Convex optimization problems (II)

Lijun Zhang
zlj@nju.edu.cn
http://cs.nju. edu. cn/zlj

Outline
\square Linear Optimization Problems
\square Quadratic Optimization Problems
\square Geometric Programming
\square Generalized Inequality Constraints

Linear Optimization Problems

\square Linear Program (LP)

$$
\begin{array}{cl}
\min & c^{\top} x+d \\
\text { s.t. } & G x \leqslant h \\
& A x=b
\end{array}
$$

■ $G \in \mathbf{R}^{m \times n}$ and $A \in \mathbf{R}^{p \times n}$
■ It is common to omit the constant d

- Maximization problem with affine objective and constraint functions is also an LP
- The feasible set of LP is a polyhedron \mathcal{P}

Linear Optimization Problems

\square Geometric Interpretation of an LP

- The objective $c^{\top} x$ is linear, so its level curves are hyperplanes orthogonal to c
■ x^{*} is as far as possible in the direction $-c$

Two Special Cases of LP

\square Standard Form LP

$$
\begin{array}{ll}
\min & c^{\top} x \\
\text { s.t. } & A x=b \\
& x \succcurlyeq 0
\end{array}
$$

- The only inequalities are $x \geqslant 0$
\square Inequality Form LP

$$
\begin{array}{cl}
\min & c^{\top} x \\
\text { s.t. } & A x \leqslant b
\end{array}
$$

■ No equality constraints

Converting to Standard Form

\square Conversion

$$
\begin{array}{ll}
\min & c^{\top} x+d \\
\text { s.t. } & G x \leqslant h \\
& A x=b
\end{array} \quad \Rightarrow \quad \begin{array}{cl}
\min & c^{\top} x \\
\text { s.t. } & A x=b \\
& x \geqslant 0
\end{array}
$$

- To use an algorithm for standard LP
\square Introduce Slack Variables s

min	$c^{\top} x+d$			
s. t.	$G x \leqslant h$			
	$A x=b$	$\quad \Rightarrow \quad$	\min	$c^{\top} x+d$
:---	:---			

Converting to Standard Form

\square Decompose x

$$
x=x^{+}-x^{-}, \quad x^{+}, x^{-} \succcurlyeq 0
$$

\square Standard Form LP

$$
\begin{array}{llll}
\min & c^{\top} x+d \\
\text { s.t. } & G x+s=h \Rightarrow & \min & c^{\top} x^{+}-c^{\top} x^{-}+d \\
& A x=b \\
& s \succcurlyeq 0 & \text { s.t. } & G x^{+}-G x^{-}+s=h \\
& & A x^{+}-A x^{-}=b \\
& & x^{+} \succcurlyeq 0, x^{-} \succcurlyeq 0, s \succcurlyeq 0
\end{array}
$$

Example

\square Diet Problem

- Choose nonnegative quantities x_{1}, \ldots, x_{n} of n foods
- One unit of food j contains amount $a_{i j}$ of nutrient i, and costs c_{j}
- Healthy diet requires nutrient i in quantities at least b_{i}
■ Determine the cheapest diet that satisfies the nutritional requirements

$$
\begin{array}{ll}
\min & c^{\top} x \\
\text { s.t. } & A x \succcurlyeq b \\
& x \succcurlyeq 0
\end{array}
$$

Example

\square Chebyshev Center of a Polyhedron

- Find the largest Euclidean ball that lies in the polyhedron

$$
\mathcal{P}=\left\{x \in \mathbf{R}^{n} \mid a_{i}^{\top} x \leq b_{i}, i=1, \ldots, m\right\}
$$

- The center of the optimal ball is called the Chebyshev center of the polyhedron
■ Represent the ball as $\mathcal{B}=\left\{x_{c}+u \mid\|u\|_{2} \leq r\right\}$
■ $x_{c} \in \mathbf{R}^{n}$ and r are variables, and we wish to maximize r subject to $\mathcal{B} \subseteq \mathcal{P}$
■ $\forall x \in \mathcal{B}, a_{i}^{\top} x \leq b_{i} \Leftrightarrow a_{i}^{\top}\left(x_{c}+u\right) \leq b_{i},\|u\|_{2} \leq r \Leftrightarrow$ $a_{i}^{\top} x_{c}+\sup \left\{a_{i}^{\top} u \mid\|u\|_{2} \leq r\right\} \leq b_{i} \Leftrightarrow a_{i}^{\top} x_{c}+r\left\|a_{i}\right\|_{2} \leq$ b_{i}

Example

\square Chebyshev Center of a Polyhedron

- Find the largest Euclidean ball that lies in the polyhedron

$$
\mathcal{P}=\left\{x \in \mathbf{R}^{n} \mid a_{i}^{\top} x \leq b_{i}, i=1, \ldots, m\right\}
$$

■ The center of the optimal ball is called the Chebyshev center of the polyhedron
■ Represent the ball as $\mathcal{B}=\left\{x_{c}+u \mid\|u\|_{2} \leq r\right\}$
■ $x_{c} \in \mathbf{R}^{n}$ and r are variables, and we wish to maximize r subject to $\mathcal{B} \subseteq \mathcal{P}$

```
max r
    s.t. }\quad\mp@subsup{a}{i}{\top}\mp@subsup{x}{c}{}+r|\mp@subsup{a}{i}{}\mp@subsup{|}{2}{}\leq\mp@subsup{b}{i}{},\quadi=1,\ldots,
```


Example

\square Piecewise-linear Minimization
■ Consider the (unconstrained) problem

$$
f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{\top} x+b_{i}\right)
$$

- The epigraph problem

$$
\begin{array}{cl}
\min & t \\
\text { s.t. } & \max _{i=1, \ldots, m}\left(a_{i}^{\top} x+b_{i}\right) \leq t
\end{array}
$$

- An LP problem
$\min t$
s.t. $\quad a_{i}^{\top} x+b_{i} \leq t, \quad i=1, \ldots, m$

Outline
\square Linear Optimization Problems
\square Quadratic Optimization Problems
\square Geometric Programming
\square Generalized Inequality Constraints

Quadratic Optimization Problems

\square Quadratic Program (QP)

$$
\begin{array}{ll}
\min & (1 / 2) x^{\top} P x+q^{\top} x+r \\
\text { s.t. } & G x \preccurlyeq h \\
& A x=b
\end{array}
$$

■ $P \in \mathbf{S}_{+}^{n}, G \in \mathbf{R}^{m \times n}$ and $A \in \mathbf{R}^{p \times n}$

- The objective function is (convex) quadratic
■ The constraint functions are affine
■ When $P=0$, QP becomes LP

Quadratic Optimization Problems

\square Geometric Illustration of QP

■ The feasible set \mathcal{P} is a polyhedron

- The contour lines of the objective function are shown as dashed curves

Quadratic Optimization Problems

\square Quadratically Constrained Quadratic Program (QCQP)

$$
\begin{array}{ll}
\min & (1 / 2) x^{\top} P_{0} x+q_{0}^{\top} x+r_{0} \\
\text { s. t. } & (1 / 2) x^{\top} P_{i} x+q_{i}^{\top} x+r_{i} \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

■ $P_{i} \in \mathbf{S}_{+}^{n}, i=0, \ldots, m$

- The inequality constraint functions are (convex) quadratic
■ The feasible set is the intersection of ellipsoids (when $P_{i}>0$) and an affine set
■ Include QP as a special case

Examples

\square Least-squares and Regression

$$
\min \|A x-b\|_{2}^{2}=x^{\top} A^{\top} A x-2 b^{\top} A x+b^{\top} b
$$

- Analytical solution: $x=A^{\dagger} b$
- Can add linear constraints, e.g., $l \leqslant x \leqslant u$
\square Distance Between Polyhedra

$$
\begin{array}{cl}
\min & \left\|x_{1}-x_{2}\right\|_{2}^{2} \\
\text { s.t. } & A_{1} x_{1} \leqslant b_{1}, \quad A_{2} x_{2} \leqslant b_{2}
\end{array}
$$

- Find the distance between the polyhedra $\mathcal{P}_{1}=\left\{x \mid A_{1} x \leqslant b_{1}\right\}$ and $\mathcal{P}_{2}=\left\{x \mid A_{2} x \leqslant b_{2}\right\}$ $\operatorname{dist}\left(\mathcal{P}_{1}, \mathcal{P}_{2}\right)=\inf \left\{\left\|x_{1}-x_{2}\right\|_{2} \mid x_{1} \in \mathcal{P}_{1}, x_{2} \in \mathcal{P}_{2}\right\}$

Second-order Cone Programming

\square Second-order Cone Program (SOCP) $\min f^{\top} x$
s.t. $\quad\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{\top} x+d_{i}, \quad i=1, \ldots, m$

$$
F x=g
$$

- $A_{i} \in \mathbf{R}^{n_{i} \times n}, F \in \mathbf{R}^{p \times n}$

■ Second-order Cone (SOC) constraint: $\|A x+b\|_{2} \leq c^{\top} x+d$ where $A \in \mathbf{R}^{k \times n}$, is same as requiring $\left(A x+b, c^{\top} x+d\right) \in \operatorname{SOC}$ in \mathbf{R}^{k+1}

$$
\begin{aligned}
\text { SOC } & =\left\{(x, t) \in \mathbf{R}^{k+1} \mid\|x\|_{2} \leq t\right\} \\
& =\left\{\left[\begin{array}{l}
x \\
t
\end{array}\right] \left\lvert\,\left[\begin{array}{l}
x \\
t
\end{array}\right]^{\top}\left[\begin{array}{cc}
I & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
t
\end{array}\right] \leq 0\right., t \geq 0\right\}
\end{aligned}
$$

Second-order Cone Programming

\square Second-order Cone Program (SOCP) $\min f^{\top} x$
s.t. $\quad\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{\top} x+d_{i}, \quad i=1, \ldots, m$

$$
F x=g
$$

- $A_{i} \in \mathbf{R}^{n_{i} \times n}, F \in \mathbf{R}^{p \times n}$

■ Second-order Cone (SOC) constraint: $\|A x+b\|_{2} \leq c^{\top} x+d$ where $A \in \mathbf{R}^{k \times n}$, is same as requiring $\left(A x+b, c^{\top} x+d\right) \in$ SOC in \mathbf{R}^{k+1}
■ If $c_{i}=0, i=1, \ldots, m$, it reduces to QCQP by squaring each inequality constraint

- More general than QCQP and LP

Example

\square Robust Linear Programming

$$
\begin{array}{cl}
\min & c^{\top} x \\
\text { s. t. } & a_{i}^{\top} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

- There can be uncertainty in a_{i}
- Assume a_{i} are known to lie in ellipsoids

$$
a_{i} \in \varepsilon_{i}=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\}, P_{i} \in R^{n \times n}
$$

- The constraints must hold for all $a_{i} \in \mathcal{E}_{i}$ $\min c^{\top} x$
s.t. $\quad a_{i}^{\top} x \leq b_{i}$ for all $a_{i} \in \mathcal{E}_{i}, \quad i=1, \ldots, m$
$\min c^{\top} x$
s. t. $\quad \sup \left\{a_{i}^{\top} x \mid a_{i} \in \mathcal{E}_{i}\right\} \leq b_{i}, \quad i=1, \ldots, m$

Example

Note that

$$
\begin{aligned}
\sup \left\{a_{i}^{\top} x \mid a_{i} \in \mathcal{E}_{i}\right\} & =\bar{a}_{i}^{\top} x+\sup \left\{u^{\top} P_{i}^{\top} x \mid\|u\|_{2} \leq 1\right\} \\
& =\bar{a}_{i}^{\top} x+\left\|P_{i}^{\top} x\right\|_{2}
\end{aligned}
$$

- Robust linear constraint

$$
\bar{a}_{i}^{\top} x+\left\|P_{i}^{\top} x\right\|_{2} \leq b_{i}
$$

- SOCP
$\min c^{\top} x$
s.t. $\quad \bar{a}_{i}^{\top} x+\left\|P_{i}^{\top} x\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m$

Outline
\square Linear Optimization Problems
\square Quadratic Optimization Problems
\square Geometric Programming
\square Generalized Inequality Constraints

Definitions

\square Monomial Function

$$
f(x)=c x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}
$$

$\square f: \mathbf{R}^{n} \rightarrow \mathbf{R}, \operatorname{dom} f=\mathbf{R}_{++}^{n}, c>0$ and $a_{i} \in \mathbf{R}$

- Closed under multiplication, division, and nonnegative scaling
\square Posynomial Function

$$
f(x)=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \ldots x_{n}^{a_{n k}}
$$

- Closed under addition, multiplication, and nonnegative scaling

Geometric Programming (GP)

\square The Problem

$$
\begin{array}{ll}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 1, \quad i=1, \ldots, m \\
& h_{i}(x)=1, \quad i=1, \ldots, p
\end{array}
$$

- f_{0}, \ldots, f_{m} are posynomials
- h_{1}, \ldots, h_{p} are monomials
- Domain of the problem

$$
\mathcal{D}=\mathbf{R}_{++}^{n}
$$

■ Implicit constraint: $x>0$

Extensions of GP

$\square f$ is a posynomial and h is a monomial

$$
f(x) \leq h(x) \Leftrightarrow \frac{f(x)}{h(x)} \leq 1
$$

$\square h_{1}$ and h_{2} are nonzero monomials

$$
h_{1}(x)=h_{2}(x) \Leftrightarrow \frac{h_{1}(x)}{h_{2}(x)}=1
$$

\square Maximize a nonzero monomial objective function by minimizing its inverse

$$
\begin{array}{ll}
\max & x / y \\
\text { s.t. } & 2 \leq x \leq 3 \\
& x^{2}+3 y / z \leq \sqrt{y} \\
& x / y=z^{2}
\end{array} \Leftrightarrow \begin{array}{ll}
\min & x^{-1} y \\
\text { s.t. } & 2 x^{-1} \leq 1,(1 / 3) x \leq 1 \\
& \\
x^{2} y^{-1 / 2}+y^{1 / 2} z^{-1} \leq 1 \\
& x y^{-1} z^{-2}=1
\end{array}
$$

GP in Convex Form

\square Change of Variables $y_{i}=\log x_{i}$

- f is the monomial function

$$
\begin{aligned}
f(x) & =c x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}, \quad x_{i}=e^{y_{i}} \\
f(x) & =f\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)=c\left(e^{y_{1}}\right)^{a_{1}} \cdots\left(e^{y_{n}}\right)^{a_{n}} \\
& =e^{a_{1} y_{1}+\cdots+a_{n} y_{n}+\log c}=e^{a^{\top} y+b}
\end{aligned}
$$

- f is the posynomial function

$$
\begin{aligned}
& f(x)=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \ldots x_{n}^{a_{n k}} \\
& f(x)=\sum_{k=1}^{K} e^{a_{k}^{\top} y+b_{k}}
\end{aligned}
$$

GP in Convex Form

\square New Form

$$
\begin{array}{ll}
\min & \sum_{k=1}^{K_{0}} e^{a_{0 k}^{\top} y+b_{0 k}} \\
\text { s.t. } & \sum_{k=1}^{K_{i}} e^{a_{i k}^{\top} y+b_{i k}} \leq 1, \quad i=1, \ldots, m \\
& e^{g_{i}^{\top} y+h_{i}}=1, \quad i=1, \ldots, p
\end{array}
$$

\square Taking the Logarithm

$\min \quad \tilde{f}_{0}(y)=\log \left(\sum_{k=1}^{K_{0}} e^{a_{0 k}^{\top} y+b_{0 k}}\right)$
s. t. $\quad \tilde{f}_{i}(y)=\log \left(\sum_{k=1}^{K_{i}} e^{a_{i k}^{\top} y+b_{i k}}\right) \leq 0, \quad i=1, \ldots, m$

$$
\tilde{h}_{i}(y)=g_{i}^{\top} y+h_{i}=0, \quad i=1, \ldots, p
$$

Example

\square Frobenius Norm Diagonal Scaling
■ Given a matrix $M \in \mathbf{R}^{n \times n}$
■ Choose a diagonal matrix D such that $D M D^{-1}$ is small

$$
\begin{aligned}
\left\|D M D^{-1}\right\|_{F}^{2} & =\operatorname{tr}\left(\left(D M D^{-1}\right)^{\top}\left(D M D^{-1}\right)\right)=\sum_{i, j=1}^{n}\left(D M D^{-1}\right)_{i j}^{2} \\
& =\sum_{i, j=1}^{n} M_{i j}^{2} d_{i}^{2} / d_{j}^{2}
\end{aligned}
$$

■ Unconstrained GP

$$
\min \sum_{i, j=1}^{n} M_{i j}^{2} d_{i}^{2} / d_{j}^{2}
$$

Outline
\square Linear Optimization Problems
\square Quadratic Optimization Problems
\square Geometric Programming
\square Generalized Inequality Constraints

Generalized I nequality Constraints

- Convex Optimization Problem with Generalized Inequality Constraints

$$
\begin{array}{ll}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \preccurlyeq_{K_{i}} 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex;
- $K_{i} \subseteq \mathbf{R}^{k_{i}}$ are proper cones
$\square f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k_{i}}$ is K_{i}-convex w.r.t. proper cone $K_{i} \subseteq \mathbf{R}^{k_{i}}$

Generalized I nequality Constraints

- Convex Optimization Problem with Generalized Inequality Constraints

$$
\begin{array}{ll}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \preccurlyeq_{K_{i}} 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

■ The feasible set, any sublevel set, and the optimal set are convex

- Any locally optimal is globally optimal
- The optimality condition for differentiable f_{0} holds without change

Conic Form Problems

\square Conic Form Problems

$$
\begin{array}{ll}
\min & c^{\top} x \\
\text { s.t. } & F x+g \preccurlyeq_{K} 0 \\
& A x=b
\end{array}
$$

- A linear objective
- One inequality constraint function which is affine
- A generalization of linear programs

Conic Form Problems

\square Conic Form Problems

$$
\begin{array}{ll}
\min & c^{\top} x \\
\text { s. t. } & F x+g \preccurlyeq_{K} 0 \\
& A x=b
\end{array}
$$

\square Standard Form

$$
\begin{array}{ll}
\min & c^{\top} x \\
\text { s.t. } & x \succcurlyeq_{K} 0 \\
& A x=b
\end{array}
$$

\square Inequality Form

$$
\begin{array}{cl}
\min & c^{\top} x \\
\text { s.t. } & F x+g \preccurlyeq_{K} 0
\end{array}
$$

Semidefinite Programming

\square Semidefinite Program (SDP)

$$
\begin{array}{ll}
\min & c^{\top} x \\
\text { s. t. } & x_{1} F_{1}+\cdots+x_{n} F_{n}+G \preccurlyeq 0 \\
& A x=b
\end{array}
$$

- $K=\mathbf{S}_{+}^{k}$
$\square G, F_{1}, \ldots, F_{n} \in \mathbf{S}^{k}$ and $A \in \mathbf{R}^{p \times n}$
- Linear matrix inequality (LMI)

■ If G, F_{1}, \ldots, F_{n} are all diagonal, LMI is equivalent to a set of n linear inequalities, and SDP reduces to LP

Semidefinite Programming

\square Standard From SDP

$$
\begin{array}{ll}
\min & \operatorname{tr}(C X) \\
\text { s. t. } & \operatorname{tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, p \\
& X \succcurlyeq 0
\end{array}
$$

■ $X \in \mathbf{S}^{n}$ is the variable and $C, A_{1}, \ldots, A_{p} \in \mathbf{S}^{n}$

- p linear equality constraints

■ A nonnegativity constraint
\square Inequality Form SDP

$$
\begin{array}{cl}
\min & c^{\top} x \\
\text { s.t. } & x_{1} A_{1}+\cdots+x_{n} A_{n} \leqslant B
\end{array}
$$

- $B, A_{1}, \ldots, A_{p} \in \mathbf{S}^{k}$ and no equality constraint

Semidefinite Programming

\square Multiple LMIs and Linear Inequalities $\min c^{\top} x$
s.t. $\quad F^{(i)}(x)=x_{1} F_{1}^{(i)}+\cdots+x_{n} F_{n}^{(i)}+G^{(i)} \leqslant 0, i=1, \ldots, K$

$$
G x \preccurlyeq h, \quad A x=b
$$

■ It is referred as SDP as well
\square Be transformed as
$\min c^{\top} x$
s. t. $\quad \operatorname{diag}\left(G x-h, F^{(1)}(x), \ldots, F^{(K)}(x)\right) \leqslant 0$

$$
A x=b
$$

- A standard SDP

Examples

\square Second-order Cone Programming
$\min c^{\top} x$

$$
\begin{array}{ll}
\text { s.t. } & \left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{\top} x+d_{i}, \quad i=1, \ldots, m \\
& F x=g
\end{array}
$$

- A conic form problem
$\min c^{\top} x$
s.t. $\quad-\left(A_{i} x+b_{i}, c_{i}^{\top} x+d_{i}\right) \preccurlyeq_{K_{i}} 0, \quad i=1, \ldots, m$

$$
F x=g
$$

in which

$$
K_{i}=\left\{(y, t) \in \mathbf{R}^{n_{i}+1} \mid\|y\|_{2} \leq t\right\}
$$

Example

\square Matrix Norm Minimization
$\min \|A(x)\|_{2}=\left(\lambda_{\max }\left(A(x)^{\top} A(x)\right)\right)^{1 / 2}$
$\square A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}$ and $A_{i} \in \mathbf{R}^{p \times q}$
\square Fact: $\|A\|_{2} \leq t \Leftrightarrow A^{\top} A \leqslant t^{2} I$
\square A New Problem
$\min \|A(x)\|_{2}^{2} \Leftrightarrow \underset{\text { s. t. }}{\min } \stackrel{s}{\|A(x)\|_{2}^{2} \leqslant s}$

Example

\square Matrix Norm Minimization
$\min \quad\|A(x)\|_{2}=\left(\lambda_{\max }\left(A(x)^{\top} A(x)\right)\right)^{1 / 2}$
$\square A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}$ and $A_{i} \in \mathbf{R}^{p \times q}$
■ Fact: $\|A\|_{2} \leq t \Leftrightarrow A^{\top} A \leqslant t^{2} I$
\square A New Problem
$\begin{array}{cc}\text { min } & s \\ \text { s.t. } & A(x)^{\top} A(x) \leqslant s I\end{array}{ }_{\text {min }}{ }^{s}{ }_{\text {s.t. }} \quad A(x)^{\top} A(x)-s I \leqslant 0$

- $A(x)^{\top} A(x)-s I$ is matrix convex

Example

\square Matrix Norm Minimization

$$
\min \quad\|A(x)\|_{2}=\left(\lambda_{\max }\left(A(x)^{\top} A(x)\right)\right)^{1 / 2}
$$

$\square A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}$ and $A_{i} \in \mathbf{R}^{p \times q}$

- Fact:

$$
\|A\|_{2} \leq t \Leftrightarrow A^{\top} A \preccurlyeq t^{2} I \Leftrightarrow\left[\begin{array}{cc}
t I & A \\
A^{\top} & t I
\end{array}\right] \succcurlyeq 0
$$

\square SDP

$$
\begin{array}{ccc}
\min & t & \\
\text { s.t. } & {\left[\begin{array}{cc}
t I & A(x) \\
A(x)^{\top} & t I
\end{array}\right] \succcurlyeq 0}
\end{array}
$$

■ A single linear matrix inequality

Summary

\square Linear Optimization Problems
\square Quadratic Optimization Problems
\square Geometric Programming
\square Generalized Inequality Constraints

