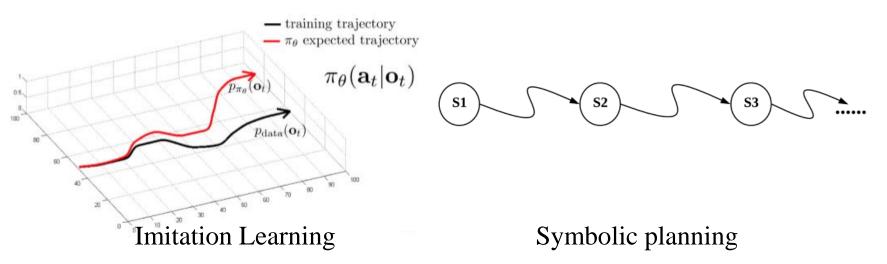


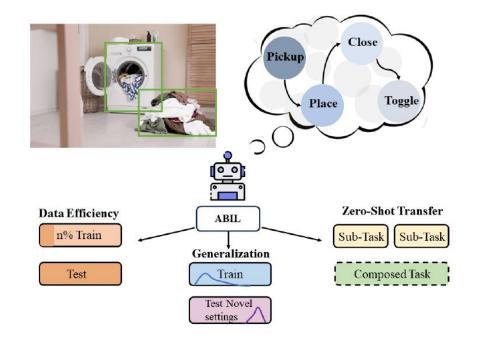
Abductive Learning for Neuro-Symbolic Grounded Imitation

Jie-Jing Shao^{1*}, Hao-Ran Hao^{1,2*}, Xiao-Wen Yang^{1,2}, De-Chuan Zhan^{1,2}

National Key Laboratory for Novel Software Technology, Nanjing University, China


School of Artificial Intelligence, Nanjing University, China

- ➢ Long-Horizon Decision-Making is critical for embodied intelligence.
 - Imitation Learning
 - \checkmark Shows promising performance on robotics and auto-driving.
 - Is limited in open environments, especially in the long-horizon tasks.
 - Traditional symbolic planning
 - \checkmark Excels at long-horizon tasks via logical reasoning.
 - Typically abstracts away perception with ground-truth symbols,


struggles to map visual observations to human-defined symbolic spaces.

Such limitations restrict their application in Open environments.

What is this work about

- ✓ In this work, we propose a novel framework Abductive Imitation Learning (ABIL) to combine the benefits of data-driven learning and symbolic-based reasoning.
- ✓ Our ABIL shows significantly improved performance on settings of dataefficiency and generalization in the open environments.

1. Background

2. ABIL Framework

3. Empirical Results

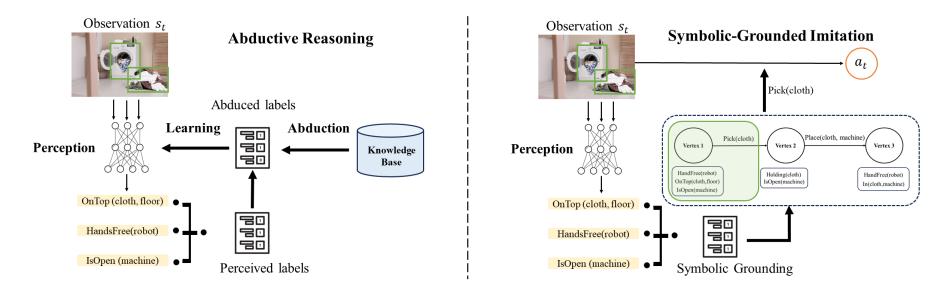
4. Conclusion

Long-Horizon Planning

Background

Previous Studies:

- ➢ Imitation learning: is weak at long-horizon tasks
- Symbolic Planning: requires symbolic-level grounding
- Recent efforts on neuro-symbolic solutions[1,2,3]: These methods typically assume there are sufficient symbolic information, or only applicable to low-dimensional robotics states.


Our Goal

- Help the agent understand demonstrations in symbolic space from high-dimensional visual observations without symbolic-level label.
- Enable long-term logical planning for imitation learning.
 - [1] Regression Planning Networks. NeurIPS'19
 - [2] Learning Symbolic Operators for Task and Motion Planning. IROS'21
 - [3] Programmatically grounded, compositionally generalizable robotic manipulation. ICLR'23

Main Idea of ABIL

The Overall Framework

Goal:

- Help the agent understand demonstrations in symbolic space from highdimensional visual observations without symbolic-level label.
- Enable long-term logical planning for imitation learning.

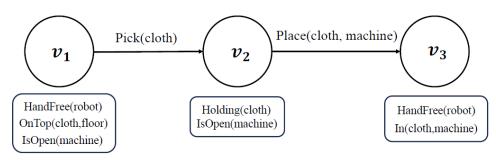
1. Background & Problem

2. ABIL Framework

3. Empirical Results

4. Conclusion

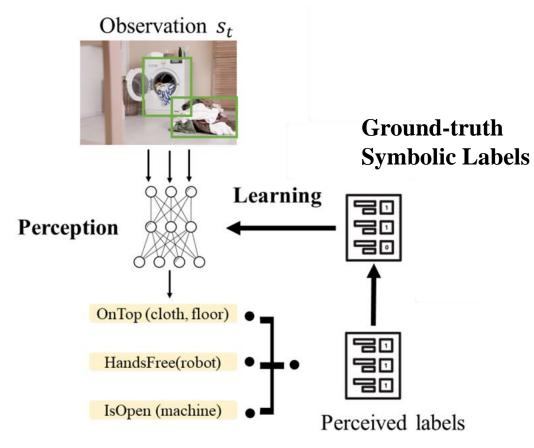
Goal-based planning task.


Environment Definition: $\langle S, \mathcal{A}, \mathcal{T}, O, \mathcal{P}, O\mathcal{P}, S^0, g \rangle$

Deterministic, fully-observed environment with object-centric representation.

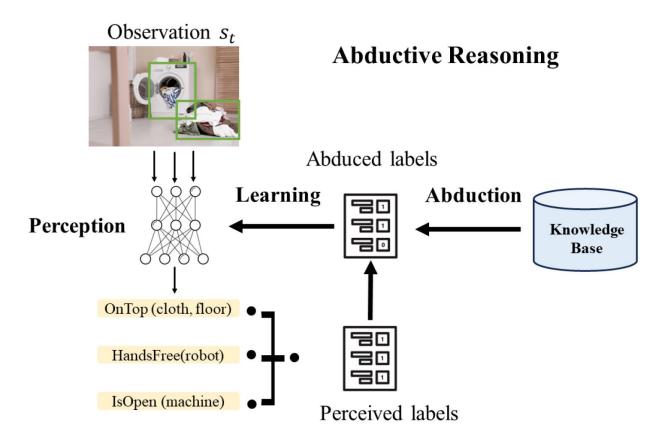
Symbolic Knowledge Base:

A finite-state machine, with a directed graph $G = \langle V, E \rangle$


- □ Each node $v \in V$ contains a set of ground atoms, which can be viewed as the condition of a sub-task.
- **\Box** Each edge is noted as a tuple $\langle \overline{op}, EFF^+, EFF^- \rangle$.

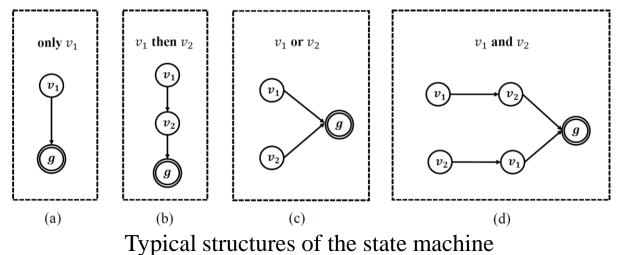
An example of the knowledge base

Symbolic-grounded Understanding



A straightforward method: optimize the network with the symbolic labels. However: Symbolic supervision is typically costly or not available

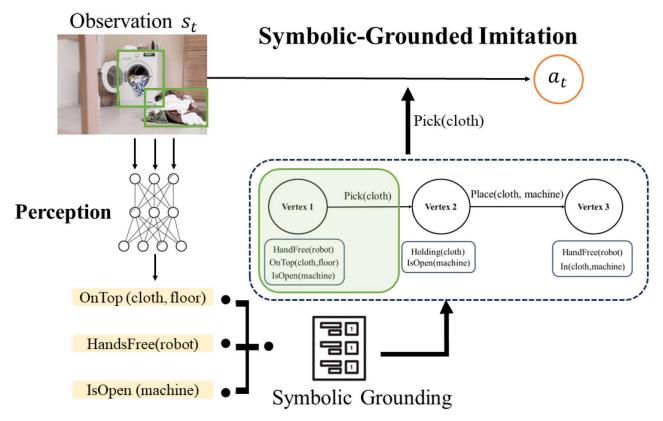
Symbolic-grounded Understanding



A straightforward method: optimize the network with the symbolic labels. However: Symbolic supervision is typically costly or not available We introduce the abductive reasoning to optimize the network.

Abductive Reasoning

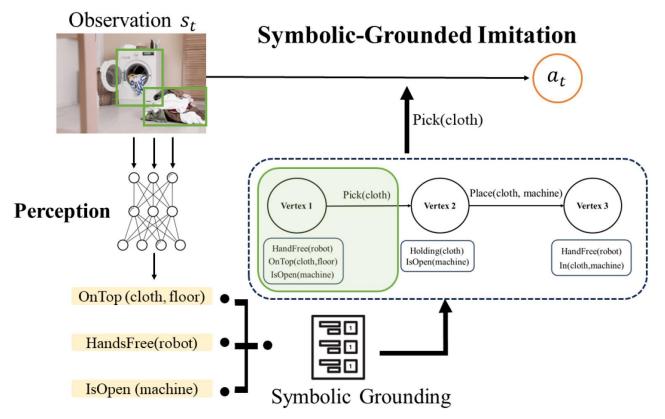
Acquire the pseudo label from the knowledge of state machine via abductive reasoning.


 $(t)^T$

- Derive the sequential abduction: $\{z_i^t\}_{t=1}^T \vDash G$
- Optimize the perception function f

$$\min_{f} \sum_{s_i \in D} \sum_{t=1}^{T} \mathcal{L}(f(s_i^t), \widehat{z_i^t}),$$
$$\{\widehat{z_i^t}\}_{t=1}^{T} = \arg\min_{\{z_i^t\}_{t=1}^{T}} \sum ||z_i^t - f(s_i^t)||^2, \quad \text{s.t.}\{z_i^t\}_{t=1}^{T} \models G$$

Symbolic-grounded Imitation

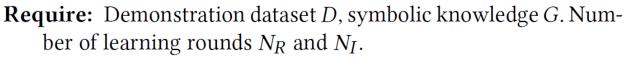


- Build the behavioral actor for each logical operator h_{op} , e.g. h_{pick} , h_{place}
- Derive the symbolic states by perception f, and derive the corresponding abstract logical operator

$$\overline{op}^t = \overline{op}_k$$
, s.t. $f(s^t) \models v_k, \exists k \in [0, K)$

Symbolic-grounded Imitation

- Obtain the desired parameter of the operator \overline{op}^t by reasoning $o^t = obj(\overline{op}^t)$
- Then optimize the behavior actors


$$\min_{h} \sum_{s_i, a_i \in D} \sum_{t=1}^{T} \mathcal{L}(h_{\overline{op}_i^t}(s_i^t, o^t), a_i^t)$$

PAKDD 2024 Workshop RobustML

ABIL Algorithm

Algorithm 1 Abductive Imitation Learning

- 1: **for** t = 1 to N_R **do**
- 2: Get the perceived labels via f(s)
- 3: Get the abduced labels via Eq. 1.
- 4: Update the perception network f.
- 5: **end for**
- 6: **for** t = 1 to N_I **do**
- 7: Get the symbolic states via f(s)
- 8: Get the logical operator \bar{op} via Eq. 2.
- 9: Update the behavior network h_{op} via Eq. 4.
- 10: **end for**
- 11: **return** Perception f and behavior $\{h_{o\bar{p}}\}, \bar{op} \in O\mathcal{P}$.
- ➤ A two-stage learning algorithm.

Embed high-level logical reasoning into the imitation learning process.

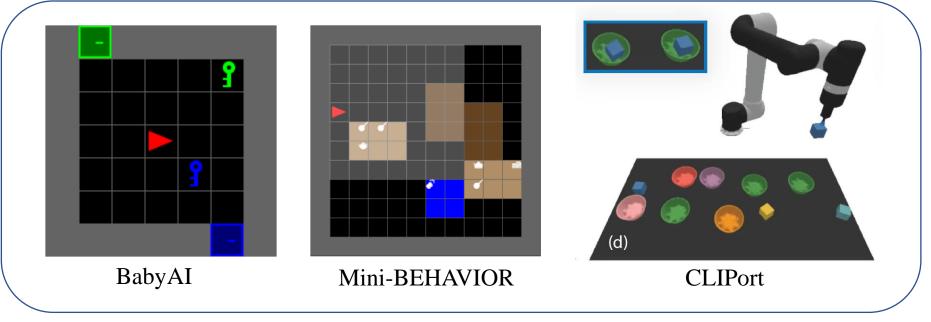
1. Background & Problem

2. ABIL Framework

3. Empirical Results

4. Conclusion

Setup



Three diverse environments

- ➢ BabyAI
 - ✓ Learning with logical instruction
- Mini-BEHAVIOR
 - ✓ Household Agent
- CLIPort
 - ✓ Robotic manipulation

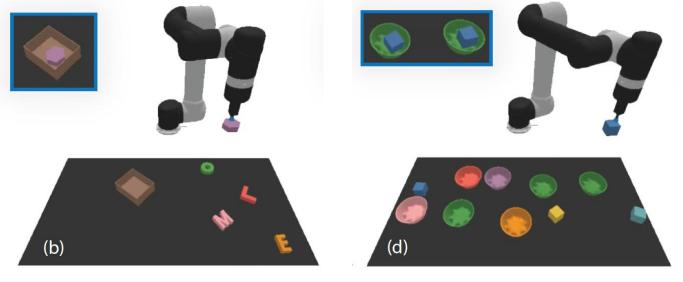
Baseline Methods

- Behavior Cloning (BC)
- Decision Transformer (DT)
- PDSketch

Task	Eval	BC	DT	PDSketch	ABIL-BC	ABIL-DT
GotoSingle	Basic	1.00	0.893 ± 0.049	1.00	1.00	0.900±0.036
Goto	Basic Gen	0.843±0.006 0.743±0.045	0.720 ± 0.044 0.583 ± 0.049	1.00 1.00	$\frac{0.900 \pm 0.046}{0.777 \pm 0.032}$	0.853 ± 0.038 0.793 ± 0.029
Pickup	Basic Gen	0.723±0.031 0.533±0.031	0.490 ± 0.040 0.320 ± 0.070	0.990±0.010 0.973±0.012	$\frac{0.847 \pm 0.025}{0.730 \pm 0.010}$	0.845 ± 0.035 0.763 ± 0.051
Open	Basic Gen	0.933±0.025 0.877±0.015	0.493 ± 0.059 0.440 ± 0.078	1.00 1.00	$\frac{0.963 \pm 0.021}{0.927 \pm 0.032}$	0.903±0.064 0.813±0.064
Put	Basic Gen	0.950±0.044 0.037±0.012	0.910 ± 0.036 0.207 ± 0.092	0.650 ± 0.026 0.560 ± 0.052	0.930±0.010 0.917±0.015	0.920 ± 0.026 0.877 ± 0.025
Unlock	Basic Gen	0.957±0.012 0.910±0.030	0.885±0.035 0.883±0.075	0.293 ± 0.051 0.247 ± 0.051	$\frac{0.967 \pm 0.023}{0.963 \pm 0.006}$	0.993±0.012 0.993±0.012
Averaged time per evaluation		0.174 seconds	0.260 seconds	8.17 seconds	0.320 seconds	0.354 seconds

ABIL effectively improves the performance of imitation learning methods.

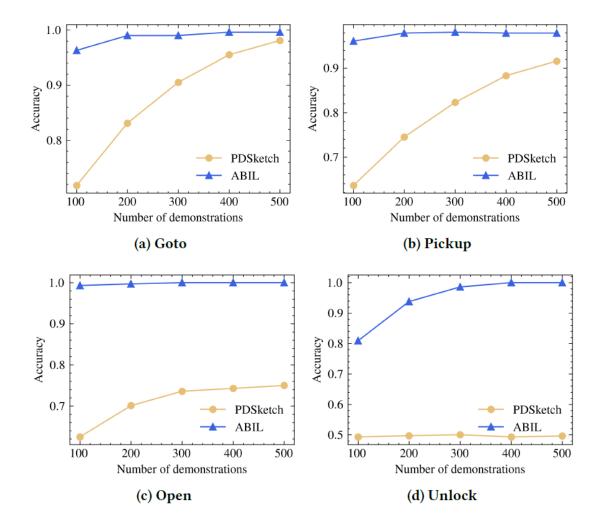
Results on Mini-BEHAVIOR



Task	Eval	BC	DT	PDSketch	ABIL-BC	ABIL-DT
Boxing books up			0.713±0.035 0.519±0.191	> 5 minutes	0.709±0.077 0.644±0.172	$\begin{array}{c} 0.661 {\pm} 0.094 \\ 0.625 {\pm} 0.087 \end{array}$
Cleaning A Car			$0.313 {\pm} 0.091$ $0.147 {\pm} 0.083$	> 5 minutes	${}^{0.423\pm0.032}_{0.253\pm0.047}$	$\substack{0.330 \pm 0.050 \\ 0.170 \pm 0.078}$
Cleaning shoes			$\substack{0.427 \pm 0.042 \\ 0.053 \pm 0.046}$	> 5 minutes	$\substack{0.598 \pm 0.068 \\ 0.390 \pm 0.102}$	$\substack{0.478 \pm 0.020 \\ 0.290 \pm 0.026}$
Collect misplaced items			$\begin{array}{c} 0.299 {\pm} 0.015 \\ 0.261 {\pm} 0.023 \end{array}$	> 5 minutes	$\substack{0.617 \pm 0.061 \\ 0.423 \pm 0.051}$	$\begin{array}{c} 0.457 {\pm} 0.007 \\ 0.387 {\pm} 0.028 \end{array}$
Installing a printer			$\begin{array}{c} 0.927 {\pm} 0.021 \\ 0.300 {\pm} 0.147 \end{array}$	0.343 ± 0.032 0.310 ± 0.046	$\substack{0.887 \pm 0.021 \\ 0.727 \pm 0.047}$	$\begin{array}{c} 0.937{\pm}0.023\\ 0.757{\pm}0.107\end{array}$
Laying wood floors		$\substack{0.616 \pm 0.062 \\ 0.068 \pm 0.018}$	$0.638 {\pm} 0.027$ $0.366 {\pm} 0.041$	> 5 minutes	$\substack{0.644 \pm 0.043 \\ 0.628 \pm 0.057}$	$0.643 {\pm} 0.031$ $0.374 {\pm} 0.040$
Making tea			$0.583 {\pm} 0.105$ $0.113 {\pm} 0.105$	> 5 minutes	0.687±0.038 0.370±0.131	0.607±0.029 0.493±0.124
Moving boxes to storage			$\substack{0.780 \pm 0.017 \\ 0.617 \pm 0.042}$	> 5 minutes	0.767±0.012 0.730±0.017	0.787±0.032 0.673±0.119
Opening packages			$0.963 {\pm} 0.034$ $0.548 {\pm} 0.065$	0.020 ± 0.010 0.020 ± 0.010	$0.978 {\pm} 0.010$ $0.905 {\pm} 0.018$	$\begin{array}{c} 0.990{\pm}0.009\\ 0.918{\pm}0.033\end{array}$
Organizing file cabinet			$\substack{0.522 \pm 0.067 \\ 0.382 \pm 0.112}$	> 5 minutes	$0.231 {\pm} 0.021$ $0.095 {\pm} 0.009$	$\begin{array}{c} 0.562{\pm}0.037\\ 0.454{\pm}0.074\end{array}$
Putting away dishes		0.811 ± 0.031 0.141 ± 0.111	0.828 ± 0.052 0.547 ± 0.296	> 5 minutes	${\begin{array}{c} 0.883 {\pm} 0.043 \\ 0.830 {\pm} 0.013 \end{array}}$	$\begin{array}{c} 0.813 {\pm} 0.022 \\ 0.739 {\pm} 0.072 \end{array}$
Sorting books			$0.543 {\pm} 0.053$ $0.220 {\pm} 0.010$	> 5 minutes		$0.631{\pm}0.055\ 0.412{\pm}0.038$
Throwing away leftovers			$\substack{0.890 \pm 0.029 \\ 0.653 \pm 0.039}$	> 5 minutes	0.924±0.014 0.713±0.069	0.888±0.039 0.729±0.031
Washing pots and pans			$\substack{0.227 \pm 0.079 \\ 0.028 \pm 0.016}$	> 5 minutes	${}^{0.349\pm0.063}_{0.242\pm0.110}$	$\begin{array}{c} 0.184{\pm}0.024\\ 0.153{\pm}0.024\end{array}$
Watering houseplants			$\substack{0.806 \pm 0.020 \\ 0.187 \pm 0.113}$	> 5 minutes	0.843±0.010 0.545±0.151	0.835±0.022 0.734±0.063
Averaged time per evalua	tion	1.48 seconds	2.09 seconds	> 5 minutes	2.88 seconds	2.98 seconds

ABIL demonstrates great performance under the open enviornments.

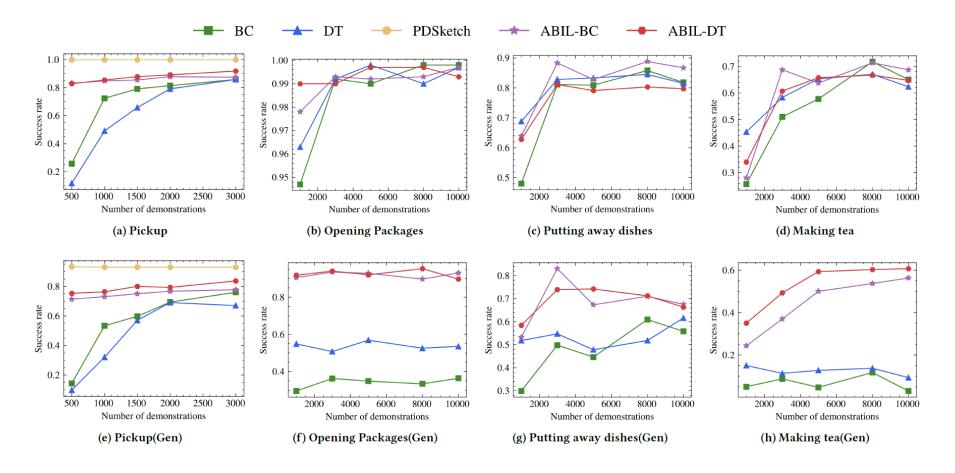
Task	BC	DT	ABIL-BC	ABIL-DT
Packing-5shapes	0.580 ± 0.252	0.607 ± 0.223	0.983±0.015	0.903±0.085
Packing-20shapes	0.207 ± 0.006	0.180 ± 0.026	0.940±0.030	0.857±0.025
Put-4blocks-in-5bowl	0.365 ± 0.141	0.319 ± 0.068	0.962±0.012	0.917±0.033


Packing-shapes

Put-blocks-in-bowls

ABIL gives outstanding results in CLIPort Environment.

Comparison of Neural-Symbolic Grounding



ABIL outperforms in **understanding the environment** accurately.

Data Efficiency and Generalization

ABIL improves the **data efficiency** of the BC and DT baselines, achieves significant **generalization improvement** in the out-of-distribution evaluation

Domain	BabyAI					
	Tra	Eval				
Task	Pickup	Open	Unlock			
BC	0.760 ± 0.056	0.983 ± 0.021	0.120 ± 0.010			
DT	0.783 ± 0.031	0.957 ± 0.031	0.057 ± 0.051			
PDSketch	$0.970 {\pm} 0.010$	0.990 ± 0.010	0.127 ± 0.021			
ABIL-BC	0.937 ± 0.021	1.00	0.980 ± 0.026			
ABIL-DT	0.925 ± 0.007	1.00	$0.993 {\pm} 0.012$			

Domain	Mini-BEHAVIOR						
	Train	Eval		Train	Eval		
Task	Open 1	Open 2	Open 3	Throw 1	Throw 2	Throw 3	
BC	0.950 ± 0.087	0.012 ± 0.010	0.002 ± 0.004	0.703 ± 0.085	0.117 ± 0.070	0.053 ± 0.045	
DT	1.00	0.037 ± 0.025	0.024 ± 0.008	0.770 ± 0.026	0.182 ± 0.008	0.056 ± 0.003	
PDSketch	0.467 ± 0.057	0.020 ± 0.010	> 5 minutes	0.013 ± 0.006	> 5 minutes	> 5 minutes	
ABIL-BC	0.997 ± 0.006	0.818 ± 0.014	0.551 ± 0.032	0.763 ± 0.049	0.638 ± 0.052	0.536 ± 0.082	
ABIL-DT	1.00	$0.840 {\pm} 0.035$	$0.631 {\pm} 0.041$	$0.803 {\pm} 0.051$	$0.650 {\pm} 0.049$	$0.585{\pm}0.120$	

ABIL has the ability to **zero-shot generalize** to novel composed tasks.

1. Background & Problem

2. ABIL Framework

3. Empirical Results

4. Conclusion

- \succ In this paper, we propose a novel framework: ABIL
- ✓ A novel framework which combines the benefits of data-driven learning and symbolic-based reasoning.
- ✓ Extensive experiments demonstrate the effectiveness and generality of ABIL.

Future work

Learning with accurate and incomplete knowledge base

Thank you!

If you are interested in, feel free to contact us:

<u>Hao-Ran Hao (hhr277133291@gmail.com)</u> <u>Jie-Jing Shao (shaojj@lamda.nju.edu.cn)</u>