Optimization Methods

Fall 2021

Homework 3

Instructor: Lijun Zhang

Name: Student name, StudentId: Student id

Notice

- The submission email is: opt4grad@163.com.
- Please use the provided LAT_EX file as a template. If you are not familiar with LAT_EX , you can also use Word to generate a **PDF** file.

Problem 1: Negative-entropy Regularization

Please show how to compute

$$\operatorname*{argmin}_{x \in \Delta^n} b^\top x + c \cdot \sum_{i=1}^n x_i \ln x_i$$

where
$$\Delta^n = \{x | \sum_{i=1}^n x_i = 1, x_i \ge 0, i = 1, \dots, n\}, b \in \mathbb{R}^n \text{ and } c \in \mathbb{R}.$$

Problem 2: One inequality constraint

(a) With $c \neq 0$, express the dual problem of

$$\begin{array}{ll} \min & c^{\top} x \\ \text{s.t.} & f(x) \le 0, \end{array}$$

in terms of the conjugate f^* .

(b) Explain why the problem you give is convex. We do not assume f is convex.

Problem 3: KKT conditions

Consider the problem

$$\min_{x \in \mathbb{R}^2} x_1^2 + x_2^2$$

s.t. $(x_1 - 1)^2 + (x_2 - 1)^2 \le 2$
 $(x_1 - 1)^2 + (x_2 + 1)^2 \le 2$

where $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^\top \in \mathbb{R}^2$.

a) Write the Lagrangian for this problem.

b) Does strong duality hold in this problem?

c) Write the KKT conditions for this optimization problem.

Problem 4: Matrix eigenvalues

We denote by f(A) the sum of the largest r eigenvalues of a symmetric matrix $A \in \mathbb{S}^n$ (with $1 \le r \le n$), i.e.,

$$f(A) = \sum_{k=1}^{r} \lambda_k(A),$$

where $\lambda_1(A), \ldots, \lambda_n(A)$ are the eigenvalues of A sorted in decreasing order. Show that the optimal value of the optimization problem

$$\begin{array}{ll} \max & \boldsymbol{tr}(AX) \\ \text{s.t.} & \boldsymbol{tr}X = r \\ & 0 \leq X \leq I \end{array}$$

with variable $X \in \mathbb{S}^n$, is equal to f(A).

Logistic Regression is a commonly used classification model in machine learning. Given the training data set $\{(a_1, b_1), \ldots, (a_n, b_n)\}$, where $a_i \in \mathbf{R}^d$, $b_i \in \{-1, 1\}$, the problem of Logistic Regression can be described as:

$$\min_{w \in \mathbf{R}^d} \sum_{i=1}^n \log \left(1 + e^{-b_i a_i^T w} \right) + \frac{\lambda}{2} \|w\|_2^2,$$

where $\lambda > 0$ is a constant. Derive the dual problem of this optimization problem.