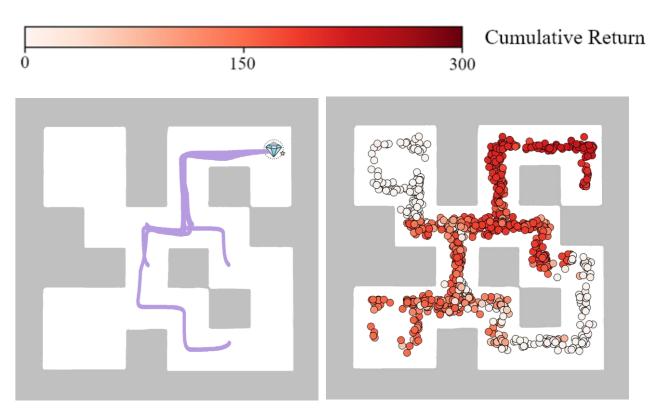
Offline Imitation Learning with Model-based Reverse Augmentation

Jie-Jing Shao, Hao-Sen Shi, Lan-Zhe Guo, Yu-Feng Li

National Key Laboratory for Novel Software Technology
Nanjing University, China

{shaojj, shihs, guolz, liyf}@lamda.nju.edu.cn



Webpage

Code

WeChat

Evaluation of MILO

Offline Imitation Learning

Imitation Learning: recover a policy from expert dataset.

In offline IL, expert data is limited, supplementary offline data is rich but low-quality.

Without reward supervision, it is difficult to determine what action an agent should take when outside the state distribution of the expert demonstrations.

Previous methods <u>keep agents conservative</u>, confining them to the expert-observed area. MILO [NeurIPS'21], CLARE [ICLR'23], ML-IRL[NeurIPS'23]...

The Proposed Method: Self-Paced Reverse Augmentation

Main Idea

We prefer the actions which lead the agent from expert-unobserved states to expert-observed states.

Generate reverse trajectories

Agents could follow reverse trajectories to reach the expert-observed area, improving long-term returns.

Reverse Models

Reverse dynamic model \hat{T}_r , approximating $T(s_t|s_{t+1}, a_t)$: $\max_{\hat{T}_r} \sum_{(s_t, a_t, s_{t+1})} \log \hat{T}_r (s_t|s_{t+1}, a_t)$

Reverse behavior policy π_r , a VAE-based actor, approximating $p(a_t|s_{t+1})$:

 $\log \pi_r(a|s)$

 $\geq \mathbb{E}_{z \sim \pi_r^e(\cdot|S,a)} \log \pi_r^d (a|z,s) - KL(\pi_r^e(z|s,a)||p(z|s))$

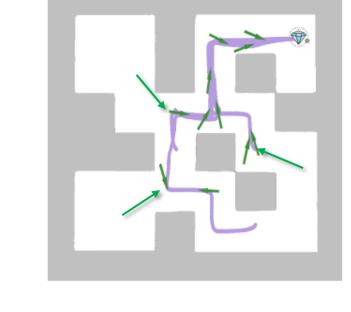
Self-Paced Augmentation

First step of reverse augmentation with h steps:

$$\{s_{-h'}, a_{-h'}, s_{-h'+1}, a_{-h'+1}, \dots, s_{-2}, a_{-2}, s_{-1}, a_{-1}, s_0\}$$

 $s_0 \sim D^E, a_i \sim \pi_r(s_{i+1}), s_i \sim \hat{T}_r(s_{i+1}, a_i)$

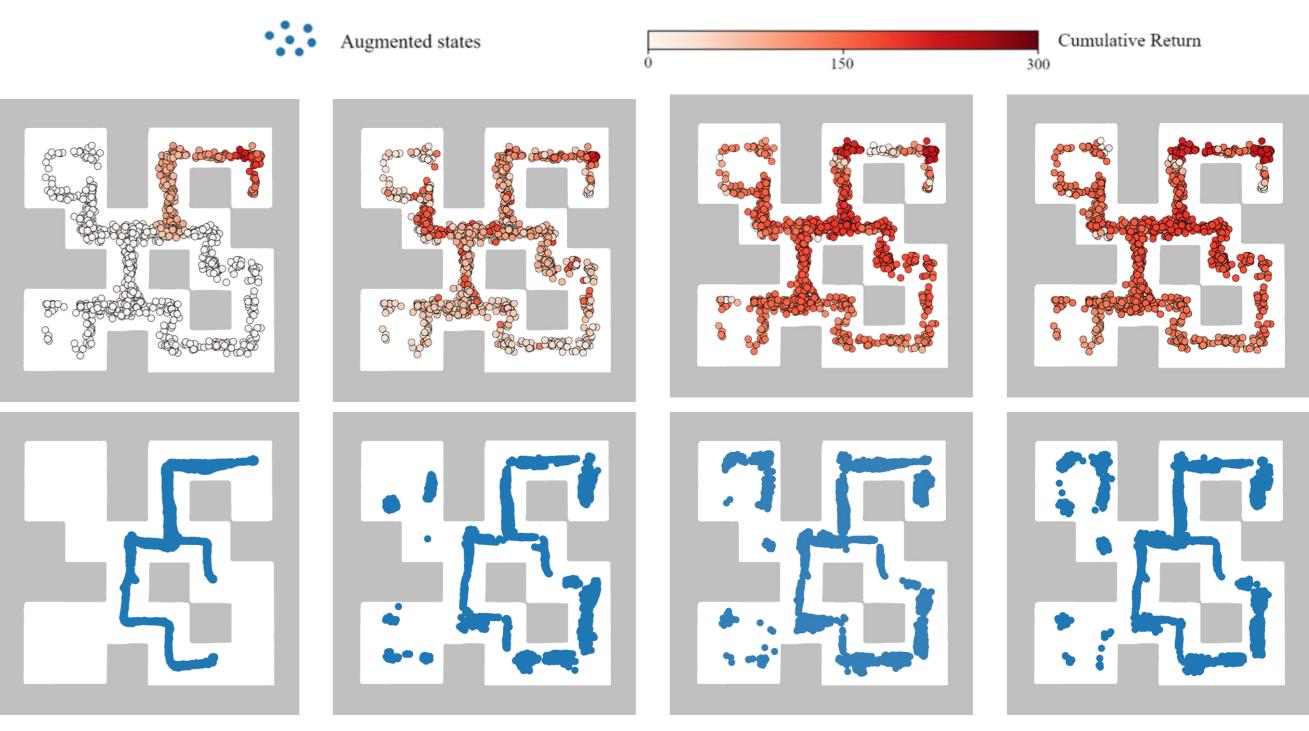
Beyond expert-observed area:


1) expand the target states G

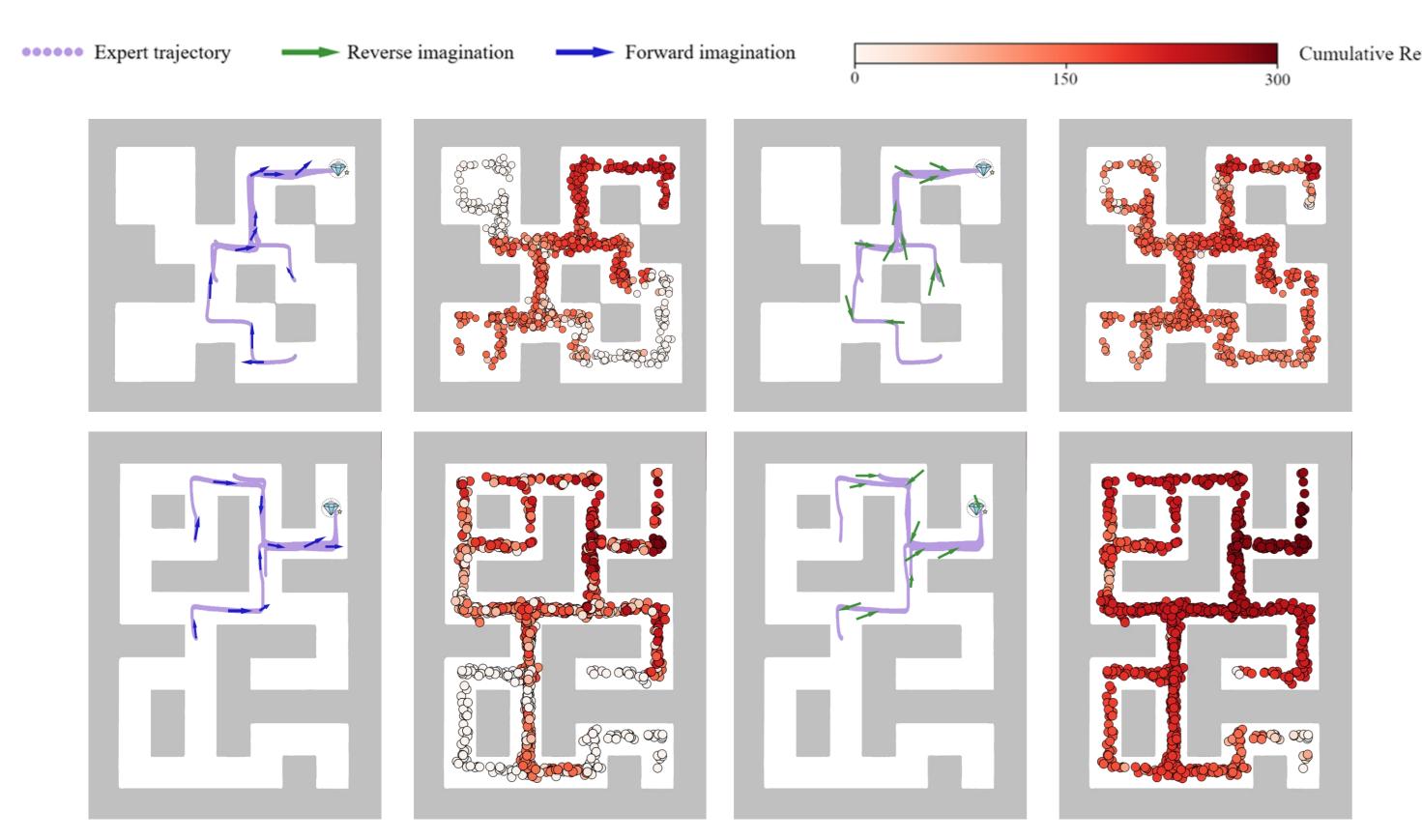
$$Conf_{\pi}(s) = \pi(\mathbb{E}[\pi(a|s)]|s)$$

$$s_0 \sim G = \{s | Conf_{\pi}(s) \ge \mathbb{E}_{s' \sim D^E} Conf_{\pi}(s')\}$$

$$\cup \{s' | s' \in D^E\}$$


2) re-sample the augmented instances $p(s) = 1/Conf_{\pi}(s)$

Performance on Benchmarks


DataSet	BC-exp	DemoDICE	DWBC	OTIL	CLARE	MILO	ROMI	UDS	SRA
maze2d-umaze-sparse-v1	100.±11.6	88.7±10.4	25.8±5.65	128.±8.22	-3.08±6.02	75.0±11.2	154.±5.96	64.9±8.51	155.±6.20
maze2d-medium-sparse-v1	44.6±11.1	15.4 ± 7.83	22.7 ± 4.77	98.2±11.0	33.5±7.82	47.9 ± 13.5	$123.\pm 10.5$	83.0±8.84	147.±5.67
maze2d-large-sparse-v1	15.5±7.98	8.68 ± 3.55	35.1 ± 4.18	129.±14.4	18.6±9.12	51.2 ± 17.1	$101.\pm 20.2$	108.±16.7	$150.\pm 14.9$
maze2d-umaze-dense-v1	70.6±9.55	69.1±9.21	39.2±4.77	100.±6.98	5.84±6.61	54.9±6.96	111.±6.23	62.3±6.99	113.±5.80
maze2d-medium-dense-v1	45.0±10.2	34.3 ± 7.08	39.1 ± 3.34	95.7±8.66	46.3±7.81	44.4 ± 11.0	$112.\pm 9.10$	87.3±7.80	$138.\pm 5.29$
maze2d-large-dense-v1	18.2±8.57	21.7 ± 6.30	56.1 ± 5.56	$120.\pm 11.0$	26.5±8.78	40.7 ± 14.0	101.±16.6	109.±14.4	$140.\!\pm\!11.4$
hopper-medium	72.9±5.50	54.1±1.67	88.1±4.71	26.2±2.28	82.2±6.56	75.0±7.46	67.3±4.82	59.5±4.51	90.2±4.93
halfcheetah-medium	13.3±2.74	41.1 ± 1.00	22.5 ± 3.94	38.7 ± 0.75	32.2±3.14	41.9 ± 0.92	43.6 ± 1.53	43.6±5.15	43.7 ± 1.72
walker2d-medium	99.1±3.66	73.0 ± 2.09	84.8 ± 5.65	86.9 ± 3.63	49.9±5.37	67.9 ± 3.13	96.6±3.76	97.6±2.85	$101.\pm 3.60$
ant-medium	51.3±6.87	91.2±3.79	37.5 ± 5.95	72.4 ± 5.68	68.5±7.35	92.0 ± 3.55	92.7 ± 6.46	87.3±5.10	88.9 ± 7.18
hopper-medium-expert	72.9±5.50	98.6±4.32	99.4±4.43	42.5±3.70	93.9±5.81	90.9±5.42	100.±3.40	97.4±3.35	104.±3.37
halfcheetah-medium-expert	13.3±2.74	48.9 ± 5.46	82.3 ± 3.79	43.7 ± 2.76	31.4±5.15	44.5 ± 1.57	58.8 ± 3.29	67.1±2.63	63.4 ± 3.52
walker2d-medium-expert	99.1±3.66	93.1±5.49	$106.\pm 1.57$	82.5 ± 2.76	39.9±7.66	95.4±3.87	$103.\pm 2.12$	103.±2.32	$104.\pm 4.88$
ant-medium-expert	51.3±6.87	69.8±7.97	58.2 ± 8.81	79.2 ± 7.40	3.61±2.86	$\textbf{115.} \!\pm\! 4.63$	$105.\pm 6.90$	92.2±8.14	94.1±7.86

· Self-paced Learning Process

State-wise cumulative return and Re-sampled augmented datasets after 0, 50000, 100000, and 150000 iterations

• Forward Augmentation v.s. Reverse Augmentation

Forward Rollout MILO Reverse Rollout SRA

Scalability for Different RL Methods

DataSet	IQL	SRA+IQL	TD3BC	SRA+TD3BC	AWAC	SRA+AWAC	SAC-N	SRA+SAC-N
maze2d-umaze-sparse-v1	64.9±8.51	155.±6.20↑	38.1±12.9	145.±7.27 ↑	68.6±14.5	135.±10.1 ↑	151.±6.44	150.±6.47
maze2d-medium-sparse-v1	83.0±8.84	147.±5.67 ↑	22.4±9.64	140.±8.55 ↑	100.±13.5	87.8±16.4	147.±10.3	153.±7.36 ↑
maze2d-large-sparse-v1	108.±16.7	150.±14.9↑	57.9±13.2	143.±17.7 ↑	74.8±16.8	89.9±24.1↑	128.±20.7	158.±18.0 ↑
hopper-medium	59.5±4.51	90.2±4.93↑	57.2±1.90	96.4±5.74↑	38.3±3.88	85.6±6.04↑	3.33±0.49	107.±2.31↑
halfcheetah-medium	43.6±5.15	43.7±1.72↑	43.2±0.82	1.30 ± 1.25	42.0±1.77	44.9±1.95↑	15±0.08	7.49±2.71↑
walker2d-medium	97.6±2.85	101.±3.60↑	89.6±3.40	103. ±3.58 ↑	90.8±5.91	94.3±4.46 ↑	4.19±0.42	86.5±7.72↑
ant-medium	87.3±5.10	88.9±7.18↑	90.4±5.42	42.0±8.30	57.0±8.39	82.2±9.29↑	-27.±3.40	47.2±7.43 ↑
Win/Tie/Loss	7/0/0		5/0/2		6/0/1		6/0/1	