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What is this work about
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➢ Long-Horizon Decision-Making is critical for embodied intelligence.

➢ Imitation Learning 

✓ Shows promising performance on robotics and auto-driving.

◼ Is limited in open environments, especially in the long-horizon tasks.

➢ Traditional symbolic planning

✓ Excels at long-horizon tasks via logical reasoning.

◼ Typically abstracts away perception with ground-truth symbols, 

     struggles to map visual observations to human-defined symbolic spaces.

Such limitations restrict their application in Open environments. 

Imitation Learning Symbolic planning



What is this work about
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✓ In this work, we propose a novel framework Abductive Imitation Learning 

(ABIL) to combine the benefits of data-driven learning and symbolic-based 

reasoning.

✓ Our ABIL shows significantly improved performance on settings of data-

efficiency and generalization in the open environments. 
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Long-Horizon Planning
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Background

 Previous Studies: 

➢ Imitation learning: is weak at long-horizon tasks

➢ Symbolic Planning: requires symbolic-level grounding

➢ Recent efforts on neuro-symbolic solutions[1,2,3]: 

These methods typically assume there are sufficient symbolic 

information, or only applicable to low-dimensional robotics states. 

Our Goal

➢ Help the agent understand demonstrations in symbolic space from 

high-dimensional visual observations without symbolic-level label. 

➢ Enable long-term logical planning for imitation learning.

[1] Regression Planning Networks. NeurIPS’19

[2] Learning Symbolic Operators for Task and Motion Planning. IROS’21

[3] Programmatically grounded, compositionally generalizable robotic manipulation. ICLR’23



Main Idea of ABIL

The Overall Framework
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Goal:

➢ Help the agent understand demonstrations in symbolic space from high-

dimensional visual observations without symbolic-level label. 

➢ Enable long-term logical planning for imitation learning. 
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Problem Formulation

Goal-based planning task.

➢  Environment Definition:

    Deterministic, fully-observed environment with object-centric representation.

➢  Symbolic Knowledge Base: 

    A finite-state machine, with a directed graph 𝐺 = ⟨𝑉, 𝐸⟩

 Each node 𝑣 ∈ 𝑉 contains a set of ground atoms, which can be viewed as the 
condition of a sub-task.

 Each edge is noted as a tuple ⟨ 𝑜𝑝, 𝐸𝐹𝐹+, 𝐸𝐹𝐹− ⟩.
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An example of the knowledge base



Symbolic-grounded Understanding

A straightforward method: optimize the network with the symbolic labels. 

However: Symbolic supervision is typically costly or not available
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Ground-truth 

Symbolic Labels



Symbolic-grounded Understanding

A straightforward method: optimize the network with the symbolic labels. 

However: Symbolic supervision is typically costly or not available

We introduce the abductive reasoning to optimize the network.  
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Ground-truth 

Symbolic Labels



Abductive Reasoning
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➢  Acquire the pseudo label from the knowledge of state machine via 
abductive reasoning.

Typical structures of the state machine

⚫  Derive the sequential abduction: 𝑧𝑖
𝑡

𝑡=1

𝑇
⊨ 𝐺

⚫  Optimize the perception function 𝑓



Symbolic-grounded Imitation
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⚫  Build the behavioral actor for each logical operator ℎ𝑜𝑝, e.g. ℎ𝑝𝑖𝑐𝑘 , ℎ𝑝𝑙𝑎𝑐𝑒

⚫  Derive the symbolic states by perception 𝑓, and derive the corresponding 
abstract logical operator



Symbolic-grounded Imitation
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⚫  Obtain the desired parameter of the operator 𝑜𝑝𝑡 by reasoning
𝑜𝑡 = 𝑜𝑏𝑗(𝑜𝑝𝑡)

⚫  Then optimize the behavior actors 



ABIL Algorithm
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➢  A two-stage learning algorithm.

➢  Embed high-level logical reasoning into the imitation learning process.
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Setup
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Three diverse environments
➢ BabyAI

✓ Learning with logical instruction

➢ Mini-BEHAVIOR

✓ Household Agent

➢ CLIPort

✓ Robotic manipulation

Baseline Methods

➢ Behavior Cloning (BC)

➢ Decision Transformer (DT)

➢ PDSketch

BabyAI Mini-BEHAVIOR CLIPort



Evaluation on BabyAI
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ABIL effectively improves the performance of imitation learning methods.



Results on Mini-BEHAVIOR
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ABIL demonstrates great performance under the open enviornments.



Results on CLIPort
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ABIL gives outstanding results in CLIPort Environment.

Packing-shapes Put-blocks-in-bowls



Comparison of Neural-Symbolic Grounding

2024/6/10 PAKDD 2024 Workshop RobustML 20

ABIL outperforms in understanding the environment accurately.



Data Efficiency and Generalization
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ABIL improves the data efficiency of the BC and DT baselines, achieves 

significant generalization improvement in the out-of-distribution evaluation



Compositional Generalization
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ABIL has the ability to zero-shot generalize to novel composed tasks.
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Conclusion

➢ In this paper,  we propose a novel framework: ABIL

✓A novel framework which combines the benefits of data-driven learning 
and symbolic-based reasoning. 

✓ Extensive experiments demonstrate the effectiveness and generality of ABIL. 
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Hao-Ran Hao (hhr277133291@gmail.com)

Jie-Jing Shao (shaojj@lamda.nju.edu.cn)

Thank you!

If you are interested in, feel free to contact us: 

Future work

➢ Learning with accurate and incomplete knowledge base
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