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More Symmetric Form

 Assume no equality constraint

 Suppose ௜ for some . Then, 
ఒ≽଴ by ௝ and ௜

 If ௜ , then the optimal 
choice of is and ఒ≽଴ ଴

sup
ఒ≽଴

𝐿 𝑥, 𝜆 ൌ sup
ఒ≽଴

𝑓଴ 𝑥 ൅ ෍ 𝜆௜𝑓௜ 𝑥
௠

௜ୀଵ

ൌ  ቊ𝑓଴ 𝑥         𝑓௜ 𝑥 ൑ 0,    𝑖 ൌ 1, … , 𝑚
∞                                         otherwise



More Symmetric Form

 Optimal Value of Primal Problem

 Optimal Value of Dual Problem

 Weak Duality

 Strong Duality

 Min and Max can be switched

𝑝⋆ ൌ inf
௫

sup
ఒ≽଴

𝐿 𝑥, 𝜆

𝑑⋆ ൌ sup
ఒ≽଴

inf
௫

𝐿 𝑥, 𝜆

sup
ఒ≽଴

inf
௫

𝐿 𝑥, 𝜆 ൑ inf
௫

sup
ఒ≽଴

𝐿 𝑥, 𝜆

sup
ఒ≽଴

inf
௫

𝐿 𝑥, 𝜆 ൌ inf
௫

sup
ఒ≽଴

𝐿 𝑥, 𝜆



A More General Form

 Max-min Inequality

 For any ௡ ௠ and any
௡ ௠

 Strong Max-min Property

 Hold only in special cases

sup
௭∈௓

inf
௪∈ௐ

𝑓 𝑤, 𝑧 ൑ inf
௪∈ௐ

sup
௭∈௓

𝑓 𝑤, 𝑧

sup
௭∈௓

inf
௪∈ௐ

𝑓 𝑤, 𝑧 ൌ inf
௪∈ௐ

sup
௭∈௓

𝑓 𝑤, 𝑧
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Saddle-point Interpretation

 is a saddle point for 

 minimizes , maximizes 
𝑓 𝑤෥, 𝑧 ൑ 𝑓 𝑤෥, 𝑧 ൑ 𝑓 𝑤, 𝑧 , ∀𝑤 ∈ 𝑊, 𝑧 ∈ 𝑍

𝑓 𝑤෥, 𝑧 ൌ inf
௪∈ௐ

𝑓ሺ𝑤, 𝑧ሻ , 𝑓 𝑤෥, 𝑧 ൌ sup
௭∈௓

𝑓 𝑤෥, 𝑧

https://en.wikipedia.org/wiki/Saddle_point



Saddle-point Interpretation

 is a saddle point for 

 minimizes , maximizes 

 Imply the strong max-min property 
𝑓 𝑤෥, 𝑧 ൌ inf

௪∈ௐ
𝑓ሺ𝑤, 𝑧ሻ , 𝑓 𝑤෥, 𝑧 ൌ sup

௭∈௓
𝑓 𝑤෥, 𝑧

sup
௭∈௓

inf
௪∈ௐ

𝑓 𝑤, 𝑧 ൒ inf
௪∈ௐ

𝑓ሺ𝑤, 𝑧ሻ ൌ 𝑓 𝑤෥, 𝑧  

𝑓 𝑤෥, 𝑧 ൌ sup
௭∈௓

𝑓 𝑤෥, 𝑧 ൒ inf
௪∈ௐ

sup
௭∈௓

𝑓 𝑤, 𝑧  ቑ

⇒ sup
௭∈௓

inf
௪∈ௐ

𝑓 𝑤, 𝑧 ൌ inf
௪∈ௐ

sup
௭∈௓

𝑓 𝑤, 𝑧

⇒ sup
௭∈௓

inf
௪∈ௐ

𝑓 𝑤, 𝑧 ൒ inf
௪∈ௐ

sup
௭∈௓

𝑓 𝑤, 𝑧

𝑓 𝑤෥, 𝑧 ൑ 𝑓 𝑤෥, 𝑧 ൑ 𝑓 𝑤, 𝑧 , ∀𝑤 ∈ 𝑊, 𝑧 ∈ 𝑍



Saddle-point Interpretation

 is a saddle point for 

 minimizes , maximizes 

 If ⋆ ⋆ are primal and dual optimal 
points and strong duality holds, ⋆ ⋆

form a saddle-point.
 If is saddle-point, then is primal 

optimal, is dual optimal, and the 
duality gap is zero.

𝑓 𝑤෥, 𝑧 ൌ inf
௪∈ௐ

𝑓ሺ𝑤, 𝑧ሻ , 𝑓 𝑤෥, 𝑧 ൌ sup
௭∈௓

𝑓 𝑤෥, 𝑧

𝑓 𝑤෥, 𝑧 ൑ 𝑓 𝑤෥, 𝑧 ൑ 𝑓 𝑤, 𝑧 , ∀𝑤 ∈ 𝑊, 𝑧 ∈ 𝑍
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Certificate of Suboptimality

 Dual Feasible 
 A lower bound on the optimal value

of the primal problem
⋆

 Provides a proof or certificate

 Bound how suboptimal a given feasible 
point is, without knowing the value of ⋆

଴
⋆

଴
 𝑥 is 𝜖-suboptimal for primal problem 
 (𝜆, 𝜈ሻ is 𝜖-suboptimal for dual



Certificate of Suboptimality

 Gap between Primal & Dual Objectives
଴

 Referred to as duality gap associated with 
primal feasible and dual feasible 

 localizes the optimal value of the
primal (and dual) problems to an interval 

⋆
଴

⋆
଴

 The width of the interval is the duality gap

 If duality gap of is , then is 
primal optimal and is dual optimal



Stopping Criteria

 Optimization algorithms produce a 
sequence of primal feasible ௞ and dual 
feasible ௞ ௞ for 

 Required absolute accuracy: ୟୠୱ

 A Nonheuristic Stopping Criterion
଴

௞ ௞ ௞
ୟୠୱ

 Guarantees when algorithm terminates, ௞

is ୟୠୱ-suboptimal



Stopping Criteria

 A Relative Accuracy ୰ୣ୪

 Nonheuristic Stopping Criteria
 If 

𝑔 𝜆 ௞ , 𝜈 ௞ ൐ 0,     
𝑓଴ 𝑥 ௞ െ 𝑔 𝜆 ௞ , 𝜈 ௞

𝑔 𝜆 ௞ , 𝜈 ௞ ൑ 𝜖୰ୣ୪

or

𝑓଴ 𝑥 ௞ ൏ 0,         
𝑓଴ 𝑥 ௞ െ 𝑔 𝜆 ௞ , 𝜈 ௞

െ𝑓଴ 𝑥 ௞ ൑ 𝜖୰ୣ୪

 Then ⋆ , and the relative error satisfies  
𝑓଴ 𝑥 ௞ െ 𝑝⋆

|𝑝⋆| ൑ 𝜖୰ୣ୪
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Complementary Slackness

 Suppose Strong Duality Holds
 For primal optimal ⋆ & dual optimal ⋆ ⋆

 First line: the optimal duality gap is zero
 Second line: definition of the dual function
 Third line: infimum of Lagrangian over 𝑥 is 

less than or equal to its value at 𝑥 ൌ 𝑥⋆

𝑓଴ 𝑥⋆ ൌ 𝑔 𝜆⋆, 𝜈⋆

ൌ inf
௫

 𝑓଴ 𝑥 ൅ ∑ 𝜆௜
⋆𝑓௜ 𝑥௠

௜ୀଵ ൅ ∑ 𝜈௜
⋆ℎ௜ 𝑥௣

௜ୀଵ

൑ 𝑓଴ 𝑥⋆ ൅ ∑ 𝜆௜
⋆𝑓௜ 𝑥⋆ ൅ ∑ 𝜈௜

⋆ℎ௜ 𝑥⋆௣
௜ୀଵ

௠
௜ୀଵ

൑ 𝑓଴ሺ𝑥⋆ሻ



Complementary Slackness

 Suppose Strong Duality Holds
 For primal optimal ⋆ & dual optimal ⋆ ⋆

 Last line: 𝜆௜
⋆ ൒ 0, 𝑓௜ 𝑥⋆ ൑ 0, 𝑖 ൌ 1, … , 𝑚 and 

ℎ௜ 𝑥⋆ ൌ 0, 𝑖 ൌ 1, … , 𝑝
 We conclude that the two inequalities in this 

chain hold with equality

𝑓଴ 𝑥⋆ ൌ 𝑔 𝜆⋆, 𝜈⋆

ൌ inf
௫

 𝑓଴ 𝑥 ൅ ∑ 𝜆௜
⋆𝑓௜ 𝑥௠

௜ୀଵ ൅ ∑ 𝜈௜
⋆ℎ௜ 𝑥௣

௜ୀଵ

൑ 𝑓଴ 𝑥⋆ ൅ ∑ 𝜆௜
⋆𝑓௜ 𝑥⋆ ൅ ∑ 𝜈௜

⋆ℎ௜ 𝑥⋆௣
௜ୀଵ

௠
௜ୀଵ

൑ 𝑓଴ሺ𝑥⋆ሻ



Complementary Slackness

 Suppose Strong Duality Holds
 For primal optimal ⋆ & dual optimal ⋆ ⋆

 Equality in the third line implies 𝑥⋆ minimizes 
𝐿 𝑥, 𝜆⋆, 𝜈⋆

 Equality in the last line implies ∑ 𝜆௜
⋆𝑓௜ 𝑥⋆௠

௜ୀଵ ൌ 0

𝑓଴ 𝑥⋆ ൌ 𝑔 𝜆⋆, 𝜈⋆

ൌ inf
௫

 𝑓଴ 𝑥 ൅ ∑ 𝜆௜
⋆𝑓௜ 𝑥௠

௜ୀଵ ൅ ∑ 𝜈௜
⋆ℎ௜ 𝑥௣

௜ୀଵ

ൌ 𝑓଴ 𝑥⋆ ൅ ∑ 𝜆௜
⋆𝑓௜ 𝑥⋆ ൅ ∑ 𝜈௜

⋆ℎ௜ 𝑥⋆௣
௜ୀଵ

௠
௜ୀଵ

ൌ 𝑓଴ሺ𝑥⋆ሻ



Complementary Slackness

 Complementary Slackness

 Derived from ௜
⋆

௜
⋆௠

௜ୀଵ

 Holds for any primal optimal ⋆ and dual 
optimal ⋆ ⋆ (when strong duality holds)

 Other expressions
௜
⋆

௜
⋆

௜
⋆

௜
⋆

 𝑖-th optimal Lagrange multiplier is 0 unless 𝑖-
th constraint is active at the optimum 𝑓௜ 𝑥⋆ ൌ 0

𝜆௜
⋆𝑓௜ 𝑥⋆ ൌ 0, 𝑖 ൌ 1, … , 𝑚
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KKT Conditions for Nonconvex 
Problems

 ⋆ and ⋆ ⋆ : any primal and dual 
optimal points with zero duality gap
 ⋆ minimizes ⋆ ⋆

⋆ ⋆ ⋆

଴
⋆

௜
⋆

௜
⋆

௜
⋆

௜
⋆

௣

௜ୀଵ

௠

௜ୀଵ



KKT Conditions for Nonconvex 
Problems

 ⋆ and ⋆ ⋆ : any primal and dual 
optimal points with zero duality gap

 Karush-Kuhn-Tucker (KKT) conditions

                                  𝑓௜ 𝑥⋆ ൑ 0,              𝑖 ൌ 1, … , 𝑚
                                ℎ௜ 𝑥⋆ ൌ 0,              𝑖 ൌ 1, … , 𝑝

                                          𝜆௜
⋆ ൒ 0,              𝑖 ൌ 1, … , 𝑚

                               𝜆௜
⋆𝑓௜ 𝑥⋆ ൌ 0,              𝑖 ൌ 1, … , 𝑚

𝛻𝑓଴ 𝑥⋆ ൅ ∑ 𝜆௜
⋆𝛻𝑓௜ 𝑥⋆ ൅ ∑ 𝜈௜

⋆𝛻ℎ௜ 𝑥⋆ ൌ 0௣
௜ୀଵ

௠
௜ୀଵ

For optimization problem with differentiable
objective and constraint functions for which
strong duality obtains, any pair of primal and
dual optimal must satisfy KKT conditions.

Necessary 
Condition



KKT Conditions for Convex 
Problems

 If ௜ are convex, ௜ are affine, 
satisfy

 Then, and are primal and dual 
optimal, with zero duality gap.

                                  𝑓௜ 𝑥෤ ൑ 0,              𝑖 ൌ 1, … , 𝑚
                                ℎ௜ 𝑥෤ ൌ 0,              𝑖 ൌ 1, … , 𝑝

                                        𝜆ሚ௜ ൒ 0,              𝑖 ൌ 1, … , 𝑚
                               𝜆ሚ௜𝑓௜ 𝑥෤ ൌ 0,              𝑖 ൌ 1, … , 𝑚

𝛻𝑓଴ 𝑥෤ ൅ ∑ 𝜆ሚ௜𝛻𝑓௜ 𝑥෤ ൅ ∑ 𝜈෤୧𝛻ℎ௜ 𝑥෤ ൌ 0௣
௜ୀଵ

௠
௜ୀଵ

For any convex optimization problem with
differentiable objective and constraint functions,
any points that satisfy the KKT conditions are
primal and dual optimal, and have zero duality gap.

Sufficient 
Condition



KKT Conditions for Convex 
Problems

 For convex problem satisfying Slater’s 
condition, KKT conditions provide 
necessary and sufficient conditions 
for optimality.
 Slater’s condition implies that optimal 

duality gap is zero and dual optimum is 
attained

 is optimal if and only if there are 
that, together with , satisfy the KKT 
conditions



KKT Conditions for Convex 
Problems

 The KKT conditions play an important 
role in optimization.
 In a few special cases it is possible to 

solve the KKT conditions. 

 More generally, many algorithms for 
convex optimization can be interpreted 
as methods for solving the KKT 
conditions



Example

 Equality Constrained Convex Quadratic 
Minimization
 Primal Problem (with ା

௡)

 KKT conditions
𝐴𝑥⋆ ൌ 𝑏, 𝑃𝑥⋆ ൅ 𝑞 ൅ 𝐴ୃ𝜈⋆ ൌ 0

⇔ 𝑃 𝐴ୃ

𝐴 0
𝑥⋆

𝑣⋆ = െ𝑞
𝑏

 Solving this set of 𝑚 ൅ 𝑛 equations in 𝑚 ൅ 𝑛
variables 𝑥⋆, 𝜈⋆ gives optimal primal and dual 
variables

min 1/2 𝑥ୃ𝑃𝑥 ൅ 𝑞ୃ𝑥 ൅ 𝑟      
s. t. 𝐴𝑥 ൌ 𝑏                                  
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Solving the Primal Problem via 
the Dual

 If strong duality holds and a dual 
optimal solution ⋆ ⋆ exists, any 
primal optimal point is also a minimizer 
of ⋆ ⋆

 Suppose the minimizer of ⋆ ⋆ below is 
unique

 If solution is primal feasible, it’s primal optimal
 If not primal feasible, no optimal point exists

min     𝑓଴ 𝑥 ൅ ෍ 𝜆௜
⋆𝑓௜ 𝑥

௠

௜ୀଵ

൅ ෍ 𝜈௜
⋆ℎ௜ 𝑥

௣

௜ୀଵ



Example

 Entropy Maximization
 Primal Problem (with domain ାା

௡ )

 Dual Problem ( ௜: the -th column of )

 Assume weak Slater’s condition holds
 There exists an 𝑥 ≻ 0 with 𝐴𝑥 ≼ 𝑏, 𝟏ୃ𝑥 ൌ 1
 So strong duality holds and an optimal solution 

ሺ𝜆⋆, 𝜈⋆ሻ exists 

min 𝑓଴ 𝑥 ൌ ∑ 𝑥௜ log 𝑥௜
௡
௜ୀଵ        

s. t. 𝐴𝑥 ≼ 𝑏                                  
𝟏ୃ𝑥 ൌ 1                    

max െ𝑏ୃ𝜆 െ 𝜈 െ 𝑒ିఔିଵ ∑ 𝑒ି௔೔
఻ఒ௡

௜ୀଵ        
s. t. 𝜆 ≽ 0                                                      



Example

 Entropy Maximization
 Suppose we have solved the dual problem
 The Lagrangian at ⋆ ⋆ is

 Strictly convex on 𝒟 and bounded below
 So it has a unique solution

 If 𝑥⋆ is primal feasible, it must be the optimal 
solution of the primal problem

 If 𝑥⋆ is not primal feasible, we can conclude 
that the primal optimum is not attained

𝐿 𝑥, 𝜆⋆, 𝜈⋆ ൌ ∑ 𝑥௜ log 𝑥௜
௡
௜ୀଵ ൅ 𝜆⋆ୃ 𝐴𝑥 െ 𝑏 ൅ 𝜈⋆ሺ𝟏ୃ𝑥 െ 1ሻ

𝑥௜
⋆ ൌ 1/ exp 𝑎௜

ୃ𝜆⋆ ൅ 𝜈⋆ ൅ 1 ,   𝑖 ൌ 1, … , 𝑛
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Examples

 Introduce New Variables and Equality 
Constraints

 Transform the Objective

 Implicit Constraints



Introduce New Variables and 
Equality Constraints

 Unconstrained Problem

 Lagrange dual function: constant ⋆

 strong duality holds (𝑝⋆ ൌ 𝑑⋆ሻ, but it is not 
useful

 Reformulation

 Lagrangian of the reformulated problem
𝐿 𝑥, 𝑦, 𝜈 ൌ 𝑓଴ 𝑦 ൅ 𝜈ୃ 𝐴𝑥 ൅ 𝑏 െ 𝑦

min 𝑓଴ 𝑦             
s. t. 𝐴𝑥 ൅ 𝑏 ൌ 𝑦

min     𝑓଴ 𝐴𝑥 ൅ 𝑏



Introduce New Variables and 
Equality Constraints

 Unconstrained Problem
 Find dual function by minimizing 
 Minimizing over 𝑥, 𝑔 𝜈 ൌ െ∞ unless 𝐴ୃ𝑣 ൌ 0

 When ୃ minimizing gives
𝑔 𝜈 ൌ 𝑏ୃ𝜈 ൅ inf

௬
𝑓଴ 𝑦 െ 𝜈ୃ𝑦 ൌ 𝑏ୃ𝜈 െ 𝑓଴

∗ 𝜈

 𝑓଴
∗: conjugate of 𝑓଴

 Dual problem

 More useful

max 𝑏ୃ𝜈 െ 𝑓଴
∗ 𝜈

s. t. 𝐴ୃ𝜈 ൌ 0       



Example

 Unconstrained Geometric Program
 Problem

min      log  ∑ exp 𝑎௜
ୃ𝑥 ൅ 𝑏௜

௠
௜ୀଵ

 Add new variables & equality constraints

 𝑎௜
ୃ: 𝑖-th row of 𝐴

 Conjugate of the log-sum-exp function

min 𝑓଴ 𝑦 ൌ log ∑ exp 𝑦௜
௠
௜ୀଵ  

s. t. 𝐴𝑥 ൅ 𝑏 ൌ 𝑦                            

𝑓଴
∗ 𝜈 ൌ  ቊ∑ 𝜈௜ log 𝜈௜

௠
௜ୀଵ     𝜈 ≽ 0, 𝟏ୃ𝜈 ൌ 1

∞                                  otherwise



Introduce New Variables and 
Equality Constraints

 Unconstrained Geometric Program
 Primal Problem

 Dual of the reformulated problem

 An entropy maximization problem

max 𝑏ୃ𝜈 െ ∑ 𝜈௜ log 𝜈௜
௠
௜ୀଵ

s. t. 𝟏ୃ𝜈 ൌ 1                      
𝐴ୃ𝜈 ൌ 0         
𝜈 ≽ 0              

min 𝑓଴ 𝑦 ൌ log ∑ exp 𝑦௜
௠
௜ୀଵ  

s. t. 𝐴𝑥 ൅ 𝑏 ൌ 𝑦                            



Example

 Norm Approximation Problem
 Problem (with any norm )

min      𝐴𝑥 െ 𝑏
 Constant Lagrange dual function (not useful)

 Reformulate the problem  

 Lagrange dual problem 

 The conjugate of a norm is the indicator 
function of the dual norm unit ball 

min  𝑦                          
s. t.  𝐴𝑥 െ 𝑏 ൌ 𝑦          

max   𝑏ୃ𝜈                                
s. t. 𝜈 ∗ ൑ 1, 𝐴ୃ𝜈 ൌ 0              



Introduce New Variables and 
Equality Constraints

 Constraint Functions

 ௜
௞೔ൈ௡

௜
௞೔

 Introduce ௜
௞೔

 The Lagrangian for the above problem

min  𝑓଴ 𝐴଴𝑥 ൅ 𝑏଴                                                 
s. t.  𝑓௜ 𝐴௜𝑥 ൅ 𝑏௜ ൑ 0, 𝑖 ൌ 1, … , 𝑚          

min  𝑓଴ 𝑦଴                                                 
s. t.  𝑓௜ 𝑦௜ ൑ 0, 𝑖 ൌ 1, … , 𝑚          

         𝐴௜𝑥 ൅ 𝑏௜ ൌ 𝑦௜, 𝑖 ൌ 0, … , 𝑚

𝐿 𝑥, 𝑦଴, … , 𝑦௠, 𝜆, 𝜈଴, … , 𝜈௠

ൌ 𝑓଴ 𝑦଴ ൅ ∑ 𝜆௜𝑓௜ 𝑦௜ ൅ ∑ 𝜈௜
ୃ 𝐴௜𝑥 ൅ 𝑏௜ െ 𝑦௜

௠
௜ୀ଴

௠
௜ୀଵ



Introduce New Variables and 
Equality Constraints

 Constraint Functions
 Dual function (by minimizing over ௜)
 Minimum over 𝑥 is െ∞ unless ∑ 𝐴௜

ୃ௠
௜ୀ଴ 𝜈௜ ൌ 0

  In this case, for 𝜆 ≻ 0,   𝑔 𝜆, 𝜈଴, … , 𝜈௠

ൌ ෍ 𝜈௜
ୃ𝑏௜ ൅ inf

௬బ,…,௬೘
𝑓଴ 𝑦଴ ൅ ෍ 𝜆௜𝑓௜ 𝑦௜ െ ෍ 𝜈௜

ୃ𝑦௜

௠

௜ୀ଴

௠

௜ୀଵ

௠

௜ୀ଴

ൌ ෍ 𝜈௜
ୃ𝑏௜ ൅ inf

௬బ
 𝑓଴ 𝑦଴ െ 𝜈଴

ୃ𝑦଴ ൅ ෍ 𝜆௜ inf
௬೔

 𝑓௜ 𝑦௜ െ 𝜈௜/𝜆௜
ୃ𝑦௜

௠

௜ୀଵ

௠

௜ୀ଴

ൌ ෍ 𝜈௜
ୃ𝑏௜ െ 𝑓଴

∗ 𝜈଴ െ ෍ 𝜆௜𝑓௜
∗ 𝜈௜/𝜆௜

௠

௜ୀଵ

௠

௜ୀ଴



Introduce New Variables and 
Equality Constraints

 Constraint Functions
 What happens when (but some ௜ )
 If 𝜆௜ ൌ 0 & 𝜈௜ ് 0, the dual function is െ∞
 If 𝜆௜ ൌ 0 & 𝜈௜ ൌ 0, terms involving 𝑦௜, 𝜈௜, 𝜆௜ are 0

 The expression for is valid for all if
 Take 𝜆௜𝑓௜

∗ 𝜈௜/𝜆௜ ൌ 0, when 𝜆௜ ൌ 0 & 𝜈௜ ൌ 0
 Take 𝜆௜𝑓௜

∗ 𝜈௜/𝜆௜ ൌ ∞, when 𝜆௜ ൌ 0 & 𝜈௜ ് 0

 Dual Problem
max  ∑ 𝜈௜

ୃ𝑏௜ െ 𝑓଴
∗ 𝜈଴ െ ∑ 𝜆௜𝑓௜

∗ 𝜈௜/𝜆௜
௠
௜ୀଵ

௠
௜ୀ଴  

s. t. 𝜆 ≽ 0,  ∑ 𝐴௜
ୃ𝜈௜ ൌ 0                              ௠

௜ୀ଴             



Example

 Inequality Constrained Geometric 
Program
 Problem

 Let 𝑓௜ 𝑦 ൌ log ∑ 𝑒௬ೖ௄೔
௞ୀଵ

 Conjugate of 𝑓௜

min log ∑ 𝑒௔బೖ
఻ ௫ା௕బೖ௄బ

௞ୀଵ                                                 

s. t. log ∑ 𝑒௔೔ೖ
఻ ௫ା௕೔ೖ௄೔

௞ୀଵ ൑ 0, 𝑖 ൌ 1, … , 𝑚                

𝑓௜
∗ 𝜈 ൌ  ቊ∑ 𝜈௞ log 𝜈௞

௄೔
௞ୀଵ     𝜈 ≽ 0, 𝟏ୃ𝜈 ൌ 1

∞                                     otherwise



Example

 Inequality Constrained Geometric 
Program
 Dual problem is

max  𝑏଴
ୃ𝜈଴ െ ∑ 𝜈଴௞ log 𝜈଴௞

௄బ
௞ୀଵ ൅ ∑ 𝑏௜

ୃ𝜈௜ െ ∑ 𝜈௜௞ log 𝜈௜௞/𝜆௜
௄೔
௞ୀଵ

௠
௜ୀଵ

s. t. 𝜈଴ ≽ 0,    𝟏ୃ𝜈଴ ൌ 1                                                                               
𝜈௜ ≽ 0,    𝟏ୃ𝜈௜ ൌ 𝜆௜,         𝑖 ൌ 1, … , 𝑚                                           
𝜆௜ ൒ 0,     𝑖 ൌ 1, … , 𝑚                                                              
∑ 𝐴௜

ୃ𝜈௜ ൌ 0                                                                            ௠
௜ୀ଴



Transform the Objective

 Replace the Objective ଴ by an 
Increasing Function of ଴
 The resulting problem is equivalent

 The dual of this equivalent problem can be 
very different from dual of original problem



Example

 Minimum Norm Problem
min      𝐴𝑥 െ 𝑏

 Reformulate this problem as

 Introduce new variables and replace the 
objective by half its square

 Equivalent to the original problem
 Dual of the reformulated problem

min   ሺ1/2ሻ 𝑦 ଶ                                    
s. t. 𝐴𝑥 െ 𝑏 ൌ 𝑦                               

max  െ ଵ
ଶ

𝜈 ∗
ଶ ൅ 𝑏ୃ𝜈              

s. t.   𝐴ୃ𝜈 ൌ 0                                  



Implicit Constraints

 Include Some of the Constraints in 
the Objective Function
 Modifying the objective function to be 

infinite when the constraint is violated



Example

 Linear Program with Box Constraints
 Problem

 𝐴 ∈ 𝐑௣ൈ௡ and 𝑙 ≺ 𝑢
 𝑙 ≼ 𝑥 ≼ 𝑢 are called box constraints

 Derive the dual of this linear program

min   𝑐ୃ𝑥                                       
s. t. 𝐴𝑥 ൌ 𝑏                               

𝑙 ≼ 𝑥 ≼ 𝑢              

min   െ𝑏ୃ𝜈 െ 𝜆ଵ
ୃ𝑢 ൅ 𝜆ଶ

ୃ𝑙                                       
s. t. 𝐴ୃ𝜈 ൅ 𝜆ଵ െ 𝜆ଶ ൅ 𝑐 ൌ 0                             

𝜆ଵ ≽ 0,      𝜆ଶ ≽ 0                          



Example

 Linear Program with Box Constraints
 Problem

 𝐴 ∈ 𝐑௣ൈ௡ and 𝑙 ≺ 𝑢
 𝑙 ≼ 𝑥 ≼ 𝑢 are called box constraints

 Reformulate the problem as

 Here, we define

min   𝑐ୃ𝑥                                       
s. t. 𝐴𝑥 ൌ 𝑏                               

𝑙 ≼ 𝑥 ≼ 𝑢              

min   𝑓଴ 𝑥     
s. t.   𝐴𝑥 ൌ 𝑏

𝑓଴ 𝑥 ൌ  ቊ𝑐ୃ𝑥       𝑙 ≼ 𝑥 ≼ 𝑢
∞          otherwise



Implicit Constraints

 Linear Program with Box Constraints
 Dual function

 𝑦௜
ା ൌ max 𝑦௜, 0 , 𝑦௜

ି ൌ max െ𝑦௜, 0
 We can derive an analytical formula for 𝑔, 

which is a concave piecewise-linear function
 Dual problem

max     െ𝑏ୃ𝜈 െ 𝑢ୃ 𝐴ୃ𝜈 ൅ 𝑐 ି ൅ 𝑙ୃ 𝐴ୃ𝜈 ൅ 𝑐 ା

 Unconstrained problem
 Different form from the dual of original problem

𝑔 𝜈 ൌ inf
௟≼௫≼௨

𝑐ୃ𝑥 ൅ 𝜈ୃ 𝐴𝑥 െ 𝑏

   ൌ െ𝑏ୃ𝜈 െ 𝑢ୃ 𝐴ୃ𝜈 ൅ 𝑐 ି ൅ 𝑙ୃ 𝐴ୃ𝜈 ൅ 𝑐 ା



Summary
 Saddle-point Interpretation
 Max-min Characterization of Weak and Strong 

Duality

 Saddle-point Interpretation

 Optimality Conditions
 Certificate of Suboptimality and Stopping Criteria

 Complementary Slackness

 KKT Optimality Conditions

 Solving the Primal Problem via the Dual

 Examples


