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 Lines
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 Line segments
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Affine Sets (1)

 Definition
 ⊆ 𝐑 is affine, if 

for any 𝑥ଵ, 𝑥ଶ ∈ 𝐶 and 

 Generalized form
 Affine Combination

 𝜃ଵ  𝜃ଶ  ⋯  𝜃=1

ଵ ଶ

ଵ ଵ ଶ ଶ  



Affine Sets (2)

 Subspace

  is an affine set, 

 Subspace is closed under sums and 
scalar multiplication 

 can be expressed as a subspace plus 
an offset 

 Dimension of : dimension of 

 



ଵ ଶ ଵ ଶ



Affine Sets (3)

 Solution set of linear equations is affine

 Suppose 𝑥ଵ, 𝑥ଶ ∈ 𝐶

 Every affine set can be expressed as the 
solution set of a system of linear 
equations.

𝐴 𝜃𝑥ଵ  1 െ 𝜃 𝑥ଶ ൌ 𝜃𝐴𝑥ଵ  1 െ 𝜃 𝐴𝑥ଶ
ൌ 𝜃𝑏  1 െ 𝜃 𝑏          
ൌ 𝑏                                   



Affine Sets (4)

 Affine hull of set 

 Affine hull is the smallest affine set that 
contains 𝐶

 Affine dimension
 Affine dimension of a set as the 

dimension of its affine hull 
 Consider the unit circle ଶ

ଵ
ଶ

ଶ
ଶ , is ଶ. So affine dimension is 

2

ଵ ଵ   ଵ  ଵ 



Affine Sets (5)

 Relative interior 

 𝐵 𝑥, 𝑟 ൌ ሼ𝑦| 𝑦 െ 𝑥  𝑟ሽ, the ball of radius and 
center in the norm 

 Interior Set
 An element  is called an interior 

point of if there exists an for 
which

ଶ

 The set of all points interior to is called 
the interior of and is denoted int



Affine Sets (5)

 Relative interior 

 𝐵 𝑥, 𝑟 ൌ ሼ𝑦| 𝑦 െ 𝑥  𝑟ሽ, the ball of radius and 
center in the norm 

 Relative boundary

 cl 𝐶 is the closure of 



Affine Sets (5)

 A square in ଵ ଶ -plane in ଷ

 Interior is empty
 Boundary is itself

ଷ
ଵ ଶ ଷ

bd 𝐶 ൌ cl 𝐶 ∖ int 𝐶



Affine Sets (5)

 A square in ଵ ଶ -plane in ଷ

 Interior is empty
 Boundary is itself

 Affine hull is the ଵ ଶ -plane
 Relative interior

ଷ
ଵ ଶ ଷ

ଷ
ଵ ଶ ଷ



Affine Sets (5)

 A square in ଵ ଶ -plane in ଷ

 Interior is empty
 Boundary is itself

 Affine hull is the ଵ ଶ -plane
 Relative interior

 Relative boundary 

ଷ
ଵ ଶ ଷ

ଷ
ଵ ଶ ଷ

ଷ
ଵ ଶ ଷ



 Convex sets 
 A set is convex if for any ଵ ଶ , any 

, we have

 Generalized form
 Convex combination

𝜃ଵ  𝜃ଶ  ⋯  𝜃 ൌ 1, 𝜃  0, 𝑖 ൌ 1, ⋯ , 𝑘

Convex Sets (1)

ଵ ଵ ଶ ଶ  

ଵ ଶ



 Convex hull 

 Infinite sums, integrals

Convex Sets (2)

ଵ ଵ  
 ଵ ଶ  



 Cone
 Cone is a set that  

 Convex cone
 For any ଵ ଶ , ଵ ଶ

 Conic combination
 ଵ ଵ  , 

Cone (1)

ଵ ଵ ଶ ଶ



 Conic hull

Cone (2)

ଵ ଵ     



 The empty set , any single point  , and the 
whole space  are affine (hence, convex) 
subsets of 

 Any line is affine. If it passes through zero, it 
is a subspace, hence also a convex cone.

 A line segment is convex, but not affine 
(unless it reduces to a point).

 A ray, which has the form 
where , is convex, but not affine. It is 

a convex cone if its base  is 0.
 Any subspace is affine, and a convex cone 

(hence convex).

Some Examples



Hyperplanes

 , and 
 Other Forms

  is any point such that 𝑎ୃ𝑥 ൌ 𝑏

ୃ

ୃ




Hyperplanes

 , and 
 Other Forms

  is any point such that 𝑎ୃ𝑥 ൌ 𝑏

 ୄ ୃ

ୃ
 

ୄ

ୃ

ୃ




Halfspaces

 , and 
 Other Forms

  is any point such that 𝑎ୃ𝑥 ൌ 𝑏

 Convex
 Not affine

ୃ

ୃ




Balls

 Definition

 𝑟  0 , and ∥⋅∥ଶ denotes the Euclidean norm
 Convex

  ଶ


ୃ


ଶ

 ଶ



Ellipsoids

 Definition

 ାା
 determines how far the ellipsoid 

extends in every direction from ;
 Lengths of semi-axes are 

 Convex


ୃ ିଵ


 ଶ



 Norm balls

 is any norm on ,  is the center
 Norm cones

 Second-order Cone

Norm Balls and Norm Cones



ାଵ

ାଵ
ଶ

ୃ



 Norm balls

 is any norm on ,  is the center
 Norm cones

 Second-order Cone

Norm Balls and Norm Cones





Polyhedra (1)

 Polyhedron

 Solution set of a finite number of linear 
equalities and inequalities

 Intersection of a finite number of 
halfspaces and hyperplanes

 Affine sets (e.g., subspaces, hyperplanes, 
lines), rays, line segments, and halfspaces
are all polyhedra


ୃ

 
ୃ





Polyhedra (2)

 Polyhedron


ୃ

 
ୃ





Polyhedra (2)

 Polyhedron

 Matrix Form

means   for all 


ୃ

 
ୃ



ଵ
ୃ


ୃ

, 
ଵ
ୃ


ୃ



Simplexes

 An important family of polyhedra

 points   are affinely independent
 The affine dimension of this simplex is 

 1-dimensional simplex: line segment
 2-dimensional simplex: triangle
 Unit simplex: ୃ

 -dimensional
 Probability simplex: ୃ

 -dimensional

     
ୃ

Polyhedron？



The positive semidefinite cone

  ൈ ୃ is the set of 
symmetric matrices
 Vector space with dimension 

 ା
  is the set of 

symmetric positive semidefinite 
matrices
 Convex cone

 ାା
  is the set of 

symmetric positive definite



The positive semidefinite cone

 PSD Cone in ଶ

ା
ଶ ଶ
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Intersection

 If ଵ and ଶ are convex, then ଵ ଶ is 
convex
 A polyhedron is the intersection of 

halfspaces and hyperplanes

 if ఈ is convex for every , then 
ఈ∈𝒜 ఈ is convex
 Positive semidefinite cone

ା
  ୃ  

௭ஷ



A Complicated Example (1)

 

ୀଵ





A Complicated Example (2)

 

ୀଵ

 ௧
ୃ



௧
௧ ஸగ/ଷ



A Complicated Example (3)

௧
௧ ஸగ/ଷ

ୃ

௧ ஸగ/ଷ



Affine Functions

 Affine function  

  is convex

 Then, the image of under 

and the inverse image of under 

are convex

ିଵ

ൈ 



Examples (1)

 Scaling

 Translation

 Projection of a convex set onto some 
of its coordinates

 𝐑 ൈ 𝐑 is convex
ଵ


ଵ ଶ ଶ





Examples (2)

 Sum of two sets

 Cartesian product: ଵ ଶ ଵ ଶ ଵ
ଵ ଶ ଶ

 Linear function: ଵ ଶ ଵ ଶ

 Partial sum of ଵ ଶ
 

 , intersection of ଵ and ଶ

 , set addition

ଵ ଶ ଵ ଶ

ଵ ଶ ଵ ଵ ଶ ଶ



Examples (3)

 Polyhedron



 Linear Matrix Inequality

 The solution set 

ା


ଵ ଵ  

ା




Perspective Functions (1)

 Perspective function ାଵ 


ାା

𝑥ଵ, 𝑥ଶ, 𝑥ଷ ↦ െሺ𝑥ଵ/𝑥ଷ, 𝑥ଶ/𝑥ଷ, 1ሻ



Perspective Functions (2)

 Perspective function ାଵ 

 If is convex, then its image

is convex
 If  is convex, the inverse image

is convex


ାା

ିଵ ାଵ



Linear-fractional Functions (1)

 Suppose  ାଵ is affine

 The function   given by 

ୃ ୃ

ୃ
ୃ



Linear-fractional Functions (2)

 If is convex and ୃ

, then

is convex

 If  is convex, then the inverse 
image

is convex

ୃ

ିଵ
ୃ



Example

𝑓 𝑥 ൌ
1

𝑥ଵ  𝑥ଶ  1 𝑥, dom 𝑓 ൌ ሼሺ𝑥ଵ, 𝑥ଶሻ|𝑥ଵ  𝑥ଶ  1  0ሽ
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Proper Cones

 A cone  is called a proper cone 
if it satisfies the following
 𝐾 is convex.
 𝐾 is closed.
 𝐾 is solid, which means it has nonempty 

interior.
 𝐾 is pointed, which means that it contains 

no line (𝑥 ∈ 𝐾, െ𝑥 ∈ 𝐾 ⟹ 𝑥 ൌ 0).

 A proper cone can be used to 
define a generalized inequality



Generalized Inequalities

 We associate with the proper cone 
the partial ordering on  defined by

 We define an associated strict partial 
ordering by







Examples

 Nonnegative Orthant and 
Componentwise Inequality
 ା



  means that  

  means that  

 Positive Semidefinite Cone and Matrix 
Inequality
 ା



  means that is PSD
  means that is positive definite



Properties of Generalized 
Inequalities
  is preserved under addition: If  and 

 , then  .
  is transitive: if  and  , then 

 .
  is preserved under nonnegative scaling: if 

 and then  .
  is reflexive:  .
  is antisymmetric: if  and  , then 

  is preserved under limits: if    for 
 and  as , then  .



Properties of Strict Generalized 
Inequalities

 If  then  .

 If  and  then 
 .

 If  and then  .

  .

 If  , then for and small 
enough, 



Minimum and Minimal Elements

 is the minimum element
 If for every , we have 



 Minimum element is unique, if exists

 is a minimal element
 if ,  only if 


 May have different minimal elements
 Maximum, Maximal



Example

 The Cone ା
ଶ

 means is above and to the right 
of 

𝑆 ⊆ 𝑥  𝐾

𝑥 െ 𝐾 ∩ 𝑆 ൌ ሼ𝑥ሽ
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Separating Hyperplane 
Theorem

 Suppose and are nonempty 
disjoint convex sets, i.e., . 
Then, there exist and such 
that



Separating Hyperplane 
Theorem

 Suppose and are nonempty 
disjoint convex sets, i.e., . 
Then, there exist and such 
that ୃ for all and ୃ

for all .

 ୃ is called a separating
hyperplane for the sets and .



Strict Separation

 ୃ for all and ୃ for 
all 

 May not be possible in general

𝑥 ∈ 𝐑ଶ|𝑥ଶ  0

𝑥 ∈ 𝐑ା
ଶ |𝑥ଶ 

1
𝑥ଵ



Strict Separation

 ୃ for all and ୃ for 
all 

 May not be possible in general
 A Point and a Closed Convex Set

 A closed convex set is the intersection 
of all halfspaces that contain it



Converse separating 
hyperplane theorems

 Suppose and are convex sets, 
with open, and there exists an 
affine function that is nonpositive
on and nonnegative on . Then 
and are disjoint.



Converse separating 
hyperplane theorems

 Suppose and are convex sets, 
with open, and there exists an 
affine function that is nonpositive
on and nonnegative on . Then 
and are disjoint.

 Any two convex sets and , at least 
one of which is open, are disjoint if 
and only if there exists a separating 
hyperplane.



Supporting Hyperplanes

 Suppose , and  is a point in its 
boundary , i.e.,

 If satisfies ୃ ୃ
 for all . 

The hyperplane ୃ ୃ
 is called a 

supporting hyperplane to at the point 





Two Theorems

 Supporting Hyperplane Theorem
 For any nonempty convex set , and 

any  , there exists a 
supporting hyperplane to at .

 Converse Theorem
 If a set is closed, has nonempty 

interior, and has a supporting 
hyperplane at every point in its 
boundary, then it is convex. 
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Dual Cone

 Dual Cone of a Given Cone 

 ∗ is convex, even when is not
 ∗ if and only if is the normal of a 

hyperplane that supports at the origin

∗ ୃ



Examples

 Subspace
 The dual cone of a subspace 

 Nonnegative Orthant
 The cone ା

 is its own dual

 Positive Semidefinite Cone
 ା

 is self-dual

ୄ ୃ

ୃ



Properties of Dual Cone

 ∗ is closed and convex.
 ଵ ଶ implies ଶ

∗
ଵ
∗

 If has nonempty interior, then ∗

is pointed.
 If the closure of is pointed then 

∗ has nonempty interior.
 ∗∗ is the closure of the convex hull 

of . (Hence if is convex and 
closed, ∗∗ .)



 Suppose that the convex cone is 
proper, so it induces a generalized 
inequality . 

 Its dual cone ∗ is also proper. We refer 
to the generalized inequality ∗ as the 
dual of the generalized inequality .

Dual Generalized Inequalities



 Suppose that the convex cone is 
proper, so it induces a generalized 
inequality . 

 Its dual cone ∗ is also proper. We refer 
to the generalized inequality ∗ as the 
dual of the generalized inequality .
  if and only if ୃ ୃ for all ∗

Dual Generalized Inequalities

𝑥 ≼ 𝑦 ⇒ 𝑦 െ 𝑥 ∈ 𝐾

𝜆 ≽∗ 0 ⇒ 𝜆 ∈ 𝐾∗

𝐾∗ ൌ ሼ𝑦|𝑥ୃ𝑦  0 for all 𝑥 ∈ 𝐾ሽ

𝜆ୃ 𝑦 െ 𝑥  0



 Suppose that the convex cone is 
proper, so it induces a generalized 
inequality . 

 Its dual cone ∗ is also proper. We refer 
to the generalized inequality ∗ as the 
dual of the generalized inequality .
  if and only if ୃ ୃ for all ∗

  if and only if ୃ ୃ for all ∗ , 

 These properties hold if the generalized 
inequality and its dual are swapped

Dual Generalized Inequalities



Dual Characterization of 
Minimum Element

 is the minimum element of , with 
respect to the generalized inequality 

, if and only if for all ∗ , is the 
unique minimizer of ୃ over .

 That means, for any ∗ , the 
hyperplane ୃ is a strict 
supporting hyperplane to at .

ୃ ୃ ୃ ୃ



Dual Characterization of 
Minimum Element

 is the minimum element of , with 
respect to the generalized inequality 

, if and only if for all ∗ , is the 
unique minimizer of ୃ over .



Dual Characterization of 
Minimal Elements (1)

 If ∗ , and minimizes 
ୃ  over , then is minimal.



Dual Characterization of 
Minimal Elements (1)

 Any minimizer of ୃ  over , with 
∗ , is minimal.

𝑥ଶ minimizes 𝜆ୃ𝑧 over 𝑧 ∈  𝑆ଶ for 𝜆 ൌ ሺ0,1ሻ ≽ 0



Dual Characterization of 
Minimal Elements (2)

 If is minimal, then minimizes 
ୃ  over ∗ .  



Dual Characterization of 
Minimal Elements (2)

 If is convex, for any minimal 
element there exists a nonzero 

∗ such that minimizes ୃ over 
.

𝑥ଵ minimizes 𝜆ୃ𝑧 over 𝑧 ∈  𝑆ଵ for 𝜆 ൌ ሺ1,0ሻ ≽ 0



Pareto Optimal Production 
Frontier

 A product which requires sources
 A resource vector 



Pareto Optimal Production 
Frontier

 A product which requires sources
 A resource vector 

Pareto Optimal 
Production Frontier
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Summary

 Affine and convex
 Operations that preserve convexity

 Generalized Inequalities
 Separating and supporting 

hyperplanes
 Theorems

 Dual cones and generalized 
inequalities


