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Basic Norm Approximation

 Norm Approximation Problem

 ௠ൈ௡ ௠ are problem data
 ௡ is the variable
 is a norm on ௡

 Approximation solution of , in 
 Residual

 A Convex Problem
 , the optimal value is 0
 , more interesting ( )

min 𝐴𝑥 െ 𝑏

𝑟 ൌ 𝐴𝑥 െ 𝑏



Basic Norm Approximation

 Approximation Interpretation

 ଵ ௡
௠ are the columns of 

 Approximate the vector by a linear 
combination

 Regression problem
 𝑎ଵ, … , 𝑎௡ are regressors
 𝑥ଵ𝑎ଵ ൅ ⋯ ൅ 𝑥௡𝑎௡ is the regression of 𝑏

𝐴𝑥 ൌ 𝑥ଵ𝑎ଵ ൅ ⋯ ൅ 𝑥௡𝑎௡



Basic Norm Approximation

 Estimation Interpretation
 Consider a linear measurement model

 ௠ is a vector measurement
 ௡ is a vector of parameters to be 

estimated
 ௠ is some measurement error that is 

unknown, but presumed to be small
 Assume smaller values of are more 

plausible

𝑦 ൌ 𝐴𝑥 ൅ 𝑣

𝑥ො ൌ argmin௭ 𝐴𝑧 െ 𝑦



Basic Norm Approximation

 Geometric Interpretation
 Consider the subspace ௠, and 

a point ௠

 A projection of the point onto the 
subspace , in the norm 

 Parametrize an arbitrary element of 
as , we see that norm approximation 
is equivalent to projection

min 𝑢 െ 𝑏
s. t. 𝑢 ∈ 𝒜 



Basic Norm Approximation

 Least-Squares Approximation

 The minimization of a convex quadratic 
function

 A point minimizes if and only if

 Normal equations

𝑓 𝑥 ൌ 𝑥ୃ𝐴ୃ𝐴𝑥 െ 2𝑏ୃ𝐴𝑥 ൅ 𝑏ୃ𝑏

𝛻𝑓 𝑥 ൌ 2𝐴ୃ𝐴𝑥 െ 2𝐴ୃ𝑏 ൌ 0

𝐴ୃ𝐴𝑥 ൌ 𝐴ୃ𝑏

min 𝐴𝑥 െ 𝑏 ଶ
ଶ ൌ 𝑟ଵ

ଶ ൅ 𝑟ଶ
ଶ ൅ ⋯ ൅ 𝑟௠

ଶ



Basic Norm Approximation

 Chebyshev or Minimax Approximation

 Be cast as an LP

with variables ௡ and 
 Sum of Absolute Residuals Approximation

 Be cast as an LP

with variables 𝑥 ∈ 𝐑௡ and 𝑡 ∈ 𝐑௠

min 𝐴𝑥 െ 𝑏 ଵ ൌ 𝑟ଵ ൅ ⋯ ൅ 𝑟௠  

min 𝑡                                     
s. t. െ𝑡1 ≼ 𝐴𝑥 െ 𝑏 ≼ 𝑡1 

min 𝐴𝑥 െ 𝑏 ஶ ൌ maxሼ 𝑟ଵ , … , 𝑟௠ ሽ 

min 1ୃ𝑡                           
s. t. െ𝑡 ≼ 𝐴𝑥 െ 𝑏 ≼ 𝑡 
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Approximation with Constraints

 Add Constraints to

 Rule out certain unacceptable 
approximations of the vector 

 Ensure that the approximator satisfies 
certain properties

 Prior knowledge of the vector to be 
estimated

 Prior knowledge of the estimation error 
 Determine the projection of a point on 

a set more complicated than a subspace

min 𝐴𝑥 െ 𝑏



Approximation with Constraints

 Nonnegativity Constraints on 
Variables

 Estimate a vector of parameters known 
to be nonnegative

 Determine the projection of a vector 
onto the cone generated by the columns 
of 

 Approximate using a nonnegative 
linear combination of the columns of 

min 𝐴𝑥 െ 𝑏
s. t. 𝑥 ≽ 0     



Approximation with Constraints

 Variable Bounds

 Prior knowledge of intervals in which 
each variable lies

 Determine the projection of a vector 
onto the image of a box under the linear 
mapping induced by 

min 𝐴𝑥 െ 𝑏
s. t. 𝑙 ≼ 𝑥 ≼ 𝑢



Approximation with Constraints

 Probability Distribution

 Estimation of proportions or relative frequencies
 Approximate 𝑏 by a convex combination of the 

columns of 𝐴

 Norm Ball Constraint

 𝑥଴ is prior guess of what the parameter 𝑥 is, and 
𝑑 is the maximum plausible deviation

min 𝐴𝑥 െ 𝑏             
s. t. 𝑥 ≽ 0, 1ୃ𝑥 ൌ 1 

min 𝐴𝑥 െ 𝑏          
s. t. 𝑥 െ 𝑥଴ ൑ 𝑑 
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Least-norm Problems

 Basic least-norm Problem

 ௠ൈ௡ ௠

 ௡ is a norm on ௡

 The solution is called a least-norm 
solution of 

 A convex optimization problem
 Interesting when 
 When the equation is underdetermined

min 𝑥       
s. t. 𝐴𝑥 ൌ 𝑏



Least-norm Problems

 Reformulation as Norm 
Approximation Problem
 Let ଴ be any solution of 
 Let ௡ൈ௞ be a matrix whose columns 

are a basis for the nullspace of . 

 The least-norm problem can be 
expressed as 

𝑥|𝐴𝑥 ൌ 𝑏 ൌ ሼ𝑥଴ ൅ 𝑍𝑢|𝑢 ∈ 𝐑௞ሽ

min 𝑥଴ ൅ 𝑍𝑢



Least-norm Problems

 Estimation Interpretation
 We have 𝑚 ൏ 𝑛 perfect linear measurement, 

given by 𝐴𝑥 ൌ 𝑏
 Our measurements do not completely 

determine 𝑥

 Suppose our prior information, is that 𝑥 is 
more likely to be small than large

 Choose the parameter vector 𝑥 which is 
smallest among all parameter vectors that 
are consistent with the measurements



Least-norm Problems

 Geometric Interpretation
 The feasible set is affine
 The objective is the distance between 

and the point 

 Find the point in the affine set with 
minimum distance to 

 Determine the projection of the point 0 
on the affine set 



Least-norm Problems

 Least-squares Solution of Linear 
Equations

 The optimality conditions

 𝑣 is the dual variable
 The Solution

min 𝑥 ଶ
ଶ    

s. t. 𝐴𝑥 ൌ 𝑏

2𝑥∗ ൅ 𝐴ୃ𝑣∗ ൌ 0 𝐴𝑥∗ ൌ 𝑏

𝑥∗ ൌ െ
1
2 𝐴ୃ𝑣∗ െ

1
2 𝐴𝐴ୃ𝑣∗ ൌ 𝑏

𝑣∗ ൌ െ2 𝐴𝐴ୃ ିଵ𝑏, 𝑥∗ ൌ 𝐴ୃ 𝐴𝐴ୃ ିଵ𝑏



Least-norm Problems

 Sparse Solutions via Least ଵ-norm

 Tend to produce a solution with a large 
number of components equal to 

 Tend to produce sparse solutions of 
, often with nonzero components

min 𝑥 ଵ    
s. t. 𝐴𝑥 ൌ 𝑏
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Bi-criterion Formulation

 A (convex) Vector Optimization 
Problem with Two Objectives

 Find a vector that is small
 Make the residual small
 Optimal trade-off between the two 

objectives
 The minimum value of 𝑥 is 0 and the residual 

norm is 𝑏
 Let 𝐶 denote the set of minimizers of 𝐴𝑥 െ 𝑏 , 

and then any minimum norm point in 𝐶 is 
Pareto optimal

minሺw. r. t. 𝐑ା
ଶ ሻ ሺ 𝐴𝑥 െ 𝑏 , 𝑥 ሻ



Regularization

 Weighted Sum of the Objectives

 is a problem parameter
 A common scalarization method used to 

solve the bi-criterion problem
 As varies over , the solution 

traces out the optimal trade-off curve
 Weighted Sum of Squared Norms

min 𝐴𝑥 െ 𝑏 ଶ ൅ 𝛾 𝑥 ଶ

min 𝐴𝑥 െ 𝑏 ൅ 𝛾 𝑥



Regularization

 Tikhonov Regularization

 Analytical solution

 Since ୃ for any , the 
Tikhonov regularized least-squares 
solution requires no rank assumptions on 
the matrix 

min 𝐴𝑥 െ 𝑏 ଶ
ଶ ൅ 𝛿 𝑥 ଶ

ଶ ൌ 𝑥ୃ 𝐴ୃ𝐴 ൅ 𝛿𝐼 𝑥 െ 2𝑏ୃ𝐴𝑥 ൅ 𝑏ୃ𝑏 

𝑥 ൌ 𝐴ୃ𝐴 ൅ 𝛿𝐼 ିଵ𝐴ୃ𝑏
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Projection on a Set

 The distance of a point ଴
௡ to a 

closed set ௡, in the norm 

 The infimum is always achieved

 Projection of ଴ on 
 Any point which is closest to ଴

 Can be more than one projection of ଴ on 
 If is closed and convex, and the norm is 

strictly convex, there is exactly one

distሺ𝑥଴, 𝐶ሻ ൌ infሼ 𝑥଴ െ 𝑥 |𝑥 ∈ 𝐶ሽ

𝑧 െ 𝑥଴ ൌ distሺ𝑥଴, 𝐶ሻ



Projection on a Set

 The distance of a point ଴
௡ to a 

closed set ௡, in the norm 

 The infimum is always achieved
 ஼

௡ ௡ to denote the projection 
of ଴ on 

 We refer to ஼ as projection on 

𝑃஼ሺ𝑥଴ሻ ∈ 𝐶, 𝑥଴ െ 𝑃஼ 𝑥଴ ൌ distሺ𝑥଴, 𝐶ሻ

𝑃஼ሺ𝑥଴ሻ ൌ argminሼ 𝑥 െ 𝑥଴ |𝑥 ∈ 𝐶ሽ

distሺ𝑥଴, 𝐶ሻ ൌ infሼ 𝑥଴ െ 𝑥 |𝑥 ∈ 𝐶ሽ



Example

 Projection on the Unit Square in ଶ

 Consider the boundary of the unit square 
in ଶ, i.e., ଶ

ஶ , take ଴

 In the ଵ-norm, the four points , 
, , and are closest to ଴

, with distance , so we have ଴
in the ଵ-norm

 In the ஶ-norm, all points in lie at a 
distance 1 from ଴, and ଴



Example

 Projection onto Rank- Matrices
 The set of matrices with rank less 

than or equal to 

with 
 The Projection of ଴

௠ൈ௡ on in ଶ
 SVD of 𝑋଴

𝐶 ൌ ሼ𝑋 ∈ 𝐑௠ൈ௡|rank 𝑋 ൑ 𝑘ሽ

𝑃஼ሺ𝑋଴ሻ ൌ ෍ 𝜎௜𝑢௜𝑣௜
ୃ

୫୧୬ሼ௞,௥ሽ

௜ୀଵ

𝑋଴ ൌ ෍ 𝜎௜𝑢௜𝑣௜
ୃ

௥

௜ୀଵ
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Projection on a Convex Set

 is Convex
 Represent by a set of linear 

equalities and convex inequalities

 Projection of ଴ on 

 A convex optimization problem
 Feasible if and only if is nonempty

𝐴𝑥 ൌ 𝑏, 𝑓௜ 𝑥 ൑ 0, 𝑖 ൌ 1, … , 𝑚

min 𝑥 െ 𝑥଴                          
s. t. 𝑓௜ 𝑥 ൑ 0, 𝑖 ൌ 1, … , 𝑚

𝐴𝑥 ൌ 𝑏                           



Example

 Euclidean Projection on a Polyhedron
 Projection of ଴ on 

 Projection of ଴ on ୃ

 Projection of ଴ on ୃ

min 𝑥 െ 𝑥଴ ଶ
ଶ

s. t. 𝐴𝑥 ≼ 𝑏  

𝑃஼ 𝑥଴ ൌ 𝑥଴ ൅
𝑏 െ 𝑎ୃ𝑥଴ 𝑎

𝑎 ଶ
ଶ

𝑃஼ 𝑥଴ ൌ ൞𝑥଴ ൅
𝑏 െ 𝑎ୃ𝑥଴ 𝑎

𝑎 ଶ
ଶ , 𝑎ୃ𝑥଴ ൐ 𝑏

𝑥଴,                              𝑎ୃ 𝑥଴ ൑ 𝑏



Example

 Euclidean Projection on a Polyhedron
 Projection of ଴ on 

 Property of Euclidean Projection
 is Convex

for all , 

𝑃஼ 𝑥଴ ௞ ൌ ቐ
𝑙௞, 𝑥଴௞ ൑ 𝑙௞         

𝑥଴௞, 𝑙௞ ൑ 𝑥଴௞ ൑ 𝑢௞
𝑢௞, 𝑢௞ ൑ 𝑥଴௞        

𝑃஼ 𝑥 െ 𝑃஼ 𝑦 ଶ ൑ 𝑥 െ 𝑦 ଶ



Example

 ା
௡

 Replace each negative component with 
 ା

௡ and ி

 The eigendecomposition of ଴ is ଴

௜ ௜ ௜
ୃ௡

௜ୀଵ

 Drop terms associated with negative 
eigenvalues

𝑃௄ 𝑥଴ ௞ ൌ max 𝑥଴௞, 0

𝑃௄ሺ𝑋଴ሻ ൌ ෍ max 0, 𝜆௜ 𝑣௜𝑣௜
ୃ

௡

௜ୀଵ
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Homework 3

 http://www.lamda.nju.edu.cn/qiuzh/o
ptfall2021gra.html

 Due: Dec 21, at 11:59 PM
 最后一次上课前一天


