Convex Optimization Problems (I)

Lijun Zhang
zlj@nju.edu.cn
http://cs.nju.edu. cn/zlj

Outline

,
\square Optimization Problems
■ Basic Terminology
■ Equivalent Problems

- Problem Descriptions
\square Convex Optimization
- Standard Form
- Local and Global Optima
- An Optimality Criterion

■ Equivalent Convex Problems

Outline

\square Optimization Problems
■ Basic Terminology
■ Equivalent Problems

- Problem Descriptions
\square Convex Optimization
- Standard Form
- Local and Global Optima
- An Optimality Criterion

■ Equivalent Convex Problems

Basic Terminology

\square Optimization Problems $\min f_{0}(x)$
s. t. $\quad f_{i}(x) \leq 0, \quad i=1, \ldots, m$

$$
\begin{equation*}
h_{i}(x)=0, \quad i=1, \ldots, p \tag{1}
\end{equation*}
$$

■ Optimization variable: $x \in \mathbf{R}^{n}$

- Objective function: $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$
- Inequality constraints: $f_{i}(x) \leq 0$

■ Inequality constraint functions: $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$

- Equality constraints: $h_{i}(x)=0$

■ Equality constraint functions: $h_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$

Basic Terminology

\square Optimization Problems
$\min f_{0}(x)$
s. t. $\quad f_{i}(x) \leq 0, \quad i=1, \ldots, m$

$$
\begin{equation*}
h_{i}(x)=0, \quad i=1, \ldots, p \tag{1}
\end{equation*}
$$

■ Domain

$$
\mathcal{D}=\bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i}
$$

■ $x \in \mathcal{D}$ is feasible if it satisfies all the constraints

- The problem is feasible if there exists at least one feasible point

Basic Terminology

\square Optimal Value p^{\star}
$p^{\star}=\inf \left\{f_{0}(x) \mid f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p\right\}$

- Infeasible problem: $p^{\star}=\infty$

■ Unbounded below: if there exist x_{k} with $f_{0}\left(x_{k}\right) \rightarrow-\infty$ as $k \rightarrow \infty$, then $p^{\star}=-\infty$
\square Optimal Points

- x^{\star} is feasible and $f_{0}\left(x^{\star}\right)=p^{\star}$
\square Optimal Set
$X_{\text {opt }}=\left\{x \mid f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p, f_{0}(x)=p^{*}\right\}$
$\square p^{\star}$ is achieved if $X_{\text {opt }}$ is nonempty

Basic Terminology

$\square \varepsilon$-suboptimal Points

- a feasible x with $f_{0}(x) \leq p^{\star}+\varepsilon$
$\square \varepsilon$-suboptimal Set
■ the set of all ε-suboptimal points
\square Locally Optimal Points

$$
\begin{array}{lll}
\min & f_{0}(z) \\
\text { s.t. } & f_{i}(z) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(z)=0, \quad i=1, \ldots, p \\
& \|z-x\|_{2} \leq R
\end{array}
$$

■ x is feasible and solves the above problem
\square Globally Optimal Points

Basic Terminology

\square Types of Constraints

- If $f_{i}(x)=0, f_{i}(x) \leq 0$ is active at x
- If $f_{i}(x)<0, f_{i}(x) \leq 0$ is inactive at x
- $h_{i}(x)=0$ is active at all feasible points

■ Redundant constraint: deleting it does not change the feasible set
\square Examples on $x \in \mathbf{R}$ and $\operatorname{dom} f_{0}=\mathbf{R}_{++}$
■ $f_{0}(x)=1 / x: p^{\star}=0$, the optimal value is not achieved

- $f_{0}(x)=-\log x: p^{\star}=-\infty$, unbounded blow
- $f_{0}(x)=x \log x: p^{\star}=-1 / e, x^{\star}=1 / e$ is optimal

Basic Terminology

\square Feasibility Problems

find	x	
s.t.	$f_{i}(x) \leq 0$,	$i=1, \ldots, m$
	$h_{i}(x)=0$,	$i=1, \ldots, p$

- Determine whether constraints are consistent
\square Maximization Problems

$$
\begin{array}{cll}
\max & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, & i=1, \ldots, m \\
& h_{i}(x)=0, & i=1, \ldots, p
\end{array}
$$

- It can be solved by minimizing - f_{0}
- Optimal Value p^{\star}
$p^{\star}=\sup \left\{f_{0}(x) \mid f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p\right\}$

Basic Terminology

\square Standard Form

$$
\begin{array}{lll}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, & i=1, \ldots, m \\
& h_{i}(x)=0, & i=1, \ldots, p
\end{array}
$$

\square Box constraints

$$
\begin{array}{ll}
\min & f_{0}(x) \\
\text { s.t. } & l_{i} \leq x_{i} \leq u_{i}, \quad i=1, \ldots, n
\end{array}
$$

\square Reformulation

$$
\begin{array}{lll}
\min & f_{0}(x) \\
\text { s.t. } & l_{i}-x_{i} \leq 0, \quad i=1, \ldots, n \\
& x_{i}-u_{i} \leq 0, & i=1, \ldots, n
\end{array}
$$

Outline

\square Optimization Problems
■ Basic Terminology
■ Equivalent Problems

- Problem Descriptions
\square Convex Optimization
- Standard Form
- Local and Global Optima
- An Optimality Criterion

■ Equivalent Convex Problems

Equivalent Problems

\square Two Equivalent Problems

- If from a solution of one, a solution of the other is readily found, and vice versa
\square A Simple Example
$\min \tilde{f}(x)=\alpha_{0} f_{0}(x)$
s.t.

$$
\begin{array}{ll}
\tilde{f}_{i}(x)=\alpha_{i} f_{i}(x) \leq 0, & i=1, \ldots, m \\
\tilde{h}_{i}(x)=\beta_{i} h_{i}(x)=0, & i=1, \ldots, p
\end{array}
$$

■ $\alpha_{i}>0, i=0, \ldots, m$

- $\beta_{i} \neq 0, i=1, \ldots, p$
- Equivalent to the problem (1)

Change of Variables

$\square \phi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is one-to-one and
$\phi(\operatorname{dom} \phi) \supseteq \mathcal{D}$, and define

$$
\begin{array}{ll}
\tilde{f}_{i}(z)=f_{i}(\phi(z)), & i=0, \ldots, m \\
\tilde{h}_{i}(z)=h_{i}(\phi(z)), & i=1, \ldots, p
\end{array}
$$

\square An Equivalent Problem

$$
\begin{array}{cll}
\min & \tilde{f}_{0}(z) & \\
\text { s.t. } & \tilde{f}_{i}(z) \leq 0, & i=1, \ldots, m \\
& \tilde{h}_{i}(z)=0, & i=1, \ldots, p
\end{array}
$$

■ If z solves it, $x=\phi(z)$ solves the problem (1)
■ If x solves (1), $z=\phi^{-1}(x)$ solves it

Transformation of Functions

$\square \psi_{0}: \mathbf{R} \rightarrow \mathbf{R}$ is monotone increasing
$\square \psi_{1}, \ldots, \psi_{m}: \mathbf{R} \rightarrow \mathbf{R}$ satisfy $\psi_{i}(u) \leq 0$ if and only if $u \leq 0$
$\square \psi_{m+1}, \ldots, \psi_{m+p}: \mathbf{R} \rightarrow \mathbf{R}$ satisfy $\psi_{i}(u)=0$ if and only if $u=0$
\square Define

$$
\begin{array}{ll}
\tilde{f}_{i}(x)=\psi_{i}\left(f_{i}(x)\right), & i=0, \ldots, m \\
\tilde{h}_{i}(x)=\psi_{m+i}\left(h_{i}(x)\right), & i=1, \ldots, p
\end{array}
$$

\square An Equivalent Problem

$$
\begin{array}{lll}
\min & \tilde{f}_{0}(x) & \\
\text { s.t. } & \tilde{f}_{i}(x) \leq 0, & i=1, \ldots, m \\
& \tilde{h}_{i}(x)=0, & i=1, \ldots, p
\end{array}
$$

Example

\square Least-norm Problems

$$
\min \|A x-b\|_{2}
$$

■ Not differentiable at any x with $A x$ $b=0$
\square Least-norm-squared Problems

$$
\min \|A x-b\|_{2}^{2}=(A x-b)^{\top}(A x-b)
$$

- Differentiable for all x

Slack Variables

$\square f_{i}(x) \leq 0$ if and only if there is an $s_{i} \geq 0$ that satisfies $f_{i}(x)+s_{i}=0$
\square An Equivalent Problem

$$
\begin{array}{lll}
\min & f_{0}(x) & \\
\text { s.t. } & s_{i} \geq 0, & i=1, \ldots, m \\
& f_{i}(x)+s_{i}=0, & i=1, \ldots, m \\
& h_{i}(x)=0, & i=1, \ldots, p
\end{array}
$$

- s_{i} is the slack variable associated with the inequality constraint $f_{i}(x) \leq 0$
■ x is optimal for the problem (1) if and only if (x, s) is optimal for the above problem, where $s_{i}=-f_{i}(x)$

Eliminating Equality Constraints

\square Assume $\phi: \mathbf{R}^{k} \rightarrow \mathbf{R}^{n}$ is such that x satisfies

$$
h_{i}(x)=0, \quad i=1, \ldots, p
$$

if and only if there is some $\mathrm{z} \in \mathbf{R}^{k}$ such that

$$
x=\phi(z)
$$

\square An Equivalent Problem

$$
\begin{array}{cl}
\min & \tilde{f}_{0}(z)=f_{0}(\phi(z)) \\
\text { s.t. } & \tilde{f}_{i}(z)=f_{i}(\phi(z)) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

- If z is optimal for this problem, $x=\phi(z)$ is optimal for the problem (1)
- If x is optimal for (1), there is at least one z which is optimal for this problem

Eliminating linear equality constraints

\square Assume the equality constraints are all linear $A x=b$, and x_{0} is one solution
\square Let $F \in \mathbf{R}^{n \times k}$ be any matrix with $\mathcal{R}(F)=$ $\mathcal{N}(A)$, then

$$
\{x \mid A x=b\}=\left\{F z+x_{0} \mid z \in \mathbf{R}^{k}\right\}
$$

\square An Equivalent Problem $\left(x=F z+x_{0}\right)$

$$
\begin{array}{ll}
\min & f_{0}\left(F z+x_{0}\right) \\
\text { s.t. } & f_{i}\left(F z+x_{0}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

- $k=n-\operatorname{rank}(A)$

Linear algebra

\square Range and nullspace

- Let $A \in \mathbf{R}^{m \times n}$, the range of A, denoted $\mathcal{R}(A)$, is the set of all vectors in \mathbf{R}^{m} that can be written as linear combinations of the columns of A :

$$
\mathcal{R}(A)=\left\{A x \mid x \in \mathbf{R}^{n}\right\} \subseteq \mathbf{R}^{m}
$$

■ The nullspace (or kernel) of A, denoted $\mathcal{N}(A)$, is the set of all vectors x mapped into zero by A :

$$
\mathcal{N}(A)=\{x \mid A x=0\} \subseteq \mathbf{R}^{n}
$$

■ if \mathcal{V} is a subspace of \mathbf{R}^{n}, its orthogonal complement, denoted \mathcal{V}^{\perp}, is defined as:

$$
\mathcal{V}^{\perp}=\left\{x \mid z^{\top} x=0 \text { for all } z \in \mathcal{V}\right\}
$$

Introducing Equality Constraints

\square Consider the problem

$$
\min f_{0}\left(A_{0} x+b_{0}\right)
$$

s. t. $\quad f_{i}\left(A_{i} x+b_{i}\right) \leq 0, \quad i=1, \ldots, m$

$$
h_{i}(x)=0, \quad i=1, \ldots, p
$$

■ $x \in \mathbf{R}^{n}, A_{i} \in \mathbf{R}^{k_{i} \times n}$ and $f_{i}: \mathbf{R}^{k_{i}} \rightarrow \mathbf{R}$
\square An Equivalent Problem $\min f_{0}\left(y_{0}\right)$

$$
\begin{array}{lll}
\text { s. t. } & f_{i}\left(y_{i}\right) \leq 0, & i=1, \ldots, m \\
& y_{i}=A_{i} x+b_{i}, & i=0, \ldots, m \\
& h_{i}(x)=0, & i=1, \ldots, p
\end{array}
$$

■ Introduce $y_{i} \in \mathbf{R}^{k_{i}}$ and $y_{i}=A_{i} x+b_{i}$

Optimizing over Some Variables

\square Suppose $x \in \mathbf{R}^{n}$ is partitioned as $x=\left(x_{1}, x_{2}\right)$, with $x_{1} \in \mathbf{R}^{n_{1}}, x_{2} \in \mathbf{R}^{n_{2}}$ and $n_{1}+n_{2}=n$
\square Consider the problem

$$
\begin{array}{lll}
\min & f_{0}\left(x_{1}, x_{2}\right) & \\
\text { s.t. } & f_{i}\left(x_{1}\right) \leq 0, & i=1, \ldots, m_{1} \\
& \tilde{f}_{i}\left(x_{2}\right) \leq 0, & i=1, \ldots, m_{2}
\end{array}
$$

\square An Equivalent Problem

$$
\begin{array}{cl}
\min & \tilde{f}_{0}\left(x_{1}\right) \\
\text { s.t. } & f_{i}\left(x_{1}\right) \leq 0, \quad i=1, \ldots, m_{1}
\end{array}
$$

- where

$$
\tilde{f}_{0}\left(x_{1}\right)=\inf \left\{f_{0}\left(x_{1}, z\right) \mid \tilde{f}_{i}(z) \leq 0, i=1, \ldots, m_{2}\right\}
$$

Example

\square Minimize a Quadratic Function

$$
\begin{array}{ll}
\min & x_{1}^{\top} P_{11} x_{1}+2 x_{1}^{\top} P_{12} x_{2}+x_{2}^{\top} P_{22} x_{2} \\
\text { s.t. } & f_{i}\left(x_{1}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

\square Minimize over x_{2}

$$
\begin{gathered}
\inf _{x_{2}}\left(x_{1}^{\top} P_{11} x_{1}+2 x_{1}^{\top} P_{12} x_{2}+x_{2}^{\top} P_{22} x_{2}\right) \\
=x_{1}^{\top}\left(P_{11}-P_{12} P_{22}^{-1} P_{12}^{\top}\right) x_{1}
\end{gathered}
$$

\square An Equivalent Problem

$$
\begin{array}{ll}
\min & x_{1}^{\top}\left(P_{11}-P_{12} P_{22}^{-1} P_{12}^{\top}\right) x_{1} \\
\text { s.t. } & f_{i}\left(x_{1}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

Epigraph Problem Form

\square Epigraph Form

$$
\begin{array}{ll}
\min & t \\
\text { s.t. } & f_{0}(x)-t \leq 0 \\
& f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

■ Introduce a variable $t \in \mathbf{R}$

- (x, t) is optimal for this problem if and only if x is optimal for (1) and $t=f_{0}(x)$
■ The objective function of the epigraph form problem is a linear function of x, t

Epigraph Problem Form

\square Geometric Interpretation

- Find the point in the epigraph that minimizes t

Making Constraints Implicit

\square Unconstrained problem

$$
\min F(x)
$$

$\square \operatorname{dom} F=\left\{x \in \operatorname{dom} f_{0} \mid f_{i}(x) \leq 0, i=1, \ldots, m\right.$,

$$
\left.h_{i}(x)=0, i=1, \ldots, p\right\}
$$

- $F(x)=f_{0}(x)$ for $x \in \operatorname{dom} F$
- It has not make the problem any easier
- It could make the problem more difficult, because F is probably not differentiable

Making Constraints Explicit

\square A Unconstrained Problem

$$
\min f(x)
$$

- where

$$
f(x)=\left\{\begin{array}{lc}
x^{\top} x & A x=b \\
\infty & \text { otherwise }
\end{array}\right.
$$

- An implicit equality constraint $A x=b$
\square An Equivalent Problem

$$
\begin{array}{ll}
\min & x^{\top} x \\
\text { s.t. } & A x=b
\end{array}
$$

- Objective and constraint functions are differentiable

Outline

\square Optimization Problems
■ Basic Terminology
■ Equivalent Problems
■ Problem Descriptions
\square Convex Optimization

- Standard Form
- Local and Global Optima
- An Optimality Criterion

■ Equivalent Convex Problems

Problem Descriptions

\square Parameter Problem Description
■ Functions have some analytical or closed form
■ Example: $f_{0}(x)=x^{\top} P x+q^{\top} x+r$, where $P \in \mathbf{S}^{n}, q \in \mathbf{R}^{n}$ and $r \in \mathbf{R}$

- Give the values of the parameters
\square Oracle Model (Black-box Model)
- Can only query the objective and constraint functions by an oracle
- Evaluate $f(x)$ and its gradient $\nabla f(x)$

■ Know some prior information (convexity)

Outline

\square Optimization Problems
■ Basic Terminology
■ Equivalent Problems

- Problem Descriptions
\square Convex Optimization
■ Standard Form
- Local and Global Optima
- An Optimality Criterion

■ Equivalent Convex Problems

Convex Optimization Problems

\square Standard Form

$$
\begin{array}{lll}
\min & f_{0}(x) & \\
\text { s. t. } & f_{i}(x) \leq 0, & i=1, \ldots, m \\
& a_{i}^{\top} x=b_{i}, & i=1, \ldots, p
\end{array}
$$

- The objective function must be convex
- The inequality constraint functions must be convex
- The equality constraint functions $h_{i}(x)=$ $a_{i}^{\top} x-b_{i}$ must be affine

Convex Optimization Problems

\square Properties
■ Feasible set of a convex optimization problem is convex

$$
\bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{m}\left\{x \mid f_{i}(x) \leq 0\right\} \cap \bigcap_{i=1}^{p}\left\{x \mid a_{i}^{\top} x=b_{i}\right\}
$$

\checkmark Minimize a convex function over a convex set
■ ε-suboptimal set is convex

- The optimal set is convex

■ If the objective is strictly convex, then the optimal set contains at most one point

Concave Maximization Problemss

\square Standard Form

$$
\begin{array}{cll}
\max & f_{0}(x) & \\
\text { s.t. } & f_{i}(x) \leq 0, & i=1, \ldots, m \\
& a_{i}^{\top} x=b_{i}, & i=1, \ldots, p
\end{array}
$$

■ It is referred as a convex optimization problem if f_{0} is concave and f_{1}, \ldots, f_{m} are convex

- It is readily solved by minimizing the convex objective function $-f_{0}$

Abstract Form Convex Optimization Problem

\square Consider the Problem

$$
\begin{array}{ll}
\min & f_{0}(x)=x_{1}^{2}+x_{2}^{2} \\
\text { s.t. } & f_{1}(x)=x_{1} /\left(1+x_{2}^{2}\right) \leq 0 \\
& h_{1}(x)=\left(x_{1}+x_{2}\right)^{2}=0
\end{array}
$$

- Not a convex optimization problem
$\checkmark f_{1}$ is not convex and h_{1} is not affine
■ But the feasible set is indeed convex
- Abstract convex optimization problem
\square An Equivalent Convex Problem

$$
\begin{array}{ll}
\min & f_{0}(x)=x_{1}^{2}+x_{2}^{2} \\
\text { s.t. } & f_{1}(x)=x_{1} \leq 0 \\
& h_{1}(x)=x_{1}+x_{2}=0
\end{array}
$$

Outline

\square Optimization Problems
■ Basic Terminology
■ Equivalent Problems

- Problem Descriptions
\square Convex Optimization
- Standard Form
- Local and Global Optima
- An Optimality Criterion

■ Equivalent Convex Problems

Local and Global Optima

\square Any locally optimal point of a convex problem is also (globally) optimal
\square Proof by Contradiction
■ x is locally optimal implies

$$
f_{0}(x)=\inf \left\{f_{0}(z) \mid z \text { feasible, }\|z-x\|_{2} \leq R\right\}
$$

for some R

- Suppose x is not globally optimal, i.e., there exists $f_{0}(y)<f_{0}(x)$ and $\|y-x\|_{2}>R$
- Define

$$
z=(1-\theta) x+\theta y, \theta=\frac{R}{2\|y-x\|_{2}} \in(0,1)
$$

Local and Global Optima

- By convexity of the feasible set

z is feasible

■ It is easy to check

$$
\|z-x\|_{2}=\|\theta(y-x)\|_{2}=\left\|\frac{R(y-x)}{2\|y-x\|_{2}}\right\|_{2}=\frac{R}{2}<R
$$

- By convexity of f_{0}

$$
f_{0}(z) \leq(1-\theta) f_{0}(x)+\theta f_{0}(y)<f_{0}(x)
$$

which contradicts

$$
f_{0}(x)=\inf \left\{f_{0}(z) \mid z \text { feasible, }\|z-x\|_{2} \leq R\right\}
$$

Outline

\square Optimization Problems
■ Basic Terminology
■ Equivalent Problems

- Problem Descriptions
\square Convex Optimization
- Standard Form
- Local and Global Optima
- An Optimality Criterion

■ Equivalent Convex Problems

An Optimality Criterion for Differentiable f_{0}

\square Suppose f_{0} is differentiable

$$
f_{0}(y) \geq f_{0}(x)+\nabla f_{0}(x)^{\top}(y-x), \forall x, y \in \operatorname{dom} f_{0}
$$

$$
f(y)
$$

$$
f(x)+\nabla f(x)^{T}(y-x)
$$

An Optimality Criterion for Differentiable f_{0}

\square Suppose f_{0} is differentiable

$$
f_{0}(y) \geq f_{0}(x)+\nabla f_{0}(x)^{\top}(y-x), \forall x, y \in \operatorname{dom} f_{0}
$$

\square Let X denote the feasible set

$$
X=\left\{x \mid f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p\right\}
$$

$\square x$ is optimal if and only if $x \in X$ and

$$
\nabla f_{0}(x)^{\top}(y-x) \geq 0 \text { for all } y \in X
$$

An Optimality Criterion for Differentiable f_{0}

$\square x$ is optimal if and only if $x \in X$ and

$$
\nabla f_{0}(x)^{\top}(y-x) \geq 0 \text { for all } y \in X
$$

$\square-\nabla f_{0}(x)$ defines a supporting hyperplane to the feasible set at x

Proof of Optimality Condition

\square Sufficient Condition

$$
\left.\begin{array}{c}
\nabla f_{0}(x)^{\top}(y-x) \geq 0 \\
f_{0}(y) \geq f_{0}(x)+\nabla f_{0}(x)^{\top}(y-x)
\end{array}\right\} \Rightarrow f_{0}(y) \geq f_{0}(x)
$$

\square Necessary Condition
■ Suppose x is optimal but

$$
\exists y \in X, \nabla f_{0}(x)^{\top}(y-x)<0
$$

■ Define $z(t)=t y+(1-t) x, t \in[0,1]$
$f_{0}(z(0))=f_{0}(x),\left.\quad \frac{d}{d t} f_{0}(z(t))\right|_{t=0}=\nabla f_{0}(x)^{\top}(y-x)<0$

- So, for small positive $t, f_{0}(z(t))<f_{0}(x)$

Unconstrained Problems

$\square x$ is optimal if and only if $\nabla f_{0}(x)=0$

- Consider $y=x-t \nabla f_{0}(x)$ and $t>0$
- When t is small, y is feasible

$$
\nabla f_{0}(x)^{\top}(y-x)=-t\left\|\nabla f_{0}(x)\right\|_{2}^{2} \geq 0 \Leftrightarrow \nabla f_{0}(x)=0
$$

\square Unconstrained Quadratic Optimization
$\min f_{0}(x)=(1 / 2) x^{\top} P x+q^{\top} x+r, \quad$ where $P \in \mathbf{S}_{+}^{n}$

- x is optimal if and only if $\nabla f_{0}(x)=P x+q=0$
- If $q \notin \mathcal{R}(P)$, no solution, f_{0} is unbound below
- If $P>0$, unique minimizer $x^{\star}=-P^{-1} q$
- If P is singular, but $q \in \mathcal{R}(P), X_{\text {opt }}=-P^{\dagger} q+\mathcal{N}(P)$

Problems with Equality Constraints Only

\square Consider the Problem

$$
\min f_{0}(x)
$$

s. t. $\quad A x=b$
$\square x$ is optimal if and only if

$$
\nabla f_{0}(x)^{\top}(y-x) \geq 0, \forall A y=b
$$

Problems with Equality Constraints Only

\square Consider the Problem

$$
\min f_{0}(x)
$$

s.t. $\quad A x=b$
Lagrange Multiplier Optimality Condition

$$
\begin{gathered}
A x=b \\
\nabla f_{0}(x)+A^{\top} v=0
\end{gathered}
$$

$\square x$ is optimal if and only if

$$
\left.\begin{array}{rl}
& \nabla f_{0}(x)^{\top}(y-x) \geq 0, \forall A y=b \\
& \{y \mid A y=b\}=\{x+v \mid v \in \mathcal{N}(A)\}
\end{array}\right\}
$$

Minimization over the Nonnegative Orthant

\square Consider the Problem

$$
\begin{array}{cc}
\min & f_{0}(x) \\
\text { s.t. } & x \succcurlyeq 0
\end{array}
$$

$\square x$ is optimal if and only if

$$
\begin{aligned}
& \nabla f_{0}(x)^{\top}(y-x) \geq 0, \forall y \geqslant 0 \\
\Leftrightarrow & \left\{\begin{array} { c }
{ \nabla f _ { 0 } (x) \geqslant 0 } \\
{ - \nabla f _ { 0 } (x) ^ { \top } x \geq 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
\nabla f_{0}(x) \geqslant 0 \\
\nabla f_{0}(x)^{\top} x=0
\end{array}\right.\right.
\end{aligned}
$$

\square The Optimality Condition
$x \geqslant 0, \quad \nabla f_{0}(x) \succcurlyeq 0, \quad x_{i}\left(\nabla f_{0}(x)\right)_{i}=0, i=1, \ldots, n$
\square The last condition is called complementarity

Outline

\square Optimization Problems
■ Basic Terminology
■ Equivalent Problems

- Problem Descriptions
\square Convex Optimization
- Standard Form
- Local and Global Optima
- An Optimality Criterion

■ Equivalent Convex Problems

Equivalent Convex Problems

\square Standard Form

$$
\begin{array}{cll}
\min & f_{0}(x) & \\
\text { s.t. } & f_{i}(x) \leq 0, & i=1, \ldots, m \\
& a_{i}^{\top} x=b_{i}, & i=1, \ldots, p
\end{array}
$$

\square Eliminating Equality Constraints

$$
\begin{array}{cl}
\min & f_{0}\left(F z+x_{0}\right) \\
\text { s.t. } & f_{i}\left(F z+x_{0}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

- $A=\left[a_{1}^{\top} ; \ldots ; a_{p}^{\top}\right], b=\left(b_{1} ; \ldots ; b_{p}\right)$
- $A x_{0}=b, \mathcal{R}(F)=\mathcal{N}(A)$
- The composition of a convex function with an affine function is convex

Equivalent Convex Problems

- Introducing Equality Constraints
- If an objective or constraint function has the form $f_{i}\left(A_{i} x+b_{i}\right)$, where $A_{i} \in \mathbf{R}^{k_{i} \times n}$, we can replace it with $f_{i}\left(y_{i}\right)$ and add the constraint $y_{i}=$ $A_{i} x+b_{i}$, where $y_{i} \in \mathbf{R}^{k_{i}}$
\square Slack Variables
- Introduce new constraint $f_{i}(x)+s_{i}=0$ and requiring that f_{i} is affine
- Introduce slack variables for linear inequalities preserves convexity of a problem
\square Minimizing over Some Variables
■ It preserves convexity
- $f_{0}\left(x_{1}, x_{2}\right)$ needs to be jointly convex in x_{1} and x_{2}

Equivalent Convex Problems

- Epigraph Problem Form
$\min t$
s. t. $\quad f_{0}(x)-t \leq 0$

$$
\begin{array}{ll}
f_{i}(x) \leq 0, & i=1, \ldots, m \\
a_{i}^{\top} x=b_{i}, & i=1, \ldots, p
\end{array}
$$

■ The objective is linear (hence convex)

- The new constraint function $f_{0}(x)-t$ is also convex in (x, t)
- This problem is convex
- Any convex optimization problem is readily transformed to one with linear objective

Summary

\square Optimization Problems

- Basic Terminology

■ Equivalent Problems
■ Problem Descriptions
\square Convex Optimization

- Standard Form
- Local and Global Optima
- An Optimality Criterion

■ Equivalent Convex Problems

