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More Symmetric Form

Assume no equality constraint

A>=0 A=0

sup L (x, 2) = sup (fo )+ ) Aifl-oc))
=1

_ {fo(x) f(x)<0, i=1,..,m

otherwise

B Suppose f;(x) > 0 for some i. Then,
SUPA>OL(.X',/1) = 0 by /1] — 0,] #* i and ;li — 00

mIf f;(x) <0,i=1,..,m, then the optimal
choice of 1 is 4 =0 and sup;so L(x,1) = fy(x)



More Symmetric Form

Optimal Value of Primal Problem

p* = infsup L(x, )
X 230

Optimal Value of Dual Problem
d* = supinfL(x, 1)

A=0 X

Weak Duality

supinfL(x,A) < infsup L(x,A)
Ax0 X X A%0

Strong Duality

sup infL(x,A) = infsup L(x, A)
Ax0 X X A%0

B Min and Max can be switched




A More General Form

Max-min Inequality
sup inf f(w,z) < inf sup f(w,2z)

7z€7 wew wew PA=VA
B Forany f:R"XR™ - Rand any W <
R",Z c R™

Strong Max-min Property
sup 125/ f(w,z) = inf sup f(w, z)

zeZ W WEW ez

B Hold only in special cases
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Saddle-point Interpretation

weW,zZeZis a saddle point for f
fw,z) < f(w,2) < f(w,2), VweW,z€Z

B W minimizes f(w, Z), Z maximizes f(w, z)
fw,2) = Vgrellfvf(w, Z), f(W,Z) =sup f(W,z)

ZEZ

O
QR

https://en.wikipedia.org/wiki/Saddle_point VR




Saddle-point Interpretation

weW,zZeZis a saddle point for f
fw,z) < f(w,2) < f(w,2), vweW,z€eZ
B W minimizes f(w, Z), Z maximizes f(w, z)

fw,z) = inf f(w,2),  f(W,2)=supf(W,z)

ZEZ

Imply the strong max-min property

sup 1n5/f(w z) = 1nf f(W H=fWw,2) )
zeZ WE
f@w,z) = sup f(w, Z) > 1nf sup f(w, z)

ZEZ W zez y,
= sup 1nf f(w z) = 1nf sup f(w, z)

YAYA ZEZ

’

= sup 1nf f(w z) = inf sup f(w, z)
ZEZ WEW zez



Saddle-point Interpretation

weW,zZeZis a saddle point for f
fw,z) < f(w,2) < f(w,2), vweW,z€eZ

B W minimizes f(w, Z), Z maximizes f(w, z)
fW,2) = inf fw,2), fW2)=supf(W,2)

Z€EZ
m If x*, A" are primal and dual optimal

points and strong duality holds, x*, A*
form a saddle-point.

B If x, A Is saddle-point, then x Is primal
optimal, A is dual optimal, and the
duality gap Is zero.
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Certificate of Suboptimality

Dual Feasible (4, v)

B A lower bound on the optimal value
of the primal problem

p* =g v)
B Provides a proof or certificate

B Bound how suboptimal a given feasible
point x is, without knowing the value of p”*
fox) =p* < folx) —gAv) =€
v' x is e-suboptimal for primal problem
v (4,v) is e-suboptimal for dual



Certificate of Suboptimality

Gap between Primal & Dual Objectives
fo(x) —g@A,v)
B Referred to as duality gap associated with
primal feasible x and dual feasible (4,v)

B x, (A,v)localizes the optimal value of the
primal (and dual) problems to an interval

p e g4 v), fo(x)], d* € [g(4,v), fo(x)]
v' The width of the interval is the duality gap

B If duality gap of x,(4,v)Is 0, then x Is
primal optimal and (4,v) Is dual optimal



Stopping Criteria

Optimization algorithms produce a
sequence of primal feasible x¥) and dual
feasible (A%, v for k = 1,2, ...,

Required absolute accuracy: €,

A Nonheuristic Stopping Criterion
fo(x®) = (29, v®) < e,

B Guarantees when algorithm terminates, x (K)
IS €,1,s-Suboptimal



Stopping Criteria

A Relative Accuracy €pg
Nonheuristic Stopping Criteria

m If

fo(x(")) _ g(/l(k)’v(k))
g( A(k)’v(k)) >0, ; (A o v (k)) < €rel
or

fo(x0) = g (200, ()
(k) S Erel
—fo(x®)
B Then p* # 0, and the relative error satisfies

£ (0) — p*
— |p3| = €rel

fo(x®)) <o,
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Complementary Slackness

Suppose Strong Duality Holds
B For primal optimal x* & dual optimal (1*,v*)
fox™) = g%, v™)
= inf (fo() + X724 25 fi(x) + X, vihi(x))
< folx) + X2 A f;(x") + X vihi(x)
< fo(x™)

v First line: the optimal duality gap is zero
v' Second line: definition of the dual function

v" Third line: infimum of Lagrangian over x is
less than or equal to its value at x = x~



Complementary Slackness

Suppose Strong Duality Holds
B For primal optimal x* & dual optimal (1*,v*)

fox) = g%, v*)
= inf (fo(x) + L2141 £i(x) + XL, vi hi(x)

< fo(x™) + X2, A fi(x™) + XL, vihi ()
< fo(x™)

v Last line: 4 >20,f;(x*)<0,i=1,..,m and
hi(x*)=0,i=1,..,p

v We conclude that the two inequalities in this
chain hold with equality



Complementary Slackness

Suppose Strong Duality Holds
B For primal optimal x* & dual optimal (1*,v*)
fo(x™) = g(A*,v7")

= inf (fo() + T4 A1 fi00) + T, vi ()

= fo(x™) + 224 A fi(x™) + XL, vihi(x)
= fo(x™)

v' Equality in the third line implies x* minimizes
L(x, A", v™)
v' Equality in the last line implies Y>/2, i f,(x*) =0




Complementary Slackness

Complementary Slackness
A fi(x*) =0, i=1,..,m
B Derived from Y2, A fi(x*) =0

B Holds for any primal optimal x* and dual
optimal A*,v* (when strong duality holds)

B Other expressions
>0=fi(x")=0
fix)<0=>1;=0
v i-th optimal Lagrange multiplier is O unless i-
th constraint is active at the optimum f;(x*) =0
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KKT Conditions for Nonconvex '
Problems "

x* and (1%, v*): any primal and dual
optimal points with zero duality gap
B x* minimizes L(x,A*,v*)

= VL(x*, A%, v*) =0

m p
= VF,(x") + z/l’{Vfi(x*) + zv;vm(x*) =0
=1 =1



KKT Conditions for Nonconvex
Problems :

x* and (1*,v*): any primal and dual
optimal points with zero duality gap

fi(x*) <0, i=1,..m
hi(x*) =0, i=1,..,p
A7 =0, i=1,..,m

A fi(x*) =0, i=1,..,m

Vio(x™) + T V(™) + X_ viVhi(x™) = 0
B Karush-Kuhn-Tucker (KKT) conditions

( For optimization problem with differentiable )
Necessary objective and constraint functions for which
Condition strong duality obtains, any pair of primal and

\.dual optimal must satisfy KKT conditions. )




KKT Conditions for Convex
Problems

If f; are convex, h; are affine, ¥, 1,7

satisfy f(®) <0, i=1,..,m
h;(¥) =0, i=1,..,p

A; =0, i=1,..,m

Lf; (%) =0, i=1,..,m

Vfo®) + Z24 AV f;(8) + B, %iVhi (%) =
Then, ¥ and A,V are primal and dual
optimal, with zero duality gap.

(For any convex optimization problem with )
Sufficient differentiable objective and constraint functions,
Condition any points that satisfy the KKT conditions are

\ primal and dual optimal, and have zero duality gap./




KKT Conditions for Convex
Problems

For convex problem satisfying Slater’s
condition, KKT conditions provide
necessary and sufficient conditions
for optimality.

B Slater’s condition implies that optimal

duality gap iIs zero and dual optimum is
attained

B x is optimal if and only if there are (4,v)
that, together with x, satisfy the KKT
conditions




KKT Conditions for Convex
Problems

The KKT conditions play an important
role in optimization.

B In a few special cases it is possible to
solve the KKT conditions.

B More generally, many algorithms for
convex optimization can be interpreted
as methods for solving the KKT
conditions



Example

Equality Constrained Convex Quadratic
Minimization
B Primal Problem (with P € S)

min (1/2)x"Px+q'x+r
s.t. Ax=b

B KKT conditions
Ax* = b, Px* +q+ATv*—O

a olll=l

v" Solving thls setofm+n equations InNnm+n
variables x*,v* gives optimal primal and dual
variables
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Solving the Primal Problem via| gy
the Dual

If strong duality holds and a dual
optimal solution (1*,v*) exists, any
primal optimal point is also a minimizer
of L(x, 1%, v™)

B Suppose the minimizer of L(x,A*,v*) below is
unique

m p
min fo() + ) AfiC) + ) vihi(o)
=1 =1

v If solution is primal feasible, it’s primal optimal
v If not primal feasible, no optimal point exists



Example

Entropy Maximization
B Primal Problem (W|th domain R%,)

min  fo(x) = X, x; logx;
s.t. Ax<b
1'x =1
B Dual Problem (a;: the i-th column of A)
max —bTAl—v—e vV lyn e-ail

s.t. A>=0
B Assume weak Slater’s condition holds
v There exists an x > 0with Ax <bh,1"x =1

v" So strong duality holds and an optimal solution
(A%, v*) exists



Example

Entropy Maximization

B Suppose we have solved the dual problem
B The Lagrangian at (4*,v*) is
L, 25,v*) =Y x;logx; + PTAx—b) + v (1Tx — 1)
v Strictly convex on D and bounded below
v' So it has a unigque solution
xf =1/exp(aj A* +v* + 1), i=1,..,n
v If x* is primal feasible, it must be the optimal
solution of the primal problem

v If x* is not primal feasible, we can conclude
that the primal optimum is not attained



Outline

Saddle-point Interpretation

B Max-min Characterization of Weak and Strong
Duality

B Saddle-point Interpretation

Optimality Conditions

B Certificate of Suboptimality and Stopping Criteria
B Complementary Slackness
B KKT Optimality Conditions

B Solving the Primal Problem via the Dual

Examples




Examples

Introduce New Variables and Equality
Constraints

Transform the Objective

Implicit Constraints



Introduce New Variables and
Equality Constraints

Unconstrained Problem
min fy(Ax + b)

B Lagrange dual function: constant p*

v strong duality holds (p* = d*), but it is not
useful

Reformulation

min  fo(y)
s.t. Ax+b=y

B |Lagrangian of the reformulated problem
Lx,y,v) = fo(y) +v' (Ax + b —y)




Introduce New Variables and
Equality Constraints

Unconstrained Problem
B Find dual function by minimizing L
v" Minimizing over x, g(v) = —oo unless ATv =0
B When A"v = 0, minimizing L gives
gv)=b"v+ inf(fo(y) - viy)=b'v—fr(v)
v fo 1 conjugate of f,
B Dual problem
max b'v— ff(v)
s.t. ATv =0
v" More useful




Example

Unconstrained Geometric Program
B Problem
min log (X172, exp(a/x + b;))
B Add new variables & equality constraints

min  fo(y) = log (X2, expy;)
s.t. Ax+b=y
v a/:i-th row of 4

B Conjugate of the log-sum-exp function

m v:logv;, v0,1v=1
* V) = l_1vl g l ~ Y%
fo (V) {oo otherwise



Introduce New Variables and
Equality Constraints

Unconstrained Geometric Program
B Primal Problem

min fo(y) = log X%, exp y;)
s.t. Ax+b=y

B Dual of the reformulated problem
max b'v—Y" v;logv;
S. L. 1Tv =1
ATlv=0
vz0
v An entropy maximization problem



Example

Norm Approximation Problem
B Problem (with any norm || - ||)
min ||Ax — b||
v' Constant Lagrange dual function (not useful)

B Reformulate the problem
min  |[y]]
s.t. Ax—b=y

B |agrange dual problem
max b'v
s.t. v, £1,ATv =0

v' The conjugate of a norm is the indicator
function of the dual norm unit ball



Introduce New Variables and
Equality Constraints

Constraint Functions

min f,(Agx + by)

s.t.  fi(A4;x+b;) <0, i=1,..,m
B 4; € Rt f:R% - R
B Introduce y; e R*,i =0, ...,m

min  f,(yo)
s.t.  fi(y;) <0, i=1,..,m
Al-x+bi=yl-, i=0,...,m

B The Lagrangian for the above problem
L0, Vo, oo Voo A, V) ooe s Vir)
= foo) + X2 Aifi ) + X0V (Aix + by — y;)




Introduce New Variables and
Equality Constraints

Constraint Functions

B Dual function (by minimizing over x & y;)
v Minimum over x is —oo unless Y Al v; =0

In this case, for A > 0, g(4,vy, ..., V)

m m
v b; + yoif_lg (fo(J’o) + z Aifi(yi) — Z viTyi>

=1 =0
m

v by +inf (fo(vo) = v vo) + Z Ainf (00 = (/207

DI 1M

o~
Il
o

vIbi = fE o) = ) Aufi (vi/A:)
=1



Introduce New Variables and
Equality Constraints

Constraint Functions

B What happens when 4 = 0 (but some A; = 0)
v If 4; = 0&v; # 0, the dual function is —
v If 1; =0&v; =0, terms involving y;,v;,A; are 0
B The expression for g is valid for all A > 0 if
v Take A;f;(v;/4;) =0, when 1;, =0&v; =0
v Take A;f"(vi/4;)) = o, when 1; =0&v; #0

B Dual Problem

max YieoVi by — fo (o) — X1 Aifi (vi/ )
s.t. Ax0 YY" Alv;=0



Example

Inequality Constrained Geometric
Program

B Problem
.
min log (Zl,f":leaok“b()k)

. T
s.t. log (Zl,fl:leaik“bik) <0,i=1,..,m

v Let f(y) = log (ZyL, e”%)
v' Conjugate of f;
K;i
) = Y vilogv, v=0,1Tv=1
0 otherwise




Example

Inequality Constrained Geometric
Program

B Dual problem is

max b vy — Yl Vox logvox + X, (biTVi — Tks Vi log(vik//li))

S. L. VO ? 0, 1TV0 =1
Vi — 0, 1TVi = Ai' [ = 1, e, M
A;=0 i=1,..,m



Transform the Objective

Replace the Objective f, by an
Increasing Function of f,

B The resulting problem is equivalent

B The dual of this equivalent problem can be
very different from dual of original problem



Example

Minimum Norm Problem
min ||Ax — b||

B Reformulate this problem as

min  (1/2)|lyl*
s. t. Ax—b =y

v Introduce new variables and replace the
objective by half its square

v' Equivalent to the original problem
B Dual of the reformulated problem

max  — (%) IvIIZ +bTv
S. t. ATv =0




Implicit Constraints

Include Some of the Constraints In

the Objective Function

B Modifying the objective function to be
Infinite when the constraint is violated



Example

Linear Program with Box Constraints

B Problem
min c'x
s. t. Ax = b

[<x<u
v AeRP"and Il < u
v | < x <u are called box constraints

B Derive the dual of this linear program
min —-b'v—A{u+ )l
s.t. Av+A —A,+c=0
20, A, =0



Example

Linear Program with Box Constraints

B Problem
min c'x
s. t. Ax = b

[<x<u
v AeRP"and Il < u
v | < x <u are called box constraints

B Reformulate the problem as

min  fo(x)

s. t. Ax = b -
{c X [<x<u

v' Here, we define fy(x) = o otherwise



Implicit Constraints

Linear Program with Box Constraints
B Dual function

gv) = inf (c"x+vT(Ax — b))

I<x<u
=—bv—u'A"™v+c) " +1"(A"v+ )"
vy = max{y;, 0}, y; = max{—y;, 0}
v" We can derive an analytical formula for g,
which Is a concave piecewise-linear function

B Dual problem
max —-b'v—u'(A"v+c) +1TAv+o)t
v" Unconstrained problem
v Different form from the dual of original problem
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