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Abstract—In many real-world applications, data are contin-
uously accumulated in open environments, and new classes
may emerge over time. For instance, in disease diagnosis, the
prevalence of a certain disease may vary seasonally, and new
diseases can also emerge. This paper investigates the problem of
learning from unlabeled data stream where the label distribution
evolves over time, and meanwhile, previously unseen new classes
may appear. To handle the emerging new classes in online label
shift, we first design a novel risk estimator by unbiased risk
rewriting and mixture proportion estimation, which enables the
identification of new class data. Subsequently, we employ the
online ensemble paradigm for model updating to handle unknown
distribution shifts. Moreover, we introduce the sketching and
ensemble pruning mechanisms to improve the efficiency of
the algorithm, making it more lightweight and practical. The
proposed approach enjoys a theoretical guarantee of dynamic
regret, ensuring its effectiveness in adapting to the unknown
distribution shifts and the emergence of new classes in streaming
data. Experiments on diverse benchmark datasets and two real-
world applications demonstrate the effectiveness of the algorithm.

Index Terms—data stream, distribution shift, new class, online
label shift, weakly supervised learning

I. INTRODUCTION

Machine learning algorithms have made significant suc-
cesses across various applications [1], typically relying on the
assumption that the training and testing data are generated
from an identical distribution. However, in many real-world
tasks, the testing data are continuously collected from open
environments, resulting in a distribution mismatch between
the training and testing data, and the distribution of testing
data can even change over time [2, 3]. Furthermore, owing to
the streaming nature of data, new class data could appear,
presenting instances that were not encountered previously.
Therefore, it is essential to adaptively learn from unlabeled
data streams with changing distributions, particularly with the
emergence of new classes.

In this paper, we investigate the problem of handling new
classes in online label shift. Specifically, the learner can have
some offline labeled data for model training. However, during
online testing phase, unlabeled data continuously arrives with
its label distribution changing over time [4]; simultaneously,
new class data could appear in online unlabeled data stream,
as shown in Figure 1. The learner is required to continuously
adapt to the changing distribution and accommodate the arrival
of new classes. This problem is crucial because it encompasses
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various real-world tasks. For instance, considering disease
diagnosis tasks, the prevalence of a certain disease may vary
across seasons [5], which induces continuous label shifts.
Moreover, the emergence of new diseases that were not
encountered in the initial labeled data [6] can pose a significant
challenge in handling these emerging new classes.

Existing approaches primarily focused on either handling
online label shifts within a fixed label space, or dealing with
new classes while employing a fixed classifier for known
classes. As a typical kind of distribution change, online
label shift, characterized by continuous changes in the label
distribution of unlabeled data stream, has garnered substantial
interest in the literature [4, 7, 8, 9, 10, 11]. This line of research
firstly estimates the underlying loss of online unlabeled data
in an unbiased manner, followed by formulating the problem
as an online convex optimization problem. However, these
studies do not consider the appearance of new classes in the
open environments, which is a common occurrence in many
real-world tasks. Another line of research on handling the new
classes focuses on handling only new classes within unlabeled
data stream [12, 13]. This line of research uses various
anomaly detectors to detect new classes and updates models
accordingly. However, these studies mainly concentrate on
detecting new classes while disregarding distribution changes
within the known class data, which may cause a degradation
in the overall performance. Additionally, heuristic mechanisms
for identifying new class data possess limited fitting capa-
bilities and lack theoretical guarantees. It is noteworthy that
in numerous real-world scenarios, the issue of label shifts
and the new class can occur simultaneously, posing potential
challenges to the existing algorithms.

In this paper, we initiate and investigate the problem of
handling New class in Online Label Shift (N-OLS), which
encompasses a wide range of real-world tasks. In particular in
this scenario, more and more unseen new classes are allowed
to successively emerge in the data stream as time evolves.
Although previous works have studied the new class and
label shift problems separately, the conjunction of online label
shift and new classes presents new challenges, especially for
unlabeled data streams. On one hand, the emergence of new
classes can introduce bias to the estimator that is solely trained
on known classes. On the other hand, label shifts in known
classes data can worsen the identification of new classes.
Therefore, it is crucial to adaptively learn the model in the
online label shift setting with the emerging new classes.

To handle this problem, we explore the unlabeled data and
develop a novel risk estimator that employs risk rewriting and
mixture proportion estimation techniques, enabling updates of
the model under unknown levels of distribution shift. To adapt
to the continuous label shift in data streams, we employ the
paradigm of online ensemble [14], which maintains a group
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Fig. 1: Illustration of the N-OLS problem protocol. During the offline initialization stage, the learner observes a substantial amount of labeled
data from known classes; in the online adaptation stage, the learner receives only a limited amount of unlabeled data, where new classes
emerge. Additionally, the data distribution changes over time.

of base learners and adaptively combines their outputs to
track the changing distribution. Besides, we also introduce
the sketching and ensemble pruning mechanisms to improve
the computational efficiency of the algorithm, making it more
practical for real-world applications. We propose HAndling
New class in Online Label shift (HANOL) algorithm, which
enjoys a theoretical guarantee of dynamic regret, ensuring its
effectiveness in adapting to the evolving data distribution and
new classes. Empirical experiments are conducted to evaluate
the proposed method, including five benchmark datasets, and
two real-world applications SHL [15] and fMoW [16]. Our
method enhances average accuracy by 10% on SHL and 4% on
fMoW datasets, thereby showing its effectiveness for tackling
the emerging new classes in online label shift data streams.

Organization. Section II discusses related works. Section III
formulates N-OLS problem. Section IV presents our approach.
Section V provided theoretical justifications. Section VI re-
ports the experiments. Section VII concludes the paper.

II. RELATED WORK

In the following, we discuss the related topics.

A. Learning Data Streams with Changing Distribution

Supervised Stream with Changing Distributions. The
challenge of distribution change is a widely studied topic in the
field of streaming data learning [17, 18, 19, 20, 21, 22, 23]. To
adapt to the changing distributions, learning approaches can
generally be divided into single model-based and ensemble-
based approaches. For single model-based approaches, a com-
mon practice involves reducing the importance of long-term
historical data using techniques such as forgetting mecha-
nisms [24] or windowing mechanisms [25]. Another group
of single model-based algorithms enables adaptation to the
distribution changes through the detection of such changes.
These detectors identify the distribution changing points and
subsequently trigger the model to rebuild or update [26]. Re-
cent theoretical advances in online learning show that models
can automatically adapt to distribution changes through proper
restart mechanisms [27, 28].

Another important category is the ensemble-based model,
which has received significant attention in handling distribu-
tion change in data streams, which maintains multiple diverse
base learners and combines them to get the final prediction. By
continuously updating and assigning different weights to base
models based on their prediction performances, the ensemble
methods can adapt to continuous distribution changes [29, 30].

With a well-designed updating process, ensemble-based algo-
rithms can benefit from solid theoretical guarantees [31, 14].
However, this line of research primarily focuses on the su-
pervised or semi-supervised setting, requiring labeled data to
provide timely feedback for the model. As a result, these
methods face challenges when handling the unsupervised data
stream with distribution changes.

Unsupervised Stream with Online Label Shift. Label shift,
as a common type of distribution change, has been extensively
studied in the context of “one-step” adaptation [32, 33], where
one aims to adapt the model from the source to the target distri-
bution. More recently, the focus has shifted towards scenarios
involving streaming data setting where label shifts continu-
ously occur over time [4, 7]. Wu et al. [4] constructed an
unbiased risk estimator for the online unlabeled data and em-
ployed online gradient descent for model updating. While this
preliminary study performs well in scenarios where the label
shift in the stream remains unchanged, it faces challenges in
non-stationary environments where the class prior can change
over time. To tackle this challenge, Bai et al. [7] pioneer the
use of the online ensemble framework [14] developed in
the modern online learning community to effectively address
continuous label shifts with provable guarantees. Nevertheless,
these methods do not take into account the challenge of the
new class data in the open environments.

B. Classification with New Class Data

New Class Identification. Identification of new class data,
or named as open set recognition, is a prominent area of
research in computer vision and pattern recognition, focusing
on the identification of new classes within a fixed unlabeled
dataset [34, 35]. Several methods have been deployed to
handle this issue, including nearest neighbor approach [36],
adversarial sample generation [37], etc. However, we note that
many works in open set recognition implicitly use the feature
semantic information to help identify unknown classes. By
contrast, we focus on a general setting without such domain
knowledge of the semantic information.

Data Stream with New Classes. Learning data streams
with new classes requires the learning system to identify the
new classes in the unlabeled data stream and adapt the model
accordingly [12, 13, 38]. Mu et al. [12] propose an innova-
tive method that leverages an isolation forest [39] to detect
emerging new classes and subsequently update the models.
Cai et al. [13] propose an ensemble-based nearest neighbor
approach to handle scenarios where emerging new classes are
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not geometrically distant from the known classes. Similarly,
Zhang et al. [38] propose a k-nearest neighbor ensemble-based
method that explores the neighborhood information to assist in
handling new classes. Nevertheless, conventional approaches
often overlook the distribution change problem, which can
significantly impact both the identification of new class data
and the performance of the fixed classifier on known classes.

C. Discussion with Previous Works

Although previous works have studied the data streams
with new class and the online label shift problems separately,
however, to the best of our knowledge, our work is the
first to study the joint problem of the new class with label
shift problems especially for the streaming data scenario,
and extending the preliminary conference version [40] by
considering emerging new classes. The conjunction of label
shift and emerging new classes is a more challenging problem
compared to the two individual problems: the emerging of
new class may cause the estimator built on the known classes
to be biased, and the label shift problem may cause the new
class to be further misclassified. Besides, the learner can only
receive unlabeled streams. Consequently, updating the model
in the presence of both emerging new class and label shift
becomes particularly challenging, and therefore leading to a
severe performance drop. In this work, we carefully design
a novel risk estimator to handle the emerging new class in
online label by exploring the unlabeled data shift via unbiased
risk rewriting and mixture proportion estimation techniques,
and employ an online ensemble-based paradigm to handle the
unknown distribution changes.

III. PROBLEM FORMULATION

In this section, we formulate the learning problem. We
consider a multi-class classification setting. The feature space
is denoted by X ⊆ Rd, where d represents the feature
dimension. The label space consists of K+nc classes in total.
Here, within the total label space Y = {1, . . . ,K+nc}, classes
[K] ≜ {1, . . . ,K} represent the known classes in the initial
offline labeled data, and Ync ≜ {K+1, . . . ,K+nc} represents
the set of new classes which does not appear in the offline data
but emerging in the online unlabeled data streams.

In addition to the presence of the emerging new classes,
we consider the occurrence of online label shift. Specifi-
cally, throughout the entire time horizon of the unlabeled
data stream, conditional distribution remains unchanged, i.e.,
Dt(x | y) = D0(x | y) for all x ∈ X , y ∈ [K] and t ∈ [T ];
Dt(x | y) = Dt−1(x | y) for all x ∈ X , y ∈ Ync and
t ≥ 2. The label distribution can change dynamically, i.e.,
Dt(y = j) ̸= Dt−1(y = j) for j ∈ [K+nc]. Additionally, for
every j ∈ [K], we have D0(y = j) > 0.

In this paper, we formulate the new class in online label shift
problem into two phases: the offline supervised initialization
and the online unsupervised adaptation, detailed as follows.

• Offline Supervised Initialization. In the offline ini-
tialization stage, the learner collects a set of labeled data

S0 = {(xi, yi)}n0
i=1 from the offline distribution D0(x, y)

defined over the known classes X × [K], i.e.,

D0(x) =

K∑

j=1

[µy0
]j · Dj

0(x), (1)

where [µy0
]j = D0(y = j) is the label prior for the j-th

class, Dj
0(x) = D0(x | y = j) is the marginal distribution

of the feature x over the known class j ∈ [K]. The goal
of initialization is to obtain a well-performed initial model
f0 : X 7→ Y that generalizes over the initial distribution
D0, thus acting as a reliable classifier for known classes.

• Online Unsupervised Adaptation. After obtaining the
initial model f0, the learner deploys it to a fully unsuper-
vised changing environment. At round t ∈ [T ], the learner
can receive a small number of unlabeled data St = {xi}nt

i=1

drawn from the current distribution Dt(x). It is important to
note that the label distribution in the online adaptation phase
comprises not only the known classes y ∈ [K], but also new
classes y ∈ Ync, absent in the offline data, and is changing
over time. In our N-OLS, more and more unseen new classes
successively emerge in the data stream as time evolves, i.e.,
the new class y = K + κ coming after y = K + κ − 1
for κ ∈ [nc]. The learner aims to sequentially explore the
unlabeled data stream to adaptively update the model wt

and make accurate predictions for each St.

IV. PROPOSED APPROACH

In this section, we present our approach. To deal with
the challenging issue of the conjunction of the continuous
label shift and the arrival of the new classes in the N-OLS
problem, we develop a risk estimator by risk rewriting and
mixture proportion estimation techniques. Then, we proceed
to estimate the changing label prior for known classes and the
proportion of the new classes in the risk estimator. Finally, we
employ the online ensemble structure which aims to deal with
the unknown distribution shift in the data stream. The overall
protocol of the approach is illustrated in Figure 2.

A. Risk Estimator for N-OLS Problem

In this part, we propose a novel risk estimator designed
for the N-OLS problem, employed to update the model by
leveraging both the unlabeled and offline data. In the ini-
tialization stage, the model f0 can be obtained to deal with
the known classes. However, during the online adaptation
phase, new classes not included in offline data can appear.
Besides, the learner can only obtain a few unsupervised
data each round. Consequently, the online risk Rt(w) ≜
E(x,y)∼Dt

[ℓ(f(w,x), y)] is not directly observable as the
distribution Dt is unknown to the learner, where f(·, ·) is the
prediction function and w is the model parameter.

We propose a novel risk estimator by exploiting unlabeled
data stream via risk rewriting technique. We denote Rk

t (w) ≜
Ex∼Dt(x | y=k)[ℓ(f(w,x), k)] as the risk of the model over the
k-th class at round t, where t ∈ {0}∪[T ]. Suppose there are K
known classes, and the newly emerged class is denoted as y =
K+1. Then we have Rk

t (w) = Rk
0(w) for the known classes
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Fig. 2: Overall protocol of our proposed approach. We first build
an isolation forest to detect the emergence of a new class based on
the current unlabeled data. Next, we develop a novel risk estimator
by exploiting the unlabeled data stream. Subsequently, we employ
the online ensemble paradigm to adapt to the continuous label shift.
When the number of the encountered new class is large enough, we
add this class into the known class pool. This process can be iterated
to accommodate the emergence of new classes in the N-OLS data
stream, as both the tree-based detector and the classification model
can be updated in an online manner.

k ∈ [K] due to the online label shift assumption Dt(x | y) =
D0(x|y). However, since new classes can emerge in the online
unlabeled data stream, label distribution of the new class is
unavailable, making the new class risk RK+1

0 (w) unknown.
To tackle this issue, we propose a novel risk estimator for
the expected online risk Rt. We first notice that the marginal
distribution Dt(x) can be decomposed as

(1− θt)DK+1
t (x) = Dt(x)− θtDkc

t (x)

= Dt(x)− θt

( K∑

j=1

[µyt ]jDt(x | j)
)

= Dt(x)− θt

( K∑

j=1

[µyt
]jD0(x | j)

)
, (2)

where DK+1
t is the distribution of the new class data in Dt,

Dkc
t is the distribution of known classes in Dt, µyt

∈ ∆K is
the label distribution vector of known classes, and (1− θt) ∈
[0, 1] is the proportion of the new class at round t. The first
two equations in Eq. (2) are derived using the law of total
probability, while the final equation is obtained with the label
shift assumption. By Eq. (2), we focus on the new class risk
where y = K+1 and rewrite the new class risk RK+1

t (w) as

(1− θt)R
K+1
t (w) ≜ (1− θt)Ex∼DK+1

t (x)[ℓ(f(w,x),K+1)]

= Ex∼Dt(x)[ℓ(f(w,x),K+1)]−θtEx∼Dkc
t (x)[ℓ(f(w,x),K+1)]

= E
x∼Dt(x)

[ℓ(f(w,x),K+1)]−θt
K∑

j=1

[µyt
]j E
x∼Dj

0(x)
[ℓ(f(w,x),K+1)].

The expected risk over distribution Dt(x) can be approximated
by the empirical risk over the unlabeled data St, given by
1/nt

∑
x∈St

ℓ(f(w,x),K + 1), while the risk over Dj
0(x) ≜

D0(x | y = j) can be approximated by empirical risk over
offline data S0. Hence, we can build an estimator R̂t(w) for
the expected risk Rt(w) as follows:

R̂t(w) =
1

nt

∑

(xi,yi)∈St

ℓ(f(w,xi), yi)

= θ̂tR̂
kc
t (w) + (1− θ̂t)R̂

K+1
t (w)

= θ̂t

K∑

j=1

[µ̂yt
]jR

j
0(w) +

∑

x∈St

[ℓ(f(w,x),K + 1)]

− θ̂t

K∑

j=1

[µ̂yt ]j
∑

x∈Sj
0

[ℓ(f(w,x),K + 1)]. (3)

Overall, we build a risk estimator R̂t(w) by leveraging
online unlabeled data and offline labeled data. The remaining
question is how to estimate the parameters θ̂t and µ̂yt

. In
the following, we use black box shift estimator (BBSE) [33]
to estimate the label distribution µyt

, and employ mixture
proportion estimation (MPE) methods [41, 42] to estimate θt
given that we can empirically observe D0(x|y = j) and Dt(x).

B. Label Distribution Estimation with Unlabeled Data
In this part, we introduce the details of how to estimate

the changing label distribution µyt
for known classes, and

the proportion of the new class θt. In addition to the simple
case of handling a single new class y = K + 1, we further
illustrate how we handle emerging new classes by employing
a tree-based new class detector.

Estimate Proportion for Known Classes. We use BBSE to
estimate the class prior of the known classes µyt

via solving

µ̂yt
= C−1

0 · µ̂ŷt
, (4)

where µ̂ŷt
∈ ∆K with [µ̂ŷt

]j = 1/nt · ∑x∈St
[f0(x)]j

is the estimated class prior of the prediction f0(x), and
C0 ∈ RK×K is the classifier’s confusion matrix with [C0]i,j ≜
Ex∼D0(x | y=j)

[
1(f0(x) = i)

]
being the classification rate that

the initial model f0 predicts samples from class i as class j.
Benefit from the benign properties of BBSE, we can guarantee
that the estimation µ̂yt

satisfies E[µ̂yt
] = µyt

, where the
ground-truth label distribution is µyt

≜ C−1
0 µŷt

= Dkc
t (y).

We assume the offline data to be sufficient and of high quality,
ensuring that the estimated known class distribution remains
accurate and stable, even when encountering new classes.

Estimate Proportion for New Class. Notice that the
construction of the risk estimator R̂t requires estimating the
proportion θt, which corresponds to the problem of MPE,
where one aims to estimate the proportion of a certain class
within the overall distribution based on empirical observations.

If the sample size is sufficiently large in each round, the
proportion of the new class can be estimated using the existing



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 1, JUNE 2025 5

MPE technique. However, in online scenarios, the amount of
data obtained in each round is minimal, and direct estimation
can lead to high variance. To address this issue, we propose a
sliding window-based MPE algorithm. Specifically, we main-
tain a window queue of length L. At time t, following the first-
in-first-out principle, the current round sample St is added to
the queue, and a certain number of samples are removed from
the queue’s front. At each time step, we utilize the samples
in the sliding window to estimate the proportion of known
classes. Specifically, inspired by the recently proposed Best
Bin Estimation (BBE) technique [43], we utilize resampled
offline labeled data and the unlabeled data in the sliding
window to estimate the proportion of the new class. We first
train a well-performed classifier h(·) : X 7→ [0, 1], where 0
means the data is sampled from the online unlabeled data and
1 means the data is sampled from labeled data, then we get

qp(z) =

∑
xi∈S0

I [h(xi)⩾z]

|S0|
, qu(z) =

∑
xi∈Swin

I [h(xi)⩾z]

|Swin|
,

where S0 is the offline dataset, and Swin is the online unlabeled
data in the sliding window. By solving the equation

ĉ = argmin
c∈[0,1]




qu(c)

qp(c)
+

1 + γ

qp(c)

(√
log(4/δ)

2Swin
+

√
log(4/δ)

2S0

)
 ,

where 0 < δ, γ < 1 are the hyperparameters, then, we can
estimate the proportion of the new class by

θ̂t = qu(ĉ)/qp(ĉ).

The estimation of the new class proportion by the
sliding-window MPE method enjoys a convergence rate of
O(min(|S0|, |Swin|)−1/2) [43], therefore can obtain the pro-
portion of new class with a small variance.

Detect the Emerging New Classes. Note that our method
is applicable to handle the emerging new classes [3], where
more and more unseen new classes successively arise one
after the other as time evolves. A key component is the new
class detector, for which we utilize a tree-based detection
approach [12], which detects the new class based on the
isolation forest [39]. Specifically, this detector recognizes a
new (previously unseen) class by measuring the isolation depth
of the samples within the forest. Typically, the distribution of
the newly emerged class samples differs significantly from
that of known classes, resulting in a higher isolation depth for
new class samples, thereby enabling effective detection. We
maintain a buffer to store the sketched new class samples in the
data stream and detect whether another new class has emerged.
Then, we update the model parameter wt using previously
seen classes and the new class by our proposed risk estimator
R̂t(w). As a result, the previously detected new class transits
to a known class, and we add it into the known class pool. This
process can be iterated to accommodate emerging new classes,
regardless of the number of new classes, and the model wt

can be updated in an online manner. Note that this detection
method aims to identify new classes that emerge sequentially,
and the more challenging problem of detecting multiple new
classes simultaneously is left for future work.

Algorithm 1 HANOL: HAndling New class in OLS

Require: step size pool H; learning rate ε; step size ηi ∈ H
1: initialization: get wi

1 ∈ W by offline supervised initial-
ization; ∀i ∈ [N ], pi1 = 1/N

2: for t = 2 to T do
3: for i = 1 to N do
4: construct risk estimator R̂t(w

i
t) as (3)

5: update the i-th base model wi
t by (5)

6: update the weight pit according to (6)
7: end for
8: output final model wt =

∑N
i=1 p

i
t ·wi

t

9: end for

C. Adaptation via Online Ensemble

Based on the risk estimator R̂t(w) constructed in Sec-
tion IV-A and the parameter estimating approach in Sec-
tion IV-B, we then design an online algorithm to adapt the
model wt to the changing distribution Dt. A natural choice
is to minimize the risk estimator R̂t(w) from scratch, which
means wt ∈ argminw R̂t(w). Whereas, R̂t(w) can suffer
from high variance due to the very small online sample size
nt, which may lead to poor generalization performance. To this
end, we turn to reuse historical information via online gradient
descent (OGD). However, OGD with a fixed step size may not
be able to adapt to the changing distribution. To handle this
issue, we propose an adaptive online ensemble algorithm with
a two-layer structure, which can adaptively track the suitable
step size, as shown in Algorithm 1.

In order to adapt to the changing distributions, we em-
ploy the paradigm of online ensemble learning [14]. More
specifically, as demonstrated in Figure 2, we maintain a set of
base learners that are updated with different step sizes, corre-
sponding to varying intensity of label distribution variations.
Simultaneously, we maintain an meta learner that integrates
outputs of these base learners, enabling adaptive tracking of
the optimal base learner and therefore handling the challenge
of online distribution changes.
• Construct base learners with multiple step sizes. At round
t, with risk estimator R̂t(w) in Eq. (3), we can obtain the
estimated gradient ∇R̂t(w) and update the model wt by
gradient descent, given by the following update schedule

wt+1 = ΠW
[
wt − η∇R̂t(wt)

]
,

where ΠW [·] denotes the projection onto the parameter
domain W and η is the step size. This OGD algorithm
benefits from the risk estimator R̂t(w) that can evaluate
the model properly for all classes, including the emerging
new classes in online streams, which enables continuous
updates of the model in the correct direction.

However, the OGD algorithm with a single step size may
have difficulty in adapting to the changing distribution Dt –
ideally, the step size η should be small when the distribution
changes slowly and large when it changes rapidly. The
key challenge is to adaptively track the appropriate step
size ηt without prior knowledge of the distribution shifts.
Therefore, inspired by ensemble learning, we propose an
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online ensemble algorithm to adaptively track the suitable
step size ηt to the distribution Dt. Specifically, we maintain
a set of base learners with different step sizes H = {ηi}Ni=1.
At round t, we update the i-th base learner wi

t by

wi
t+1 = ΠW

[
wi

t − ηi∇R̂t(w
i
t)
]
. (5)

Thus, we can obtain a set of base models {wi
t}Ni=1, where

different base models excel in handling the online label shift
of different intensities.

• Combine the outputs by meta learner. We maintain a
meta learner that combines the outputs of multiple base
learners through weighted averaging to obtain the final
model, given by wt =

∑N
i=1 p

i
t ·wi

t. The weights pit ∈ [0, 1]
denotes the extent of utilization for the i-th base learner, and
statistically satisfies

∑N
i=1 p

i
t = 1. Since the environment

changes dynamically as time evolves, the weights pit should
be adaptively updated according to the current performance
of each base learner, that is,

pit ∝ exp

(
−ε

t−1∑

s=1

R̂s(w
i
s)

)
, (6)

where ε > 0 is a hyperparameter that controls the sensitivity
of the meta learner to the performance of base learners.
Intuitively, the meta learner assigns higher weights to base
learners that exhibit better cumulative performance, i.e.,
smaller cumulative risks, thereby enabling adaptive tracking
of the optimal base learner.

In Section V, we will theoretically demonstrate that the
proposed online ensemble algorithm can track the optimal base
learner adaptively by only maintaining about log T learners.

D. Efficiency Consideration

In this section, we discuss how to improve the computa-
tional and storage efficiency of the proposed algorithm. Specif-
ically, we introduce a sketching technique named balanced
kernel herding to store the offline dataset more efficiently,
and propose an ensemble pruning mechanism for reducing
the number of base learners in our HANOL to improve the
computational efficiency.

Sketching the Offline Dataset. As we mentioned in
Section IV-A and Section IV-B, we have built a novel risk
estimator for the N-OLS problem, and estimate the hyper-
parameter using BBSE and our sliding window-based MPE
algorithm. However, we note that these methods need to store
and re-calculate the entire offline data S0 at each time step,
which is computationally expensive and memory-consuming.
To address this issue, we use a subset of samples to “sketch”
the offline data, which efficiently approximates the distri-
bution of the offline data S0. Specifically, we propose the
balanced kernel herding mechanism to extract sketches of
the offline dataset, which is inspired by Chen et al. [44] and
Wu et al. [45]. Our balanced kernel herding is a deterministic,
iterative algorithm that samples informative points in the
dataset. For each known class k ∈ [K], we run the following

two steps to sketch the offline data Sk
0 in the k-th class:

ski = argmax
s∈X

〈
ψk
i , ϕ(s)

〉
,

ψk
i+1 = ψk

i + µ(Sk
0 )− ϕ(ski ); (7)

where µ is the kernel mean embedding function, i.e., µ(Sk
0 ) :=

1
|Sk

0 |
∑|Sk

0 |
i=1 ϕ(xi) and ϕ is a feature mapping associated with

the positive definite symmetric kernel. Here we choose the

Gaussian kernel, i.e., ⟨ϕ(x), ϕ(x′)⟩ = e−
∥x−x′∥22

2σ2 , where σ is a
user-specific hyperparameter to control the kernel width. The
initial ψ1 is set as µ(S0). To sketch the offline dataset S0,
we iterate through Eq. (7) for m steps to get a sketched set
{sk1 , . . . , skm} for each class k ∈ [K]. The risk estimated by our
sketched samples enjoys a good convergence rate compared
with the original offline dataset, as detailed in Section V.
Therefore, it can effectively preserve the distribution infor-
mation of the offline data S0 using only mK samples. When
detecting a newly emerged class, we can also use the same
sketching technique to sketch new class samples.

Ensemble Pruning. Our proposed HANOL method employs
the paradigm of online ensemble [14]. However, this typically
needs to update a total of O(log T ) base learners per round,
which may be costly as time grows and some efforts have
been made to improve the projection efficiency [46]. To this
end, inspired by previous ensemble pruning methods [47, 48],
we employ the ordering-based pruning mechanism to reduce
the number of base learners. Specifically, at each round, we
only maintain the most accurate N base learners, i.e., pruning
the base learners according to their order of the cumulative
historical accuracy. We then combine these selected base
learners and use a meta learner to get the final output, thereby
reducing the number of base learners and improving the
computational efficiency of our algorithm.

V. THEORETICAL RESULTS

In this section, we analyze the theoretical properties of our
algorithm. We introduce and employ dynamic regret [49] as
the theoretical performance measure. Following that, we first
present the theoretical analysis with detailed discussions, then
we provide the corresponding proofs.

A. Theoretical Analysis

We consider the convex flexible domain and loss functions.
Our goal is to obtain a sequence of online model parameters
{wt}Tt=1 that can minimize the cumulative expected risk over
the whole time horizon:

∑T
t=1Rt(wt). The excepted risk

Rt(w) at each round is defined as E(x,y)∼Dt
[ℓ(f(w,x), y)],

where ℓ : RK+nc × Y 7→ R is any convex loss function and
f(w,x) is the prediction of the model w ∈ W on the feature
x. We adopt the dynamic regret Regd

T as the performance
measure [7, 50]. It is defined as the difference between the
cumulative expected risk of the predictive model sequence
{wt}Tt=1 and the model sequence {w⋆

t }Tt=1:

Regd
T ≜

T∑

t=1

Rt(wt)−
T∑

t=1

Rt(w
⋆
t ),
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where the model parameter w⋆
t ∈ argminw∈W Rt(w) we

defined in this paper is the best model at each round t. A
small dynamic regret indicates that the proposed algorithm can
adapt to a changing environment and achieve a performance
competitive with the best model sequence.

We denote the upper bound of gradient norm by G ≜
supX ,Y,W ∥∇ℓ(f(w,x), y)∥2 and the diameter of the convex
parameter space W by Γ ≜ supw1,w2∈W ∥w1 −w2∥2. We use
B ≜ sup(x,y)∈X×Y,w∈W |ℓ(f(w,x), y)| as the upper bound
of loss function value, and σ as the minimum singular value
of the confusion matrix C0. Under the assumption that the
confusion matrix C0 is invertible, i.e., σ > 0, our algorithm
enjoys the following dynamic regret guarantee.

Theorem 1 (Dynamic Regret). Suppose the confusion matrix
C0 is invertible. Set the step size pool as H = {ηi =

σΓ

2G
√

(K+1)T
·2i−1 | i ∈ [N ]}, where N = 1+⌈ 1

2 log2(1+2T )⌉
is the number of the base learners. Our proposed HANOL
ensures that

E[Regd
T ] ≤ O(max{V 1/3

T T 2/3,
√
T}),

or simplified as O(V
1/3
T T 2/3) for non-degenerated cases of

VT ≥ Θ(T− 1
2 ), where VT =

∑T
t=2∥Dt(y) − Dt−1(y)∥1

measures the intensity of label distributions variation.

Proof Sketch. To prove Theorem 1, we require the unbi-
asedness of estimating the class priors in the risk estimator
given by (3) for the unlabeled data stream. This unbiasedness
enables us to transform the N-OLS problem back into the
non-stationary online learning problem. We propose efficient
approximations for the unbiased estimator of class priors. To
estimate the prior of new class data, we employ the MPE
technique based on offline data and a sliding window of online
data. To estimate the label distribution for known classes, we
handle it by a well-performed classifier f0 trained on offline
data and the confusion matrix C0, where we assume the offline
data to be adequately collected, such that y ∈ [K], D0(y) > 0
and therefore the obtained confusion matrix C0 is invertible.
The detailed proof of Theorem 1 is provided in Section V-B.

Remark 1. The non-stationarity inherent in the N-OLS prob-
lem arises from the label space Y , which encompasses the
continuous change in label distribution of known classes and
the arrival of the new class. As shown in Theorem 1, the
expected dynamic regret is impacted by the magnitude of label
distribution variations. It is worth mentioning that the presence
of new classes can be regarded as a specific type of label
distribution variation, where the prior probabilities of the new
class transition from 0 to non-zero values. Consequently, the
intensity of class-prior variation VT in Theorem 1 characterizes
both the label distribution variations of known classes and the
emergence of new classes, indicating that our proposed algo-
rithm can adapt to the online changing environment without
the prior knowledge of the distribution shift intensity.

Theorem 2 (Efficiency). By employing the proposed sketching
and ensemble pruning mechanisms, the overall computational
complexity of our algorithm is reduced from O(|S0| · log T )
to O(m(K + nc)N) per round, where m(K + nc) ≪ |S0| is

the sample size of the sketched dataset, and N is the number
of the selected base learners. Meanwhile, the proposed effi-
ciency mechanism also enjoys benign theoretical guarantees,
introducing only an extra error of O(1/m) to estimate the risk
each round under certain assumptions.

B. Proof of Theorem 1

Proof of Theorem 1. To prove Theorem 1, we first show that
the constructed risk estimator enjoys the benign property of
unbiasedness under certain conditions. Then, we analyze the
dynamic regret of our proposed algorithm by decomposing it
into two components: base regret and meta regret. We provide
the detailed proof in the following.

Unbiasedness. We first introduce the following lemma to show
that our designed risk estimator enjoys the benign property of
unbiasedness, providing reliable guidance for model updates.

Lemma 1 (Unbiased Risk Estimator). The proposed risk
estimator R̂t(w) in Eq. (3) is unbiased to Rt(w) =
E(x,y)∼Dt

[ℓ(f(w,x), y)], i.e., ESt∼Dt
[R̂t(w)] = Rt(w), for

any w ∈ W independent of the dataset St, provided Cf0 is
invertible and the offline dataset S0 has sufficient samples such
that Ĉf0 = Cf0 and R̂k

0(w) = Rk
0(w), ∀k ∈ [K + nc].

Proof of Lemma 1. First, we show that the BBSE’s estimation
µ̃t = C−1

0 µ̃ŷt
is unbiased towards the ground truth label prior

µ̃t if the initial data is sufficient such that we can obtain
C0. We rewrite the BBSE’s estimation as µ̃t = C−1

0 µ̃ŷt
=

C−1
0

1
|St|

∑
x∈St

h0(x). Taking the expectations of both sides,

ESt∼Dt
[µ̃t]=ESt∼Dt

[
C−1

0

(
1

|St|
∑

x∈St

h0(x)

)]

=ESt∼Dt

[
C−1

0 Ex∼Dt(x) [h0(x)]
]
=C−1

0 µŷt
=µt,

which shows that the BBSE’s estimation is unbiased towards
the ground truth label prior µt. Besides, for our Sliding-
window MPE, if we have sufficient online unlabeled data
and high-quality offline labeled data, the estimated new class
proportion θ̂t converges to the true value θt [43]. Therefore,
we finish the proof of Lemma 1.

Then, by leveraging the unbiased properties of the risk
estimator, we analyze the dynamic regret of our method.
Specifically, we convert the overall dynamic regret into two
components: meta regret and base regret.

T∑

t=1

(
Rt(wt)−Rt(w

i
t)

)

︸ ︷︷ ︸
meta regret

+

T∑

t=1

(
Rt(w

i
t)−Rt(w

⋆
t )

)

︸ ︷︷ ︸
base regret

.

Base Regret. The base regret measures the gap between
the base model and the optimal model sequence. To further
examine the base regret, following Bai et al. [7], we introduce
a piecewise stationary reference sequence that changes every
∆ iterations, and decompose base regret into two parts:

E1:T

[
T∑

t=1

Rt(wt)

]
−

T∑

t=1

Rt(w
⋆
t )
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= E1:T

[
T∑

t=1

Rt(wt)

]
−

M∑

m=1

∑

t∈Im

Rt(w
⋆
Im

)

︸ ︷︷ ︸
term (a)

+

M∑

m=1

∑

t∈Im

Rt(w
⋆
Im

)−
T∑

t=1

Rt(w
⋆
t )

︸ ︷︷ ︸
term (b)

,

where E1:T [·] denotes the expectation taken over the random
draw of dataset {St}Tt=1, and M =

⌈
T
∆

⌉
≤ T/∆ + 1 is the

number of the intervals. The first part means the gap between
the base model sequence and the reference sequence, and the
second part means the gap between the reference sequence
and the optimal model sequence. Then, we turn to analyze the
term (a) and the term (b), respectively.

We first show that the expected risk Rt(·) can be related
to the empirical risk estimator R̂t(·) due to its unbiasedness
property as stated in Lemma 1.

term (a) ≤ E1:T

[
T∑

t=1

⟨∇Rt(wt),wt −w⋆
I⟩
]

= E1:T

[
T∑

t=1

⟨∇Rt(wt)−∇R̂t(wt),wt −w⋆
I⟩
]

︸ ︷︷ ︸
term (a1)

+ E1:T

[
T∑

t=1

⟨∇R̂t(wt),wt −w⋆
I⟩
]

︸ ︷︷ ︸
term (a2)

,

where the first inequality is due to the convexity of the risk
function Rt(·). Further, for term (a1), we have

term (a1) = E1:T

[
⟨∇Rt(wt)−∇R̂t(wt),wt −w⋆

I⟩
]

= E1:t−1

[
⟨∇Rt(wt)−Et[∇R̂t(wt)|1 : t− 1],wt−w⋆

I⟩
]
= 0,

where the last equality is due to the unbiasedness of the risk
estimator R̂t as stated in Lemma 1, such that ∇Rt(wt) =
Et[∇R̂t(wt) | 1 : t − 1]. Thus, it is sufficient to analyze
term (a2) to provide an upper bound for term (a). To bound
term (a2), we give the following useful lemma.

Lemma 2 (Lemma 6 in Bai et al. [7]). For an unbiased risk
estimator R̂t(w), under same assumptions of Theorem 1, the
base regret of one base learner updated by Eq. (5) satisfies

T∑

t=1

〈
∇R̂t(wt),wt − ut

〉
≤ 2ηKG2T

σ2
+

2ΓPT + Γ2

2η

for any comparator sequence {ut}Tt=1 with ut ∈ W , where
PT =

∑T
t=2 ∥ut − ut−1∥2 measures the variation of the

comparator sequence.

Since the comparator sequence in term (a) only changes
M − 1 times, its variation is bounded by PT ≤ Γ(M − 1) ≤
(ΓT )/∆. By Lemma 2 and taking the expectation, we have

term (a2) ≤
2ηKG2T

σ2
+
2Γ2T/∆+ Γ2

2η
.

Combining upper bounds of term (a1) and term (a2) yields

term (a)≤term (a1)+term (a2)≤
2ηKG2T

σ2
+
2Γ2T/∆+Γ2

2η
.

Meta Regret. For the meta regret, we have

E1:T

[
T∑

t=1

Rt (wt)−
T∑

t=1

Rt

(
wi

t

)
]

≤E1:T




T∑

t=1

N∑

j=1

pt,jRt (wt,j)−
T∑

t=1

Rt

(
wi

t

)



=E1:T




T∑

t=1

N∑

j=1

pt,jR̂t (wt,j)−
T∑

t=1

R̂t

(
wi

t

)



+ E1:T

[ T∑

t=1

N∑

j=1

pt,j

(
Rt (wt,j)− R̂t (wt,j)

)

+
T∑

t=1

(
Rt

(
wi

t

)
− R̂t

(
wi

t

)) ]

=E1:T




T∑

t=1

N∑

j=1

pt,jR̂t (wt,j)−
T∑

t=1

R̂t

(
wi

t

)

 ,

where the first inequality is due to Jensen’s inequality and the
last equality is due to unbiasedness of our estimator R̂t(w).
Then, we can upper bound the meta regret as follows.

Lemma 3 (Meta Regret). By setting the learning rate ε =
σ
B

√
lnN+2

(K+nc)T , the meta regret of HANOL satisfies

T∑

t=1

N∑

j=1

pt,jR̂t (wt,j)−
T∑

t=1

R̂t

(
wi

t

)
≤ 2B

σ

√
(lnN+2)(K+nc)T

for any i ∈ [N ], where B is the upper bound of the loss
function defined as B ≜ sup(x,y)∈X×Y,w∈W |ℓ(f(w,x), y)|.

Proof of Lemma 3. Since our HANOL takes the Hedge al-
gorithm as the meta algorithm, we can exploit the standard
analysis of Hedge to upper bound the meta regret. We first give
the following regret guarantee of the vanilla Hedge algorithm,

Lemma 4 (Theorem 19 of Syrgkanis et al. [51]). Let ℓt ∈ RN

be the loss vector and take ℓit ∈ R as its i-th entry, the Hedge
algorithm updating with pit ∝ exp

(
−ε
(∑t−1

s=1 ℓ
i
s

))
satisfies

T∑

t=1

N∑

j=1

pt,jℓ
j
t −

T∑

t=1

ℓit ≤
lnN + 2

ε
+ ε

T∑

t=1

∥ℓt∥2∞

for any i ∈ [N ], where ε > 0 is the step size.

By Lemma 4, we bound the meta regret by
T∑

t=1

N∑

j=1

pt,jR̂t (wt,j)−
T∑

t=1

R̂t

(
wi

t

)

≤ lnN + 2

ε
+ ε

T∑

t=1

∣∣∣∣max
i∈[N ]

{
R̂
(
wi

t

)}∣∣∣∣
2

, (8)
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where the last term can be further bounded by

∣∣∣R̂t

(
wi

t

)∣∣∣ =
∣∣∣∣∣
K+nc∑

k=1

[
C−1

f0
µ̂ŷt

]
k
·Rk

0

(
wi

t

)
∣∣∣∣∣

≤ B
∥∥∥C−1

f0
µ̂ŷt

∥∥∥
1
≤ B

√
K + nc

∥∥∥C−1
f0

µ̂ŷt

∥∥∥
2

≤ B
√
K+nc

∥∥∥C−1
f0

∥∥∥
2
∥µ̂ŷt

∥2 ≤ B
√
K+nc
σ

. (9)

In above equations, the third inequality is due to the Cauchy-
Schwarz inequality. The last inequality comes from

∥∥∥C−1
f0

∥∥∥
2
≤

σ−1 and ∥µ̂ŷt
∥2 ≤ 1. Plugging Eq. (9) into Eq. (8), we have

T∑

t=1

N∑

j=1

pt,jR̂t (wt,j)−
T∑

t=1

R̂t

(
wi

t

)

≤ lnN + 2

ε
+ ε

T∑

t=1

B2(K + nc)T
σ2

.

Setting ε = σ
B

√
(lnN+2)
(K+nc)T , we finish the proof of Lemma 3.

Therefore, by combining the upper bound of the base regret
with that of the meta regret, we finish the proof of the overall
dynamic regret bound as stated in Theorem 1.

C. Proof of Theorem 2

Proof of Theorem 2. We first show that the proposed sketch-
ing and ensemble pruning mechanisms can reduce the com-
putational complexity of the algorithm. Note that we build
an unbiased estimator in Eq. (3) by leveraging the offline
dataset S0 and current unlabeled dataset St. Besides, the online
ensemble mechanism in HANOL needs a total of O(log T )
base learners to construct the ensemble model. Therefore, the
computational complexity of the algorithm is O(|S0| · log T )
per round, which is costly for large-scale datasets. To address
this, we propose the balanced kernel herding mechanism to
sketch the offline dataset, store only mK samples, and also
introduce the ordering-based ensemble pruning mechanism to
update only N base learners. Therefore, the computational
complexity is reduced to O(mKN) per round.

Then, we analyze the error introduced by the sketching and
ensemble pruning mechanisms. Suppose the Reduced Kernel
Hilbert Space Hk norm of the loss function is upper bounded
by L, i.e., L ≜ sup(x,y)∈X×Y,w∈W ∥ℓ(f(w,x), y)∥Hk

. We
have ∥R̂t(w)−Rt(w)∥ = O(L/m) by the convergence rate of
the kernel herding method [44], which finishes the proof.

VI. EXPERIMENTS

In this section, we present the empirical evaluations, which
encompass experiments on five benchmark datasets and two
real-world tasks related to the N-OLS problem. Our evaluation
aims to answer the following questions:
• Q1: Does HANOL outperform other contenders in N-OLS

when confronted with various types of shifts?
• Q2: Does HANOL show effectiveness in real-world tasks

with the arrival of new classes and continuous label shift?

• Q3: Does each component of HANOL individually improve
the performance? Does it correctly detect shifts and estimate
the proportion of the new class? Is HANOL efficient?

A. Benchmark Datasets

This section seeks to answer Q1. We compare our pro-
posed algorithm HANOL with seven competing methods using
five benchmark datasets in the N-OLS scenario. Due to the
novelty of the problem we are considering, there are cur-
rently no online algorithms specifically designed to address
this problem. Therefore, the competing methods comprise
a baseline approach (FIX), two for managing distribution
shifts (FTFWH [4] and ASL [52]), two for handling the new
classes in data streams (SENC-F [12] and KNNENS [38]),
and two originally designed methods to tackle the offline N-
OLS problem (Self-N and PULSE [53]). For the offline N-OLS
methods, we made necessary modifications to adapt them to
our specific setting. The details of all the competing methods
are presented below.
• FIX is a baseline method that predicts with the initial

classifier trained with offline data without online adaptation.
• FTFWH [4] is short for Follow The Fixed Window History,

which averages across previously estimated priors within a
sliding window. We set the window length as 100.

• ASL [52] is short for Augmented Self-Labeling method,
which ensembles pseudo labels of different data
augmentation-based models to handle distribution shifts.

• SENC-F [12] is short for SENC-Forest, a tree-based method
to detect and classify the new class data.

• KNNENS [38] explores the local neighborhood information
to handle the new class by employing an ensemble-based
nearest neighbor technique.

• Self-N is a simple solution for the N-OLS problem where
we directly combine the self-labeling and the new class
detector. Self-N first initializes a model, then repeatedly
minimizes empirical risks based on pseudo labels generated
by the last classifier to handle distribution shifts. And it
detects new classes by the tree-based method [12].

• PULSE [53] is a two-stage method that first estimates the
fraction of the new class, then guides the classification of
the target data. At each round, it retrains the model with the
offline labeled data and the current unlabeled data, without
reusing historical information.
For the benchmark datasets, we generate a changing en-

vironment where the label distributions shift over time, and
the new class data emerge in the online adaptation stage,
which is not contained in the offline training data. In online
adaptation stage, the learner can only observe unlabeled data
streams. Specifically, we randomly choose two classes as the
new classes for each benchmark dataset. The label distribution
at round t is a mixture of two different constant distributions
µ,µ′ ∈ ∆K+1 with a time-varying coefficient αt, i.e.,
Dt(y) = (1−αt)µ+αtµ

′, where µyt denotes the distribution
at round t and αt controls the intensity of distribution changes.
We only observe the label distribution µ0 ∈ ∆K for known
classes in the offline training data. We simulate three typical
types of distribution shifts in real-world tasks, specifically,
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TABLE I: Average error (%) of different algorithms on benchmark datasets with different types of environmental shifts, where HANOL
represents our method. We report the mean and standard deviation over five runs. The best algorithms are emphasized in bold. “◦” indicates
the algorithm is significantly inferior to our algorithms by paired t-test at a 5% significance level. The online sample size is set as nt = 10.

Gradual Shift

FIX FTFWH [4] ALS [52] SENC-F [12] KNNENS [38] Self-N PULSE [53] HANOL

CIFAR10 22.89 ± 0.81 ◦ 19.01 ± 0.73 ◦ 19.23 ± 0.97 ◦ 18.92 ± 0.89 ◦ 19.23 ± 0.79 ◦ 19.11 ± 0.85 ◦ 18.71 ± 0.85 18.52 ± 0.89
CINIC10 35.57 ± 1.03 ◦ 30.08 ± 1.08 ◦ 31.45 ± 0.24 ◦ 30.25 ± 0.93 ◦ 30.12 ± 1.05 ◦ 31.95 ± 0.86 ◦ 29.89 ± 1.12 ◦ 28.82 ± 0.96
EuroSAT 16.23 ± 0.03 ◦ 10.82 ± 0.21 ◦ 11.24 ± 0.13 ◦ 10.55 ± 0.04 ◦ 10.91 ± 0.06 ◦ 11.13 ± 0.25 ◦ 09.62 ± 0.16 09.73 ± 0.06
Fashion 13.34 ± 0.13 ◦ 12.59 ± 0.16 ◦ 11.35 ± 0.23 ◦ 12.13 ± 0.51 ◦ 11.91 ± 0.32 ◦ 11.72 ± 0.05 ◦ 10.01 ± 0.09 ◦ 09.89 ± 0.02
MNIST 04.98 ± 0.17 ◦ 03.12 ± 0.02 ◦ 02.56 ± 0.78 ◦ 03.01 ± 0.09 ◦ 02.87 ± 0.17 ◦ 02.98 ± 0.05 ◦ 02.43 ± 0.14 02.56 ± 0.06

Periodical Shift

FIX FTFWH [4] ALS [52] SENC-F [12] KNNENS [38] Self-N PULSE [53] HANOL

CIFAR10 24.28 ± 0.72 ◦ 20.19 ± 0.82 ◦ 20.98 ± 0.79 ◦ 20.20 ± 0.77 ◦ 20.43 ± 0.77 ◦ 20.56 ± 0.81 ◦ 20.11 ± 0.81 19.94 ± 0.74
CINIC10 36.82 ± 1.03 ◦ 31.24 ± 0.91 ◦ 33.31 ± 0.52 ◦ 31.46 ± 1.15 ◦ 31.52 ± 1.15 ◦ 32.29 ± 0.88 ◦ 31.31 ± 1.12 30.88 ± 1.04
EuroSAT 17.72 ± 0.29 ◦ 12.12 ± 0.16 ◦ 11.89 ± 0.49 ◦ 11.72 ± 0.21 ◦ 12.22 ± 0.11 ◦ 12.61 ± 0.11 ◦ 10.84 ± 0.05 ◦ 09.93 ± 0.17
Fashion 14.75 ± 0.19 ◦ 14.04 ± 0.36 ◦ 12.96 ± 0.32 ◦ 13.56 ± 0.45 ◦ 13.27 ± 0.48 ◦ 12.67 ± 0.25 ◦ 10.82 ± 0.12 11.02 ± 0.44
MNIST 06.41 ± 0.15 ◦ 04.36 ± 0.16 ◦ 04.23 ± 0.15 ◦ 04.44 ± 0.02 ◦ 03.93 ± 0.09 04.02 ± 0.19 ◦ 03.82 ± 0.06 03.75 ± 0.04

Sudden Shift

FIX FTFWH [4] ALS [52] SENC-F [12] KNNENS [38] Self-N PULSE [53] HANOL

CIFAR10 23.58 ± 0.74 ◦ 19.24 ± 0.87 ◦ 19.56 ± 0.35 ◦ 19.23 ± 0.88 ◦ 19.54 ± 0.82 ◦ 19.45 ± 0.76 ◦ 19.39 ± 0.88 ◦ 18.88 ± 0.86
CINIC10 36.21 ± 0.89 ◦ 33.33 ± 1.15 ◦ 32.41 ± 0.72 ◦ 30.77 ± 1.12 ◦ 30.64 ± 0.94 ◦ 32.45 ± 0.94 ◦ 30.55 ± 1.12 31.26 ± 0.82
EuroSAT 16.79 ± 0.16 ◦ 11.15 ± 0.16 ◦ 11.23 ± 0.45 ◦ 11.12 ± 0.07 ◦ 11.55 ± 0.08 ◦ 11.36 ± 0.23 ◦ 10.18 ± 0.01 10.06 ± 0.21
Fashion 13.64 ± 0.24 ◦ 12.96 ± 0.37 ◦ 12.12 ± 0.07 ◦ 12.62 ± 0.01 ◦ 12.21 ± 0.37 ◦ 12.09 ± 0.05 ◦ 11.61 ± 0.26 ◦ 10.92 ± 0.23
MNIST 05.52 ± 0.05 ◦ 03.48 ± 0.13 ◦ 03.23 ± 0.23 ◦ 03.45 ± 0.16 ◦ 03.44 ± 0.16 ◦ 03.24 ± 0.21 ◦ 03.11 ± 0.13 03.08 ± 0.09

• Gradual Shift: the αt = t
T , which represents the

gradual environmental change following a linear pattern.
• Periodical Shift: αt = sin iπ

L periodically changes
following a sinusoidal pattern, where i = t mod L and L
is a given periodic length. By default, we set L = Θ(

√
T ).

• Sudden Shift: At every iteration, we keep αt = αt−1

with a probability p ∈ [0, 1], otherwise set αt = 1− αt−1.
In the experiments, the parameter is set as p = 1/

√
T .

We evaluate all the contenders by average error over T =
10, 000 rounds, with the following five benchmark datasets:
CIFAR10, CINIC10, EuroSAT, Fashion, and MNIST.

Implementation Details. For the aforementioned five bench-
mark datasets, we employ a fine-tuned ResNet34 network
for feature extraction. Images used to train the ResNet do
not overlap with either the offline or online datasets. We
sample 30, 000 data for offline initialization. We repeat all
experiments for five times and evaluate the average error and
standard deviation. The learning rates of the algorithms are set
according to theoretical guidelines. The hyperparameter ε for
the meta learner is set as

√
(lnN)/T . δ and γ in MPE are

set as the default values following [43], i.e., 0.1 and 0.01,
respectively, without modification. The window size in the
sliding-window MPE is set to L = 20 by default, without
deliberate selection. Enhanced performance could be poten-
tially achieved by selecting the window size using techniques
such as cross-validation. In all experiments, we set the sketch
size in our balanced kernel herding mechanism to 1, 000,
and the number of base experts to 3 in our ordering-based
pruning mechanism without careful tuning. All experiments
are executed on a computer equipped with 2 Intel Xeon 8358
CPUs, each having 32 cores.

Results on Benchmark Datasets. The comparison results
with the seven contenders on benchmark datasets are reported
in Table I. These results demonstrate that our proposed al-
gorithm effectively handles the new classes in the online

label shift problem, outperforming other approaches. The
baseline FIX is inferior to the online algorithms, highlighting
the necessity of sequentially updated algorithms with online
unlabeled data. Our method surpasses both FTFWH and ASL,
indicating that handling the new class is crucial in the N-OLS
setting. Besides, compared with SENC-F and KNNENS, which
primarily focus on managing new classes, our method achieves
better performance. This indicates that label shifts can lead to
the misclassification of the new classes, and our black box shift
estimator effectively tackles this issue. Our HANOL algorithm
consistently outperforms both PULSE and Self-N, showing
the effectiveness of our online updating scheme with sliding
window-based MPE and online ensemble. These results show
the success of our approach in tackling the N-OLS problem.

B. Real-world Applications

In this part, we aim to answer Q2. We compare the proposed
approach with other contenders on two real-world applications:
(i) the SHL locomotion recognition dataset [15], and (ii)
the Functional Map of the World (fMoW) dataset [16], a
sequential satellite image recognition task. The details of these
applications are presented as below.
• SHL: This dataset is designed for human locomotion recog-

nition using multi-modal sensor data (acceleration, gyro-
scope, gravity, pressure, etc.) collected from a body-worn
camera and four smartphones at different body locations.
We sample 30,000 offline and 77,000 online data points over
an 11-day period, with six classes: still, walking, running,
bike, car, and bus. During online updates, samples are
processed chronologically based on timestamps, with label
shifts and new classes emerging over time.

• fMoW: A satellite imagery dataset for building and land
use classification, containing 83,412 images from over 200
countries with 63 building categories. Each image includes
metadata about location, time, and environmental factors.
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TABLE II: Average error (%) of different algorithms on the real-world
applications of SHL [15] and fMoW [16] datasets. The performance
metrics reported include both the mean accuracy and the standard
deviation of different algorithms over a total of five separate runs. The
best are emphasized in bold.

FIX FTFWH ALS SENC-F KNNENS Self-N PULSE HANOL

SHL 44.82 40.14 37.26 32.28 34.01 36.28 33.01 29.37
±1.12 ±1.35 ±1.42 ±1.24 ±1.87 ±1.15 ±1.65 ±1.28

fMoW 70.58 66.82 67.94 66.24 67.54 68.39 64.44 62.22
±3.15 ±2.25 ±2.92 ±3.76 ±1.14 ±2.85 ±2.14 ±3.03

TABLE III: Ablation study of our proposed HANOL algorithm.
Ensemble represents the online ensemble structure, SW-MPE
is the sliding-window MPE module to handle the arrival of new
classes in the data stream, and BBSE represents the black-box
estimator for the label shift estimation.

ID Ensemble SW-MPE BBSE SHL fMoW

(i) -
√ √

37.54 ± 1.02 67.84 ± 2.87
(ii)

√
-

√
31.84 ± 1.15 65.37 ± 2.15

(iii)
√ √

- 32.67 ± 1.03 66.52 ± 2.87
HANOL

√ √ √
29.37 ± 1.28 62.22 ± 3.03
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Fig. 3: (a) & (b) Comparison of overall performances on the real-world tasks. (c) Accuracy of the estimated new class proportion of our
sliding-window MPE module. (d) Evaluation of efficiency and accuracy (defined as 100% - average error) of different algorithms. We report
the mean and standard deviation over five runs. An algorithm closer to the top-right corner indicates superior efficiency and performance.
HANOL is our approach. Full-HANOL is a variant of HANOL that is not equipped with the sketching and ensemble pruning mechanisms.

The data stream is timestamp-ordered, with 10,000 earliest
samples for offline initialization. Label distributions and
building categories evolve between 2002 and 2017.

We report the average error of various algorithms on the
real-world SHL and fMoW datasets in Table II, along with
their respective timely performance depicted in Figure 3(a)
and Figure 3(b). As shown in these empirical studies, our
proposed method exhibits superior performance compared to
the FTFWH and ASL methods, highlighting the significance
of addressing the arrival of new classes in real-world tasks.
Moreover, our proposed approach, HANOL, effectively adapts
to label shift by the black box shift estimator and constructs
a novel risk estimator for the N-OLS problem through the
exploitation of unlabeled data, thereby outperforming the
SENC-F and KNNENS methods. Our approach also surpasses
the PULSE and Self-N methods, thanks to the benefits of
the online updating scheme and the proposed sliding-window
MPE mechanism, which alleviate the lack of labeled data
problems in the online data streams.

C. Ablation Study

In this part, we aim to answer Q3. We conduct ablation
studies of our proposed algorithm to validate the contribution
of each component to the overall performance improvement.
Additionally, we also report their running efficiency.
Modular Analysis. In order to demonstrate the benefits of
the designed modules in HANOL, we quantitatively evaluate
our proposed method and its variants by removing some
components, i.e., (i) a baseline method that employs the risk
estimator and stochastic gradient descent for model updating,
but disregards the online ensemble structure and relies on
only a single model; (ii) a variant of our proposal that
does not utilize the sliding window-based MPE for handling
the emergence of the new classes; and (iii) a method that

excludes the black box shift estimator used to tackle the
distribution shifts in the data streams. All the experiments
are under the same hyperparameters for fair comparisons.
The δ and γ in MPE are set as the default values for all
experiments following [43], i.e., 0.1 and 0.01, respectively,
without modification. The window size in the sliding-window
MPE module is set to L = 20 by default, without deliberate
selection. Enhanced performance could be potentially achieved
by adaptively selecting the hyperparameters using techniques
such as cross-validation.

As illustrated in Table III, employing the online ensemble
structure significantly improves the performance in terms of
accuracy, suggesting that an ensemble of multiple base learners
can effectively handle the unknown distribution changes and
the lack of labeled data problem in the data stream. Removing
the sliding window-based MPE module causes a significant
drop in the performance, thereby validating the effectiveness
of the MPE module in managing the emergence of new classes.
The performance further improves after employing the black
box shift estimator, indicating that addressing the distribution
shift is a critical aspect of the N-OLS problem, where label
shift and the presence of new classes occur simultaneously.

Additionally, as demonstrated in Figure 3(c), our proposed
sliding-window MPE module is capable of accurately esti-
mating the proportion of the emerging new classes, thereby
managing the challenge of emerging new classes in the N-
OLS problem effectively.

Efficiency Comparison. We also compare the efficiency
of different algorithms. Specifically, we evaluate and compare
the efficiency (items processed per second) and accuracy
(defined as 100% - average error) of various algorithms. An
algorithm that plots closer to the top-right corner indicates
superior efficiency and performance since it achieves a bet-
ter performance with higher efficiency. As demonstrated in
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TABLE IV: Hyperparameter sensitivity analysis of our ensemble
pruning mechanism. We compare the error rate and efficiency (items
processed per second) under different numbers of base learners N .
Full-HANOL represents using all base models without pruning.

Base Learner Num N = 1 N = 3 N = 5 Full-HANOL

Error (%) 32.15 ± 2.87 29.37 ± 1.28 29.25 ± 1.19 28.62 ± 1.13
Efficiency (item/s) 92.39 ± 12.8 87.62 ± 12.3 69.34 ± 12.1 53.34 ± 10.6

Figure 3(d), the moving average-based FTFWH is the most
efficient, but it yields the poorest performance. Though the
ensemble-based methods, ALS and KNNENS, exhibit slower
speed, they accomplish superior performance. Our method,
albeit with a slight compromise on efficiency, attains the
best performance among all algorithms. Additionally, note
that without our sketching and ensemble pruning mechanisms,
although Full-HANOL achieves a slight performance improve-
ment, it requires nearly twice the computational complexity.
This is due to the need to store all offline labeled data and a
much larger ensemble size compared to our HANOL, resulting
in significantly slower processing speed.

Hyperparameter Sensitivity Analysis. We conduct a
hyperparameter sensitivity analysis of our proposed algorithm
to validate the sensitivity of hyperparameters. Specifically, we
vary the number of base learners N to examine its effect on
both performance and efficiency. As shown in Table IV, setting
N to 3 achieves a good balance between performance and
efficiency. Therefore, we set N = 3 as the default number of
learners in our experiments.

VII. CONCLUSION

In this paper, we investigate the problem of handling
emerging new classes in online label shift. We proposed a
novel method, called HANOL, to tackle both online label
shift and the emergence of the new classes in unlabeled
data stream. Specifically, we first build a risk estimator for
unlabeled data stream via risk rewriting and mixture proportion
estimation to handle both the presence of emerging new class
and the distribution shift. Then, we employ the paradigm
of online ensemble to adapt to the unknown continuous
label shift. Additionally, we also introduce the sketching and
ensemble pruning mechanisms to improve the computational
efficiency of the algorithm, making it more practical for real-
world applications. The proposed method enjoys a theoretical
guarantee of dynamic regret, affirming its effectiveness in
adapting to changing distributions. We conduct experiments
on five benchmark datasets and two real-world applications
to validate the effectiveness of our HANOL. Notably, our
proposed method exhibits significant improvements, achieving
an average accuracy gain of 10% for the SHL dataset and 4%
for the fMoW dataset compared to state-of-the-art contenders.
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