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1 Introduction

Support Vector Machines (SVMs) are effective and populassification learning tool [36,
12]. The task of learning a support vector machine is typicalst as a constrained quadratic
programming problem. However, in its native form, it is ictfan unconstrained empirical
loss minimization with a penalty term for the norm of the sléier that is being learned.
Formally, given a training sef = {(x,y:) }i~1, wherex; € R"™ andy; € {+1,—1}, we
would like to find the minimizer of the problem

min S+ ST ws () @
(x,y)€S
where
E(W; (X, Z/)) = maX{Oa 1- Yy <W7 X>} ) (2)

and (u, v) denotes the standard inner product between the veat@sd v. We denote
the objective function of Eq. (1) by(w). We say that an optimization method findsean
accurate solutiotv if f(W) < minw f(w) + €. The standard SVM problem also includes
an unregularized bias term. We omit the bias throughout éh&irtg sections and revisit the
incorporation of a bias termin Sec. 6.

We describe and analyze in this paper a simple stochastigrsutient descent algo-
rithm, which we call Pegasos, for solving Eqg. (1). At eachat®n, a single training ex-
ample is chosen at random and used to estimate a sub-grafligiet objective, and a step
with pre-determined step-size is taken in the oppositectioe. We show that with high
probability over the choice of the random examples, ourrilygm finds ane-accurate so-
lution using onlyO(1/(\e)) iterations, while each iteration involves a single innesdurct
betweenw andx. Put differently, the overall runtime required to obtainezgiccurate solu-
tion is O(n/(\e)), wheren is the dimensionality ofv andx. Moreover, this runtime can
be reduced ta@)(d/(\e)) whered is the number of non-zero features in each example
Pegasos can also be used with non-linear kernels, as weliesctSec. 4. We would like
to emphasize that a solution is found in probability solelye do the randomization steps
employed by the algorithm antbtdue to the data set. The data set is not assumed to be ran-
dom, and the analysis holds for any data.SeFurthermore, the runtime doest depend
on the number of training examples and thus our algorithsjseeially suited for large
datasets.

Before indulging into the detailed description and analysi Pegasos, we would like
to draw connections to and put our work in context of some efrttore recent work on
SVM. For a more comprehensive and up-to-date overview @vagit work see the ref-
erences in the papers cited below as well as the web siteatedito kernel methods at
http://www.kernel-machines.org . Due to the centralitytted SVM optimization problem,
quite a few methods were devised and analyzed. The diffeqgmioaches can be roughly
divided into the following categories.

Interior Point (IP) methods: IP methods (see for instance [7] and the references therein)
cast the SVM learning task as a quadratic optimization proldubject to linear constraints.
The constraints are replaced with a barrier function. Tiseltds a sequence of uncon-
strained problems which can be optimized very efficientipgidNewton or Quasi-Newton
methods. The advantage of IP methods is that the dependartbe accuracy is double
logarithmic, namelylog(log(1/¢€)). Alas, IP methods typically require run time which is
cubic in the number of examples. Moreover, the memory requirements of IP methods are
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O(m?) which renders a direct use of IP methods very difficult whenttaining set con-
sists of many examples. It should be noted that there have $®eral attempts to reduce
the complexity based on additional assumptions (see &j. However, the dependence on
m remains super linear. In addition, while the focus of theguégpthe optimization problem
cast by SVM, one needs to bear in mind that the optimizatiablpm is a proxy method
for obtaining good classification error on unseen examplebkieving a very high accuracy
in the optimization process is usually unnecessary and doesranslate to a significant
increase in the generalization accuracy. The time spenPbynéthods for finding a sin-
gle accurate solution may, for instance, be better utilipedrying different regularization
values.

Decomposition methodsTo overcome the quadratic memory requirement of IP methods,
decomposition methods such as SMO [29] and SVM-Light [26klethe dual representa-
tion of the SVM optimization problem, and employ an activedeonstraints thus working

on a subset of dual variables. In the extreme case, calleéictian methods [8], the active
set consists of a single constraint. While algorithms is tamily are fairly simple to im-
plement and entertain general asymptotic convergencesgies [8], the time complexity

of most of the algorithms in this family is typically supendiar in the training set size.
Moreover, since decomposition methods find a feasible dulatien and their goal is to
maximize the dual objective function, they often result imther slow convergence rate to
the optimum of the primal objective function. (See also tiseuakssion in [19].)

Primal optimization: Most existing approaches, including the methods discuabetle,
focus on the dual of Eq. (1), especially when used in conjanaith non-linear kernels.
However, even when non-linear kernels are used, the Reyiezsbeorem [23] allows us
to re-parametrizev asw = > a;y;x; and cast the primal objective Eq. (1) as an un-
constrained optimization problem with the variabtes . . . , a,, (see Sec. 4). Tackling the
primal objective directly was studied, for example, by Gé#lagp[10], who considered us-
ing smooth loss functions instead of the hinge loss, in whade the optimization problem
becomes a smooth unconstrained optimization problem. &leaihen suggested using var-
ious optimization approaches such as conjugate gradisgedeand Newton's method. We
take a similar approach here, however we cope with the nibereintiability of the hinge-
loss directly by using sub-gradients instead of gradiefitmther important distinction is
that Chapelle views the optimization problem as a functibthe variablesy;. In contrast,
though Pegasos maintains the same set of variables, theipgtion process is performed
with respect tow, see Sec. 4 for details.

Stochastic gradient descentThe Pegasos algorithm is an application of a stochastic sub-
gradient method (see for example [25,34]). In the contexhathine learning problems,
the efficiency of the stochastic gradient approach has beeied in [26,1,3,27,6,5]. In
particular, it has been claimed and experimentally obskethat, “Stochastic algorithms
yield the best generalization performance despite beiagvihrst optimization algorithms”.
This claim has recently received formal treatment in [4, 32]

Two concrete algorithms that are closely related to the s@galgorithm and are also
variants of stochastic sub-gradient methods are the NORN@&righm [24] and a stochas-
tic gradient algorithm due to Zhang [37]. The main differerfetween Pegasos and these
variants is in the procedure for setting the step size. Weoesde on this issue in Sec. 7.
The convergence rate given in [24] implies that the numbétecdtions required to achieve
e-accurate solution i©(1/(\ €)?). This bound is inferior to the corresponding bound of Pe-
gasos. The analysis in [37] for the case of regularized losws that the squared Euclidean
distance to the optimal solution converges to zero but tteeaghconvergence depends on
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the step size parameter. As we show in Sec. 7, tuning thisrest is crucial to the success
of the method. In contrast, Pegasos is virtually parameser. fAnother related recent work
is Nesterov’'s general primal-dual subgradient methodHerminimization of non-smooth
functions [28]. Intuitively, the ideas presented in [28hdae combined with the stochastic
regime of Pegasos. We leave this direction and other patesiensions of Pegasos for
future research.

Online methods: Online learning methods are very closely related to staahgsadient
methods, as they operate on only a single example at eaatiogterMoreover, many online
learning rules, including the Perceptron rule, can be seé@nplementing a stochastic gradi-
ent step. Many such methods, including the Perceptron anBdlsive Aggressive method
[11] also have strong connections to the “margin” or normha predictor, though they
do not directly minimize the SVM objective. Neverthelesslire learning algorithms were
proposed as fast alternatives to SVMs (e.g. [16]). Suchrihgns can be used to obtain
a predictor with low generalization error using an onlingsaitch conversion scheme [9].
However, the conversion schemes do not necessarily yieldanturate solutions to the
original SVM problem and their performance is typicallyeribr to direct batch optimizers.
As noted above, Pegasos shares the simplicity and speedireé garning algorithms, yet
it is guaranteed to converge to the optimal SVM solution.

Cutting Planes Approach: Recently, Joachims [21] proposed SVM-Perf, which uses-a cut
ting planes method to find a solution with accuracipn time O(md/(\e?)). This bound
was later improved by Smolket al [33] to O(md/(\e)). The complexity guarantee for Pe-
gasos avoids the dependence on the data setsilzeaddition, while SVM-Perf yields very
significant improvements over decomposition methods fgelalata sets, our experiments
(see Sec. 7) indicate that Pegasos is substantially fasterSVM-Perf.

2 The Pegasos Algorithm

As mentioned above, Pegasos performs stochastic gradgisoent on the primal objective
Eqg. (1) with a carefully chosen stepsize. We describe indédion the core of the Pegasos
procedure in detail and provide pseudo-code. We also presw variants of the basic
algorithm and discuss few implementation issues.

2.1 The Basic Pegasos Algorithms

On each iteration Pegasos operates as follow. Initiallysetewv; to the zero vector. On
iterationt of the algorithm, we first choose a random training exanigle, v, ) by picking

an indexi; € {1,...,m} uniformly at random. We then replace the objective in Eq. (1)
with an approximation based on the training exanglg, v, ), yielding:

. A
Flwsie) = SIwl” +lw; (i, wi,) - ®)
We consider the sub-gradient of the above approximate tgegiven by:
Vi =Awi — Lyi, (Wi, xq,) < 1yi,xi, 4

wherel[y (w, x) < 1] is the indicator function which takes a value of one if itstargent
is true (w yields non-zero loss on the examyle, v)), and zero otherwise. We then update
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INPUT: S, A\, T
INITIALIZE : Setw; = 0
For t=1,2,...,T
Choosei; € {1,..., S|} uniformly at random.
Setn; = i
If yi, (we,x4,) < 1,then:
Setwi1 (1 — m)\)wt + MY, Xiy
Else (Ify“ (Wt,Xit> > 1):
SetWH_l < (1 — m)\)wt
[ Optional: w41 < min {1, %} Wil ]
OUTPUT: w1

Fig. 1 The Pegasos Algorithm.

w1 < Wi — 1 Ve USING a step size ofy = 1/(At). Note that this update can be written
as:

1
wip1 < (1— ;)Wt + Ly, (We, xi,) <1 yi,Xi, - (5)

After a predetermined numbé&r of iterations, we output the last iteraker ;. The pseudo-
code of Pegasos is given in Fig. 1.

2.2 Incorporating a Projection Step

The above description of Pegasos is a verbatim applicafittrestochastic gradient-descent
method. A potential variation is the gradient-projectiggp@ach where we limit the set of
admissible solutions to the ball of radiag+/X. To enforce this property, we projeet;
after each iteration onto this sphere by performing the tgpda

Wil < min{l, %} Wil . (6)

Our initial presentation and implementation of Pegaso}iffluded a projection step,
while here we include it as an optional step. However, thelyesvised analysis presented
in this paper does not require such a projection and estaslialmost the same guarantees
for the basic (without projection) Pegasos algorithm. W rtdit notice major differences
between the projected and unprojected variants in our erpats (see Sec. 7).

2.3 Mini-Batch lterations

In our analysis, we actually consider a more general alyworithat utilizesk examples at
each iteration, wheré < k < m is a parameter that needs to be provided to the algorithm.
Thatis, at each iteration, we choose asubset [m] = {1,...,m}, |A¢| = k, of k exam-
ples uniformly at random among all such subsets. When m each iteration handles the
original objective function. This case is often referre@sdatch or deterministic iterations.
To underscore the difference between the fully determinisise and the stochastic case,
we refer to the subsamples in the latter case as mini-batoftesall the process mini-batch
iterates. We thus consider the approximate objective fomct

Flwi 4 = SlIwlP 4 1 3 lws (i) - @)

icA,
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INPUT: S, N\, T,k
INITIALIZE : Setw1 =0
For t=1,2,...,T
ChooseA; C [m], where|A¢| = k, uniformly at random
SetA} = {i € Ay @y (we,x;) < 1}
SetT]t = %
Setwi1 (1 — Nt )\)Wt + % ZieA?’ Yi X4

. . . 1/vVX
[Optional: w41 mm{l, ||W/t+1||} Wil ]
OUTPUT: W41

Fig. 2 The Mini-Batch Pegasos Algorithm.

Note that we overloaded our original definition pfand that the original objective can be
denoted ag(w) = f(w; [m]). As before, we consider the sub-gradient of the approximate
objective given by:

1
Vi=Aw; — E EXA: ]]-[yi <Wt,Xi> < ].] YiXi. (8)

We updatew;;1 < w; — 1V, using the same predetermined step sjze= 1/(\t).
Pseudo-code of this more general algorithm is given in FigA®before, we include an
optional projection step.

Whenk = m we choosed; = S on each round and we obtain the deterministic sub-
gradient descent method. In the other extreme case, Wherl, we recover the stochastic
sub-gradient algorithm of Figure 1.

In the above description we refer #s as chosen uniformly at random among the subsets
of [m] of sizek, i.e. chosen without repetitions. Our analysis still holden A, is a multi-
set chosen i.i.d. with repetitions.

2.4 Sparse Feature Vectors

We conclude this section with a short discussion of implemién details when the in-
stances are sparse, namely, when each instance has vergriexero elements. In this case,
we can represenw as a pair(v, a) wherev € R™ is a vector and: is a scalar. The vector
w is defined asv = a v. We do not require the vectar to be normalized and hence we
over-representv. However, using this representation, it is easily verifieat the total num-
ber of operations required for performing one iterationhaf basic Pegasos algorithm (with
k = 1)is O(d), whered is the number of non-zero elementsxn

When projection steps are included, we represeas a triplet v, a, v) with the follow-
ing variabless = ||w|| = a ||v]|. Storing the norm ofv allows us to perform the projection
step using a constant number of operations involving erdyndv. After w is updated, the
stored normv needs to be updated, which can again be done in@fi& as before.

3 Analysis

In this section we analyze the convergence properties a$agAlthough our main interest
is in the special case wheke = 1 given in Figure 1, we actually analyze here the more
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general mini-batch variant of Figure 2. Throughout thigisecve denote

w* = argvf,nin f(w) . 9)

Recall that on each iteration of the algorithm, we focus omatantaneous objective func-
tion f(w; A:). We start by bounding the average instantaneous objedtitreealgorithm
relatively to the average instantaneous objective of thangb solution. We first need the
following lemma which is based on a result from [17], thoughprovide the proof here for
completeness. The lemma relies on the notion of stronglyeofunctions (see for example
[30]). A function f is called\-strongly convex iff (w) — %Hw”2 is a convex function.

Lemmal Let f1,..., fr be a sequence of-strongly convex functions. L&t be a closed
convex set and definBz(w) = argming cp |[w — w'||. Letwi, ..., wriq be a se-
quence of vectors such that; € B and fort > 1, w1 = IIp(we — n:Vy), Where
V+ belongs to the sub-gradient set if at w; andn; = 1/(At). Assume that for alt,
V]| < G. Then, for allu € B we have

1 & 1 — G2(1 +In(T))
?tz::lft(wt) < ?tz::lft(u)'i‘ — a7

Proof Sincef; is strongly convex an¥’. is in the sub-gradient set ¢gf atw; we have that
(see [30])
(we —u, Vi) > fo(we) = fe(w) + 3[we —ul® (10)

Next, we show that

< lwe—ul? — weps —ul?
S 20,

(we —u, V) +2G*. (11)

Let w; denotew; — n: V. Sincew,1 is the projection ofv; onto B, andu € B we have
that||w; — ul|? > ||wet+1 — ul|?. Therefore,

2 2 2 2
[we —ull® = [wirr —ul|® > [[we —ul|* — |[w; — u]
=2n (we —u, Vi) — 07 || V||

Rearranging the above and using the assumgién| < G yields Eg. (11). Comparing
Eqg. (10) and Eq. (11) and summing ovexe obtain

T
S (felwe) — fi(w) <

t=1

T 2 2 2 T

[we —ul|” — [[wegr —u” 5 2) , G
> P gl —ul® )+ 53 o
t=1 t=1

Next, we use the definition, = 1/(At) and note that the first sum on the right-hand side
of the above equation collapsestd\ (T + 1) |[wr41 — ul|®. Thus,

a a2 X1
S~ i) AT 1) e — o+ 55 305

GZ
55 (1+ (D)) .

IN
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Based on the above lemma, we are now ready to bound the aviesigetaneous ob-
jective of Pegasos.

Theorem 1 Assume that for alfx, y) € S the norm ofx is at mostR. Letw™ be as defined
in Eq. (9) and let- = (v/X + R)? whenever we perform the projection step ane 4 R>
whenever we do not perform the projection step. Therlfor 3,

1 & 1 I . e
?;f(m;m) < f;f(w MltH%_

Proof To simplify our notation we use the shorthafidw) = f(w; A:). The update of the
algorithm can be rewritten a&++1 = IIg(w: — n:V+), whereV, is defined in Eq. (8)
and B is the Euclidean ball of radius/+/X if we perform a projection step and otherwise
B = R™. Thus, to prove the theorem it suffices to show that the comditstated in Lemma 1
hold. Sincef; is a sum of a\-strongly convex functiong |w||?) and a convex function (the
average hinge-loss ovet;), it is clearly A\-strongly convex. Next, we derive a bound on
| V:]|. If we perform a projection step then using the fact tfat;|| < 1/+/A and that
x|l < R combined with the triangle inequality we obtdj¥:|| < v/ + R. If we do not
perform a projection step then we can first rewrite the upsige as

Wil = (1 — %) Wi — ﬁvt N (12)

wherev; = |A_11,| > ica, Lyi (we, x¢) < 1]yix;. Therefore, the initial weight of each;

is 5 and then on roundg = i + 1,.. ., ¢ it will be multiplied by 1 — + = Z=%. Thus, the
overall weight ofv; in w11 is

which implies that we can rewrite; 1 as
1 t
Wi41 = E Zé IVZ‘ . (13)

From the above we immediately get thaw11|| < R/ and thereforg|V¢|| < 2R.
Finally, we need to prove that™ € B. If we do not perform projections then we have
w* € R" = B. Otherwise, we need to show tHat*|| < 1/v/X. To do so, we examine the
dual form of the SVM problem and use the strong duality theorin its more traditional
form, the SVM learning problem was described as the follgangonstrained optimization
problem,

1 m
§Hw||2+CZ§i st Vie[m]:&>0,6>1—yi(w,x;) . (14)
i=1

SettingC = 1/(Am) this problem becomes equivalent to our formulation giveRdn (1)
and Eq. (2). The dual problem of Eq. (14) is,

m
E QYiXy
i=1

2

m

Yoy

i=1

stVie[m]:0<a; <C. (15)
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Let us denote the optimal primal and dual solutiong®y, £*) anda™, respectively. The
primal solution can be written in terms of its dual countergsw™ = > """ | ajy:x;. At
the optimum valuex*, Eq. (15) can be rewritten as,

1
lloe™ [l = S llw* || .
2

Moreover, from strong duality we know that the primal objeetvalue is equal to the dual
objective value at the optimum, thus

1 2 1 2
SIWIZ+CNE = lle [l = S lIw™]”
2 2

note that|a* ||« < C' = L. Therefore||a*||; < 1/X and we get that

1
wh||? <

o E |1
2 -2 ’

2 1 2
[w*[I* + ClIg"l1 = [[a™[l1 — §||W*|| <

Rearranging the terms yieldsv*|| < 1/+/A. The bound in the theorem now follows from
Lemma 1. a

We now turn to obtaining a bound on the overall objecifyev:) evaluated at a single
predictorw;. The convexity off implies that:

1 & 1 &
f(f ;Wt) < f;f(wt) . (16)

Using the above inequality and Thm. 1, we immediately ob@onollary 1 which provides
a convergence analysis for the deterministic case vithenm wheref(w, A;) = f(w).

Corollary 1 Assume that the conditions stated in Thm. 1 and that= S for all ¢. Let
— 1 T
W= %), Wt. Then,

c(1 + In(T))

fw) < f(W)+ =57

When A; C S, Corollary 1 no longer holds. However, Kakade and Tewar] [2&/e
shown that a similar bound holds with high probability asj@sA: is sampled front.

Lemma 2 (Corollary 7 in [22]) Assume that the conditions stated in Thm. 1 hold and
that for all ¢, each element i, is sampled uniformly at random fro (with or without
repetitions). Assume also th&t> 1 and X < 1/4. Then, with a probability of at leadt— §

we have

1 < o 21cIn(T/6)
?;f(wt)—f(w )ST-

Combining the above with Eq. (16) we immediately obtain ti®fving corrolary.

Corollary 2 Assume that the conditions stated in Lemma 2 hold andt let + S°7_ | w..
Then, with probability of at least — 6 we have

21 ¢ In(T/9)

Fw) < f(W") + ——75
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The previous corollaries hold for the average hypothesik practice, the final hypoth-
esis,wr1, often provides better results. We next bridge this gap loyigng a similar
convergence rate for a different mechanism of choosing uitygub vector. To do so, we first
show that at least half of the hypotheses are good.

Lemma 3 Assume that the conditions stated in Lemma 2 hold. Thenisifselected at
random from[7], we have with a probability of at least that

42 ¢ In(T/6)

Flwe) < F(w") + =0

Proof Define a random variabl& = f(w:) — f(w™*) where the randomness is over the
choice of the index. From the definition ofw™ as the minimizer off(w) we clearly
have thatZ is a non-negative random variable. Thus, from Markov inéu#[Z >
2E[Z]] < 1. The claim now follows by combining the fact the{Z] = + 7 f(wy) —
f(w™) with the bound given in Lemma 2. O

Based on the above lemma we conclude that if we terminatertdoegure at a random
iteration, in at least half of the cases the last hypothasaniaccurate solution. Therefore,
we can simply try a random stopping time and evaluate the efie last hypothests The
above lemma tells us that on average after two attempts wikelseto find a good solution.

4 Using Mercer kernels

One of the main benefits of SVMs is that they can be used kéthelsrather then with
direct access to the feature vectarsThe crux of this property stems from the Representer
Theorem [23], which implies that the optimal solution of Efj) can be expressed as a
linear combination of the training instances. It is therefpossible to train and use a SVM
without direct access to the training instances, and idstedy access their inner products
as specified through a kernel operator. That is, insteadmdidering predictors which are
linear functions of the training instancesthemselves, we consider predictors which are
linear functions of some implicit mapping(x) of the instances. Training then involves
solving the minimization problem:

min Jwl® + S tlws (6(0,9) | an
(x,y)€eS
where
w3 (6(0), ) = max{0, 1~y {w, 6(x))} . as)

However, the mapping(-) is never specified explicitly but rather through a kernelrape
K(x,x") = (¢(x), ¢(x")) yielding the inner products after the mapping).

One possible and rather common approach for solving thenggattion problem 17 is
to switch to the dual problem, which can be written in termsnofer products of vectors
¢(-). Therefore, the dual problem can be solely expressed usimgkoperators. However,
solving the dual problem is not necessary. Following [16124 the approach we take here
is to directly minimize the primal problem while still usitkgrnels.

1 To do so, we can simply calculate the objective on the entta set or estimate it according to a sample
of sizeO(1/(X€)), wheree is the desired accuracy (see [35]).
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INPUT: S, \, T

INITIALIZE : Setay = 0

ForR t=1,2,...,T
Choosei; € {0,...,|S|} uniformly at random
Forall j # i¢, setay+1[j] = ae[]
If y;, % > celdlyi, K (xi,,x5) < 1, then:

SetaH_l [Zt} = ¢ [Zt] +1
Else:
SetatH [Zt} = ot [Zt]

OUTPUT. 41

Fig. 3 The Kernelized Pegasos Algorithm.

We now show that the Pegasos algorithm can be implemented osiy kernel eval-
uations, without direct access to the feature vectdrs) or explicit access to the weight
vectorw. For simplicity, we focus on adapting the basic Pegasosi#ihgo given in Fig. 1
without the optional projection step. As we have shown ingiteef of Thm. 1 (in particular,
Eq. (13)), for allt we can rewritew:1 as

t

1
Wi+1 = ﬂ gﬂ[yiz <Wt7¢(xit)> < 1] yit¢(xit) g
For each, leta4+1 € R™ be the vector such that: ;1 [j] counts how many times example
j has been selected so far and we had a non-zero loss on it,ynamel

arp1[f] = {t' <triv =5 Ay; (we,d(x;)) < 1}H.

Instead of keeping in memory the weight vectoy. 1, we will representw; 41, usingo;+1
according to
1 m

Wip1 = ;aml[ﬂ Yid(x;) -
Itis now easy to implement the Pegasos algorithm by maiinigithe vectoix. The pseudo-
code of this kernelized implementation of Pegasos is giveRig. 3. Note that only one
element ofa is changed at each iteration. It is also important to emplkeabkat although the
feature mapping)(-) was used in the above mathematical derivations, the pseami®-of
the algorithm itself makes usmly of kernel evaluations and obviously dosst refer to the
implicit mapping¢(-).

Since the iteratesr, remain as before (just their representation changes) uaegtees
on the accuracy after a number of iterations are still vaN@. are thus guaranteed to find
an e-accurate solution afteD(1/()\e)) iterations. However, checking for non-zero loss at
iterationt might now require as many asin(¢, m) kernel evaluations, bringing the over-
all runtime toO(m/(\e)). Therefore, although the number of iterations requiredsdust
depend on the number of training examples, the runtime does.

It is worthwhile pointing out that even though the solutismépresented in terms of the
variablesa, we are still calculating the sub-gradient with respech®weight vectow. A
different approach, that was taken, e.g., by Chapelle [$Gh rewrite the primal problem
as a function otx and then taking gradients with respecictoConcretely, the Representer
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theorem guarantees that the optimal solution of Eq. (1f)asised by the training instances,
i.e. itis of the formw = " | a[i]¢(x;). In optimizing Eq. (17) we can therefore focus
only on predictors of this form, parametrized throughe R™. The training objective can
then be written in terms of the variables and kernel evaluations:

mind D alilaljK (a,x) + - > max{0,1 -5 Y aliK (e x)} . (19)
ij=1 i=1 j=1

Now, one can use stochastic gradient updates for solving12{,. where gradients should
be taken w.r.tae. We emphasize again that our approach is different as we wengub-
gradients w.r.tw. Setting the step direction according to the sub-gradient w has two
important advantages. First, only at most one new non-aéfjis introduced at each it-
eration, as opposed to a sub-gradient step varsvhich will involve all m coefficients.
More importantly, the objective given in Eq. (19) is not nesa&rily strongly-convex w.r.tx,
even though it is strongly convex w.rstz. Thus, a gradient descent approach using gradi-
ents w.r.ta might require2(1/¢?) iterations to achieve accuraeylinterestingly, Chapelle
also proposes preconditioning the gradients wr.by the kernel matrix, which effectively
amounts to taking gradients w.im, as we do here. Unsurprisingly given the above discus-
sion, Chapelle observes much better results with this miditioning.

5 Other prediction problems and loss functions

So far, we focused on the SVM formulation for binary classifien using the hinge-loss. In
this section we show how Pegasos can seamlessly be adamittbigrediction problems
in which we use other loss functions.

The basic observation is that the only place in which we uséétt that/(w; (x,y)) is
the hinge-loss (Eq. (2)) is when we calculated a sub-gradief(w; (x, y)) with respect to
w. The assumptions we made are that convex and that the norm of the sub-gradient is
at mostR. The generality of these assumptions implies that we caly &ggasos with any
loss function which satisfies these requirements.

5.1 Examples

Example 1 (Binary classification with the log-lodsstead of the hinge-loss, other loss
functions can also be used with binary labgls {+1,—1}. A popular choice is the log-
loss defined asi(w, (x,y)) = log(1l + exp(—y (w,x))). It is easy to verify that the log
loss is a convex function whose gradient wwtsatisfieg| V|| < ||x]|.

Example 2 (Regression with thénsensitive loss)Ve now turn to regression problems over
the reals, that iy € R. The standard Support Vector Regression formulation usetoss
function defined ag(w; (x,y)) = max{0, | (w, x) —y| — €}. This loss is also convex with
a sub-gradient bounded Hj||.

Example 3 (Cost-sensitive multiclass categorizatlampulti-class categorization problems,
the goal is to predict a labgl € ) where) is a finite discrete set of classes. A possible loss
function is the so-called cost-sensitive loss defined as:

Uw; (x,y)) = max §(y',y) — (W, o(x,9)) + (W, p(x,9)) . (20)
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whered(y’, y) is the cost of predicting’ instead ofy and¢(x, v) is a mapping from input-
label pair(x, y) into a vector space. See for example [11]. The multiclass isgain a
convex loss function whose sub-gradient is bounded bx, ||¢(x,y")|-

Example 4 (Multiclass categorization with the log-lo&€syen the same setting of the above
multiclass example, we can also generalize the log losstdlaanulticlass problems. Omit-
ting the cost term, the multiclass loss amounts to:

U(w; (x,9)) = log [ 1+ 3 elwoltem)—twotem) | (21)
r#y

where¢(x, y) is defined above. The log-loss version of the multiclassikesnvex as well
with a bounded sub-gradient whose value is at mstax, ||¢(x,y')].

Example 5 (Sequence predictioBequence prediction is similar to cost-sensitive multi-
class categorization, but the set of targgéiscan be very large. For example, in phoneme
recognition tasksy’ is the set of all speech utterances ands the set of all phoneme se-
quences. Thereforg)| is exponential in the length of the sequence. Nonethelésise
functions¢ and ¢ adheres to a specific structure then we can still calculdtegsadients
efficiently and therefore solve the resulting optimizatpoblem efficiently using Pegasos.

To recap the examples provided above we give a table of thgsdients of some
popular loss functions. To remind the reader, given a cofestion f(w), a sub-gradient
of f atwyg is a vectorv which satisfies:

Vw, f(w)— f(wo) > (v,w —wpq) .

The following two properties of sub-gradients are used &cuating the sub-gradients in
the table below.

1. If f(w) is differentiable atvo, then the gradient of atwy is the unique sub-gradient
of f atwy.

2. If f(w) = max; f;(w) for r differentiable functiong, . . ., f», andj = arg max; f;(wo),
then the gradient of; atwy is a sub-gradient of atwy.

Based on the above two properties, we now show explicitly hmwalculate a sub-
gradient for several loss functions. In the following tabie use the notation = (w;, x;).
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Loss function Subgradient

U(z,yi) = max{0,1 — y;z}

—yix;  if yiz <1
Vi = .
0 otherwise

U(z,y:) = log(1 + e=¥+%) vi = — e %

X ifZ—yi>£

(z,y;) = max{0, |y; — z| — €} vi=19—-x; if y;—z>c¢€
0 otherwise
Uz, y;) = mas 3(y,yi) — 2y, + 2y vi = (X, 9) — (X, ¥s)

wherej = arg max §(y, yi) — zy, + 2y
y

(2, y;) = log (1 +>) 62T_Z’”> Vi =32, pro(xi,r) — (X, yi)
#Yi
Y wherep,. = €7/ Z e%i
J

6 Incorporating a bias term

In many applications, the weight vectar is augmented with a bias term which is a scalar,
typically denoted aé. The prediction for an instancebecomegw, x) + b and the loss is
accordingly defined as,

£((w,0); (x,9)) = max{0,1 — y({w,x) +b)} . (22)

The bias term often plays a crucial role when the distributid the labels is uneven as is
typically the case in text processing applications wheeertegative examples vastly out-
number the positive ones. We now review several approadreledrning the bias term
while underscoring the advantages and disadvantages lobgacoach.

The first approach is rather well known and its roots go backatdy work on pattern
recognition [14]. This approach simply amounts to adding wore feature to each instance
x thus increasing the dimension to+ 1. The artificially added feature always takes the
same value. We assume without loss of generality that theevail the constant feature is
1. Once the constant feature is added the rest of the algoréghmains intact, thus the bias
term is not explicitly introduced. The analysis can be réggaerbatim and we therefore
obtain the same convergence rate for this modification. INoteever that by equating the
n + 1 component ofw with b, the norm-penalty counterpart gf be(:ome$|w||2 + b2
The disadvantage of this approach is thus that we solve avediadifferent optimization
problem. On the other hand, an obvious advantage of thisoappris that it requires no
modifications to the algorithm itself rather than a modestéase in the dimension and it
can thus be used without any restriction4n
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An alternate approach incorporatesxplicitly by defining the loss as given in Eq. (22)
while not penalizing forb. Formally, the task is to find an approximate solution to thle f
lowing problem:

LA 1
min Sl + LSy 0], (23)
’ (x,y)€S

Note that all the sub-gradients calculations with respeet temain intact. The sub-gradient
with respect ta is also simple to compute. This approach is also very singpieplement
and can be used with any choice4f, in particular, sets consisting of a single instance. The
caveat of this approach is that the functiprceases to be strongly convex due to the incor-
poration ofb. Precisely, the objective functiohbecomes piece-wise linear in the direction
of b and is thus no longer strongly convex. Therefore, the aigpyesented in the previous
section no longer holds. An alternative proof techniquédgi@ slower convergence rate of
O(1/VT).

A third method entertains the advantages of the two methoaolgesat the price of a more
complex algorithm that is applicable only for large batcresi(large values df), but not
for the basic Pegasos algorithm (with= 1). The main idea is to rewrite the optimization
problem given in Eq. (23) asiinw %HWHQ + g(w; S) where

g(w; 8) = min & X, s [1 = y((w, %) + b)), (24)

Based on the above, we redefifiéw; A;) to be 3 ||w||* + g(w; A;). On each iteration
of the algorithm, we find a sub-gradient ¢fw; A;) and subtract it (multiplied by):)
from w;. The problem however is how to find a sub-gradientyfv; A;), asg(w; A:)
is defined through a minimization problem overThis essentially amounts to solving the
minimization problem in Eq. (24). The latter problem is a gized weighted median
problem that can be solved efficiently in tini¥ k). The above adaptation indeed work for
the casék = m where we havel; = S and we obtain the same rate of convergence as in
the no-bias case. However, whdp # S we cannot apply the analysis from the previous
section to our case since the expectatiolfief; A:) over the choice ofl; is no longer equal
to f(w;.S). When A, is large enough, it might be possible to use more involvedsonea
concentration tools to show that the expectatiorf ©f; A:) is close enough tg(w; S) so
as to still obtain fast convergence properties.

A final possibility is to search over the bias tetnin an external loop, optimizing the
weight vectorw using Pegasos for different possible value$.ofhat is, consider the ob-
jective:

J(b; 8) = min D ewyes L= y((w,x) +0)], . (25)

For a fixedb, the minimization problem in Eq. (25) is very similar to SVining without

a bias term, and can be optimized using Pegasos. The okjd¢tiy.S) is convex in the sin-
gle scalar variablé, and soJ(b; S) can be optimized to within accuraeyy binary search
usingO(log 1/¢) evaluations ofJ (b; S), i.e. O(log 1/¢) applications of the Pegasos algo-
rithm. Since this modification introduced only an additiblogarithmic factor, the overall
runtime for training an SVM with a bias term remai@§d/(\¢)). Although incorporating
a regularized or unregularized bias term might be betteractjze, the latter “outer loop”
approach is the only method that we are aware of which guzeardan overall runtime of
O(d/(Xe)).
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7 Experiments

In this section we present experimental results that detradeghe merits of our algorithm.
We start by demonstrating the practicality of Pegasos feirsplarge scale linear problems,
especially when the feature vectors are sparse. In patjaué compare its runtime on three
large datasets to the runtimes of the state-of-the-ares@YM-Perf [21], a cutting plane
algorithm designed specifically for use with sparse featertors, as well as of two more
conventional SVM solvers: LASVM [2] and SVM-Light [20]. Weert demonstrate that
Pegasos can also be a reasonable approach for large sdalenpdnvolving non-linear
kernels by comparing it to LASVM and SVM-Light on four largatd sets using Gaussian
kernels. We then investigate the effect of various parammeted implementation choices
on Pegasos: we demonstrate the runtime dependence on thariggion parametea;
we explore the empirical behavior of the mini-batch variand the dependence on the
mini-batch sizek; and we compare the effect of sampling training examplek fdth and
without replacement. Finally, we compare Pegasos to twaqusly proposed methods that
are based on stochastic gradient descent: Norma [24] byéGviSmola, Williamson and to
the method by Zhang [37].

We also include in our experiments a comparison with staaghBsial Coordinate As-
cent (DCA). Following Pegasos'’s initial presentation [Ftbchastic DCA was suggested as
an alternative optimization method for SVMs [18]. DCA shaneimerous similarities with
Pegasos. Like Pegasos, at each iteration only a singleqmanaining exampléy;, x;) is
considered, and if; (w,x;) < 1, an update of the formw < w + ny;x; is performed.
However, the DCA step size is not predetermined, but rather chosen so as to maximize
the dual objective. DCAs convergence properties and tiferdnces between DCA and
Pegasos behavior are not yet well understood. For infoomatipurposes, we include a
comparison to DCA in our empirical evaluations.

Our implementation of Pegasos is based on the algorithm figiri, outputting the last
weight vector rather than the average weight vector, as wedfdhat in practice it performs
better. We did not incorporate a bias term in any of our expenits. We found that including
an unregularized bias term does not significantly changeridictive performance for any
of the data sets used. Furthermore, most methods we contpaneltding [21,24,37,18],
do not incorporate a bias term either. Nonetheless, therel@arly learning problems where
the incorporation of the bias term could be beneficial.

We used our own implementation of Pegasos, as well as sticBg3A, and both were
instrumented to periodically output the weight vectomor, in the kernel case, the vector of
coefficientsa. The source code for SVM-Perf, LASVM and SVM-Light were ddoaded
from their respective authors’ web pages, and were simitaddified. These modifications
allowed us to generate traces of each algorithm’s prognesstine, which were then used
to generate all plots and tables. Whenever a runtime is teghothe time spent inside the
instrumentation code, as well as the time spent loading &te file, isnot included. All
implementations are in C/C++, and all experiments wereoperéd on a single core of a
load-free machine with an Intel Core i7 920 CPU and 12G of RAM.

7.1 Linear kernel

Our first set of experiments, which evaluate the performafi¢®&gasos in constructing lin-
ear SVMs, were performed on three large datasets with vdigreint feature counts and
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Fig. 4 Comparison of linear SVM optimizers. Primal suboptimalityp row) and testing classification error
(bottom row), for one run each of Pegasos, stochastic DCAI-$érf, and LASVM, on the astro-ph (left),
CCAT (center) and covl (right) datasets. In all plots theZumtal axis measures runtime in seconds.

sparsity, which were kindly provided by Thorsten Joachifftse astro-ph dataset classi-
fies abstracts of papers from the physics ArXiv according betver they belong in the
astro-physics section; CCAT is a classification task takemfthe Reuters RCV1 collec-
tion; and cov1l is class 1 of the covertype dataset of Blagkick & Dean. The following
table provides details of the dataset characteristics gflsaw the value of the regularization
parameten used in the experiments (all of which are taken from [21]):

Dataset| Training Size| Testing Size| Features| Sparsity A
astro-ph 29882 32487 99757 0.08% | 5x10°°
CCAT 781265 23149 47236 0.16% 10~*
covl 522911 58101 54 22.22% 107°

Fig. 4 contains traces of the primal suboptimality, andngstlassification error, achieved
by Pegasos, stochastic DCA, SVM-Perf, and LASVM. The ladfethese is not an algo-
rithm specialized for linear SVMs, and therefore shouldbmexpected to perform as well
as the others. Neither Pegasos nor stochastic DCA have i@hstiopping criterion. Hence,
in order to uniformly summarize the performance of the wasialgorithms, we found the
first time at which the primal suboptimality was less than e@redetermined termination
thresholde. We chose this threshold for each dataset such that a pritbaptmality less
thane guarantees a classification error on test data which is at mbsimes the test data
classification error at the optimum. (For instance, if fydtimization of SVM yields a test
classification error o1 %, then we chose such that a-accurate optimization would guar-
antee test classification error of at mast%.) The time taken to satisfy the termination
criterion, on each dataset, for each algorithm, along wiglssification errors on test data
achieved at termination, are reported in Table 1.
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Dataset Pegasos SDCA SVM-Perf LASVM
astro-ph | 0.04s(3.56%) | 0.03s(3.49%) | 0.1s(3.39%) 545 (3.65%)
CCAT | 0.165(6.16%) | 0.36s(6.57%) | 3.6s(5.93%) > 18000s

covl | 0.325(23.2%) | 0.20s(22.9%) | 4.25(23.9%) | 210s (23.8%)

Table 1 Training runtime and test error achieved (in parenthesss)gwarious optimization methods on
linear SVM problems. The suboptimality thresholds usedtémination ares = 0.0275, 0.00589 and
0.0449 on the astro-ph, CCAT and covl datasets (respectively)tdsimg classification errors at the optima
of the SVM objectives ar8.36%, 6.03% and22.6%.

Based both on the plots of Fig. 4, and on Table 1, we can seeStVilt-Perf is a very fast
method on it own. Indeed, SVM-Perf was shown in [21] to achiawspeedup over SVM-
Light of several orders of magnitude on most datasets. Nefets, Pegasos and stochastic
DCA achieve a significant improvement in run-time over SVEHPIt is interesting to note
that the performance of Pegasos does not depend on the naibramples but rather
on the value of\. Indeed, the runtime of Pegasos for the Covertype datasatger than
its runtime for CCAT, although the latter dataset is largéiis issue is explored further
in Sec. 7.3 given in the sequel.

7.2 Experiments with Gaussian kernels

Pegasos is particularly well suited for optimization oflém SVMs, in which case the run-
time does not depend on the data set size. However, as we slioe/sequel, the kernelized
Pegasos variant described in section 4 gives good perfaenam a range of kernel SVM
problems, provided that these problems have sufficientlaggation. Although Pegasos
does not outperform state-of-the-art methods in our erpants, it should be noted that
Pegasos is a very simple method to implement, requiring @iy lines of code.

The experiments in this section were performed on four étdatownloaded from Léon
Bottou’s LASVM web pagé The USPS and MNIST datasets were used for the task of
classifying the digit 8 versus the rest of the classes. Iifidi@ving table, is the parameter
controlling the width of the Gaussian kernil (z, y) = e~ 71#=¥l2 and is the Pegasos
regularization parameter.

Dataset| Training Size| Testing Size| ~ A

Reuters 7770 3299 1 [ 129%x107*
Adult 32562 16282 0.05 | 3.07 x 1075
USPS 7329 1969 2 | 1.36x1074

MNIST 60000 10000 0.02 | 1.67 x 107°

The parameters for the Reuters dataset are taken from [2 tose for the Adult
dataset are from [29]. The parameters for the USPS and MN&&isdts are based on those
in [2], but we increased the regularization parameters bgctof of 1000. This change
resulted in no difference in the testing set classificatioareat the optimum on the USPS
dataset, and increased it frdimt6% to 0.57% on MNIST. We discuss the performance of
Pegasos with smaller values of the regularization parametethe next section.

Fig. 5 contains traces of the primal suboptimalities in Htéar and log scales, and the
testing classification error, achieved by Pegasos, sticlizSA, SVM-Light, and LASVM.

2 http://1eon.bottou.org/ projects/lasvm
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Fig. 5 Comparison of kernel SVM optimizers. Primal suboptimaliiyp row), primal suboptimality in log
scale (middle row) and testing classification error (bottom), for one run each of Pegasos, stochastic DCA,
SVM-Light, and LASVM, on the Reuters (left column), Adultefater column) and USPS (right column)
datasets. Plots of traces generated on the MNIST datadeti{oen) appear broadly similar to those for the
USPS dataset. The horizontal axis is runtime in seconds.

As in the linear experiments, we chose a primal suboptign#titeshold for each dataset
which guarantees a testing classification error wittiift of that at the optimum. The run-
time required to achieve these targets, along with the tassification errors, are reported
in Table 2.

As in the linear case, Pegasos (and stochastic DCA) achiegasmnably low value
of the primal objective very quickly, much faster than SVMht. However, on the USPS
and MNIST datasets, very high optimization accuracy is ireguin order to achieve near-
optimal predictive performance, and such accuracy is mwlden to achieve using the
stochastic methods. Note that the test error on these datessery small (roughly).5%).

Furthermore, when using kernels, LASVM essentially dort@sd@egasos and stochastic
DCA, even when relatively low accuracy is required. On alirfdatasets, LASVM appears
to enjoy the best properties of the other algorithms: it bo#ikes significant progress dur-
ing early iterations, and converges rapidly in later itersg. Nevertheless, the very simple
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method Pegasos still often yields very good predictivegrerhnce, with a competitive run-
time.

It can also be interesting to compare the different methésisia terms of the number
of kernel evaluations performed. All of the implementatiarse the same sparse represen-
tation for vectors, so the amount of time which it takes tdquen a single kernel evaluation
should, for each dataset, be roughly the same across allafgorithms. However, vari-
ous other factors, such overhead resulting from the coritplex the implementation, or
caching of portions of the kernel matrix, do affect the numiifiekernel evaluations which
are performed in a given unit of time. Nevertheless, therdfgncy between the relative
performance in terms of runtime and the relative perforrmanderms of number of kernel
evaluations is fairly minor. To summarize this discrepamey calculated for each method
and each data set the kernel evaluation throughput: the ewoflkernel evaluations per-
formed per second of execution in the above runs. For eaghsadt we then normalized
these throughputs by dividing each method’s throughputhieyRegasos throughput, thus
obtaining a relative measure indicating whether some nastlawe using much more, or
much fewer, kernel evaluations, relative to their runtiffiee resulting relative kernel eval-
uation throughputs are summarized in Table 3. It is unssirgithat Pegasos and stochastic
DCA, as the simplest algorithms, tend to have performancg dmminated by kernel eval-
uations. If we were to compare the algorithms in terms of talmer of kernel evaluations,
rather than elapsed time, then LASVMs performance wouleggly improve slightly rel-
ative to the others. But in any case, the change to the relggvformance would not be
dramatic.

7.3 Effect of the regularization parameter

We return now to the influence of the values of the regulaongiarametei on the runtime
of Pegasos and stochastic DCA. Recall that in the previatigsewe choose to use a much
larger value ofA in our experiments with the MNIST and USPS datasets. Fig.dvsh
the suboptimalities of the primal objective achieved byd3eg and stochastic DCA after

Dataset Pegasos SDCA SVM-Light LASVM

Reuters| 155 (2.91%) 135 (3.15%) 4.15(2.82%) 4.75(3.03%)
Adult | 30s(15.5%) 4.85 (15.5%) 59s (15.1%) 1.55 (15.6%)
USPS | 120s (0.457%) 215 (0.508%) | 3.35(0.457%) | 1.8s5(0.457%)

MNIST | 4200s (0.6%) | 1800s (0.56%) | 290s(0.58%) | 280s(0.56%)

Table 2 Training runtime and test error achieved (in parenthesss)gwarious optimization methods on
linear SVM problemse = 0.00719, 0.0445, 0.000381 and 0.00144 on the Reuters, Adult, USPS and
MNIST datasets (respectively). The testing classificatorors at the optima of the SVM objectives are
2.88%, 14.9%, 0.457% and0.57%.

Dataset| Pegasos| SDCA | SVM-Light | LASVM

Reuters 1 1.03 1.14 0.88
Adult 1 0.90 0.94 0.60
USPS 1 0.97 0.69 0.81

MNIST 1 0.94 0.99 0.61

Table 3 Relative kernel evaluation throughputs: the number of &eavaluations per second of runtime
divided by Pegasos’s number of kernel evaluations per segbruntime on the same dataset.
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Fig. 6 Demonstration of dependence of Pegasos’ performance afaragtion, on the USPS dataset. This
plot shows (on a log-log scale) the primal suboptimalitit®egasos and stochastic DCA after certain fixed
numbers of iterations, for various valuesof

certain fixed numbers of iterations, on the USPS datasetfiagction of the regularization
parameter\. As predicted by the formal analysis, the primal suboptitypafter a fixed
number of Pegasos iterations is inversely proportional. tdence, the runtime to achieve a
predetermined suboptimality threshold would increaseapgrtion toA. Very small values
of A (small amounts of regularization) result in rather longtimes. This phenomenon has
been observed before and there have been rather successfiopts to improve Pegasos
when )\ is small (see for example [13)]).

It is interesting to note that stochastic DCA does not seesufi@r from this problem.
Although Pegasos and stochastic DCA have comparable restfor moderate values of
), stochastic DCA is much better behaved wheis very small (i.e. when the problem is
barely infused with regularization).

7.4 Experiments with the Mini-Batch Variant

In this section, we explore the influence of the mini-batae g, of the mini-batch variant
of Fig. 2. Increasing: does not reduce our theoretical guarantees on the numbearaf i
tions T that are required to attain a primal suboptimality goal.c8ithe runtime of each
iteration scales linearly witlk, the convergence analysis suggests that incredsinguld
only cause a linear increase in the overall runtitférequired to achieve a predetermined
accuracy goal. We show that in practice, for moderate sifds a roughly linear (ink)
improvement in the number of required iteratidfiscan be achieved, leaving the overall
runtime k7" almost fixed. For a serial implementation of Pegasos, tlsslrevould be un-
interesting. However, using large samples for computimgstiibgradients can be useful in
a parallel implementation, where thig k) work of each iteration could be done in parallel,
thus reducing the overall required elapsed time.

Fig. 7 includes two plots which illustrate the impactodn the performance of Pegasos.
The first plot shows that, on the astro-ph dataset, for sefftti small values of, the
primal suboptimality achieved aftdf iterations is roughly proportional to the product.
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Fig. 7 The effect of the mini-batch size on the runtime of Pegasoshi® astro-ph dataset. The first plot
shows the primal suboptimality achieved for certain fixeld@a of overall runtime:7’, for various values of
the mini-batch sizé&:. The second plot shows the primal suboptimality achieveddatain fixed values of,
for various values okT". Very similar results were achieved for the CCAT dataset.

This property holds in the region for which the curves aregyhdy horizontal, which in this
experiment, corresponds to mini-batch sizes of up to a favdied training points.

Note also that the three curves on the left hand side plot @f Fistart increasing at
different values of. It appears that, wheh is overly large, there is initially indeed a loss
of performance. However, as the number of iterations irsgeathe slower behavior due to
the mini-batch size is alleviated.

The second plot further underscores this phenomenon. Weesathat, for three values
of k, all significantly greater than00, the experiments with the largest mini-batch size
made the least progress while performing the same amouongbuatation. However, as the
number of iterations grows, the suboptimalities becomélainThe end result is that the
overall runtime does not seem to be strongly dependent omitiebatch size. We do not
yet have a good quantitative theoretical understandindgv@fntini-batch results observed
here.

7.5 Comparison of sampling procedures

The analysis of Pegasos requires sampling with replaceateaich iteration. Based on pri-
vate communication with Léon Bottou we experimented watimplingwithoutreplacement.

Specifically, we chose a random permutation over the trgiakamples and performed up-
dates in accordance to the selected order. Once we trawfdbd permuted examples, we
chose a new permutation and iteratively repeated the psoés also experimented with a
further simplified approach in which a single random permiomais drawn and then used
repeatedly. Fig. 8 indicates that, on the astro-ph datdsesampling without replacement
procedures outperform significantly the uniform i.i.d. gdimg procedure. Further, it seems
that choosing a new permutation every epoch, rather thapirkgehe permutation intact,

provides some slight further improvement. We would like adenthough that while the last
experiment underscores the potential for additional irm@neent in the convergence rate,
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Fig. 8 The effect of different sampling methods on the performasfdeegasos for the astro-ph dataset. The
curves show the primal suboptimality achieved by unifoird.isampling, sampling from a fixed permutation,
and sampling from a different permutation for every epoch.

—e—Pegasos ]
—Norma

—©—Pegasos
——Zhang |

Fig. 9 Comparisons of Pegasos to Norma (left), and Pegasos toastiriyradient descent with a fixed
learning rate (right) on the Astro-Physics datset. In tiieHand side plot, the solid curves designate the
objective value while the dashed curves show the test loss.

the rest of the experiments reported in the paper were ctedius accordance with the
formal analysis using uniform sampling with replacements.

7.6 Comparison to other stochastic gradient methods

In our last set of experiments, we compared Pegasos to Nad2#jaahd to a variant of
stochastic gradient descent due to Zhang [37]. Both metkbdse similarities with Pe-
gasos wherk = 1, and differ in their schemes for setting the learning rateThm. 4
from [24], suggests to sef; = p/(\+/t), wherep € (0,1). Based on the bound given
in the theorem, the optimal choice pfis 0.5(2 + 0.57~1/2)/2 which fort > 100 is
in the range[0.7,0.716]. Plugging the optimal value gf into Thm. 4 in [24] yields the
boundO(1/(AVT)). We therefore conjectured that Pegasos would convergéisantly
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faster than Norma. On the left hand side of Fig. 7.6 we comPagasos (with the optional
projection step) to Norma on the Astro-Physics dataset. Weetl the dataset to a training
set with 29,882 examples and a test set with 32,487 exampkeseport the final objective
value and the average hinge-loss on the test set. As in [21§eth = 2 - 10~ . Itis clear
from the figure that Pegasos outperforms Norma. Moreovemniddails to converge even
after 10° iterations. The poor performance of Norma can be attribttetthe fact that the
value of\ here is rather small.

We now turn to comparing Pegasos to the algorithm of Zhany@iich simply sets
n: = n, wheren is a (fixed) small number. A major disadvantage of this apgnaa that
finding an adequate value foris a difficult task on its own. Based on the analysis given
in [37] we started by setting to be 10~°. Surprisingly, this value turned out to be a poor
choice and the optimal choice gfvas substantially larger. On the right hand side of Fig. 7.6
we illustrate the convergence of stochastic gradient deseith 7: set to be a fixed value
from the sef{0.001,0.01,0.1, 1, 10}. It is apparent that for some choicespthe method
converges at about the same rate of Pegasos while for otbhereshofr the method fails
to converge. For large datasets, the time required for atialythe objective is often much
longer than the time required for training a model. Themefeearching fon is significantly
more expensive than running the algorithm a single time .@fparent advantage of Pegasos
is due to the fact that we do not need to search for a good valug but rather have a
predefined schedule foy.

8 Conclusions

We described and analyzed a simple and effective algorithimagproximately minimizing
the objective function of SVM. We derived fast rate of comerce results and experimented
with the algorithm. Our empirical results indicate that fioear kernels, Pegasos achieves
state-of-the-art results, despite of, or possibly duetsosimplicity. When used with more
complex kernels, Pegasos may still be a simple competitigenative to more complicated
methods, especially when fairly lax optimization can betaled.

Recently, Bottou and Bousquet [4] proposed to analyse giion algorithms from the
perspective of the underlying machine learning task. Inbssquent paper [32], we analyze
Pegasos and other SVM training methods from a machine feap@rspective, and showed
that Pegasos is more efficient than other methods when nieggbe runtime required to
guarantee good predictive performance (test error).
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