairness of comparison. Thus, MOMS is slower by a factor
of 8e ln2 b. Since this is a theoretical upper bound for MOMS
being good, we record the actual time until MOMS achieves
a better performance than the greedy algorithm. Table II
shows the results at b = 10 for influence maximization and
information coverage maximization. We can see that MOMS
takes only at most 5% (i.e., 5.2/(8e ln2 10)) of the theoretical
time to achieve a better performance. For sensor placement,
the running time of the greedy algorithm at b = 10 for
k = 1, 2, 3, 4 is 505, 1010, 1515 and 2020, respectively; and
the running time of MOMS until finding a solution better
than that found by the greedy algorithm is 499, 3625, 3718
and 15401, respectively. Thus, the ratios between the running

3http://db.csail.mit.edu/labdata/labdata.html

time of MOMS and the greedy algorithm are 1.0, 3.6, 2.5 and
7.6, respectively. Comparing with the theoretical ratio 8e ln2 b,
MOMS takes only at most 7% (i.e., 7.6/(8e ln2 10)) of the
theoretical time to be better than the greedy algorithm. These
observations are expected, because the theoretical upper bound
is the worst case running time, which is derived based on some
pessimistic assumptions.

By selecting the greedy algorithm as the baseline, we also
plot the curve of the f value over the running time for MOMS
to investigate how the solution quality changes with the num-
ber of objective function evaluations. The value of b is set to 5.
We compute the optimal solution by exhaustive enumeration,
denoted as OPT. Note that OPT is calculated only for sensor
placement (where n = 55) due to the computation time limit.
The results on sensor placement are shown in Figure 9. Note
that one unit on the x-axis corresponds to kbn number of
objective function evaluations, i.e., the running time of the
greedy algorithm. We can observe that MOMS takes more
time to perform as well as the greedy algorithm in most
cases, but can find better solutions by performing even more
objective function evaluations. If the running time is further
increased, the solution quality found by MOMS can be quite
close to the optimum. For example, the ratio of the f value
between MOMS using 50kbn number of objective function
evaluations and OPT for k = 1, 2, 3, 4 is 97.8%, 100%, 99.0%
and 99.7%, respectively. The results on influence maximization
and information coverage maximization are similar, which are
provided in the supplementary material due to space limitation.

E. Discussion

The above experimental results have shown that MOMS is
consistently better than the greedy algorithm. However, we
also note that the improvement ratio can be quite different,
which depends on concrete k-submodular applications and
data sets. For example, the improvement ratio at b = 10 for
influence maximization can exceed 33%, while that for sensor
placement is at most 2%. The relatively small performance
improvement of MOMS in some situations may be because
the greedy algorithm has already performed very well. For
example, for the sensor placement task with k = 1 where
the improvement ratio of MOMS is empirically low, Sharma
et al. [30] proved that the greedy algorithm can achieve the
nearly optimal solution, which is also validated by experiments
here. We can see from Figure 8(a) that the curve of the greedy
algorithm is close to that of OPT. Note that OPT is calculated
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Table II
RUNNING TIME COMPARISON (IN THE NUMBER OF OBJECTIVE FUNCTION EVALUATIONS) FOR INFLUENCE MAXIMIZATION (IM) AND INFORMATION

COVERAGE MAXIMIZATION (ICM) AT b = 10, WHERE THE COLUMNS OF MOMS-IM AND MOMS-ICM RECORD THE TIME OF MOMS UNTIL FINDING A
BETTER SOLUTION THAN THE GREEDY ALGORITHM FOR IM AND ICM, RESPECTIVELY. NOTE THAT THE TIME OF THE GREEDY ALGORITHM IS FIXED

FOR EACH DATA SET. THE NUMBER IN () DENOTES THE RATIO BETWEEN THE TIME OF MOMS AND THE GREEDY ALGORITHM.

Data set Greedy MOMS-IM MOMS-ICM Data set Greedy MOMS-IM MOMS-ICM
p2p-Gnutella04 108745 126976 (1.2) 192145 (1.8) p2p-Gnutella25 226825 225421 (1.0) 472909 (2.1)
p2p-Gnutella05 88415 137236 (1.6) 171623 (1.9) p2p-Gnutella30 366755 754672 (2.1) 383159 (1.0)
p2p-Gnutella06 87125 205176 (2.4) 79976 (0.9) ca-HepPh 120035 147153 (1.8) 180425 (1.5)
p2p-Gnutella08 62965 89184 (1.4) 63717 (1.0) ca-HepTh 98725 151776 (1.5) 114486 (1.2)
p2p-Gnutella09 81095 53645 (0.7) 87705 (1.1) ego-Facebook 40345 47462 (1.2) 55697 (1.4)
p2p-Gnutella24 265135 900287 (3.4) 402142 (1.5) weibo 99955 176296 (1.8) 130161 (1.3)

Digg Greedy MOMS-IM MOMS-ICM Digg Greedy MOMS-IM MOMS-ICM
k = 2 70370 148621 (2.1) 144585 (2.1) k = 6 211110 228134 (1.1) 692729 (3.3)
k = 3 105555 544573 (5.2) 400764 (3.8) k = 7 246295 532098 (2.2) 941425 (3.8)
k = 4 140740 161975 (1.2) 499061 (3.5) k = 8 281480 541230 (2.0) 1397520 (5.0)
k = 5 175925 345494 (2.0) 325537 (1.9) k = 9 316665 1083952 (3.4) 1290150 (4.1)

1 10 20 30 40 50

Running time in kbn

6

6.5

7

7.5

T
h

e 
o
b

je
ct

iv
e 
f

OPT

Greedy

MOMS

kbn

1 10 20 30 40 50

Running time in kbn

7.7

7.8

7.9

8

8.1

8.2

8.3

T
h

e 
o
b

je
ct

iv
e 
f

OPT

Greedy

MOMS

2kbn

1 10 20 30 40 50

Running time in kbn

7.8

8

8.2

8.4

8.6

T
h

e 
o
b

je
ct

iv
e 
f

OPT

Greedy

MOMS

2kbn

1 10 20 30 40 50

Running time in kbn

8

8.2

8.4

8.6

8.8

T
h

e 
o
b

je
ct

iv
e 
f

OPT

Greedy

MOMS

3kbn

(a) k = 1 (b) k = 2 (c) k = 3 (d) k = 4

Figure 9. The objective f v.s. the running time for MOMS on sensor placement with b = 5. The objective f : the entropy (the larger the better).
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Figure 10. The objective f v.s. the running time on sensor placement with b = 5, where “multi-objective” and “single-objective” denote the algorithm in the
multi-objective and single-objective optimization setting, respectively. The objective f : the entropy (the larger the better).

only for b = 5, 6, 7, 8 due to the computation time limit.
The approximation ratio is 94.1%, 94.7%, 95.4% and 96.3%,
respectively, which implies that the greedy algorithm achieves
the nearly optimal solution. Thus, these observations also
disclose that MOMS can bring a performance improvement
even when the greedy algorithm has been nearly optimal.

Compared with the greedy algorithm, MOMS mainly has
two specific characteristics: the mutation operator and the
domination-based comparison. The mutation operator as de-
scribed in Definition 12 is a global search operator, which
allows MOMS to produce new solutions by flipping any
positions. Note that the greedy algorithm can flip only one
position with the value 0 in each iteration. The domination
relation can be used for comparing two solutions, due to
the transformation of the original problem into a bi-objective

one. By the domination-based comparison, MOMS naturally
maintains several solutions in the population, while the greedy
algorithm maintains only one solution. These two characteris-
tics may make MOMS have a better ability of avoiding local
optima than the greedy algorithm.

To validate the effectiveness of the bi-objective transforma-
tion, we have conducted experiments on sensor placement with
the budget b = 5. We compare MOMS with its counterpart
in the original single-objective setting. By single-objective
optimization, the domination-based comparison is replaced by
a common comparison rule for constrained problems [5]: two
feasible solutions are compared based on their objective f
values, and a feasible solution is always better than an infea-
sible one. For the fairness of comparison, we also delete the
RLS procedure in implementing these two algorithms, since
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RLS may bring a different effect in bi-objective and single-
objective optimization. We plot the curves of the objective
f value over the running time. The results are shown in
Figure 10. Note that one unit on the x-axis corresponds to
n number of objective function evaluations. We can observe
that by the bi-objective transformation, the algorithm can find
a much better solution using the same number of objective
function evaluations. This shows the advantage of the bi-
objective transformation. As the running time continues to
increase, the two algorithms will gradually find the same
good solution. This is expected, since both of them use the
global search operator, which leads to a positive probability
of producing any solution; and will eventually find a global
optimal solution if the running time goes to infinity. Note that
the benefit of the bi-objective transformation is limited to the
studied problem, and the single-objective optimization setting
can be better in other cases.

VII. CONCLUSION

In this paper, we propose a multi-objective evolutionary op-
timization approach for the problem of maximizing monotone
k-submodular functions under a size constraint, called MOMS.
We first prove that MOMS can achieve the asymptotically tight
approximation bound for general cases, which was also ob-
tained by the greedy algorithm; and then show that MOMS can
be better than the greedy algorithm on special instances. The
empirical results on the applications of influence maximiza-
tion, information coverage maximization and sensor placement
verify the superior performance of MOMS. Particularly, for
sensor placement with k = 1 where the greedy algorithm
achieves the nearly optimal solution, the comparison results
show that MOMS can bring a performance improvement even
when the greedy algorithm has been almost optimal.

Note that for solving the bi-objective reformulation of
the original studied problem, MOMS employs a simple
MOEA [16], which uses mutation only. In the future, we
will try to use some state-of-the-art MOEAs such as NSGA-
II [6] and MOEA/D [37] in MOMS, which may bring a
larger performance improvement; and study their theoretical
performance.
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