Convex Functions (I)

Lijun Zhang

<u>zlj@nju. edu. cn</u>

http://cs. nju. edu. cn/zlj

Outline

- Basic Properties
 - Definition
 - First-order Conditions, Second-order Conditions
 - Jensen's inequality and extensions
 - Epigraph
- Operations That Preserve Convexity
 - Nonnegative Weighted Sums
 - Composition with an affine mapping
 - Pointwise maximum and supremum
 - Composition
 - Minimization
 - Perspective of a function
- Summary

Outline

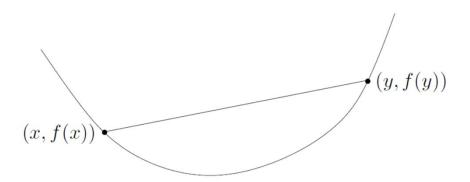
- Basic Properties
 - Definition
 - First-order Conditions, Second-order Conditions
 - Jensen's inequality and extensions
 - Epigraph
- Operations That Preserve Convexity
 - Nonnegative Weighted Sums
 - Composition with an affine mapping
 - Pointwise maximum and supremum
 - Composition
 - Minimization
 - Perspective of a function
- Summary

Convex Function

- $\square f: \mathbb{R}^n \to \mathbb{R}$ is convex if
 - \blacksquare dom f is convex

$$\theta x + (1 - \theta)y \in \text{dom } f, \forall \theta \in [0, 1], x, y \in \text{dom } f$$

 $\forall \theta \in [0,1], \ x, y \in \text{dom } f$ $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$



Convex Function

- \square $f: \mathbb{R}^n \to \mathbb{R}$ is convex if
 - \blacksquare dom f is convex

$$\theta x + (1 - \theta)y \in \text{dom } f, \forall \theta \in [0, 1], x, y \in \text{dom } f$$

- $\forall \theta \in [0,1], \ x, y \in \text{dom } f$ $f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y)$
- \square $f: \mathbb{R}^n \to \mathbb{R}$ is strictly convex if
 - $\forall \theta \in (0,1), \ x \neq y$ $f(\theta x + (1 \theta)y) < \theta f(x) + (1 \theta)f(y)$

Convex Function

- $\square f: \mathbb{R}^n \to \mathbb{R}$ is convex if
 - \blacksquare dom f is convex

$$\theta x + (1 - \theta)y \in \text{dom } f, \forall \theta \in [0, 1], x, y \in \text{dom } f$$

- $\forall \theta \in [0,1], \ x, y \in \text{dom } f$ $f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y)$
- \square f is concave if -f is convex
 - \blacksquare dom f is convex
- □ Affine functions are both convex and concave, and vice versa.

Extended-value Extensions

- \square The extended-value extension of f is
 - $\tilde{f}(x) = \begin{cases} f(x) & x \in \text{dom } f \\ \infty & x \notin \text{dom } f \end{cases}$
 - $\tilde{f}: \mathbf{R}^n \to \mathbf{R} \cup \{\infty\}$ $\tilde{f}(\theta x + (1 \theta)y) \le \theta \tilde{f}(x) + (1 \theta)\tilde{f}(y)$
 - $dom f = \{x | \tilde{f}(x) < \infty\}$
- Example
 - $f(x) = f_1(x) + f_2(x)$, dom $f = \text{dom } f_1 \cap \text{dom } f_2$
 - $\tilde{f}(x) = \tilde{f}_1(x) + \tilde{f}_2(x)$ $\tilde{f}(x) = \infty, \text{ if } x \notin \text{dom } f_1 \text{ or } x \notin \text{dom } f_2$

Extended-value Extensions

\square The extended-value extension of f is

$$\tilde{f}(x) = \begin{cases} f(x) & x \in \text{dom } f \\ \infty & x \notin \text{dom } f \end{cases}$$

$$\tilde{f}: \mathbf{R}^n \to \mathbf{R} \cup \{\infty\}$$

$$\tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

□ Example

Indicator Function of a Set C

$$\tilde{I}_C(x) = \begin{cases} 0 & x \in C \\ \infty & x \notin C \end{cases}$$

Zeroth-order Condition

- Definition
 - High-dimensional space

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

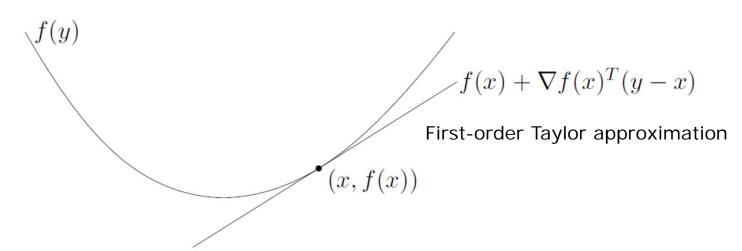
- □ A function is convex if and only if it is convex when restricted to any line that intersects its domain.
 - $\mathbf{Z} \in \mathrm{dom}\, f, v \in \mathbf{R}^n, \ t \in \mathbf{R}, x + tv \in \mathrm{dom}\, f$
 - \blacksquare f is convex $\Leftrightarrow g(t) = f(x + tv)$ is convex
 - One-dimensional space

NAMALIAN UNIVERSITY OF THE PROPERTY OF THE PRO

First-order Conditions

- \Box f is differentiable. Then f is convex if and only if
 - \blacksquare dom f is convex
 - For all $x, y \in \text{dom } f$

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x)$$



First-order Conditions

- ☐ *f* is differentiable. Then *f* is convex if and only if
 - \blacksquare dom f is convex
 - For all $x, y \in \text{dom } f$ $f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x)$
 - Local Information ⇒ Global Information
- \square f is strictly convex if and only if

$$f(y) > f(x) + \nabla f(x)^{\mathsf{T}} (y - x)$$

NANJITANO UNITARI

Proof

- - Necessary condition:

$$f(x + t(y - x)) \le (1 - t)f(x) + tf(y), 0 \le t \le 1$$

$$\Rightarrow f(y) \ge f(x) + \frac{f(x + t(y - x)) - f(x)}{t}$$

$$\xrightarrow{t \to 0} f(y) \ge f(x) + f'(x)(y - x)$$

Sufficient condition:

$$\Rightarrow \theta f(x) + (1 - \theta)f(y) \ge f(z) \Rightarrow f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

Proof

- □ $\mathbf{R}^n \to \mathbf{R}$ is convex $\Leftrightarrow f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y x), x, y \in \text{dom } f$

$$g(t) = f(ty + (1 - t)x), \quad g'(t) = \nabla f(ty + (1 - t)x)^{\mathsf{T}}(y - x)$$

 $f \text{ is convex} \Rightarrow g(t) \text{ is convex} \Rightarrow g(1) \ge g(0) + g'(0) \Rightarrow f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x)$

NANITARO D'ATTA

Proof

- □ $\mathbf{R}^n \to \mathbf{R}$ is convex $\Leftrightarrow f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y x), x, y \in \text{dom } f$

$$g(t) = f(ty + (1 - t)x), \quad g'(t) = \nabla f(ty + (1 - t)x)^{\mathsf{T}}(y - x)$$

$$f(ty + (1-t)x) \ge f(\tilde{t}y + (1-\tilde{t})x) + \nabla f(\tilde{t}y + (1-\tilde{t})x)^{\mathsf{T}}(y-x)(t-\tilde{t})$$

$$\Rightarrow g(t) \ge g(\tilde{t}) + g'(\tilde{t})(t - \tilde{t}) \Rightarrow g(t) \text{ is convex } \Rightarrow f \text{ is convex}$$

Second-order Conditions

- ☐ *f* is twice differentiable. Then *f* is convex if and only if
 - lacktriangledown dom f is convex
 - For all $x \in \text{dom } f$, $\nabla^2 f(x) \ge 0$

Attention

- $\nabla^2 f(x) > 0 \Rightarrow f$ is strictly convex
- f is strict convex $\Rightarrow \nabla^2 f(x) > 0$ $f(x) = x^4$ is strict convex but f''(0) = 0
- lacksquare dom f is convex is necessary, $f(x) = 1/x^2$

- ☐ Functions on R
 - e^{ax} is convex on \mathbf{R} , $\forall a \in \mathbf{R}$
 - x^a is convex on \mathbf{R}_{++} when $a \ge 1$ or $a \le 0$, and concave for $0 \le a \le 1$
 - $|x|^p$, for $p \ge 1$, is convex on **R**
 - $\log x$ is concave on \mathbf{R}_{++}
 - Negative entropy $x \log x$ is convex on \mathbf{R}_{++}

- \blacksquare Every norm on \mathbb{R}^n is convex
- $f(x) = \max\{x_1, \dots, x_n\}$
- Quadratic-over-linear: $f(x,y) = \frac{x^2}{y}$
 - \checkmark dom $f = \{(x, y) \in \mathbb{R}^2 | y > 0 \}$
- $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ $\max\{x_1, \dots, x_n\} \le f(x) \le \max\{x_1, \dots, x_n\} + \log n$
- $f(x) = (\prod_{i=1}^n x_i)^{1/n}$ is concave on \mathbb{R}^n_{++}
- $f(X) = \log \det X$ is concave on S_{++}^n

- \square Functions on \mathbb{R}^n
 - \blacksquare Every norm on \mathbb{R}^n is convex
 - $\checkmark f(x)$ is a norm on \mathbb{R}^n

$$f(\theta x + (1 - \theta)y) \le f(\theta x) + f((1 - \theta)y)$$
$$= \theta f(x) + (1 - \theta)f(y)$$

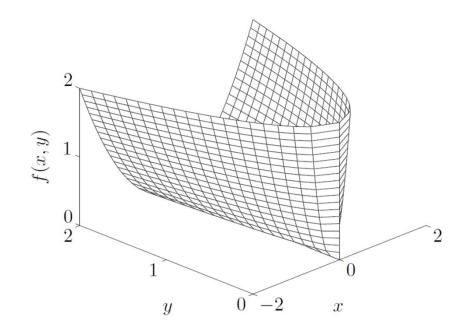
 $f(x) = \max\{x_1, \dots, x_n\} = \max_i x_i$

$$f(\theta x + (1 - \theta)y) = \max_{i} \{\theta x_i + (1 - \theta)y_i\}$$

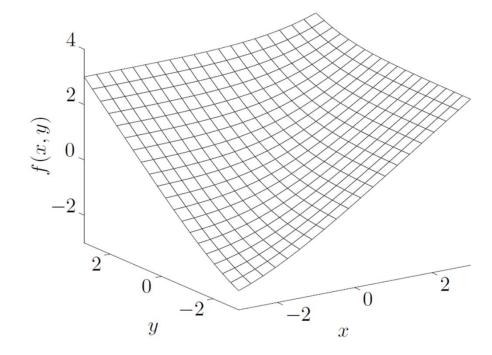
$$\leq \theta \max_{i} \{x_i\} + (1 - \theta) \max_{i} \{y_i\}$$

$$f(x,y) = \frac{x^2}{y}, \text{dom } f = \{(x,y) \in \mathbb{R}^2 \mid y > 0\}$$

$$\checkmark \nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y^2 & -xy \\ -xy & x^2 \end{bmatrix} = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^\top \ge 0$$



$$f(x) = \log(e^{x_1} + \dots + e^{x_n})$$



- $f(x) = \log(e^{x_1} + \dots + e^{x_n})$
 - $\checkmark \nabla^2 f(x) = \frac{1}{(\mathbf{1}^T z)^2} ((\mathbf{1}^T z) \operatorname{diag}(z) zz^T)$
 - $\checkmark z = (e^{x_1}, \dots, e^{x_n})$
 - $v^{\mathsf{T}} \nabla^{2} f(x) v = \frac{1}{(\mathbf{1}^{\mathsf{T}} z)^{2}} \Big((\sum_{i=1}^{n} z_{i}) \Big(\sum_{i=1}^{n} v_{i}^{2} z_{i} \Big) \Big(\sum_{i=1}^{n} v_{i} z_{i} \Big)^{2} \Big) \ge 0$
 - ✓ Cauchy-Schwarz inequality: $(a^{T}a)(b^{T}b) \ge (a^{T}b)^{2}$

\square Functions on \mathbb{R}^n

- $f(X) = \log \det X$ is concave on \mathbf{S}_{++}^n
 - ✓ g(t) = f(Z + tV), Z + tV > 0, Z > 0
 - $f(t) = \log \det(Z + tV)$ $= \log \det(Z^{\frac{1}{2}}(I + tZ^{-\frac{1}{2}}VZ^{-\frac{1}{2}})Z^{\frac{1}{2}})$ $= \sum_{i=1}^{n} \log(1 + t\lambda_i) + \log \det Z$
 - \checkmark $\lambda_1, ..., \lambda_n$ are the eigenvalues of $Z^{-\frac{1}{2}}VZ^{-\frac{1}{2}}$
 - $f'(t) = \sum_{i=1}^{n} \frac{\lambda_i}{1+t\lambda_i}, g''(t) = -\sum_{i=1}^{n} \frac{\lambda_i^2}{(1+t\lambda_i)^2}$

det(AB) = det(A) det(B) https://en.wikipedia.org/wiki/Determinant

Sublevel Sets

\square α -sublevel set

$$C_{\alpha} = \{x \in \text{dom } f \mid f(x) \le \alpha\}$$

- f(x) is convex $\Rightarrow C_{\alpha}$ is convex, $\forall \alpha \in \mathbf{R}$
- C_{α} is convex, $\forall \alpha \in \mathbf{R} \Rightarrow f(x)$ is convex e.g., $f(x) = -e^x$

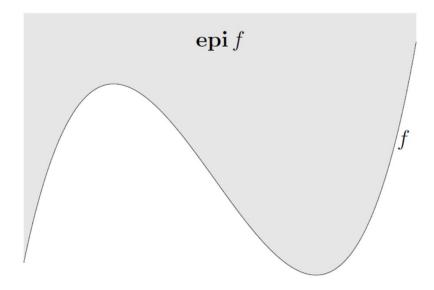
\square α -superlevel set

$$C_{\alpha} = \{x \in \text{dom } f \mid f(x) \ge \alpha\}$$

- f(x) is concave $\Rightarrow C_{\alpha}$ is convex, $\forall \alpha \in \mathbf{R}$
- $G(x) = (\prod_{i=1}^{n} x_i)^{\frac{1}{n}}, A(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$

Epigraph

- \square Graph of function $f: \mathbb{R}^n \to \mathbb{R}$
- \square Epigraph of function $f: \mathbb{R}^n \to \mathbb{R}$
 - $= \operatorname{epi} f = \{(x, t) | x \in \operatorname{dom} f, f(x) \le t \}$



Epigraph

- \square Epigraph of function $f: \mathbb{R}^n \to \mathbb{R}$
- □ Hypograph
 - hypo $f = \{(x, t) | x \in \text{dom } f, t \le f(x)\}$
- Conditions
 - f(x) is convex \Leftrightarrow epi f is convex
 - \blacksquare f(x) is concave \Leftrightarrow hypo f is convex

■ Matrix Fractional Function

$$f(x,Y) = x^{\mathsf{T}}Y^{-1}x$$
, dom $f = \mathbb{R}^n \times \mathbb{S}_{++}^n$

- Quadratic-over-linear: $f(x,y) = x^2/y$
- $= \left\{ (x, Y, t) \middle| Y > 0, x^{\mathsf{T}} Y^{-1} x \le t \right\}$ $= \left\{ (x, Y, t) \middle| \begin{bmatrix} Y & x \\ x^{\mathsf{T}} & t \end{bmatrix} \ge 0, Y > 0 \right\}$
 - ✓ Schur complement condition
- \blacksquare epi f is convex
 - Linear matrix inequality
 - ✓ Recall Example 2.10 in the book

■ Matrix Fractional Function

$$f(x,Y) = x^{\mathsf{T}}Y^{-1}x$$
, dom $f = \mathbf{R}^{\mathsf{n}} \times \mathbf{S}_{++}^{\mathsf{n}}$

- Quadratic-over-linear: $f(x,y) = x^2/y$

$$= \left\{ (x, Y, t) \middle| \begin{bmatrix} Y & x \\ x^{\top} & t \end{bmatrix} \ge 0, Y > 0 \right\}$$

✓ Schur complement condition

□ Linear Matrix Inequality

$$A(x) = x_1 A_1 + \dots + x_n A_n$$
$$\{x | A(x) \le B\} = \{x | B - A(x) \in \mathbf{S}_+^m\}$$

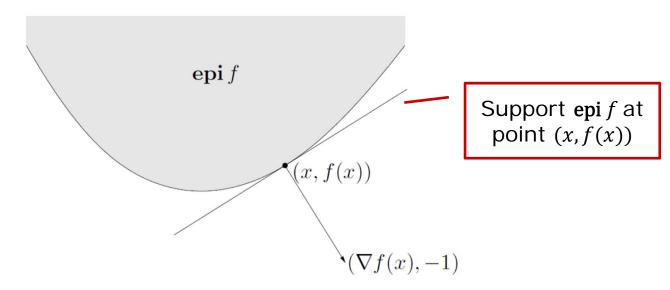
Application of Epigraph

- ☐ First order Condition
 - $f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y x)$
 - $(y,t) \in \operatorname{epi} f \Rightarrow t \ge f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y-x)$

Application of Epigraph

□ First order Condition

- $f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y x)$
- $(y,t) \in \operatorname{epi} f \Rightarrow t \ge f(x) + \nabla f(x)^{\mathsf{T}} (y-x)$
- $(y,t) \in \operatorname{epi} f \Rightarrow \begin{bmatrix} \nabla f(x) \\ -1 \end{bmatrix}^{\mathsf{T}} \left(\begin{bmatrix} y \\ t \end{bmatrix} \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \leq 0$



Jensen's Inequality

- Basic inequality
 - $\theta \in [0,1]$
 - $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y)$

- \square K points
 - $\theta_i \in [0,1], \theta_1 + \dots + \theta_k = 1$
 - $f(\theta_1 x_1 + \dots + \theta_k x_k) \le \theta_1 f(x_1) + \dots + \theta_k f(x_k)$

Jensen's Inequality

■ Infinite points

- $p(x) \ge 0, S \subseteq \text{dom } f, \int_{S} p(x) \, dx = 1$
- $f\left(\int_{S} p(x)x \, dx\right) \leq \int_{S} f(x)p(x) \, dx$
- $f(\mathbf{E}x) \le \mathbf{E}f(x)$ ✓ $f(x) \le \mathbf{E}f(x+z)$, z is a zero-mean noisy

□ Hölder's inequality

$$\frac{1}{p} + \frac{1}{q} = 1, p > 1$$

Outline

- Basic Properties
 - Definition
 - First-order Conditions, Second-order Conditions
 - Jensen's inequality and extensions
 - Epigraph
- Operations That Preserve Convexity
 - Nonnegative Weighted Sums
 - Composition with an affine mapping
 - Pointwise maximum and supremum
 - Composition
 - Minimization
 - Perspective of a function
- Summary

The set of convex

functions is itself a

convex cone

Nonnegative Weighted Sums

- ☐ Finite sums
 - $w_i \ge 0$, f_i is convex
 - $f = w_1 f_1 + \cdots + w_m f_m$ is convex
- Infinite sums
 - $f(x,y) \text{ is convex in } x, \forall y \in \mathcal{A}, w(y) \ge 0$
 - $g(x) = \int_{\mathcal{A}} f(x, y)w(y) dy$ is convex
- Epigraph interpretation
 - **epi** $(wf) = \{(x,t)|wf(x) \le t\}$
 - $\begin{bmatrix} I & 0 \\ 0 & w \end{bmatrix} \mathbf{epi}(f) = \{(x, wt) | f(x) \le t\}$

Composition with an affine mapping

- $\Box f: \mathbf{R}^n \to \mathbf{R}$
- \square $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n$
- Affine Mapping

$$g(x) = f(Ax + b)$$

- If f is convex, so is g.
- If f is concave, so is g.

Pointwise Maximum

 \square f_1, f_2 is convex

$$f(x) = \max\{f_1(x), f_2(x)\}$$

is convex with dom $f = \text{dom } f_1 \cap \text{dom } f_2$

- $f(\theta x + (1 \theta)y)$ $= \max\{f_1(\theta x + (1 \theta)y), f_2(\theta x + (1 \theta)y)\}$ $\leq \max\{\theta f_1(x) + (1 \theta)f_1(y), \theta f_2(x) + (1 \theta)f_2(y)\}$
 - $\leq \theta \max\{f_1(x), f_2(x)\} + (1 \theta) \max\{f_1(y), f_2(y)\}$
 - $= \theta f(x) + (1 \theta)f(y)$
- $f_1, \dots, f_m \text{ is convex} \Rightarrow f(x) = \max\{f_1(x), \dots, f_m(x)\}$

- □ Piecewise-linear functions
 - $f(x) = \max\{a_1^{\mathsf{T}}x + b_1, ..., a_L^{\mathsf{T}}x + b_L\}$
- ☐ Sum of *r* largest components
 - $x \in \mathbb{R}^n, x_{[1]} \ge x_{[2]} \ge \cdots \ge x_{[n]}$
 - $f(x) = \sum_{i=1}^{r} x_{[i]} \text{ is convex}$ $= \max\{x_{i_1} + \dots + x_{i_r} | 1 \le i_1 < \dots < i_r \le n\}$
 - Pointwise maximum of $\frac{n!}{r!(n-r)!}$ linear functions

Pointwise Supremum

- $\exists \forall y \in \mathcal{A}, f(x,y) \text{ is convex in } x$ $g(x) = \sup_{y \in \mathcal{A}} f(x,y)$ is convex with dom $g = \{x | (x,y) \in A\}$ dom f for all $y \in \mathcal{A}, \sup_{y \in \mathcal{A}} f(x,y) < \infty\}$ $y \in \mathcal{A}$
- Epigraph interpretation
 - \blacksquare epi $g = \bigcap_{y \in \mathcal{A}} \operatorname{epi} f(\cdot, y)$
 - Intersection of convex sets is convex
- □ Pointwise infimum of a set of concave functions is concave

- Support function of a set
 - $C \subseteq \mathbb{R}^n, C \neq \emptyset$
 - $S_C(x) = \sup\{x^\top y | y \in C\}$
 - $dom S_C = \{x | \sup_{y \in C} x^\top y < \infty \}$

- □ Distance to farthest point of a set
 - $C \subseteq \mathbb{R}^n$
 - $f(x) = \sup_{y \in C} ||x y||$

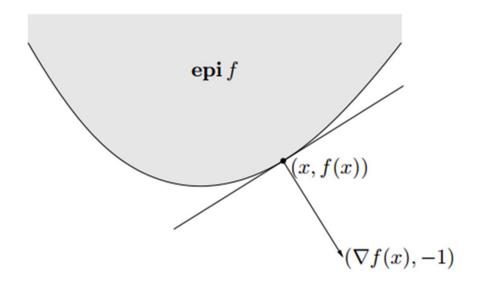
- Maximum eigenvalue of a symmetric matrix
 - $f(X) = \lambda_{\max}(X)$, dom $f = S^m$
 - $f(X) = \sup\{y^{\mathsf{T}}Xy \mid ||y||_2 = 1\}$
- Norm of a matrix
 - $f(X) = ||X||_2 \text{ is maximum singular value}$ of X
 - lacksquare dom $f = \mathbf{R}^{p \times q}$
 - $f(X) = \sup\{u^{\mathsf{T}} X v \mid ||u||_2 = 1, ||v||_2 = 1\}$

Representation

□ Almost every convex function can be expressed as the pointwise supremum of a family of affine functions.

```
f: \mathbf{R}^n \to \mathbf{R} is convex and dom f = \mathbf{R}^n

\Rightarrow f(x) = \sup\{g(x) | g \text{ affine, } g(z) \le f(z) \ \forall z \}
```



Compositions

Definition

- $h: \mathbf{R}^k \to \mathbf{R}, g: \mathbf{R}^n \to \mathbf{R}^k$
- $f = h \circ g : \mathbf{R}^n \to \mathbf{R}$

$$f(x) = h\big(g(x)\big)$$

 $dom <math> f = \{ x \in \text{dom } g | g(x) \in \text{dom } h \}$

□ Chain Rule

 $h: \mathbf{R} \to \mathbf{R}, g: \mathbf{R}^n \to \mathbf{R}$

$$\nabla^2 f(x) = h'(g(x))\nabla^2 g(x) + h''(g(x))\nabla g(x)\nabla g(x)^{\mathsf{T}}$$

- \square $h: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$
 - \blacksquare h and g are twice differentiable
 - $dom g = dom h = \mathbf{R}$ $f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$
 - \blacksquare f is convex, if $f''(x) \ge 0$
 - $h'' \ge 0, h' \ge 0, g'' \ge 0$
 - \checkmark h is convex and nondecreasing, g is convex
 - $h'' \ge 0, h' \le 0, g'' \le 0$
 - \checkmark h is convex and nonincreasing, g is concave

- \square $h: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$
 - \blacksquare h and g are twice differentiable
 - $dom g = dom h = \mathbf{R}$ $f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$
 - \blacksquare f is concave, if $f''(x) \le 0$
 - $h'' \le 0, h' \ge 0, g'' \le 0$
 - \checkmark h is concave and nondecreasing, g is concave
 - $h'' \le 0, h' \le 0, g'' \ge 0$
 - \checkmark h is concave and nonincreasing, g is convex

- \square h: $\mathbb{R} \to \mathbb{R}$, g: $\mathbb{R}^n \to \mathbb{R}$
 - Without differentiability assumption
 - Without domain condition
 - h(x) = 0 with dom h = [1,2], which is convex and nondecreasing
 - $g(x) = x^2 \text{ with dom } g = \mathbf{R}, \text{ which is convex}$ f(x) = h(g(x)) = 0
 - $dom f = \left[-\sqrt{2}, -1 \right] \cup \left[1, \sqrt{2} \right]$

- \square h: $\mathbb{R} \to \mathbb{R}$, g: $\mathbb{R}^n \to \mathbb{R}$
 - Without differentiability assumption
 - Without domain condition
 - h is convex, \tilde{h} is nondecreasing, and g is convex $\Rightarrow f$ is convex
 - h is convex, \tilde{h} is nonincreasing, and g is concave $\Rightarrow f$ is convex
 - The conditions for concave are similar

Extended-value Extensions

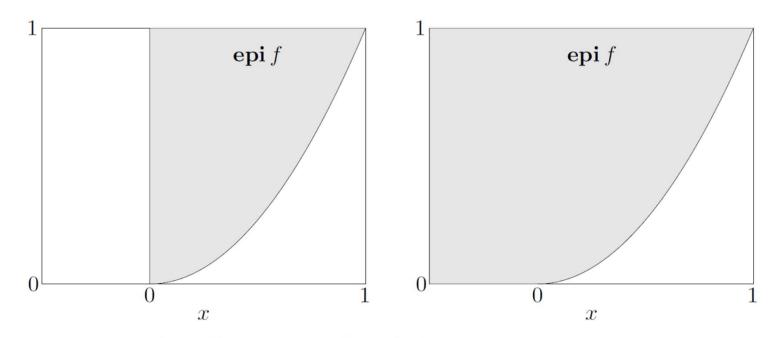


Figure 3.7 Left. The function x^2 , with domain \mathbf{R}_+ , is convex and nondecreasing on its domain, but its extended-value extension is *not* nondecreasing. Right. The function $\max\{x,0\}^2$, with domain \mathbf{R} , is convex, and its extended-value extension is nondecreasing.

- \square g is convex $\Rightarrow \exp g(x)$ is convex
- \square g is concave and positive $\Rightarrow \log g(x)$ is concave
- \square g is concave and positive $\Rightarrow 1/g(x)$ is convex
- \square g is convex and nonnegative and $p \ge 1 \Rightarrow g(x)^p$ is convex
- □ g is convex $\Rightarrow -\log(-g(x))$ is convex on $\{x|g(x) < 0\}$

Vector Composition

- - \blacksquare h and g are twice differentiable

Vector Composition

- - \blacksquare h and g are twice differentiable
 - dom $g_i = \mathbf{R}$, dom $h = \mathbf{R}^k$

$$f''(x) = g'(x)^{\mathsf{T}} \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^{\mathsf{T}} g''(x)$$

- f is convex, if $f''(x) \ge 0$
 - ✓ h is convex, h is nondecreasing in each argument, and g_i are convex
 - ✓ h is convex, h is nonincreasing in each argument, and g_i are concave

Vector Composition

- - \blacksquare h and g are twice differentiable
 - dom $g_i = \mathbf{R}$, dom $h = \mathbf{R}^k$

$$f''(x) = g'(x)^{\mathsf{T}} \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^{\mathsf{T}} g''(x)$$

- f is concave, if $f''(x) \le 0$
 - ✓ h is concave, h is nondecreasing in each argument, and g_i are concave
- □ The general case is similar

- $\Box h(z) = \log(\sum_{i=1}^k e^{z_i}), g_1, ..., g_k \text{ are convex} \Rightarrow h \circ g \text{ is convex}$
- □ $h(z) = \left(\sum_{i=1}^k z_i^p\right)^{1/p}$ on \mathbf{R}_+^k is concave for $0 \le p \le 1$, and its extension is nondecreasing. If g_i is concave and nonnegative $\Rightarrow h \circ g = \left(\sum_{i=1}^k g_i(x)^p\right)^{1/p}$ is concave
- □ Suppose $p \ge 1$, and $g_1, ..., g_k$ are convex and nonnegative. Then the function $\left(\sum_{i=1}^k g_i(x)^p\right)^{1/p}$ is convex

Minimization

- \square f is convex in (x,y), C is convex $(C \neq \emptyset)$
 - $g(x) = \inf_{y \in C} f(x, y)$ is convex if $g(x) > -\infty$, $\forall x \in \text{dom } g$
 - $dom <math>g = \{x | (x, y) \in dom f \text{ for some } y \in C\}$
- □ Proof by Epigraph
 - epi $g = \{(x, t) | (x, y, t) \in \text{epi } f \text{ for some } y \in C\}$
 - The projection of a convex set is convex.

Minimization

- \square f is convex in (x,y), C is convex $(C \neq \emptyset)$
 - $g(x) = \inf_{y \in C} f(x, y)$ is convex if $g(x) > -\infty$, $\forall x \in \text{dom } g$
 - $dom <math>g = \{x | (x, y) \in dom f \text{ for some } y \in C\}$

Pointwise Supremum

```
 \exists \forall y \in \mathcal{A}, f(x,y) \text{ is convex in } x   g(x) = \sup_{y \in \mathcal{A}} f(x,y)  is convex with dom g = \{x | (x,y) \in \text{dom } f \text{ for all } y \in \mathcal{A}, \sup_{y \in \mathcal{A}} f(x,y) < \infty\}
```


□ Schur complement

- $f(x,y) = x^{\mathsf{T}} A x + 2 x^{\mathsf{T}} B y + y^{\mathsf{T}} C y$
- $g(x) = \inf_{y} f(x, y) = x^{T} (A BC^{\dagger}B^{T})x \text{ is convex}$ $\Rightarrow A BC^{\dagger}B^{T} \ge 0, C^{\dagger} \text{ is the pseudo-inverse of } C$

■ Distance to a set

- S is a convex nonempty set, f(x,y) = ||x y|| is convex in (x,y)
- $g(x) = \operatorname{dist}(x, S) = \inf_{y \in S} \|x y\|$

- ☐ Distance to farthest point of a set
 - $C \subseteq \mathbb{R}^n$
 - $f(x) = \sup_{y \in C} ||x y||$

- Distance to a set
 - S is a convex nonempty set, f(x,y) = ||x y|| is convex in (x,y)
 - $g(x) = \operatorname{dist}(x, S) = \inf_{y \in S} \|x y\|$

- □ Affine domain
 - \blacksquare h(y) is convex
 - $g(x) = \inf \{h(y)|Ay = x\}$ is convex
- ☐ Proof
 - $f(x,y) = \begin{cases} h(y) & \text{if } Ay x = 0\\ \infty & \text{otherwise} \end{cases}$
 - f(x,y) is convex in (x,y)
 - \blacksquare g is the minimum of f over y

Perspective of a function

 \square $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^{n+1} \to \mathbb{R}$ defined as

$$g(x,t) = tf(x/t)$$

is the perspective of *f*

- \blacksquare f is convex \Rightarrow g is convex
- ☐ Proof

$$(x, t, s) \in \text{epi } g \Leftrightarrow tf\left(\frac{x}{t}\right) \leq s$$

 $\Leftrightarrow f\left(\frac{x}{t}\right) \leq \frac{s}{t}$
 $\Leftrightarrow (x/t, s/t) \in \text{epi } f$

Perspective mapping preserve convexity

Perspective Functions

 \square Perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$

$$P(z,t) = \frac{z}{t}$$
, dom $P = \mathbf{R}^n \times \mathbf{R}_{++}$

 \square If $C \in \text{dom } P$ is convex, then its image

$$P(C) = \{P(x) | x \in C\}$$

is convex

 \square If $C \in \mathbb{R}^n$ is convex, the inverse image

$$P^{-1}(C) = \left\{ (x, t) \in \mathbf{R}^{n+1} \middle| \frac{x}{t} \in C, t \ge 0 \right\}$$

is convex

- Euclidean norm squared
 - $f(x) = x^{\mathsf{T}}x$
 - $g(x,t) = t \left(\frac{x}{t}\right)^{\mathsf{T}} \left(\frac{x}{t}\right) = \frac{x^{\mathsf{T}}x}{t}, t > 0$
- Composition with an Affine function
 - $f: \mathbf{R}^m \to \mathbf{R}$ is convex
 - $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n, d \in \mathbb{R}^n$
 - $dom g = \left\{ x \middle| c^{\mathsf{T}} x + d > 0, \frac{Ax + b}{c^{\mathsf{T}} x + d} \in \text{dom } f \right\}$
 - $g(x) = (c^{\mathsf{T}}x + d)f\left(\frac{Ax+b}{c^{\mathsf{T}}x+d}\right)$ is convex

Outline

- Basic Properties
 - Definition
 - First-order Conditions, Second-order Conditions
 - Jensen's inequality and extensions
 - Epigraph
- Operations That Preserve Convexity
 - Nonnegative Weighted Sums
 - Composition with an affine mapping
 - Pointwise maximum and supremum
 - Composition
 - Minimization
 - Perspective of a function
- □ Summary

Summary

- Basic Properties
 - Definition
 - First-order Conditions, Second-order Conditions
 - Jensen's inequality and extensions
 - Epigraph
- Operations That Preserve Convexity
 - Nonnegative Weighted Sums
 - Composition with an affine mapping
 - Pointwise maximum and supremum
 - Composition
 - Minimization
 - Perspective of a function